Neuron tracing in perspective

The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational meth...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 77A; no. 7; pp. 693 - 704
Main Author Meijering, Erik
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. © 2010 International Society for Advancement of Cytometry
AbstractList The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. © 2010 International Society for Advancement of Cytometry
The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry.The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry.
The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. ? 2010 International Society for Advancement of Cytometry
The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry.
Author Meijering, Erik
Author_xml – sequence: 1
  fullname: Meijering, Erik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20583273$$D View this record in MEDLINE/PubMed
BookMark eNp90DtPwzAUBWALgegDNlagGwy0XF_HsTOiipdU0YF2YLIc16mM0qTYCaj_npS2DEh0siV_50g-HXJYlIUl5IzCgALgrVlV5UAPEGTCD0ibco79KGFw-HtHbJFOCO8AjAPDY9JC4JKhYG1y_mJrXxa9ymvjinnPFb2l9WFpTeU-7Qk5ynQe7On27JLpw_1k-NQfjR-fh3ejvokSzvtRZkFyxFhbFCmjOqMySymNrcgiFHomDGCcykRywASjWcI1T8GkRshYx8i65GrTu_TlR21DpRYuGJvnurBlHZRgjMdcQtzI672SAhWJYFImDb3Y0jpd2JlaerfQfqV2n28AboDxZQjeZsq4SleuLJo1XN50qfXCar2w0upn4SZ08ye06_2Hsw3_crld7bVq-DYZ71KXm1Smm-e5d0FNXxEoAypjhsjZNzGvlFQ
CitedBy_id crossref_primary_10_1007_s12021_019_09450_x
crossref_primary_10_1109_TMI_2018_2855736
crossref_primary_10_1016_j_neulet_2019_02_042
crossref_primary_10_1186_1471_2105_12_230
crossref_primary_10_1007_s12021_012_9153_2
crossref_primary_10_1134_S105466181501006X
crossref_primary_10_1016_j_jneumeth_2015_02_014
crossref_primary_10_1371_journal_pone_0065769
crossref_primary_10_1523_ENEURO_0049_14_2014
crossref_primary_10_3389_fpls_2021_675981
crossref_primary_10_1002_cne_23070
crossref_primary_10_1016_j_jmbbm_2015_04_013
crossref_primary_10_1109_TMI_2016_2515068
crossref_primary_10_1111_aos_12385
crossref_primary_10_1159_000358092
crossref_primary_10_1007_s12021_015_9267_4
crossref_primary_10_1016_j_jneumeth_2010_12_011
crossref_primary_10_1007_s40708_017_0063_9
crossref_primary_10_1016_j_jneumeth_2012_12_011
crossref_primary_10_1109_JSTSP_2015_2505660
crossref_primary_10_1016_j_neuropharm_2020_108102
crossref_primary_10_1364_BOE_6_004395
crossref_primary_10_1038_s41598_018_35917_z
crossref_primary_10_1021_ma502264c
crossref_primary_10_1186_s12859_017_1597_9
crossref_primary_10_1016_j_csbj_2020_08_003
crossref_primary_10_1016_j_neucom_2025_129742
crossref_primary_10_1109_TMI_2021_3125777
crossref_primary_10_1007_s12021_020_09484_6
crossref_primary_10_3390_biom13081237
crossref_primary_10_1016_j_mcn_2016_06_002
crossref_primary_10_1016_j_neuroscience_2016_07_005
crossref_primary_10_1093_bioinformatics_btac712
crossref_primary_10_1007_s12021_011_9101_6
crossref_primary_10_1080_10520295_2016_1247987
crossref_primary_10_1016_j_jbo_2020_100330
crossref_primary_10_1038_srep32156
crossref_primary_10_3390_s22062322
crossref_primary_10_1111_ceo_13924
crossref_primary_10_1093_bioinformatics_btt170
crossref_primary_10_1109_TIM_2020_3033057
crossref_primary_10_1002_cyto_a_22591
crossref_primary_10_1007_s12975_021_00888_3
crossref_primary_10_1155_2018_8234734
crossref_primary_10_1007_s12021_019_09434_x
crossref_primary_10_1186_s12886_017_0645_6
crossref_primary_10_1007_s12035_022_02830_6
crossref_primary_10_1016_j_jneumeth_2017_01_008
crossref_primary_10_1016_j_matpr_2016_10_017
crossref_primary_10_1093_bioinformatics_btab638
crossref_primary_10_1016_j_simpa_2020_100032
crossref_primary_10_1007_s00417_013_2400_x
crossref_primary_10_1016_j_compbiomed_2017_10_027
crossref_primary_10_1093_cercor_bhu197
crossref_primary_10_1016_j_ymeth_2017_02_005
crossref_primary_10_1109_TMI_2022_3206605
crossref_primary_10_1007_s00138_015_0720_z
crossref_primary_10_1007_s12021_021_09530_x
crossref_primary_10_1186_s40708_020_00117_x
crossref_primary_10_1093_bioinformatics_btv109
crossref_primary_10_1007_s00429_011_0340_y
crossref_primary_10_1186_s40708_021_00146_0
crossref_primary_10_1007_s12021_014_9253_2
crossref_primary_10_1007_s12021_016_9317_6
crossref_primary_10_1109_TVCG_2020_3030363
crossref_primary_10_1038_srep17062
crossref_primary_10_1109_TMI_2015_2465962
crossref_primary_10_1109_TMI_2020_3031289
crossref_primary_10_1007_s10571_016_0403_y
crossref_primary_10_15252_emmm_201607376
crossref_primary_10_1016_j_brainresbull_2018_12_001
crossref_primary_10_1242_dev_200012
crossref_primary_10_15252_embr_201948385
crossref_primary_10_3389_fnmol_2018_00357
crossref_primary_10_1038_ncomms12142
crossref_primary_10_1002_jcp_22958
crossref_primary_10_1016_j_jvcir_2012_09_003
crossref_primary_10_1038_s42003_024_06264_9
crossref_primary_10_1016_j_jneumeth_2013_01_023
crossref_primary_10_1038_srep18267
crossref_primary_10_1007_s00204_017_2059_x
crossref_primary_10_1016_j_jneumeth_2020_109062
crossref_primary_10_1002_admi_202100694
crossref_primary_10_1371_journal_pone_0073857
crossref_primary_10_3389_fninf_2023_1174049
crossref_primary_10_1021_acs_est_2c00161
crossref_primary_10_1097_ICO_0000000000001949
crossref_primary_10_2147_OPTH_S470183
crossref_primary_10_1016_j_devcel_2021_06_007
crossref_primary_10_1002_0471140856_tx1116s52
crossref_primary_10_1016_j_mex_2022_101715
crossref_primary_10_1038_s41592_023_01848_5
crossref_primary_10_1007_s12021_014_9237_2
crossref_primary_10_1016_j_media_2014_11_011
crossref_primary_10_1016_j_jneumeth_2018_04_002
crossref_primary_10_1109_TMI_2019_2945980
crossref_primary_10_1007_s12021_017_9325_1
crossref_primary_10_1016_j_jneumeth_2012_03_002
crossref_primary_10_1007_s10439_012_0733_y
crossref_primary_10_1134_S1054661812040153
crossref_primary_10_1007_s12021_024_09712_3
crossref_primary_10_1016_j_neuron_2015_06_036
crossref_primary_10_1093_bioinformatics_btu503
crossref_primary_10_1007_s12021_018_9414_9
crossref_primary_10_1016_j_mcn_2017_08_002
crossref_primary_10_1109_TMI_2022_3191011
crossref_primary_10_1186_s12859_020_03714_z
crossref_primary_10_1097_MD_0000000000007960
crossref_primary_10_1016_j_patcog_2016_09_041
crossref_primary_10_1073_pnas_1706711114
crossref_primary_10_1109_TMI_2020_3021493
crossref_primary_10_1016_j_neuint_2019_104511
crossref_primary_10_1016_j_jneumeth_2016_01_021
crossref_primary_10_1007_s12021_016_9310_0
crossref_primary_10_1109_TMI_2019_2893117
crossref_primary_10_1371_journal_pone_0207575
crossref_primary_10_2337_db19_1084
crossref_primary_10_1016_j_jneumeth_2011_06_021
crossref_primary_10_3389_fnana_2019_00018
crossref_primary_10_1016_j_neulet_2020_135077
crossref_primary_10_1088_1742_6596_1952_4_042079
crossref_primary_10_1002_cne_24674
crossref_primary_10_1109_TMI_2021_3130987
crossref_primary_10_1371_journal_pone_0083599
crossref_primary_10_1016_j_jneumeth_2016_09_007
crossref_primary_10_1093_bioinformatics_btae158
crossref_primary_10_1007_s12021_013_9213_2
crossref_primary_10_1016_j_neuron_2013_03_008
crossref_primary_10_1007_s40708_015_0018_y
crossref_primary_10_1016_j_pnpbp_2019_109832
crossref_primary_10_1109_TMI_2016_2623357
crossref_primary_10_1523_JNEUROSCI_1962_22_2023
crossref_primary_10_3389_fninf_2019_00015
crossref_primary_10_1016_j_nbd_2015_12_016
crossref_primary_10_1016_j_actbio_2012_10_033
crossref_primary_10_1016_j_heliyon_2022_e09871
crossref_primary_10_1109_TIM_2020_3031980
crossref_primary_10_3390_brainsci14080770
crossref_primary_10_1093_bib_bbae591
crossref_primary_10_1007_s12021_021_09532_9
crossref_primary_10_3389_fnana_2020_592806
crossref_primary_10_1016_j_bbrc_2017_03_082
crossref_primary_10_1002_cyto_a_22408
crossref_primary_10_1007_s12021_018_9399_4
crossref_primary_10_1371_journal_pcbi_1003043
crossref_primary_10_1111_cpr_12087
crossref_primary_10_1007_s12021_014_9256_z
crossref_primary_10_1007_s12021_018_9392_y
crossref_primary_10_1093_bioadv_vbad054
crossref_primary_10_15252_embj_2021110242
crossref_primary_10_1109_MSP_2012_2204190
crossref_primary_10_3389_fnins_2019_00162
crossref_primary_10_1097_ICO_0000000000000152
crossref_primary_10_1007_s12021_017_9336_y
crossref_primary_10_1093_bioinformatics_btr390
crossref_primary_10_1038_nprot_2015_122
crossref_primary_10_1038_nmeth_3662
crossref_primary_10_1016_j_jneumeth_2013_12_009
crossref_primary_10_1371_journal_pbio_1002275
crossref_primary_10_1007_s10439_010_0168_2
crossref_primary_10_1016_j_jneuroim_2017_08_008
crossref_primary_10_1016_j_nbd_2021_105362
crossref_primary_10_1371_journal_pone_0084557
crossref_primary_10_1091_mbc_E19_02_0080
crossref_primary_10_1007_s12021_015_9287_0
crossref_primary_10_3389_fninf_2020_00009
crossref_primary_10_1097_ICL_0000000000000282
crossref_primary_10_3389_fnana_2014_00037
crossref_primary_10_3389_fncom_2019_00074
crossref_primary_10_1007_s12021_011_9120_3
crossref_primary_10_1109_TOH_2014_2354041
crossref_primary_10_1016_j_npep_2015_08_009
crossref_primary_10_1371_journal_pone_0062579
crossref_primary_10_1186_1471_2105_14_287
crossref_primary_10_3389_fnins_2021_775391
crossref_primary_10_1134_S1054661811020398
crossref_primary_10_1109_JBHI_2020_3036743
crossref_primary_10_1007_s12021_022_09594_3
crossref_primary_10_1016_j_lssr_2017_03_004
crossref_primary_10_3389_fninf_2017_00036
crossref_primary_10_12968_opti_2020_12_8439
crossref_primary_10_1016_j_jneumeth_2019_108522
crossref_primary_10_1186_2046_2530_1_11
crossref_primary_10_1093_bioinformatics_bty231
crossref_primary_10_3389_fimmu_2019_01752
crossref_primary_10_1177_1073858414540216
crossref_primary_10_1007_s00415_024_12812_4
crossref_primary_10_1109_TMI_2024_3367384
crossref_primary_10_1007_s12021_011_9121_2
crossref_primary_10_1016_j_jneumeth_2016_03_004
crossref_primary_10_1038_srep01414
crossref_primary_10_1109_TIM_2021_3072119
crossref_primary_10_1109_TBME_2017_2674521
crossref_primary_10_1021_acsbiomaterials_0c00885
crossref_primary_10_1007_s00138_015_0733_7
crossref_primary_10_1523_JNEUROSCI_4284_12_2013
crossref_primary_10_3341_jkos_2014_55_12_1765
crossref_primary_10_1109_TVCG_2017_2744079
crossref_primary_10_1007_s12021_011_9110_5
crossref_primary_10_1016_j_neuroscience_2024_05_024
crossref_primary_10_1016_j_jneumeth_2011_04_033
crossref_primary_10_1016_j_jneumeth_2020_108835
crossref_primary_10_1016_j_neuron_2020_02_015
crossref_primary_10_1093_bioinformatics_btw751
crossref_primary_10_1155_2014_386974
crossref_primary_10_1016_j_ajo_2016_05_011
crossref_primary_10_1109_TMI_2021_3130934
crossref_primary_10_1139_bcb_2019_0253
crossref_primary_10_1186_s13293_024_00614_2
crossref_primary_10_1109_JSTSP_2015_2505402
crossref_primary_10_1007_s12021_018_9407_8
crossref_primary_10_1371_journal_pone_0234529
crossref_primary_10_1002_cm_21304
crossref_primary_10_1109_TITB_2012_2209670
crossref_primary_10_1096_fj_202100475R
crossref_primary_10_1016_j_jneumeth_2016_03_019
crossref_primary_10_1007_s12021_017_9332_2
Cites_doi 10.1016/j.neuroimage.2006.05.036
10.1016/j.semcdb.2009.07.004
10.1007/978-0-387-45524-2
10.1162/neco.2008.05-07-519
10.1002/cyto.a.20499
10.1017/S143192760303040X
10.1111/j.1365-2818.2005.01466.x
10.1007/s12021-007-0013-4
10.1016/j.neucom.2006.01.028
10.1111/j.1365-2818.2008.03094.x
10.1186/1471-2202-9-S1-P81
10.1142/S0219635202000128
10.1152/jn.90627.2008
10.1016/j.semcdb.2008.08.005
10.1016/j.jneumeth.2007.07.021
10.1016/0006-8993(86)90578-0
10.1016/j.jneumeth.2008.10.037
10.1002/cyto.a.20022
10.1007/978-1-4612-1634-6
10.1038/nrn787
10.1385/NI:3:4:343
10.1016/S0165-0270(00)00200-4
10.1016/0169-2607(93)90068-V
10.1016/S0165-0270(98)00091-0
10.7551/mitpress/9780262013277.001.0001
10.2144/000112517
10.1002/cyto.a.20664
10.1523/JNEUROSCI.2055-07.2007
10.1109/MSP.2006.1657828
10.1007/s004290100197
10.1007/s12021-009-9057-y
10.1016/0165-0270(94)90151-1
10.1016/j.jneumeth.2007.08.029
10.1016/S1046-2023(03)00011-2
10.1016/S0925-2312(02)00420-4
10.1016/j.jneumeth.2004.01.010
10.1002/cyto.a.20660
10.1007/s12021-009-9058-x
10.1016/S0165-0270(99)00120-X
10.1016/j.jneumeth.2009.07.021
10.1007/s12021-009-9053-2
10.1007/s12021-008-9024-z
10.1016/0165-0270(94)00126-2
10.1088/0954-898X/13/3/303
10.1016/j.jneumeth.2006.07.028
10.1038/nprot.2006.313
10.1016/j.jneumeth.2007.11.027
10.1016/0165-0270(94)00215-3
10.1016/S0165-0270(03)00017-7
10.1159/000141068
10.1109/MSP.2006.1628876
10.1017/CBO9780511541612
10.1007/s12021-009-9051-4
10.1002/cyto.a.20462
10.1371/journal.pone.0001997
10.1109/TITB.2006.884370
10.1109/MSP.2009.932122
10.1007/s12021-008-9010-5
10.1109/TITB.2002.1006304
10.1007/s12021-009-9052-3
10.1016/0895-6111(90)90105-K
10.1038/nprot.2008.51
10.1002/cyto.a.20431
10.1007/s12021-009-9047-0
10.1177/107385840100700207
10.1046/j.1365-2818.2003.01196.x
10.1016/S0165-0270(99)00099-0
10.1088/0954-898X/13/3/309
10.1016/0165-0270(83)90092-4
10.1016/0010-4809(81)90010-0
10.1038/171387a0
10.1007/s12021-008-9043-9
10.1109/TBME.1965.4502337
10.1016/j.media.2008.05.002
10.1162/089976602753712945
10.1093/bioinformatics/btn346
10.1162/089976604323057425
10.1023/A:1011118718821
10.1016/j.media.2008.06.019
10.1385/1592592759
10.1371/journal.pcbi.1000089
10.1016/j.media.2008.03.002
10.1016/j.brainres.2006.10.094
10.1016/j.neuroimage.2007.02.044
10.1016/0165-0270(86)90116-0
10.1109/TITB.2003.816564
10.1016/j.jneumeth.2007.05.020
10.1002/cne.20067
10.1016/S0165-0270(00)00228-4
10.1007/BF02459929
10.1098/rstb.2001.0910
10.1007/s004290100201
10.1088/0954-898X/13/3/301
10.3389/neuro.01.022.2008
10.1038/nrn1885
10.1016/j.neuroimage.2007.01.014
10.1016/j.neuron.2007.03.025
10.1016/j.jneumeth.2007.02.002
10.1016/j.jneumeth.2008.11.008
10.1088/0954-898X/13/3/307
10.1007/s12021-007-0004-5
10.1016/j.neuroscience.2005.05.053
10.1007/978-1-4684-5691-2
10.1098/rstb.2001.0905
10.1016/j.jneumeth.2007.12.024
10.1007/s12021-007-0010-7
10.1038/35104061
10.1007/s12021-008-9030-1
10.1111/j.1365-2818.1994.tb03433.x
10.1152/jn.00761.2004
10.1002/cyto.a.20296
10.1371/journal.pone.0005655
10.2144/01315bi01
10.1016/S0925-2312(00)00272-1
10.1109/TIP.2005.852462
10.1109/TIP.2002.800888
10.1146/annurev.physiol.64.081501.160008
10.1007/s12021-003-0002-1
10.1016/S0165-0270(99)00159-4
10.1111/j.1365-2818.2009.03156.x
10.1007/s10827-007-0038-6
10.1016/S0165-0270(02)00231-5
10.1016/j.neuroimage.2004.06.047
10.1007/s12021-007-0003-6
10.1002/jnr.490290203
ContentType Journal Article
Copyright Copyright © 2010 International Society for Advancement of Cytometry
Copyright_xml – notice: Copyright © 2010 International Society for Advancement of Cytometry
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
P64
7X8
DOI 10.1002/cyto.a.20895
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Engineering Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 704
ExternalDocumentID 20583273
10_1002_cyto_a_20895
CYTO20895
US201301863225
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Netherlands Organization for Scientific Research (VIDI)
  funderid: 639022401
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABLJU
ABPVW
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZA5
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
AFWVQ
AHBTC
AITYG
ALVPJ
HGLYW
OIG
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4955-4fe085226ae27b31af18fb116e7f427ad7c026b898502924d95a5b0cbc786a623
IEDL.DBID DR2
ISSN 1552-4922
1552-4930
IngestDate Thu Jul 10 19:33:40 EDT 2025
Fri Jul 11 08:58:29 EDT 2025
Thu Apr 03 06:56:51 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Jul 01 00:49:12 EDT 2025
Wed Jan 22 16:23:55 EST 2025
Wed Dec 27 19:13:49 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4955-4fe085226ae27b31af18fb116e7f427ad7c026b898502924d95a5b0cbc786a623
Notes http://dx.doi.org/10.1002/cyto.a.20895
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.20895
PMID 20583273
PQID 1017973889
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_733565806
proquest_miscellaneous_1017973889
pubmed_primary_20583273
crossref_citationtrail_10_1002_cyto_a_20895
crossref_primary_10_1002_cyto_a_20895
wiley_primary_10_1002_cyto_a_20895_CYTO20895
fao_agris_US201301863225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2010
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: July 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References 2006; 69A
2002; 14
2009; 75A
1965; 12
2006; 32
2002; 13
2004; 23
2002; 11
2009–2010
2005; 218
2000; 95
1983; 8
2009; 233
2009; 234
2007; 71
2008; 100
1992; 54
1998; 84
2001; 43
2009; 13
2006; 23
2000; 98
2007; 1138
2008; 24
2007; 5
2008; 20
1989
2007; 160
2007; 165
1995; 57
2002; 6
2007; 163
1993; 41
1998
2002; 1
2009; 177
2009; 178
1986; 18
2002; 3
2007; 11
2003; 211
2003; 30
2001; 204
1986; 368
2002; 121
2002; 64
1981; 14
2009; 184
2005; 3
2005; 93
2000; 100
2007; 71A
1953; 87
2001; 31
2005; 14
2006; 70
1990; 14
2005; 136
1994; 173
2008; 9
2008; 6
2008; 3
2008; 4
2008; 2
2007; 35
2007; 36
1995; 60
2004; 136
2001
2000
2003; 7
2003; 9
2002; 44
2003; 1
1999; 93
1999; 92
2003; 124
2007; 23
2007; 27
2008; 170
1955; 25
2009; 20
2008; 19
2006; 7
2009
2008
2007
2008; 12
2006
2008; 169
2006; 1
2002
2008; 168
2008; 167
2007; 54
2004; 58A
2009; 26
2004; 11
1991; 29
2004; 473
2008; 73A
2001; 7
2004; 16
2000; 32
2009; 7
2001; 2
2009; 4
2007; 43
2001; 356
1994; 53
e_1_2_7_108_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_123_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_116_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
Nicholls JG (e_1_2_7_4_2) 2001
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_37_2
e_1_2_7_131_2
e_1_2_7_135_2
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_120_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
Abràmoff MD (e_1_2_7_114_2) 2004; 11
e_1_2_7_109_2
e_1_2_7_117_2
e_1_2_7_113_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_132_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_9_2
Wu Q (e_1_2_7_22_2) 2008
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
Bear MF (e_1_2_7_2_2) 2007
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
e_1_2_7_118_2
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
Purves D (e_1_2_7_5_2) 2007
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_107_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_122_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_2
e_1_2_7_119_2
e_1_2_7_115_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
Kandel ER (e_1_2_7_3_2) 2000
Sonka M (e_1_2_7_23_2) 2007
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_130_2
e_1_2_7_38_2
Peng H (e_1_2_7_111_2)
e_1_2_7_134_2
References_xml – volume: 136
  start-page: 123
  year: 2004
  end-page: 131
  article-title: Quantitation of neurite growth parameters in explant cultures using a new image processing program
  publication-title: J Neurosci Methods
– volume: 41
  start-page: 89
  year: 1993
  end-page: 99
  article-title: Quantitative morphology and shape classification of neurons by computerized image analysis
  publication-title: Comput Methods Programs Biomed
– volume: 32
  start-page: 1608
  year: 2006
  end-page: 1620
  article-title: Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks
  publication-title: NeuroImage
– volume: 5
  start-page: 189
  year: 2007
  end-page: 203
  article-title: Automated axon tracking of 3D confocal laser scanning microscopy images using guided probabilistic region merging
  publication-title: Neuroinformatics
– year: 1989
– volume: 5
  start-page: 96
  year: 2007
  end-page: 104
  article-title: MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification
  publication-title: Neuroinformatics
– volume: 173
  start-page: 103
  year: 1994
  end-page: 114
  article-title: Automated tracing and volume measurements of neurons from 3D confocal fluorescence microscopy data
  publication-title: J Microscopy
– volume: 9
  start-page: 296
  year: 2003
  end-page: 310
  article-title: Automated three‐dimensional tracing of neurons in confocal and brightfield images
  publication-title: Microscopy Microanalysis
– volume: 13
  start-page: 397
  year: 2002
  end-page: 414
  article-title: Measures for quantifying dendritic arborizations
  publication-title: Network: Computation Neural Syst
– volume: 69A
  start-page: 494
  year: 2006
  end-page: 505
  article-title: Automated neurite labeling and analysis in fluorescence microscopy images
  publication-title: Cytometry Part A
– volume: 13
  start-page: 283
  year: 2002
  end-page: 310
  article-title: A shape analysis framework for neuromorphometry
  publication-title: Network: Computation Neural Syst
– volume: 7
  start-page: 318
  year: 2006
  end-page: 324
  article-title: Mobilizing the base of neuroscience data: The case of neuronal morphologies
  publication-title: Nat Rev Neurosci
– volume: 14
  start-page: 518
  year: 1981
  end-page: 532
  article-title: Accurate computer reconstruction and graphics display of complex neurons utilizing state‐of‐the‐art interactive techniques
  publication-title: Comput Biomed Res
– volume: 204
  start-page: 283
  year: 2001
  end-page: 301
  article-title: Computer generation and quantitative morphometric analysis of virtual neurons
  publication-title: Anat Embryol
– volume: 43
  start-page: 25
  year: 2007
  end-page: 30
  article-title: ImageJ for microscopy
  publication-title: Biotechniques
– volume: 160
  start-page: 149
  year: 2007
  end-page: 162
  article-title: A novel tracing algorithm for high throughput imaging screening of neuron‐based assays
  publication-title: J Neurosci Methods
– year: 1998
– volume: 169
  start-page: 43
  year: 2008
  end-page: 54
  article-title: Automated axon length quantification for populations of labelled neurons
  publication-title: J Neurosci Methods
– volume: 7
  start-page: 179
  year: 2009
  end-page: 190
  article-title: The tree‐edit‐distance, a measure for quantifying neuronal morphology
  publication-title: Neuroinformatics
– volume: 31
  start-page: 1076
  year: 2001
  end-page: 1078
  article-title: A workingperson's guide to deconvolution in light microscopy
  publication-title: Biotechniques
– volume: 170
  start-page: 165
  year: 2008
  end-page: 178
  article-title: Associative image analysis: A method for automated quantification of 3D multi‐parameter images of brain tissue
  publication-title: J Neurosci Methods
– volume: 7
  start-page: 211
  year: 2009
  end-page: 212
  article-title: Review of papers describing neuroinformatics software
  publication-title: Neuroinformatics
– year: 2008
– volume: 43
  start-page: 99
  year: 2001
  end-page: 111
  article-title: A minimum cost approach for segmenting networks of lines
  publication-title: Int J Comput Vision
– volume: 20
  start-page: 894
  year: 2009
  end-page: 902
  article-title: Tracking in cell and developmental biology
  publication-title: Semars Cell Dev Biol
– volume: 6
  start-page: 171
  year: 2002
  end-page: 187
  article-title: Rapid automated three‐dimensional tracing of neurons from confocal image stacks
  publication-title: IEEE Trans Informat Technol Biomed
– volume: 27
  start-page: 9247
  year: 2007
  end-page: 9251
  article-title: NeuroMorpho.org: A central resource for neuronal morphologies
  publication-title: J Neurosci
– volume: 23
  start-page: 32
  year: 2006
  end-page: 45
  article-title: Deconvolution methods for 3‐D fluorescence microscopy images
  publication-title: IEEE Signal Process Mag
– volume: 20
  start-page: 1899
  year: 2008
  end-page: 1927
  article-title: 3D Axon structure extraction and analysis in confocal fluorescence microscopy images
  publication-title: Neural Computation
– volume: 98
  start-page: 155
  year: 2000
  end-page: 163
  article-title: Computer‐assisted visualizations of neural networks: Expanding the field of view using seamless confocal montaging
  publication-title: JNeurosci Methods
– volume: 100
  start-page: 2422
  year: 2008
  end-page: 2429
  article-title: Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data
  publication-title: J Neurophysiol
– volume: 5
  start-page: 127
  year: 2007
  end-page: 138
  article-title: Interoperability of neuroscience modeling software: Current status and future directions
  publication-title: Neuroinformatics
– volume: 177
  start-page: 497
  year: 2009
  end-page: 509
  article-title: Automatic contour extraction from 2D neuron images
  publication-title: J Neurosci Methods
– volume: 92
  start-page: 75
  year: 1999
  end-page: 85
  article-title: A rapid method for semi‐quantitative analysis of neurite outgrowth from chick DRG explants using image analysis
  publication-title: J Neurosci Methods
– volume: 23
  start-page: 132
  year: 2006
  end-page: 135
  article-title: Optical microscopic image processing of dendritic spines morphology
  publication-title: IEEE Signal Process Mag
– volume: 35
  start-page: 1502
  year: 2007
  end-page: 1515
  article-title: Automated neurite extraction using dynamic programming for high‐throughput screening of neuron‐based assays
  publication-title: Neuroimage
– volume: 3
  start-page: e1997
  year: 2008
  article-title: Automated three‐dimensional detection and shape classification of dendritic spines from fluorescence microscopy images
  publication-title: PLoS One
– volume: 3
  start-page: 866
  year: 2008
  end-page: 876
  article-title: L‐Measure: A web‐accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies
  publication-title: Nat Protocols
– volume: 3
  start-page: 311
  year: 2002
  end-page: 313
  article-title: Sharing primary data: A threat or asset to discovery?
  publication-title: Nat Rev Neurosci
– volume: 23
  start-page: 349
  year: 2007
  end-page: 398
  article-title: Simulation of networks of spiking neurons: A review of tools and strategies
  publication-title: J Comput Neurosci
– volume: 1
  start-page: 2152
  year: 2006
  end-page: 2161
  article-title: Rayburst sampling, an algorithm for automated three‐dimensional shape analysis from laser scanning microscopy images
  publication-title: Nat Protocols
– volume: 178
  start-page: 197
  year: 2009
  end-page: 204
  article-title: Detection of the optimal neuron traces in confocal microscopy images
  publication-title: J Neurosci Methods
– volume: 2
  start-page: 19
  year: 2008
  end-page: 21
  article-title: Understanding the brain through neuroinformatics
  publication-title: Frontiers Neurosci
– year: 2007
– volume: 1138
  start-page: 57
  year: 2007
  end-page: 75
  article-title: NeuronMetrics: Software for semi‐automated processing of cultured neuron images
  publication-title: Brain Res
– volume: 93
  start-page: 121
  year: 1999
  end-page: 131
  article-title: Computer‐vision‐based extraction of neural dendograms
  publication-title: J Neurosci Methods
– volume: 18
  start-page: 127
  year: 1986
  end-page: 151
  article-title: The metric analysis of three‐dimensional dendritic tree patterns: A methodological review
  publication-title: J Neurosci Methods
– article-title: V3D: A real‐time 3D visualization system for the quantitative analysis of large bioimages and its applications to neuroscience
  publication-title: Nat Biotechnol
– volume: 13
  start-page: 180
  year: 2009
  end-page: 188
  article-title: Axon tracking in serial block‐face scanning electron microscopy
  publication-title: Med Image Anal
– volume: 234
  start-page: 147
  year: 2009
  end-page: 157
  article-title: Fast linear feature detection using multiple directional non‐maximum suppression
  publication-title: J Microscopy
– volume: 60
  start-page: 11
  year: 1995
  end-page: 21
  article-title: Quantification of dendritic spine populations using image analysis and a tilting disector
  publication-title: J Neurosci Methods
– volume: 36
  start-page: 346
  year: 2007
  end-page: 360
  article-title: Dendritic spine detection using curvilinear structure detector and LDA classifier
  publication-title: NeuroImage
– volume: 218
  start-page: 52
  year: 2005
  end-page: 61
  article-title: Reconstruct: A free editor for serial section microscopy
  publication-title: J Microscopy
– volume: 473
  start-page: 177
  year: 2004
  end-page: 193
  article-title: Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories
  publication-title: J Comp Neurol
– volume: 1
  start-page: 117
  year: 2002
  end-page: 128
  article-title: Neuroinformatics: The integration of shared databases and tools towards integrative neuroscience
  publication-title: J Integrative Neurosci
– year: 2002
– volume: 7
  start-page: 123
  year: 2001
  end-page: 135
  article-title: Neuron: A tool for neuroscientists
  publication-title: Neuroscientist
– volume: 14
  start-page: 1283
  year: 2002
  end-page: 1310
  article-title: An image analysis algorithm for dendritic spines
  publication-title: Neural Computation
– volume: 70
  start-page: 327
  year: 2006
  end-page: 342
  article-title: NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D
  publication-title: Neurocomputing
– volume: 12
  start-page: 22
  year: 1965
  end-page: 31
  article-title: A semi‐automatic computer‐microscope for the analysis of neuronal morphology
  publication-title: IEEE Trans Biomed Eng
– volume: 1
  start-page: 149
  year: 2003
  end-page: 165
  article-title: Neuroscience data and tool sharing: A legal and policy framework for neuroinformatics
  publication-title: Neuroinformatics
– volume: 121
  start-page: 53
  year: 2002
  end-page: 64
  article-title: A semi‐automated image analysis method to quantify neurite preference/axon guidance on a patterned substratum
  publication-title: J Neurosci Methods
– volume: 32
  start-page: 1003
  year: 2000
  end-page: 1011
  article-title: L‐neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology
  publication-title: Neurocomputing
– volume: 368
  start-page: 339
  year: 1986
  end-page: 346
  article-title: A microcomputer‐based image analyzer for quantitating neurite outgrowth
  publication-title: Brain Res
– volume: 7
  start-page: 213
  year: 2009
  end-page: 232
  article-title: MDL constrained 3‐D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images
  publication-title: Neuroinformatics
– volume: 54
  start-page: 759
  year: 1992
  end-page: 784
  article-title: Tree asymmetry—A sensitive and practical measure for binary topological trees
  publication-title: Bull Math Biol
– volume: 44
  start-page: 1077
  year: 2002
  end-page: 1081
  article-title: NeuroML for plug and play neuronal modeling
  publication-title: Neurocomputing
– volume: 356
  start-page: 1209
  year: 2001
  end-page: 1228
  article-title: Towards NeuroML: Model description methods for collaborative modelling in neuroscience
  publication-title: Philos Trans R Soc B: Biol Sci
– volume: 93
  start-page: 2331
  year: 2005
  end-page: 2342
  article-title: Progress in functional neuroanatomy: Precise automatic geometric reconstruction of neuronal morphology from confocal image stacks
  publication-title: J Neurophysiol
– year: 2009
– volume: 7
  start-page: 113
  year: 2009
  end-page: 130
  article-title: An automated pipeline for dendrite spine detection and tracking of 3D optical microscopy neuron images of in vivo mouse models
  publication-title: Neuroinformatics
– volume: 73A
  start-page: 36
  year: 2008
  end-page: 43
  article-title: Improved detection of branching points in algorithms for automated neuron tracing from 3D confocal images
  publication-title: Cytometry Part A
– volume: 24
  start-page: 1827
  year: 2008
  end-page: 1836
  article-title: Bioimage informatics: A new area of engineering biology
  publication-title: Bioinformatics
– volume: 13
  start-page: 247
  year: 2002
  end-page: 260
  article-title: Neuroanatomical algorithms for dendritic modelling
  publication-title: Network: Comput Neural Syst
– volume: 14
  start-page: 307
  year: 1990
  end-page: 317
  article-title: Neuron imaging with Neurolucida—A PC‐based system for image combining microscopy
  publication-title: Computerized Med Imaging Graphics
– volume: 211
  start-page: 8
  year: 2003
  end-page: 18
  article-title: Algorithms for accurate 3D registration of neuronal images acquired by confocal scanning laser microscopy
  publication-title: J Microscopy
– year: 2001
– volume: 124
  start-page: 197
  year: 2003
  end-page: 205
  article-title: An algorithm for neurite outgrowth reconstruction
  publication-title: J Neurosci Methods
– volume: 165
  start-page: 122
  year: 2007
  end-page: 134
  article-title: A novel computational approach for automatic dendrite spines detection in two‐photon laser scan microscopy
  publication-title: J Neurosci Methods
– volume: 84
  start-page: 49
  year: 1998
  end-page: 54
  article-title: An on‐line archive of reconstructed hippocampal neurons
  publication-title: J Neurosci Methods
– volume: 6
  start-page: 149
  year: 2008
  end-page: 160
  article-title: The Neuroscience Information Framework: A data and knowledge environment for neuroscience
  publication-title: Neuroinformatics
– volume: 100
  start-page: 25
  year: 2000
  end-page: 32
  article-title: A simple procedure for quantification of neurite outgrowth based on stereological principles
  publication-title: J Neurosci Methods
– volume: 64
  start-page: 313
  year: 2002
  end-page: 353
  article-title: Structure and function of dendritic spines
  publication-title: Annu Rev Physiol
– volume: 13
  start-page: 357
  year: 2002
  end-page: 380
  article-title: Neuronal morphology data bases: Morphological noise and assesment of data quality
  publication-title: Network: Comput Neural Syst
– year: 2009–2010
– volume: 12
  start-page: 666
  year: 2008
  end-page: 675
  article-title: Using nonlinear diffusion and mean shift to detect and connect cross‐sections of axons in 3D optical microscopy images
  publication-title: Med Image Anal
– volume: 19
  start-page: 485
  year: 2008
  end-page: 493
  article-title: Quantifying neuronal size: Summing up trees and splitting the branch difference
  publication-title: Semars Cell Dev Biol
– volume: 7
  start-page: 195
  year: 2009
  end-page: 210
  article-title: NETMORPH: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies
  publication-title: Neuroinformatics
– volume: 75A
  start-page: 371
  year: 2009
  end-page: 376
  article-title: Automated analysis of NeuronJ tracing data
  publication-title: Cytometry Part A
– volume: 168
  start-page: 134
  year: 2008
  end-page: 139
  article-title: NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth
  publication-title: J Neurosci Methods
– volume: 356
  start-page: 1131
  year: 2001
  end-page: 1145
  article-title: Generation, description and storage of dendritic morphology data
  publication-title: Philos Trans R Soc B: Biol Sci
– volume: 9
  start-page: 81
  year: 2008
  article-title: Improved automatic midline tracing of neurites with Neuromantic
  publication-title: BMC Neurosci
– volume: 4
  start-page: 1
  year: 2008
  end-page: 15
  article-title: A comparative computer simulation of dendritic morphology
  publication-title: PLoS Comput Biol
– volume: 6
  start-page: 1
  year: 2008
  end-page: 3
  article-title: Neuroinformatics grand challenges
  publication-title: Neuroinformatics
– volume: 57
  start-page: 63
  year: 1995
  end-page: 66
  article-title: A quantitative method for morphometric analysis in neuronal cell culture: Unbiased estimation of neuron area and number of branch points
  publication-title: J Neurosci Methods
– volume: 2
  start-page: 880
  year: 2001
  end-page: 888
  article-title: Dendritic spines: Structure, dynamics and regulation
  publication-title: Nat Rev Neurosci
– volume: 6
  start-page: 241
  year: 2008
  end-page: 252
  article-title: NeuroMorpho.Org implementation of digital neuroscience: Dense coverage and integration with the NIF
  publication-title: Neuroinformatics
– volume: 7
  start-page: 1
  year: 2009
  end-page: 5
  article-title: The central role of neuroinformatics in the National Academy of Engineering's grandest challenge: Reverse engineer the brain
  publication-title: Neuroinformatics
– volume: 30
  start-page: 94
  year: 2003
  end-page: 105
  article-title: Automated reconstruction of three‐dimensional neuronal morphology from laser scanning microscopy images
  publication-title: Methods
– volume: 23
  start-page: 1283
  year: 2004
  end-page: 1298
  article-title: New methods for the computer‐assisted 3‐D reconstruction of neurons from confocal image stacks
  publication-title: Neuroimage
– volume: 163
  start-page: 24
  year: 2007
  end-page: 30
  article-title: A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology
  publication-title: J Neurosci Methods
– volume: 5
  start-page: 154
  year: 2007
  end-page: 160
  article-title: Successes and rewards in sharing digital reconstructions of neuronal morphology
  publication-title: Neuroinformatics
– volume: 167
  start-page: 349
  year: 2008
  end-page: 357
  article-title: Contour‐propagation algorithms for semi‐automated reconstruction of neural processes
  publication-title: J Neurosci Methods
– volume: 26
  start-page: 37
  year: 2009
  end-page: 47
  article-title: Reproducible research in signal processing
  publication-title: IEEE Signal Process Mag
– volume: 87
  start-page: 387
  year: 1953
  end-page: 406
  article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat
  publication-title: J Anatomy
– volume: 184
  start-page: 169
  year: 2009
  end-page: 175
  article-title: Three‐dimensional neuron tracing by voxel scooping
  publication-title: J Neurosci Methods
– volume: 13
  start-page: 167
  year: 2009
  end-page: 179
  article-title: Robust 3D reconstruction and identification of dendritic spines from optical microscopy imaging
  publication-title: Med Image Anal
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Image processing with ImageJ
  publication-title: Biophotonics Int
– volume: 7
  start-page: 191
  year: 2009
  end-page: 194
  article-title: On comparing neuronal morphologies with the constrained tree‐edit‐distance
  publication-title: Neuroinformatics
– volume: 71A
  start-page: 889
  year: 2007
  end-page: 895
  article-title: Automated analysis of neurite branching in cultured cortical neurons using HCA‐Vision
  publication-title: Cytometry Part A
– volume: 71
  start-page: 818
  year: 2007
  end-page: 826
  article-title: Automatic dendritic spine analysis in two‐photon laser scanning microscopy images
  publication-title: Cytometry Part A
– volume: 11
  start-page: 790
  year: 2002
  end-page: 801
  article-title: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3‐D wavelet transform
  publication-title: IEEE Trans Image Process
– year: 2000
– volume: 75A
  start-page: 289
  year: 2009
  end-page: 297
  article-title: Quantitative neurite outgrowth measurement based on image segmentation with topological dependence
  publication-title: Cytometry Part A
– volume: 54
  start-page: 219
  year: 2007
  end-page: 235
  article-title: neuroConstruct: A tool for modeling networks of neurons in 3D space
  publication-title: Neuron
– volume: 25
  start-page: 160
  year: 1955
  end-page: 183
  article-title: The cerebral cortex of normal and hypothyroid rats
  publication-title: Acta Anatomica
– volume: 29
  start-page: 149
  year: 1991
  end-page: 154
  article-title: Quantitation of the growth‐associated protein B‐50/GAP‐43 and neurite outgrowth in PC12 cells
  publication-title: J Neurosci Res
– volume: 14
  start-page: 1338
  year: 2005
  end-page: 1350
  article-title: Automatic selection of parameters for vessel/neurite segmentation algorithms
  publication-title: IEEE Trans Image Process
– volume: 7
  start-page: 302
  year: 2003
  end-page: 317
  article-title: Median‐based robust algorithms for tracing neurons from noisy confocal microscope images
  publication-title: IEEE Trans Inf Technol Biomed
– volume: 4
  start-page: e5655
  year: 2009
  article-title: Semi‐automated reconstruction of neural processes from large numbers of fluorescence images
  publication-title: PLoS One
– volume: 16
  start-page: 1353
  year: 2004
  end-page: 1383
  article-title: Automated algorithms for multiscale morphometry of neuronal dendrites
  publication-title: Neural Computation
– volume: 204
  start-page: 255
  year: 2001
  end-page: 265
  article-title: The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function
  publication-title: Anat Embryol
– volume: 58A
  start-page: 167
  year: 2004
  end-page: 176
  article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images
  publication-title: Cytometry Part A
– volume: 136
  start-page: 661
  year: 2005
  end-page: 680
  article-title: New techniques for imaging, digitization and analysis of three‐dimensional neural morphology on multiple scales
  publication-title: Neuroscience
– volume: 11
  start-page: 296
  year: 2007
  end-page: 304
  article-title: A wavelet approach for the identification of axonal synaptic varicosities from microscope images
  publication-title: IEEE Trans Inf Technol Biomed
– year: 2006
– volume: 53
  start-page: 111
  year: 1994
  end-page: 122
  article-title: Image analysis of neuritic regeneration by adult rat dorsal root ganglion neurons in culture: Quantification of the neurotoxicity of anticancer agents and of its prevention by nerve growth factor or basic fibroblast growth factor but not brain‐derived neurotrophic factor or neurotrophin‐3
  publication-title: J Neurosci Methods
– volume: 95
  start-page: 83
  year: 2000
  end-page: 93
  article-title: The problem of the morphological noise in reconstructed dendritic arborizations
  publication-title: J Neurosci Methods
– volume: 3
  start-page: 343
  year: 2005
  end-page: 359
  article-title: A cross‐platform freeware tool for digital reconstruction of neuronal arborizations from image stacks
  publication-title: Neuroinformatics
– volume: 8
  start-page: 353
  year: 1983
  end-page: 364
  article-title: An automatic neuron reconstruction system
  publication-title: J Neurosci Methods
– volume: 233
  start-page: 42
  year: 2009
  end-page: 60
  article-title: XuvTools: Free, fast and reliable stitching of large 3D datasets
  publication-title: J Microscopy
– ident: e_1_2_7_71_2
  doi: 10.1016/j.neuroimage.2006.05.036
– ident: e_1_2_7_134_2
  doi: 10.1016/j.semcdb.2009.07.004
– ident: e_1_2_7_21_2
  doi: 10.1007/978-0-387-45524-2
– ident: e_1_2_7_28_2
  doi: 10.1162/neco.2008.05-07-519
– ident: e_1_2_7_41_2
  doi: 10.1002/cyto.a.20499
– ident: e_1_2_7_37_2
  doi: 10.1017/S143192760303040X
– ident: e_1_2_7_67_2
  doi: 10.1111/j.1365-2818.2005.01466.x
– ident: e_1_2_7_69_2
  doi: 10.1007/s12021-007-0013-4
– ident: e_1_2_7_107_2
  doi: 10.1016/j.neucom.2006.01.028
– ident: e_1_2_7_31_2
  doi: 10.1111/j.1365-2818.2008.03094.x
– ident: e_1_2_7_76_2
  doi: 10.1186/1471-2202-9-S1-P81
– ident: e_1_2_7_128_2
  doi: 10.1142/S0219635202000128
– ident: e_1_2_7_77_2
  doi: 10.1152/jn.90627.2008
– ident: e_1_2_7_97_2
  doi: 10.1016/j.semcdb.2008.08.005
– ident: e_1_2_7_72_2
  doi: 10.1016/j.jneumeth.2007.07.021
– ident: e_1_2_7_17_2
  doi: 10.1016/0006-8993(86)90578-0
– ident: e_1_2_7_39_2
  doi: 10.1016/j.jneumeth.2008.10.037
– ident: e_1_2_7_59_2
  doi: 10.1002/cyto.a.20022
– ident: e_1_2_7_103_2
  doi: 10.1007/978-1-4612-1634-6
– ident: e_1_2_7_127_2
  doi: 10.1038/nrn787
– volume-title: Principles of Neural Science
  year: 2000
  ident: e_1_2_7_3_2
– ident: e_1_2_7_13_2
  doi: 10.1385/NI:3:4:343
– ident: e_1_2_7_29_2
  doi: 10.1016/S0165-0270(00)00200-4
– volume-title: From Neuron to Brain
  year: 2001
  ident: e_1_2_7_4_2
– ident: e_1_2_7_36_2
  doi: 10.1016/0169-2607(93)90068-V
– ident: e_1_2_7_123_2
  doi: 10.1016/S0165-0270(98)00091-0
– ident: e_1_2_7_119_2
  doi: 10.7551/mitpress/9780262013277.001.0001
– ident: e_1_2_7_115_2
  doi: 10.2144/000112517
– ident: e_1_2_7_33_2
  doi: 10.1002/cyto.a.20664
– ident: e_1_2_7_131_2
  doi: 10.1523/JNEUROSCI.2055-07.2007
– ident: e_1_2_7_110_2
  doi: 10.1109/MSP.2006.1657828
– ident: e_1_2_7_7_2
  doi: 10.1007/s004290100197
– ident: e_1_2_7_63_2
  doi: 10.1007/s12021-009-9057-y
– ident: e_1_2_7_43_2
  doi: 10.1016/0165-0270(94)90151-1
– ident: e_1_2_7_49_2
  doi: 10.1016/j.jneumeth.2007.08.029
– ident: e_1_2_7_45_2
  doi: 10.1016/S1046-2023(03)00011-2
– ident: e_1_2_7_125_2
  doi: 10.1016/S0925-2312(02)00420-4
– ident: e_1_2_7_35_2
  doi: 10.1016/j.jneumeth.2004.01.010
– ident: e_1_2_7_112_2
  doi: 10.1002/cyto.a.20660
– volume-title: Neuroscience
  year: 2007
  ident: e_1_2_7_5_2
– ident: e_1_2_7_100_2
  doi: 10.1007/s12021-009-9058-x
– ident: e_1_2_7_51_2
  doi: 10.1016/S0165-0270(99)00120-X
– ident: e_1_2_7_58_2
  doi: 10.1016/j.jneumeth.2009.07.021
– ident: e_1_2_7_99_2
  doi: 10.1007/s12021-009-9053-2
– ident: e_1_2_7_132_2
  doi: 10.1007/s12021-008-9024-z
– ident: e_1_2_7_94_2
  doi: 10.1016/0165-0270(94)00126-2
– ident: e_1_2_7_12_2
  doi: 10.1088/0954-898X/13/3/303
– ident: e_1_2_7_27_2
  doi: 10.1016/j.jneumeth.2006.07.028
– ident: e_1_2_7_65_2
  doi: 10.1038/nprot.2006.313
– ident: e_1_2_7_26_2
  doi: 10.1016/j.jneumeth.2007.11.027
– ident: e_1_2_7_55_2
  doi: 10.1016/0165-0270(94)00215-3
– ident: e_1_2_7_34_2
  doi: 10.1016/S0165-0270(03)00017-7
– ident: e_1_2_7_92_2
  doi: 10.1159/000141068
– ident: e_1_2_7_25_2
  doi: 10.1109/MSP.2006.1628876
– ident: e_1_2_7_109_2
  doi: 10.1017/CBO9780511541612
– ident: e_1_2_7_98_2
  doi: 10.1007/s12021-009-9051-4
– ident: e_1_2_7_38_2
  doi: 10.1002/cyto.a.20462
– ident: e_1_2_7_111_2
  article-title: V3D: A real‐time 3D visualization system for the quantitative analysis of large bioimages and its applications to neuroscience
  publication-title: Nat Biotechnol
– ident: e_1_2_7_85_2
  doi: 10.1371/journal.pone.0001997
– ident: e_1_2_7_84_2
  doi: 10.1109/TITB.2006.884370
– ident: e_1_2_7_101_2
  doi: 10.1109/MSP.2009.932122
– ident: e_1_2_7_11_2
  doi: 10.1007/s12021-008-9010-5
– ident: e_1_2_7_40_2
  doi: 10.1109/TITB.2002.1006304
– ident: e_1_2_7_106_2
  doi: 10.1007/s12021-009-9052-3
– ident: e_1_2_7_113_2
  doi: 10.1016/0895-6111(90)90105-K
– ident: e_1_2_7_104_2
  doi: 10.1038/nprot.2008.51
– ident: e_1_2_7_82_2
  doi: 10.1002/cyto.a.20431
– ident: e_1_2_7_62_2
  doi: 10.1007/s12021-009-9047-0
– ident: e_1_2_7_120_2
  doi: 10.1177/107385840100700207
– volume-title: Microscope Image Processing
  year: 2008
  ident: e_1_2_7_22_2
– ident: e_1_2_7_30_2
  doi: 10.1046/j.1365-2818.2003.01196.x
– ident: e_1_2_7_44_2
  doi: 10.1016/S0165-0270(99)00099-0
– ident: e_1_2_7_32_2
  doi: 10.1088/0954-898X/13/3/309
– ident: e_1_2_7_18_2
  doi: 10.1016/0165-0270(83)90092-4
– ident: e_1_2_7_16_2
  doi: 10.1016/0010-4809(81)90010-0
– ident: e_1_2_7_91_2
  doi: 10.1038/171387a0
– ident: e_1_2_7_9_2
  doi: 10.1007/s12021-008-9043-9
– ident: e_1_2_7_15_2
  doi: 10.1109/TBME.1965.4502337
– volume-title: Image Processing, Analysis, and Machine Vision
  year: 2007
  ident: e_1_2_7_23_2
– ident: e_1_2_7_73_2
  doi: 10.1016/j.media.2008.05.002
– ident: e_1_2_7_56_2
  doi: 10.1162/089976602753712945
– ident: e_1_2_7_6_2
  doi: 10.1093/bioinformatics/btn346
– ident: e_1_2_7_46_2
  doi: 10.1162/089976604323057425
– ident: e_1_2_7_74_2
  doi: 10.1023/A:1011118718821
– ident: e_1_2_7_50_2
  doi: 10.1016/j.media.2008.06.019
– ident: e_1_2_7_10_2
  doi: 10.1385/1592592759
– volume: 11
  start-page: 36
  year: 2004
  ident: e_1_2_7_114_2
  article-title: Image processing with ImageJ
  publication-title: Biophotonics Int
– ident: e_1_2_7_116_2
  doi: 10.1371/journal.pcbi.1000089
– ident: e_1_2_7_70_2
  doi: 10.1016/j.media.2008.03.002
– ident: e_1_2_7_48_2
  doi: 10.1016/j.brainres.2006.10.094
– ident: e_1_2_7_61_2
  doi: 10.1016/j.neuroimage.2007.02.044
– ident: e_1_2_7_90_2
  doi: 10.1016/0165-0270(86)90116-0
– ident: e_1_2_7_66_2
  doi: 10.1109/TITB.2003.816564
– ident: e_1_2_7_83_2
  doi: 10.1016/j.jneumeth.2007.05.020
– ident: e_1_2_7_89_2
  doi: 10.1002/cne.20067
– ident: e_1_2_7_95_2
  doi: 10.1016/S0165-0270(00)00228-4
– ident: e_1_2_7_96_2
  doi: 10.1007/BF02459929
– ident: e_1_2_7_124_2
  doi: 10.1098/rstb.2001.0910
– ident: e_1_2_7_117_2
  doi: 10.1007/s004290100201
– ident: e_1_2_7_88_2
  doi: 10.1088/0954-898X/13/3/301
– ident: e_1_2_7_8_2
  doi: 10.3389/neuro.01.022.2008
– ident: e_1_2_7_14_2
  doi: 10.1038/nrn1885
– ident: e_1_2_7_75_2
  doi: 10.1016/j.neuroimage.2007.01.014
– ident: e_1_2_7_108_2
  doi: 10.1016/j.neuron.2007.03.025
– ident: e_1_2_7_93_2
  doi: 10.1016/j.jneumeth.2007.02.002
– ident: e_1_2_7_57_2
  doi: 10.1016/j.jneumeth.2008.11.008
– ident: e_1_2_7_87_2
  doi: 10.1088/0954-898X/13/3/307
– ident: e_1_2_7_122_2
  doi: 10.1007/s12021-007-0004-5
– ident: e_1_2_7_47_2
  doi: 10.1016/j.neuroscience.2005.05.053
– ident: e_1_2_7_19_2
  doi: 10.1007/978-1-4684-5691-2
– ident: e_1_2_7_118_2
  doi: 10.1098/rstb.2001.0905
– ident: e_1_2_7_102_2
  doi: 10.1016/j.jneumeth.2007.12.024
– ident: e_1_2_7_130_2
  doi: 10.1007/s12021-007-0010-7
– ident: e_1_2_7_80_2
  doi: 10.1038/35104061
– ident: e_1_2_7_133_2
  doi: 10.1007/s12021-008-9030-1
– ident: e_1_2_7_20_2
– ident: e_1_2_7_54_2
  doi: 10.1111/j.1365-2818.1994.tb03433.x
– ident: e_1_2_7_79_2
  doi: 10.1152/jn.00761.2004
– ident: e_1_2_7_60_2
  doi: 10.1002/cyto.a.20296
– ident: e_1_2_7_68_2
  doi: 10.1371/journal.pone.0005655
– ident: e_1_2_7_24_2
  doi: 10.2144/01315bi01
– ident: e_1_2_7_105_2
  doi: 10.1016/S0925-2312(00)00272-1
– ident: e_1_2_7_135_2
  doi: 10.1109/TIP.2005.852462
– ident: e_1_2_7_52_2
  doi: 10.1109/TIP.2002.800888
– ident: e_1_2_7_81_2
  doi: 10.1146/annurev.physiol.64.081501.160008
– volume-title: Neuroscience: Exploring the Brain
  year: 2007
  ident: e_1_2_7_2_2
– ident: e_1_2_7_129_2
  doi: 10.1007/s12021-003-0002-1
– ident: e_1_2_7_86_2
  doi: 10.1016/S0165-0270(99)00159-4
– ident: e_1_2_7_64_2
  doi: 10.1111/j.1365-2818.2009.03156.x
– ident: e_1_2_7_121_2
  doi: 10.1007/s10827-007-0038-6
– ident: e_1_2_7_53_2
  doi: 10.1016/S0165-0270(02)00231-5
– ident: e_1_2_7_78_2
  doi: 10.1016/j.neuroimage.2004.06.047
– ident: e_1_2_7_126_2
  doi: 10.1007/s12021-007-0003-6
– ident: e_1_2_7_42_2
  doi: 10.1002/jnr.490290203
SSID ssj0035032
Score 2.4260132
SecondaryResourceType review_article
Snippet The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key...
SourceID proquest
pubmed
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 693
SubjectTerms Algorithms
Animals
bioimage informatics
Computer Simulation
Databases, Factual
digital reconstruction
Image Processing, Computer-Assisted - instrumentation
Image Processing, Computer-Assisted - methods
image segmentation
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
neuroinformatics
neuron tracing
Neurons - cytology
neuroscience
pattern recognition
quantitative image analysis
Software
software tools
Staining and Labeling - methods
Title Neuron tracing in perspective
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.20895
https://www.ncbi.nlm.nih.gov/pubmed/20583273
https://www.proquest.com/docview/1017973889
https://www.proquest.com/docview/733565806
Volume 77A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aQKGXPpPGSRNcaE-NN7YelnwMoSEU2kK7C9uTGMlyKC3ekHgPya_PSPZusiUbaG8-jITkkWa-kUbfALwXdakF8ipzliIdITzLqspT1Ep4n2NNDjuWA_rytTydiM9TOR0O3MJbmJ4fYnngFnZGtNdhg6O9PLwlDXVX3WwUmIN0Fd6Yh3StgIm-L9mjuMxjfbJAMpaJirEh752aH95tvOKRHjc4uw9srmLX6HxOnoNZDLvPOfk9mnd25K7_YnT8_3m9gGcDLk2P-oX0Eh759hU86StVXr2GvUji0abdBTpydumvNj2_faa5CZOTT-Pj02yorJA5CohkJhpPUIuQF3qmLC-wKXRji6L0qhFMYa0c6crqSsucUYRWVxKlzZ11SpdIiGkLNtpZ67chVbnNJWqrOKLgjiGvpfPMUqREPZYigY-Lv2vcQDseql_8MT1hMjNhwgZNnHACH5bS5z3dxhq5bVKUwTOyhGbyg4X710KXwTol8G6hPUNbJdx_YOtn80sTrY_iWlcJpGtkFOcEcXVeJvCm1_xyHCyXZP4UT-Ag6u_BAZrjn-Nv8Wvn38R34WmfoBAygt_CRncx93uEezq7H1f3DR1Z-T8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVggu0PJqgLZBoifINvEjdg4cUB_aPpFgV2pPxnYchEDZqs0KLX-Kv8JPYuxsthRRJA499JbDKBrZ8_jGHn8D8JKVuWSaFok1WOkw5khSFA6rVsT7VJeYsMM4oMOjvD9ke8f8eA5-dG9hWn6I2YGb94wQr72D-wPpjQvWUDtpRj1PHSSLrqty302-Yc12_mZ3Czd4nZCd7cFmP5mOFUgsVgM8YZVDnIGwQzsiDM10lcnKZFnuRMWI0KWwqKiRheQpwfKkLLjmJrXGCpnr3DMdYMxf8EPEPVn_1vsZXxXlaZiI5mnNElYQMu20R303ftf2Ug68VenR3-DtZbQc0t3OffjZLVTb5fKlN25Mz37_g0PyBq3kItybQu_4besrSzDn6gdwux3GOXkIK4GnpI6bM20xn8ef6_j04iXqIxhei26PYb4e1W4ZYpGalGtpBNWaUUs0Lbl1xGAxiH_MWQSvuu1Udsqs7gd8fFUtJzRRfoGVVmGBI1ifSZ-2jCJXyC2jZSj9CYO9Gn4g_oo5k7kPwBG86MxFYTTwVzy6dqPxuQoBVlApiwjiK2QEpYjiZZpH8KQ1tZkeJOUY4QWN4HUwmH8qqDZPBu_C19P_E1-DO_3B4YE62D3afwZ3234M3wD9HOabs7FbQZjXmNXgWjF8vG4L_AWOuVV3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3tAAhSDRE2Sb-BHbBw6oy6qlUBB0pXIytuMgBMqu2qzQ8qP4K_wlxs5mSxFF4tADtxxG0Wg8j2-S8TcAj1hVSmaoypzFTocxTzKlPHatiPepqbBgx3VAr_bK7TF7ccAPVuB7fxem44dYfnALkRHzdQjwaVVvHpOGunk7GQTmIKn6ocpdP_-KLdvR050hnu8GIaPn-1vb2WKrQOawGeAZqz3CDEQdxhNhaWHqQta2KEovakaEqYRDPa1UkucEu5NKccNt7qwTsjRlIDrAlH-elbkKqyKGb5d0VZTncSFaYDXLmCJkMWiP-m7-qu2JEniuNpM_oduTYDlWu9EV-NHbqRty-TyYtXbgvv1GIfn_GPIqXF4A7_RZFynXYMU31-FCt4pzfgPWI0tJk7aHxmE1Tz816fT4HupNGJ-JbrdgtZk0fg1SkducG2kFNYZRRwytuPPEYiuIbyxZAo_709Ruwase1nt80R0jNNHBwNroaOAENpbS045P5BS5NXQMbT5iqtfjdyT8YC5kGdJvAg97b9GYC8IPHtP4yexIx_QqqJQqgfQUGUEpYniZlwnc7jxtqQfJOeZ3QRN4Ev3lrwrqrff7r-PTnX8TfwAX3wxH-uXO3u5duNQNY4Tp53uw2h7O_DpivNbej4GVwoezdsCfElVUJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuron+tracing+in+perspective&rft.jtitle=Cytometry.+Part+A&rft.au=Meijering%2C+Erik&rft.date=2010-07-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=77&rft.issue=7&rft.spage=693&rft_id=info:doi/10.1002%2Fcyto.a.20895&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon