Neuron tracing in perspective
The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational meth...
Saved in:
Published in | Cytometry. Part A Vol. 77A; no. 7; pp. 693 - 704 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. © 2010 International Society for Advancement of Cytometry |
---|---|
AbstractList | The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. © 2010 International Society for Advancement of Cytometry The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry.The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry. The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. ? 2010 International Society for Advancement of Cytometry The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry. |
Author | Meijering, Erik |
Author_xml | – sequence: 1 fullname: Meijering, Erik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20583273$$D View this record in MEDLINE/PubMed |
BookMark | eNp90DtPwzAUBWALgegDNlagGwy0XF_HsTOiipdU0YF2YLIc16mM0qTYCaj_npS2DEh0siV_50g-HXJYlIUl5IzCgALgrVlV5UAPEGTCD0ibco79KGFw-HtHbJFOCO8AjAPDY9JC4JKhYG1y_mJrXxa9ymvjinnPFb2l9WFpTeU-7Qk5ynQe7On27JLpw_1k-NQfjR-fh3ejvokSzvtRZkFyxFhbFCmjOqMySymNrcgiFHomDGCcykRywASjWcI1T8GkRshYx8i65GrTu_TlR21DpRYuGJvnurBlHZRgjMdcQtzI672SAhWJYFImDb3Y0jpd2JlaerfQfqV2n28AboDxZQjeZsq4SleuLJo1XN50qfXCar2w0upn4SZ08ye06_2Hsw3_crld7bVq-DYZ71KXm1Smm-e5d0FNXxEoAypjhsjZNzGvlFQ |
CitedBy_id | crossref_primary_10_1007_s12021_019_09450_x crossref_primary_10_1109_TMI_2018_2855736 crossref_primary_10_1016_j_neulet_2019_02_042 crossref_primary_10_1186_1471_2105_12_230 crossref_primary_10_1007_s12021_012_9153_2 crossref_primary_10_1134_S105466181501006X crossref_primary_10_1016_j_jneumeth_2015_02_014 crossref_primary_10_1371_journal_pone_0065769 crossref_primary_10_1523_ENEURO_0049_14_2014 crossref_primary_10_3389_fpls_2021_675981 crossref_primary_10_1002_cne_23070 crossref_primary_10_1016_j_jmbbm_2015_04_013 crossref_primary_10_1109_TMI_2016_2515068 crossref_primary_10_1111_aos_12385 crossref_primary_10_1159_000358092 crossref_primary_10_1007_s12021_015_9267_4 crossref_primary_10_1016_j_jneumeth_2010_12_011 crossref_primary_10_1007_s40708_017_0063_9 crossref_primary_10_1016_j_jneumeth_2012_12_011 crossref_primary_10_1109_JSTSP_2015_2505660 crossref_primary_10_1016_j_neuropharm_2020_108102 crossref_primary_10_1364_BOE_6_004395 crossref_primary_10_1038_s41598_018_35917_z crossref_primary_10_1021_ma502264c crossref_primary_10_1186_s12859_017_1597_9 crossref_primary_10_1016_j_csbj_2020_08_003 crossref_primary_10_1016_j_neucom_2025_129742 crossref_primary_10_1109_TMI_2021_3125777 crossref_primary_10_1007_s12021_020_09484_6 crossref_primary_10_3390_biom13081237 crossref_primary_10_1016_j_mcn_2016_06_002 crossref_primary_10_1016_j_neuroscience_2016_07_005 crossref_primary_10_1093_bioinformatics_btac712 crossref_primary_10_1007_s12021_011_9101_6 crossref_primary_10_1080_10520295_2016_1247987 crossref_primary_10_1016_j_jbo_2020_100330 crossref_primary_10_1038_srep32156 crossref_primary_10_3390_s22062322 crossref_primary_10_1111_ceo_13924 crossref_primary_10_1093_bioinformatics_btt170 crossref_primary_10_1109_TIM_2020_3033057 crossref_primary_10_1002_cyto_a_22591 crossref_primary_10_1007_s12975_021_00888_3 crossref_primary_10_1155_2018_8234734 crossref_primary_10_1007_s12021_019_09434_x crossref_primary_10_1186_s12886_017_0645_6 crossref_primary_10_1007_s12035_022_02830_6 crossref_primary_10_1016_j_jneumeth_2017_01_008 crossref_primary_10_1016_j_matpr_2016_10_017 crossref_primary_10_1093_bioinformatics_btab638 crossref_primary_10_1016_j_simpa_2020_100032 crossref_primary_10_1007_s00417_013_2400_x crossref_primary_10_1016_j_compbiomed_2017_10_027 crossref_primary_10_1093_cercor_bhu197 crossref_primary_10_1016_j_ymeth_2017_02_005 crossref_primary_10_1109_TMI_2022_3206605 crossref_primary_10_1007_s00138_015_0720_z crossref_primary_10_1007_s12021_021_09530_x crossref_primary_10_1186_s40708_020_00117_x crossref_primary_10_1093_bioinformatics_btv109 crossref_primary_10_1007_s00429_011_0340_y crossref_primary_10_1186_s40708_021_00146_0 crossref_primary_10_1007_s12021_014_9253_2 crossref_primary_10_1007_s12021_016_9317_6 crossref_primary_10_1109_TVCG_2020_3030363 crossref_primary_10_1038_srep17062 crossref_primary_10_1109_TMI_2015_2465962 crossref_primary_10_1109_TMI_2020_3031289 crossref_primary_10_1007_s10571_016_0403_y crossref_primary_10_15252_emmm_201607376 crossref_primary_10_1016_j_brainresbull_2018_12_001 crossref_primary_10_1242_dev_200012 crossref_primary_10_15252_embr_201948385 crossref_primary_10_3389_fnmol_2018_00357 crossref_primary_10_1038_ncomms12142 crossref_primary_10_1002_jcp_22958 crossref_primary_10_1016_j_jvcir_2012_09_003 crossref_primary_10_1038_s42003_024_06264_9 crossref_primary_10_1016_j_jneumeth_2013_01_023 crossref_primary_10_1038_srep18267 crossref_primary_10_1007_s00204_017_2059_x crossref_primary_10_1016_j_jneumeth_2020_109062 crossref_primary_10_1002_admi_202100694 crossref_primary_10_1371_journal_pone_0073857 crossref_primary_10_3389_fninf_2023_1174049 crossref_primary_10_1021_acs_est_2c00161 crossref_primary_10_1097_ICO_0000000000001949 crossref_primary_10_2147_OPTH_S470183 crossref_primary_10_1016_j_devcel_2021_06_007 crossref_primary_10_1002_0471140856_tx1116s52 crossref_primary_10_1016_j_mex_2022_101715 crossref_primary_10_1038_s41592_023_01848_5 crossref_primary_10_1007_s12021_014_9237_2 crossref_primary_10_1016_j_media_2014_11_011 crossref_primary_10_1016_j_jneumeth_2018_04_002 crossref_primary_10_1109_TMI_2019_2945980 crossref_primary_10_1007_s12021_017_9325_1 crossref_primary_10_1016_j_jneumeth_2012_03_002 crossref_primary_10_1007_s10439_012_0733_y crossref_primary_10_1134_S1054661812040153 crossref_primary_10_1007_s12021_024_09712_3 crossref_primary_10_1016_j_neuron_2015_06_036 crossref_primary_10_1093_bioinformatics_btu503 crossref_primary_10_1007_s12021_018_9414_9 crossref_primary_10_1016_j_mcn_2017_08_002 crossref_primary_10_1109_TMI_2022_3191011 crossref_primary_10_1186_s12859_020_03714_z crossref_primary_10_1097_MD_0000000000007960 crossref_primary_10_1016_j_patcog_2016_09_041 crossref_primary_10_1073_pnas_1706711114 crossref_primary_10_1109_TMI_2020_3021493 crossref_primary_10_1016_j_neuint_2019_104511 crossref_primary_10_1016_j_jneumeth_2016_01_021 crossref_primary_10_1007_s12021_016_9310_0 crossref_primary_10_1109_TMI_2019_2893117 crossref_primary_10_1371_journal_pone_0207575 crossref_primary_10_2337_db19_1084 crossref_primary_10_1016_j_jneumeth_2011_06_021 crossref_primary_10_3389_fnana_2019_00018 crossref_primary_10_1016_j_neulet_2020_135077 crossref_primary_10_1088_1742_6596_1952_4_042079 crossref_primary_10_1002_cne_24674 crossref_primary_10_1109_TMI_2021_3130987 crossref_primary_10_1371_journal_pone_0083599 crossref_primary_10_1016_j_jneumeth_2016_09_007 crossref_primary_10_1093_bioinformatics_btae158 crossref_primary_10_1007_s12021_013_9213_2 crossref_primary_10_1016_j_neuron_2013_03_008 crossref_primary_10_1007_s40708_015_0018_y crossref_primary_10_1016_j_pnpbp_2019_109832 crossref_primary_10_1109_TMI_2016_2623357 crossref_primary_10_1523_JNEUROSCI_1962_22_2023 crossref_primary_10_3389_fninf_2019_00015 crossref_primary_10_1016_j_nbd_2015_12_016 crossref_primary_10_1016_j_actbio_2012_10_033 crossref_primary_10_1016_j_heliyon_2022_e09871 crossref_primary_10_1109_TIM_2020_3031980 crossref_primary_10_3390_brainsci14080770 crossref_primary_10_1093_bib_bbae591 crossref_primary_10_1007_s12021_021_09532_9 crossref_primary_10_3389_fnana_2020_592806 crossref_primary_10_1016_j_bbrc_2017_03_082 crossref_primary_10_1002_cyto_a_22408 crossref_primary_10_1007_s12021_018_9399_4 crossref_primary_10_1371_journal_pcbi_1003043 crossref_primary_10_1111_cpr_12087 crossref_primary_10_1007_s12021_014_9256_z crossref_primary_10_1007_s12021_018_9392_y crossref_primary_10_1093_bioadv_vbad054 crossref_primary_10_15252_embj_2021110242 crossref_primary_10_1109_MSP_2012_2204190 crossref_primary_10_3389_fnins_2019_00162 crossref_primary_10_1097_ICO_0000000000000152 crossref_primary_10_1007_s12021_017_9336_y crossref_primary_10_1093_bioinformatics_btr390 crossref_primary_10_1038_nprot_2015_122 crossref_primary_10_1038_nmeth_3662 crossref_primary_10_1016_j_jneumeth_2013_12_009 crossref_primary_10_1371_journal_pbio_1002275 crossref_primary_10_1007_s10439_010_0168_2 crossref_primary_10_1016_j_jneuroim_2017_08_008 crossref_primary_10_1016_j_nbd_2021_105362 crossref_primary_10_1371_journal_pone_0084557 crossref_primary_10_1091_mbc_E19_02_0080 crossref_primary_10_1007_s12021_015_9287_0 crossref_primary_10_3389_fninf_2020_00009 crossref_primary_10_1097_ICL_0000000000000282 crossref_primary_10_3389_fnana_2014_00037 crossref_primary_10_3389_fncom_2019_00074 crossref_primary_10_1007_s12021_011_9120_3 crossref_primary_10_1109_TOH_2014_2354041 crossref_primary_10_1016_j_npep_2015_08_009 crossref_primary_10_1371_journal_pone_0062579 crossref_primary_10_1186_1471_2105_14_287 crossref_primary_10_3389_fnins_2021_775391 crossref_primary_10_1134_S1054661811020398 crossref_primary_10_1109_JBHI_2020_3036743 crossref_primary_10_1007_s12021_022_09594_3 crossref_primary_10_1016_j_lssr_2017_03_004 crossref_primary_10_3389_fninf_2017_00036 crossref_primary_10_12968_opti_2020_12_8439 crossref_primary_10_1016_j_jneumeth_2019_108522 crossref_primary_10_1186_2046_2530_1_11 crossref_primary_10_1093_bioinformatics_bty231 crossref_primary_10_3389_fimmu_2019_01752 crossref_primary_10_1177_1073858414540216 crossref_primary_10_1007_s00415_024_12812_4 crossref_primary_10_1109_TMI_2024_3367384 crossref_primary_10_1007_s12021_011_9121_2 crossref_primary_10_1016_j_jneumeth_2016_03_004 crossref_primary_10_1038_srep01414 crossref_primary_10_1109_TIM_2021_3072119 crossref_primary_10_1109_TBME_2017_2674521 crossref_primary_10_1021_acsbiomaterials_0c00885 crossref_primary_10_1007_s00138_015_0733_7 crossref_primary_10_1523_JNEUROSCI_4284_12_2013 crossref_primary_10_3341_jkos_2014_55_12_1765 crossref_primary_10_1109_TVCG_2017_2744079 crossref_primary_10_1007_s12021_011_9110_5 crossref_primary_10_1016_j_neuroscience_2024_05_024 crossref_primary_10_1016_j_jneumeth_2011_04_033 crossref_primary_10_1016_j_jneumeth_2020_108835 crossref_primary_10_1016_j_neuron_2020_02_015 crossref_primary_10_1093_bioinformatics_btw751 crossref_primary_10_1155_2014_386974 crossref_primary_10_1016_j_ajo_2016_05_011 crossref_primary_10_1109_TMI_2021_3130934 crossref_primary_10_1139_bcb_2019_0253 crossref_primary_10_1186_s13293_024_00614_2 crossref_primary_10_1109_JSTSP_2015_2505402 crossref_primary_10_1007_s12021_018_9407_8 crossref_primary_10_1371_journal_pone_0234529 crossref_primary_10_1002_cm_21304 crossref_primary_10_1109_TITB_2012_2209670 crossref_primary_10_1096_fj_202100475R crossref_primary_10_1016_j_jneumeth_2016_03_019 crossref_primary_10_1007_s12021_017_9332_2 |
Cites_doi | 10.1016/j.neuroimage.2006.05.036 10.1016/j.semcdb.2009.07.004 10.1007/978-0-387-45524-2 10.1162/neco.2008.05-07-519 10.1002/cyto.a.20499 10.1017/S143192760303040X 10.1111/j.1365-2818.2005.01466.x 10.1007/s12021-007-0013-4 10.1016/j.neucom.2006.01.028 10.1111/j.1365-2818.2008.03094.x 10.1186/1471-2202-9-S1-P81 10.1142/S0219635202000128 10.1152/jn.90627.2008 10.1016/j.semcdb.2008.08.005 10.1016/j.jneumeth.2007.07.021 10.1016/0006-8993(86)90578-0 10.1016/j.jneumeth.2008.10.037 10.1002/cyto.a.20022 10.1007/978-1-4612-1634-6 10.1038/nrn787 10.1385/NI:3:4:343 10.1016/S0165-0270(00)00200-4 10.1016/0169-2607(93)90068-V 10.1016/S0165-0270(98)00091-0 10.7551/mitpress/9780262013277.001.0001 10.2144/000112517 10.1002/cyto.a.20664 10.1523/JNEUROSCI.2055-07.2007 10.1109/MSP.2006.1657828 10.1007/s004290100197 10.1007/s12021-009-9057-y 10.1016/0165-0270(94)90151-1 10.1016/j.jneumeth.2007.08.029 10.1016/S1046-2023(03)00011-2 10.1016/S0925-2312(02)00420-4 10.1016/j.jneumeth.2004.01.010 10.1002/cyto.a.20660 10.1007/s12021-009-9058-x 10.1016/S0165-0270(99)00120-X 10.1016/j.jneumeth.2009.07.021 10.1007/s12021-009-9053-2 10.1007/s12021-008-9024-z 10.1016/0165-0270(94)00126-2 10.1088/0954-898X/13/3/303 10.1016/j.jneumeth.2006.07.028 10.1038/nprot.2006.313 10.1016/j.jneumeth.2007.11.027 10.1016/0165-0270(94)00215-3 10.1016/S0165-0270(03)00017-7 10.1159/000141068 10.1109/MSP.2006.1628876 10.1017/CBO9780511541612 10.1007/s12021-009-9051-4 10.1002/cyto.a.20462 10.1371/journal.pone.0001997 10.1109/TITB.2006.884370 10.1109/MSP.2009.932122 10.1007/s12021-008-9010-5 10.1109/TITB.2002.1006304 10.1007/s12021-009-9052-3 10.1016/0895-6111(90)90105-K 10.1038/nprot.2008.51 10.1002/cyto.a.20431 10.1007/s12021-009-9047-0 10.1177/107385840100700207 10.1046/j.1365-2818.2003.01196.x 10.1016/S0165-0270(99)00099-0 10.1088/0954-898X/13/3/309 10.1016/0165-0270(83)90092-4 10.1016/0010-4809(81)90010-0 10.1038/171387a0 10.1007/s12021-008-9043-9 10.1109/TBME.1965.4502337 10.1016/j.media.2008.05.002 10.1162/089976602753712945 10.1093/bioinformatics/btn346 10.1162/089976604323057425 10.1023/A:1011118718821 10.1016/j.media.2008.06.019 10.1385/1592592759 10.1371/journal.pcbi.1000089 10.1016/j.media.2008.03.002 10.1016/j.brainres.2006.10.094 10.1016/j.neuroimage.2007.02.044 10.1016/0165-0270(86)90116-0 10.1109/TITB.2003.816564 10.1016/j.jneumeth.2007.05.020 10.1002/cne.20067 10.1016/S0165-0270(00)00228-4 10.1007/BF02459929 10.1098/rstb.2001.0910 10.1007/s004290100201 10.1088/0954-898X/13/3/301 10.3389/neuro.01.022.2008 10.1038/nrn1885 10.1016/j.neuroimage.2007.01.014 10.1016/j.neuron.2007.03.025 10.1016/j.jneumeth.2007.02.002 10.1016/j.jneumeth.2008.11.008 10.1088/0954-898X/13/3/307 10.1007/s12021-007-0004-5 10.1016/j.neuroscience.2005.05.053 10.1007/978-1-4684-5691-2 10.1098/rstb.2001.0905 10.1016/j.jneumeth.2007.12.024 10.1007/s12021-007-0010-7 10.1038/35104061 10.1007/s12021-008-9030-1 10.1111/j.1365-2818.1994.tb03433.x 10.1152/jn.00761.2004 10.1002/cyto.a.20296 10.1371/journal.pone.0005655 10.2144/01315bi01 10.1016/S0925-2312(00)00272-1 10.1109/TIP.2005.852462 10.1109/TIP.2002.800888 10.1146/annurev.physiol.64.081501.160008 10.1007/s12021-003-0002-1 10.1016/S0165-0270(99)00159-4 10.1111/j.1365-2818.2009.03156.x 10.1007/s10827-007-0038-6 10.1016/S0165-0270(02)00231-5 10.1016/j.neuroimage.2004.06.047 10.1007/s12021-007-0003-6 10.1002/jnr.490290203 |
ContentType | Journal Article |
Copyright | Copyright © 2010 International Society for Advancement of Cytometry |
Copyright_xml | – notice: Copyright © 2010 International Society for Advancement of Cytometry |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 P64 7X8 |
DOI | 10.1002/cyto.a.20895 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1552-4930 |
EndPage | 704 |
ExternalDocumentID | 20583273 10_1002_cyto_a_20895 CYTO20895 US201301863225 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Netherlands Organization for Scientific Research (VIDI) funderid: 639022401 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABIJN ABLJU ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZA5 ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA AFWVQ AHBTC AITYG ALVPJ HGLYW OIG AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4955-4fe085226ae27b31af18fb116e7f427ad7c026b898502924d95a5b0cbc786a623 |
IEDL.DBID | DR2 |
ISSN | 1552-4922 1552-4930 |
IngestDate | Thu Jul 10 19:33:40 EDT 2025 Fri Jul 11 08:58:29 EDT 2025 Thu Apr 03 06:56:51 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Jul 01 00:49:12 EDT 2025 Wed Jan 22 16:23:55 EST 2025 Wed Dec 27 19:13:49 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4955-4fe085226ae27b31af18fb116e7f427ad7c026b898502924d95a5b0cbc786a623 |
Notes | http://dx.doi.org/10.1002/cyto.a.20895 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.20895 |
PMID | 20583273 |
PQID | 1017973889 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_733565806 proquest_miscellaneous_1017973889 pubmed_primary_20583273 crossref_citationtrail_10_1002_cyto_a_20895 crossref_primary_10_1002_cyto_a_20895 wiley_primary_10_1002_cyto_a_20895_CYTO20895 fao_agris_US201301863225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2010 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: July 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Cytometry. Part A |
PublicationTitleAlternate | Cytometry A |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | 2006; 69A 2002; 14 2009; 75A 1965; 12 2006; 32 2002; 13 2004; 23 2002; 11 2009–2010 2005; 218 2000; 95 1983; 8 2009; 233 2009; 234 2007; 71 2008; 100 1992; 54 1998; 84 2001; 43 2009; 13 2006; 23 2000; 98 2007; 1138 2008; 24 2007; 5 2008; 20 1989 2007; 160 2007; 165 1995; 57 2002; 6 2007; 163 1993; 41 1998 2002; 1 2009; 177 2009; 178 1986; 18 2002; 3 2007; 11 2003; 211 2003; 30 2001; 204 1986; 368 2002; 121 2002; 64 1981; 14 2009; 184 2005; 3 2005; 93 2000; 100 2007; 71A 1953; 87 2001; 31 2005; 14 2006; 70 1990; 14 2005; 136 1994; 173 2008; 9 2008; 6 2008; 3 2008; 4 2008; 2 2007; 35 2007; 36 1995; 60 2004; 136 2001 2000 2003; 7 2003; 9 2002; 44 2003; 1 1999; 93 1999; 92 2003; 124 2007; 23 2007; 27 2008; 170 1955; 25 2009; 20 2008; 19 2006; 7 2009 2008 2007 2008; 12 2006 2008; 169 2006; 1 2002 2008; 168 2008; 167 2007; 54 2004; 58A 2009; 26 2004; 11 1991; 29 2004; 473 2008; 73A 2001; 7 2004; 16 2000; 32 2009; 7 2001; 2 2009; 4 2007; 43 2001; 356 1994; 53 e_1_2_7_108_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_123_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_116_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 Nicholls JG (e_1_2_7_4_2) 2001 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_37_2 e_1_2_7_131_2 e_1_2_7_135_2 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_120_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 Abràmoff MD (e_1_2_7_114_2) 2004; 11 e_1_2_7_109_2 e_1_2_7_117_2 e_1_2_7_113_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_132_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_9_2 Wu Q (e_1_2_7_22_2) 2008 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 Bear MF (e_1_2_7_2_2) 2007 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 e_1_2_7_118_2 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 Purves D (e_1_2_7_5_2) 2007 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_107_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_122_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_119_2 e_1_2_7_115_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 Kandel ER (e_1_2_7_3_2) 2000 Sonka M (e_1_2_7_23_2) 2007 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_130_2 e_1_2_7_38_2 Peng H (e_1_2_7_111_2) e_1_2_7_134_2 |
References_xml | – volume: 136 start-page: 123 year: 2004 end-page: 131 article-title: Quantitation of neurite growth parameters in explant cultures using a new image processing program publication-title: J Neurosci Methods – volume: 41 start-page: 89 year: 1993 end-page: 99 article-title: Quantitative morphology and shape classification of neurons by computerized image analysis publication-title: Comput Methods Programs Biomed – volume: 32 start-page: 1608 year: 2006 end-page: 1620 article-title: Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks publication-title: NeuroImage – volume: 5 start-page: 189 year: 2007 end-page: 203 article-title: Automated axon tracking of 3D confocal laser scanning microscopy images using guided probabilistic region merging publication-title: Neuroinformatics – year: 1989 – volume: 5 start-page: 96 year: 2007 end-page: 104 article-title: MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification publication-title: Neuroinformatics – volume: 173 start-page: 103 year: 1994 end-page: 114 article-title: Automated tracing and volume measurements of neurons from 3D confocal fluorescence microscopy data publication-title: J Microscopy – volume: 9 start-page: 296 year: 2003 end-page: 310 article-title: Automated three‐dimensional tracing of neurons in confocal and brightfield images publication-title: Microscopy Microanalysis – volume: 13 start-page: 397 year: 2002 end-page: 414 article-title: Measures for quantifying dendritic arborizations publication-title: Network: Computation Neural Syst – volume: 69A start-page: 494 year: 2006 end-page: 505 article-title: Automated neurite labeling and analysis in fluorescence microscopy images publication-title: Cytometry Part A – volume: 13 start-page: 283 year: 2002 end-page: 310 article-title: A shape analysis framework for neuromorphometry publication-title: Network: Computation Neural Syst – volume: 7 start-page: 318 year: 2006 end-page: 324 article-title: Mobilizing the base of neuroscience data: The case of neuronal morphologies publication-title: Nat Rev Neurosci – volume: 14 start-page: 518 year: 1981 end-page: 532 article-title: Accurate computer reconstruction and graphics display of complex neurons utilizing state‐of‐the‐art interactive techniques publication-title: Comput Biomed Res – volume: 204 start-page: 283 year: 2001 end-page: 301 article-title: Computer generation and quantitative morphometric analysis of virtual neurons publication-title: Anat Embryol – volume: 43 start-page: 25 year: 2007 end-page: 30 article-title: ImageJ for microscopy publication-title: Biotechniques – volume: 160 start-page: 149 year: 2007 end-page: 162 article-title: A novel tracing algorithm for high throughput imaging screening of neuron‐based assays publication-title: J Neurosci Methods – year: 1998 – volume: 169 start-page: 43 year: 2008 end-page: 54 article-title: Automated axon length quantification for populations of labelled neurons publication-title: J Neurosci Methods – volume: 7 start-page: 179 year: 2009 end-page: 190 article-title: The tree‐edit‐distance, a measure for quantifying neuronal morphology publication-title: Neuroinformatics – volume: 31 start-page: 1076 year: 2001 end-page: 1078 article-title: A workingperson's guide to deconvolution in light microscopy publication-title: Biotechniques – volume: 170 start-page: 165 year: 2008 end-page: 178 article-title: Associative image analysis: A method for automated quantification of 3D multi‐parameter images of brain tissue publication-title: J Neurosci Methods – volume: 7 start-page: 211 year: 2009 end-page: 212 article-title: Review of papers describing neuroinformatics software publication-title: Neuroinformatics – year: 2008 – volume: 43 start-page: 99 year: 2001 end-page: 111 article-title: A minimum cost approach for segmenting networks of lines publication-title: Int J Comput Vision – volume: 20 start-page: 894 year: 2009 end-page: 902 article-title: Tracking in cell and developmental biology publication-title: Semars Cell Dev Biol – volume: 6 start-page: 171 year: 2002 end-page: 187 article-title: Rapid automated three‐dimensional tracing of neurons from confocal image stacks publication-title: IEEE Trans Informat Technol Biomed – volume: 27 start-page: 9247 year: 2007 end-page: 9251 article-title: NeuroMorpho.org: A central resource for neuronal morphologies publication-title: J Neurosci – volume: 23 start-page: 32 year: 2006 end-page: 45 article-title: Deconvolution methods for 3‐D fluorescence microscopy images publication-title: IEEE Signal Process Mag – volume: 20 start-page: 1899 year: 2008 end-page: 1927 article-title: 3D Axon structure extraction and analysis in confocal fluorescence microscopy images publication-title: Neural Computation – volume: 98 start-page: 155 year: 2000 end-page: 163 article-title: Computer‐assisted visualizations of neural networks: Expanding the field of view using seamless confocal montaging publication-title: JNeurosci Methods – volume: 100 start-page: 2422 year: 2008 end-page: 2429 article-title: Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data publication-title: J Neurophysiol – volume: 5 start-page: 127 year: 2007 end-page: 138 article-title: Interoperability of neuroscience modeling software: Current status and future directions publication-title: Neuroinformatics – volume: 177 start-page: 497 year: 2009 end-page: 509 article-title: Automatic contour extraction from 2D neuron images publication-title: J Neurosci Methods – volume: 92 start-page: 75 year: 1999 end-page: 85 article-title: A rapid method for semi‐quantitative analysis of neurite outgrowth from chick DRG explants using image analysis publication-title: J Neurosci Methods – volume: 23 start-page: 132 year: 2006 end-page: 135 article-title: Optical microscopic image processing of dendritic spines morphology publication-title: IEEE Signal Process Mag – volume: 35 start-page: 1502 year: 2007 end-page: 1515 article-title: Automated neurite extraction using dynamic programming for high‐throughput screening of neuron‐based assays publication-title: Neuroimage – volume: 3 start-page: e1997 year: 2008 article-title: Automated three‐dimensional detection and shape classification of dendritic spines from fluorescence microscopy images publication-title: PLoS One – volume: 3 start-page: 866 year: 2008 end-page: 876 article-title: L‐Measure: A web‐accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies publication-title: Nat Protocols – volume: 3 start-page: 311 year: 2002 end-page: 313 article-title: Sharing primary data: A threat or asset to discovery? publication-title: Nat Rev Neurosci – volume: 23 start-page: 349 year: 2007 end-page: 398 article-title: Simulation of networks of spiking neurons: A review of tools and strategies publication-title: J Comput Neurosci – volume: 1 start-page: 2152 year: 2006 end-page: 2161 article-title: Rayburst sampling, an algorithm for automated three‐dimensional shape analysis from laser scanning microscopy images publication-title: Nat Protocols – volume: 178 start-page: 197 year: 2009 end-page: 204 article-title: Detection of the optimal neuron traces in confocal microscopy images publication-title: J Neurosci Methods – volume: 2 start-page: 19 year: 2008 end-page: 21 article-title: Understanding the brain through neuroinformatics publication-title: Frontiers Neurosci – year: 2007 – volume: 1138 start-page: 57 year: 2007 end-page: 75 article-title: NeuronMetrics: Software for semi‐automated processing of cultured neuron images publication-title: Brain Res – volume: 93 start-page: 121 year: 1999 end-page: 131 article-title: Computer‐vision‐based extraction of neural dendograms publication-title: J Neurosci Methods – volume: 18 start-page: 127 year: 1986 end-page: 151 article-title: The metric analysis of three‐dimensional dendritic tree patterns: A methodological review publication-title: J Neurosci Methods – article-title: V3D: A real‐time 3D visualization system for the quantitative analysis of large bioimages and its applications to neuroscience publication-title: Nat Biotechnol – volume: 13 start-page: 180 year: 2009 end-page: 188 article-title: Axon tracking in serial block‐face scanning electron microscopy publication-title: Med Image Anal – volume: 234 start-page: 147 year: 2009 end-page: 157 article-title: Fast linear feature detection using multiple directional non‐maximum suppression publication-title: J Microscopy – volume: 60 start-page: 11 year: 1995 end-page: 21 article-title: Quantification of dendritic spine populations using image analysis and a tilting disector publication-title: J Neurosci Methods – volume: 36 start-page: 346 year: 2007 end-page: 360 article-title: Dendritic spine detection using curvilinear structure detector and LDA classifier publication-title: NeuroImage – volume: 218 start-page: 52 year: 2005 end-page: 61 article-title: Reconstruct: A free editor for serial section microscopy publication-title: J Microscopy – volume: 473 start-page: 177 year: 2004 end-page: 193 article-title: Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories publication-title: J Comp Neurol – volume: 1 start-page: 117 year: 2002 end-page: 128 article-title: Neuroinformatics: The integration of shared databases and tools towards integrative neuroscience publication-title: J Integrative Neurosci – year: 2002 – volume: 7 start-page: 123 year: 2001 end-page: 135 article-title: Neuron: A tool for neuroscientists publication-title: Neuroscientist – volume: 14 start-page: 1283 year: 2002 end-page: 1310 article-title: An image analysis algorithm for dendritic spines publication-title: Neural Computation – volume: 70 start-page: 327 year: 2006 end-page: 342 article-title: NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D publication-title: Neurocomputing – volume: 12 start-page: 22 year: 1965 end-page: 31 article-title: A semi‐automatic computer‐microscope for the analysis of neuronal morphology publication-title: IEEE Trans Biomed Eng – volume: 1 start-page: 149 year: 2003 end-page: 165 article-title: Neuroscience data and tool sharing: A legal and policy framework for neuroinformatics publication-title: Neuroinformatics – volume: 121 start-page: 53 year: 2002 end-page: 64 article-title: A semi‐automated image analysis method to quantify neurite preference/axon guidance on a patterned substratum publication-title: J Neurosci Methods – volume: 32 start-page: 1003 year: 2000 end-page: 1011 article-title: L‐neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology publication-title: Neurocomputing – volume: 368 start-page: 339 year: 1986 end-page: 346 article-title: A microcomputer‐based image analyzer for quantitating neurite outgrowth publication-title: Brain Res – volume: 7 start-page: 213 year: 2009 end-page: 232 article-title: MDL constrained 3‐D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images publication-title: Neuroinformatics – volume: 54 start-page: 759 year: 1992 end-page: 784 article-title: Tree asymmetry—A sensitive and practical measure for binary topological trees publication-title: Bull Math Biol – volume: 44 start-page: 1077 year: 2002 end-page: 1081 article-title: NeuroML for plug and play neuronal modeling publication-title: Neurocomputing – volume: 356 start-page: 1209 year: 2001 end-page: 1228 article-title: Towards NeuroML: Model description methods for collaborative modelling in neuroscience publication-title: Philos Trans R Soc B: Biol Sci – volume: 93 start-page: 2331 year: 2005 end-page: 2342 article-title: Progress in functional neuroanatomy: Precise automatic geometric reconstruction of neuronal morphology from confocal image stacks publication-title: J Neurophysiol – year: 2009 – volume: 7 start-page: 113 year: 2009 end-page: 130 article-title: An automated pipeline for dendrite spine detection and tracking of 3D optical microscopy neuron images of in vivo mouse models publication-title: Neuroinformatics – volume: 73A start-page: 36 year: 2008 end-page: 43 article-title: Improved detection of branching points in algorithms for automated neuron tracing from 3D confocal images publication-title: Cytometry Part A – volume: 24 start-page: 1827 year: 2008 end-page: 1836 article-title: Bioimage informatics: A new area of engineering biology publication-title: Bioinformatics – volume: 13 start-page: 247 year: 2002 end-page: 260 article-title: Neuroanatomical algorithms for dendritic modelling publication-title: Network: Comput Neural Syst – volume: 14 start-page: 307 year: 1990 end-page: 317 article-title: Neuron imaging with Neurolucida—A PC‐based system for image combining microscopy publication-title: Computerized Med Imaging Graphics – volume: 211 start-page: 8 year: 2003 end-page: 18 article-title: Algorithms for accurate 3D registration of neuronal images acquired by confocal scanning laser microscopy publication-title: J Microscopy – year: 2001 – volume: 124 start-page: 197 year: 2003 end-page: 205 article-title: An algorithm for neurite outgrowth reconstruction publication-title: J Neurosci Methods – volume: 165 start-page: 122 year: 2007 end-page: 134 article-title: A novel computational approach for automatic dendrite spines detection in two‐photon laser scan microscopy publication-title: J Neurosci Methods – volume: 84 start-page: 49 year: 1998 end-page: 54 article-title: An on‐line archive of reconstructed hippocampal neurons publication-title: J Neurosci Methods – volume: 6 start-page: 149 year: 2008 end-page: 160 article-title: The Neuroscience Information Framework: A data and knowledge environment for neuroscience publication-title: Neuroinformatics – volume: 100 start-page: 25 year: 2000 end-page: 32 article-title: A simple procedure for quantification of neurite outgrowth based on stereological principles publication-title: J Neurosci Methods – volume: 64 start-page: 313 year: 2002 end-page: 353 article-title: Structure and function of dendritic spines publication-title: Annu Rev Physiol – volume: 13 start-page: 357 year: 2002 end-page: 380 article-title: Neuronal morphology data bases: Morphological noise and assesment of data quality publication-title: Network: Comput Neural Syst – year: 2009–2010 – volume: 12 start-page: 666 year: 2008 end-page: 675 article-title: Using nonlinear diffusion and mean shift to detect and connect cross‐sections of axons in 3D optical microscopy images publication-title: Med Image Anal – volume: 19 start-page: 485 year: 2008 end-page: 493 article-title: Quantifying neuronal size: Summing up trees and splitting the branch difference publication-title: Semars Cell Dev Biol – volume: 7 start-page: 195 year: 2009 end-page: 210 article-title: NETMORPH: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies publication-title: Neuroinformatics – volume: 75A start-page: 371 year: 2009 end-page: 376 article-title: Automated analysis of NeuronJ tracing data publication-title: Cytometry Part A – volume: 168 start-page: 134 year: 2008 end-page: 139 article-title: NeuriteTracer: A novel ImageJ plugin for automated quantification of neurite outgrowth publication-title: J Neurosci Methods – volume: 356 start-page: 1131 year: 2001 end-page: 1145 article-title: Generation, description and storage of dendritic morphology data publication-title: Philos Trans R Soc B: Biol Sci – volume: 9 start-page: 81 year: 2008 article-title: Improved automatic midline tracing of neurites with Neuromantic publication-title: BMC Neurosci – volume: 4 start-page: 1 year: 2008 end-page: 15 article-title: A comparative computer simulation of dendritic morphology publication-title: PLoS Comput Biol – volume: 6 start-page: 1 year: 2008 end-page: 3 article-title: Neuroinformatics grand challenges publication-title: Neuroinformatics – volume: 57 start-page: 63 year: 1995 end-page: 66 article-title: A quantitative method for morphometric analysis in neuronal cell culture: Unbiased estimation of neuron area and number of branch points publication-title: J Neurosci Methods – volume: 2 start-page: 880 year: 2001 end-page: 888 article-title: Dendritic spines: Structure, dynamics and regulation publication-title: Nat Rev Neurosci – volume: 6 start-page: 241 year: 2008 end-page: 252 article-title: NeuroMorpho.Org implementation of digital neuroscience: Dense coverage and integration with the NIF publication-title: Neuroinformatics – volume: 7 start-page: 1 year: 2009 end-page: 5 article-title: The central role of neuroinformatics in the National Academy of Engineering's grandest challenge: Reverse engineer the brain publication-title: Neuroinformatics – volume: 30 start-page: 94 year: 2003 end-page: 105 article-title: Automated reconstruction of three‐dimensional neuronal morphology from laser scanning microscopy images publication-title: Methods – volume: 23 start-page: 1283 year: 2004 end-page: 1298 article-title: New methods for the computer‐assisted 3‐D reconstruction of neurons from confocal image stacks publication-title: Neuroimage – volume: 163 start-page: 24 year: 2007 end-page: 30 article-title: A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology publication-title: J Neurosci Methods – volume: 5 start-page: 154 year: 2007 end-page: 160 article-title: Successes and rewards in sharing digital reconstructions of neuronal morphology publication-title: Neuroinformatics – volume: 167 start-page: 349 year: 2008 end-page: 357 article-title: Contour‐propagation algorithms for semi‐automated reconstruction of neural processes publication-title: J Neurosci Methods – volume: 26 start-page: 37 year: 2009 end-page: 47 article-title: Reproducible research in signal processing publication-title: IEEE Signal Process Mag – volume: 87 start-page: 387 year: 1953 end-page: 406 article-title: Dendritic organization in the neurons of the visual and motor cortices of the cat publication-title: J Anatomy – volume: 184 start-page: 169 year: 2009 end-page: 175 article-title: Three‐dimensional neuron tracing by voxel scooping publication-title: J Neurosci Methods – volume: 13 start-page: 167 year: 2009 end-page: 179 article-title: Robust 3D reconstruction and identification of dendritic spines from optical microscopy imaging publication-title: Med Image Anal – volume: 11 start-page: 36 year: 2004 end-page: 42 article-title: Image processing with ImageJ publication-title: Biophotonics Int – volume: 7 start-page: 191 year: 2009 end-page: 194 article-title: On comparing neuronal morphologies with the constrained tree‐edit‐distance publication-title: Neuroinformatics – volume: 71A start-page: 889 year: 2007 end-page: 895 article-title: Automated analysis of neurite branching in cultured cortical neurons using HCA‐Vision publication-title: Cytometry Part A – volume: 71 start-page: 818 year: 2007 end-page: 826 article-title: Automatic dendritic spine analysis in two‐photon laser scanning microscopy images publication-title: Cytometry Part A – volume: 11 start-page: 790 year: 2002 end-page: 801 article-title: Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3‐D wavelet transform publication-title: IEEE Trans Image Process – year: 2000 – volume: 75A start-page: 289 year: 2009 end-page: 297 article-title: Quantitative neurite outgrowth measurement based on image segmentation with topological dependence publication-title: Cytometry Part A – volume: 54 start-page: 219 year: 2007 end-page: 235 article-title: neuroConstruct: A tool for modeling networks of neurons in 3D space publication-title: Neuron – volume: 25 start-page: 160 year: 1955 end-page: 183 article-title: The cerebral cortex of normal and hypothyroid rats publication-title: Acta Anatomica – volume: 29 start-page: 149 year: 1991 end-page: 154 article-title: Quantitation of the growth‐associated protein B‐50/GAP‐43 and neurite outgrowth in PC12 cells publication-title: J Neurosci Res – volume: 14 start-page: 1338 year: 2005 end-page: 1350 article-title: Automatic selection of parameters for vessel/neurite segmentation algorithms publication-title: IEEE Trans Image Process – volume: 7 start-page: 302 year: 2003 end-page: 317 article-title: Median‐based robust algorithms for tracing neurons from noisy confocal microscope images publication-title: IEEE Trans Inf Technol Biomed – volume: 4 start-page: e5655 year: 2009 article-title: Semi‐automated reconstruction of neural processes from large numbers of fluorescence images publication-title: PLoS One – volume: 16 start-page: 1353 year: 2004 end-page: 1383 article-title: Automated algorithms for multiscale morphometry of neuronal dendrites publication-title: Neural Computation – volume: 204 start-page: 255 year: 2001 end-page: 265 article-title: The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function publication-title: Anat Embryol – volume: 58A start-page: 167 year: 2004 end-page: 176 article-title: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images publication-title: Cytometry Part A – volume: 136 start-page: 661 year: 2005 end-page: 680 article-title: New techniques for imaging, digitization and analysis of three‐dimensional neural morphology on multiple scales publication-title: Neuroscience – volume: 11 start-page: 296 year: 2007 end-page: 304 article-title: A wavelet approach for the identification of axonal synaptic varicosities from microscope images publication-title: IEEE Trans Inf Technol Biomed – year: 2006 – volume: 53 start-page: 111 year: 1994 end-page: 122 article-title: Image analysis of neuritic regeneration by adult rat dorsal root ganglion neurons in culture: Quantification of the neurotoxicity of anticancer agents and of its prevention by nerve growth factor or basic fibroblast growth factor but not brain‐derived neurotrophic factor or neurotrophin‐3 publication-title: J Neurosci Methods – volume: 95 start-page: 83 year: 2000 end-page: 93 article-title: The problem of the morphological noise in reconstructed dendritic arborizations publication-title: J Neurosci Methods – volume: 3 start-page: 343 year: 2005 end-page: 359 article-title: A cross‐platform freeware tool for digital reconstruction of neuronal arborizations from image stacks publication-title: Neuroinformatics – volume: 8 start-page: 353 year: 1983 end-page: 364 article-title: An automatic neuron reconstruction system publication-title: J Neurosci Methods – volume: 233 start-page: 42 year: 2009 end-page: 60 article-title: XuvTools: Free, fast and reliable stitching of large 3D datasets publication-title: J Microscopy – ident: e_1_2_7_71_2 doi: 10.1016/j.neuroimage.2006.05.036 – ident: e_1_2_7_134_2 doi: 10.1016/j.semcdb.2009.07.004 – ident: e_1_2_7_21_2 doi: 10.1007/978-0-387-45524-2 – ident: e_1_2_7_28_2 doi: 10.1162/neco.2008.05-07-519 – ident: e_1_2_7_41_2 doi: 10.1002/cyto.a.20499 – ident: e_1_2_7_37_2 doi: 10.1017/S143192760303040X – ident: e_1_2_7_67_2 doi: 10.1111/j.1365-2818.2005.01466.x – ident: e_1_2_7_69_2 doi: 10.1007/s12021-007-0013-4 – ident: e_1_2_7_107_2 doi: 10.1016/j.neucom.2006.01.028 – ident: e_1_2_7_31_2 doi: 10.1111/j.1365-2818.2008.03094.x – ident: e_1_2_7_76_2 doi: 10.1186/1471-2202-9-S1-P81 – ident: e_1_2_7_128_2 doi: 10.1142/S0219635202000128 – ident: e_1_2_7_77_2 doi: 10.1152/jn.90627.2008 – ident: e_1_2_7_97_2 doi: 10.1016/j.semcdb.2008.08.005 – ident: e_1_2_7_72_2 doi: 10.1016/j.jneumeth.2007.07.021 – ident: e_1_2_7_17_2 doi: 10.1016/0006-8993(86)90578-0 – ident: e_1_2_7_39_2 doi: 10.1016/j.jneumeth.2008.10.037 – ident: e_1_2_7_59_2 doi: 10.1002/cyto.a.20022 – ident: e_1_2_7_103_2 doi: 10.1007/978-1-4612-1634-6 – ident: e_1_2_7_127_2 doi: 10.1038/nrn787 – volume-title: Principles of Neural Science year: 2000 ident: e_1_2_7_3_2 – ident: e_1_2_7_13_2 doi: 10.1385/NI:3:4:343 – ident: e_1_2_7_29_2 doi: 10.1016/S0165-0270(00)00200-4 – volume-title: From Neuron to Brain year: 2001 ident: e_1_2_7_4_2 – ident: e_1_2_7_36_2 doi: 10.1016/0169-2607(93)90068-V – ident: e_1_2_7_123_2 doi: 10.1016/S0165-0270(98)00091-0 – ident: e_1_2_7_119_2 doi: 10.7551/mitpress/9780262013277.001.0001 – ident: e_1_2_7_115_2 doi: 10.2144/000112517 – ident: e_1_2_7_33_2 doi: 10.1002/cyto.a.20664 – ident: e_1_2_7_131_2 doi: 10.1523/JNEUROSCI.2055-07.2007 – ident: e_1_2_7_110_2 doi: 10.1109/MSP.2006.1657828 – ident: e_1_2_7_7_2 doi: 10.1007/s004290100197 – ident: e_1_2_7_63_2 doi: 10.1007/s12021-009-9057-y – ident: e_1_2_7_43_2 doi: 10.1016/0165-0270(94)90151-1 – ident: e_1_2_7_49_2 doi: 10.1016/j.jneumeth.2007.08.029 – ident: e_1_2_7_45_2 doi: 10.1016/S1046-2023(03)00011-2 – ident: e_1_2_7_125_2 doi: 10.1016/S0925-2312(02)00420-4 – ident: e_1_2_7_35_2 doi: 10.1016/j.jneumeth.2004.01.010 – ident: e_1_2_7_112_2 doi: 10.1002/cyto.a.20660 – volume-title: Neuroscience year: 2007 ident: e_1_2_7_5_2 – ident: e_1_2_7_100_2 doi: 10.1007/s12021-009-9058-x – ident: e_1_2_7_51_2 doi: 10.1016/S0165-0270(99)00120-X – ident: e_1_2_7_58_2 doi: 10.1016/j.jneumeth.2009.07.021 – ident: e_1_2_7_99_2 doi: 10.1007/s12021-009-9053-2 – ident: e_1_2_7_132_2 doi: 10.1007/s12021-008-9024-z – ident: e_1_2_7_94_2 doi: 10.1016/0165-0270(94)00126-2 – ident: e_1_2_7_12_2 doi: 10.1088/0954-898X/13/3/303 – ident: e_1_2_7_27_2 doi: 10.1016/j.jneumeth.2006.07.028 – ident: e_1_2_7_65_2 doi: 10.1038/nprot.2006.313 – ident: e_1_2_7_26_2 doi: 10.1016/j.jneumeth.2007.11.027 – ident: e_1_2_7_55_2 doi: 10.1016/0165-0270(94)00215-3 – ident: e_1_2_7_34_2 doi: 10.1016/S0165-0270(03)00017-7 – ident: e_1_2_7_92_2 doi: 10.1159/000141068 – ident: e_1_2_7_25_2 doi: 10.1109/MSP.2006.1628876 – ident: e_1_2_7_109_2 doi: 10.1017/CBO9780511541612 – ident: e_1_2_7_98_2 doi: 10.1007/s12021-009-9051-4 – ident: e_1_2_7_38_2 doi: 10.1002/cyto.a.20462 – ident: e_1_2_7_111_2 article-title: V3D: A real‐time 3D visualization system for the quantitative analysis of large bioimages and its applications to neuroscience publication-title: Nat Biotechnol – ident: e_1_2_7_85_2 doi: 10.1371/journal.pone.0001997 – ident: e_1_2_7_84_2 doi: 10.1109/TITB.2006.884370 – ident: e_1_2_7_101_2 doi: 10.1109/MSP.2009.932122 – ident: e_1_2_7_11_2 doi: 10.1007/s12021-008-9010-5 – ident: e_1_2_7_40_2 doi: 10.1109/TITB.2002.1006304 – ident: e_1_2_7_106_2 doi: 10.1007/s12021-009-9052-3 – ident: e_1_2_7_113_2 doi: 10.1016/0895-6111(90)90105-K – ident: e_1_2_7_104_2 doi: 10.1038/nprot.2008.51 – ident: e_1_2_7_82_2 doi: 10.1002/cyto.a.20431 – ident: e_1_2_7_62_2 doi: 10.1007/s12021-009-9047-0 – ident: e_1_2_7_120_2 doi: 10.1177/107385840100700207 – volume-title: Microscope Image Processing year: 2008 ident: e_1_2_7_22_2 – ident: e_1_2_7_30_2 doi: 10.1046/j.1365-2818.2003.01196.x – ident: e_1_2_7_44_2 doi: 10.1016/S0165-0270(99)00099-0 – ident: e_1_2_7_32_2 doi: 10.1088/0954-898X/13/3/309 – ident: e_1_2_7_18_2 doi: 10.1016/0165-0270(83)90092-4 – ident: e_1_2_7_16_2 doi: 10.1016/0010-4809(81)90010-0 – ident: e_1_2_7_91_2 doi: 10.1038/171387a0 – ident: e_1_2_7_9_2 doi: 10.1007/s12021-008-9043-9 – ident: e_1_2_7_15_2 doi: 10.1109/TBME.1965.4502337 – volume-title: Image Processing, Analysis, and Machine Vision year: 2007 ident: e_1_2_7_23_2 – ident: e_1_2_7_73_2 doi: 10.1016/j.media.2008.05.002 – ident: e_1_2_7_56_2 doi: 10.1162/089976602753712945 – ident: e_1_2_7_6_2 doi: 10.1093/bioinformatics/btn346 – ident: e_1_2_7_46_2 doi: 10.1162/089976604323057425 – ident: e_1_2_7_74_2 doi: 10.1023/A:1011118718821 – ident: e_1_2_7_50_2 doi: 10.1016/j.media.2008.06.019 – ident: e_1_2_7_10_2 doi: 10.1385/1592592759 – volume: 11 start-page: 36 year: 2004 ident: e_1_2_7_114_2 article-title: Image processing with ImageJ publication-title: Biophotonics Int – ident: e_1_2_7_116_2 doi: 10.1371/journal.pcbi.1000089 – ident: e_1_2_7_70_2 doi: 10.1016/j.media.2008.03.002 – ident: e_1_2_7_48_2 doi: 10.1016/j.brainres.2006.10.094 – ident: e_1_2_7_61_2 doi: 10.1016/j.neuroimage.2007.02.044 – ident: e_1_2_7_90_2 doi: 10.1016/0165-0270(86)90116-0 – ident: e_1_2_7_66_2 doi: 10.1109/TITB.2003.816564 – ident: e_1_2_7_83_2 doi: 10.1016/j.jneumeth.2007.05.020 – ident: e_1_2_7_89_2 doi: 10.1002/cne.20067 – ident: e_1_2_7_95_2 doi: 10.1016/S0165-0270(00)00228-4 – ident: e_1_2_7_96_2 doi: 10.1007/BF02459929 – ident: e_1_2_7_124_2 doi: 10.1098/rstb.2001.0910 – ident: e_1_2_7_117_2 doi: 10.1007/s004290100201 – ident: e_1_2_7_88_2 doi: 10.1088/0954-898X/13/3/301 – ident: e_1_2_7_8_2 doi: 10.3389/neuro.01.022.2008 – ident: e_1_2_7_14_2 doi: 10.1038/nrn1885 – ident: e_1_2_7_75_2 doi: 10.1016/j.neuroimage.2007.01.014 – ident: e_1_2_7_108_2 doi: 10.1016/j.neuron.2007.03.025 – ident: e_1_2_7_93_2 doi: 10.1016/j.jneumeth.2007.02.002 – ident: e_1_2_7_57_2 doi: 10.1016/j.jneumeth.2008.11.008 – ident: e_1_2_7_87_2 doi: 10.1088/0954-898X/13/3/307 – ident: e_1_2_7_122_2 doi: 10.1007/s12021-007-0004-5 – ident: e_1_2_7_47_2 doi: 10.1016/j.neuroscience.2005.05.053 – ident: e_1_2_7_19_2 doi: 10.1007/978-1-4684-5691-2 – ident: e_1_2_7_118_2 doi: 10.1098/rstb.2001.0905 – ident: e_1_2_7_102_2 doi: 10.1016/j.jneumeth.2007.12.024 – ident: e_1_2_7_130_2 doi: 10.1007/s12021-007-0010-7 – ident: e_1_2_7_80_2 doi: 10.1038/35104061 – ident: e_1_2_7_133_2 doi: 10.1007/s12021-008-9030-1 – ident: e_1_2_7_20_2 – ident: e_1_2_7_54_2 doi: 10.1111/j.1365-2818.1994.tb03433.x – ident: e_1_2_7_79_2 doi: 10.1152/jn.00761.2004 – ident: e_1_2_7_60_2 doi: 10.1002/cyto.a.20296 – ident: e_1_2_7_68_2 doi: 10.1371/journal.pone.0005655 – ident: e_1_2_7_24_2 doi: 10.2144/01315bi01 – ident: e_1_2_7_105_2 doi: 10.1016/S0925-2312(00)00272-1 – ident: e_1_2_7_135_2 doi: 10.1109/TIP.2005.852462 – ident: e_1_2_7_52_2 doi: 10.1109/TIP.2002.800888 – ident: e_1_2_7_81_2 doi: 10.1146/annurev.physiol.64.081501.160008 – volume-title: Neuroscience: Exploring the Brain year: 2007 ident: e_1_2_7_2_2 – ident: e_1_2_7_129_2 doi: 10.1007/s12021-003-0002-1 – ident: e_1_2_7_86_2 doi: 10.1016/S0165-0270(99)00159-4 – ident: e_1_2_7_64_2 doi: 10.1111/j.1365-2818.2009.03156.x – ident: e_1_2_7_121_2 doi: 10.1007/s10827-007-0038-6 – ident: e_1_2_7_53_2 doi: 10.1016/S0165-0270(02)00231-5 – ident: e_1_2_7_78_2 doi: 10.1016/j.neuroimage.2004.06.047 – ident: e_1_2_7_126_2 doi: 10.1007/s12021-007-0003-6 – ident: e_1_2_7_42_2 doi: 10.1002/jnr.490290203 |
SSID | ssj0035032 |
Score | 2.4260132 |
SecondaryResourceType | review_article |
Snippet | The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key... |
SourceID | proquest pubmed crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 693 |
SubjectTerms | Algorithms Animals bioimage informatics Computer Simulation Databases, Factual digital reconstruction Image Processing, Computer-Assisted - instrumentation Image Processing, Computer-Assisted - methods image segmentation Imaging, Three-Dimensional - instrumentation Imaging, Three-Dimensional - methods neuroinformatics neuron tracing Neurons - cytology neuroscience pattern recognition quantitative image analysis Software software tools Staining and Labeling - methods |
Title | Neuron tracing in perspective |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.20895 https://www.ncbi.nlm.nih.gov/pubmed/20583273 https://www.proquest.com/docview/1017973889 https://www.proquest.com/docview/733565806 |
Volume | 77A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7aQKGXPpPGSRNcaE-NN7YelnwMoSEU2kK7C9uTGMlyKC3ekHgPya_PSPZusiUbaG8-jITkkWa-kUbfALwXdakF8ipzliIdITzLqspT1Ep4n2NNDjuWA_rytTydiM9TOR0O3MJbmJ4fYnngFnZGtNdhg6O9PLwlDXVX3WwUmIN0Fd6Yh3StgIm-L9mjuMxjfbJAMpaJirEh752aH95tvOKRHjc4uw9srmLX6HxOnoNZDLvPOfk9mnd25K7_YnT8_3m9gGcDLk2P-oX0Eh759hU86StVXr2GvUji0abdBTpydumvNj2_faa5CZOTT-Pj02yorJA5CohkJhpPUIuQF3qmLC-wKXRji6L0qhFMYa0c6crqSsucUYRWVxKlzZ11SpdIiGkLNtpZ67chVbnNJWqrOKLgjiGvpfPMUqREPZYigY-Lv2vcQDseql_8MT1hMjNhwgZNnHACH5bS5z3dxhq5bVKUwTOyhGbyg4X710KXwTol8G6hPUNbJdx_YOtn80sTrY_iWlcJpGtkFOcEcXVeJvCm1_xyHCyXZP4UT-Ag6u_BAZrjn-Nv8Wvn38R34WmfoBAygt_CRncx93uEezq7H1f3DR1Z-T8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VVggu0PJqgLZBoifINvEjdg4cUB_aPpFgV2pPxnYchEDZqs0KLX-Kv8JPYuxsthRRJA499JbDKBrZ8_jGHn8D8JKVuWSaFok1WOkw5khSFA6rVsT7VJeYsMM4oMOjvD9ke8f8eA5-dG9hWn6I2YGb94wQr72D-wPpjQvWUDtpRj1PHSSLrqty302-Yc12_mZ3Czd4nZCd7cFmP5mOFUgsVgM8YZVDnIGwQzsiDM10lcnKZFnuRMWI0KWwqKiRheQpwfKkLLjmJrXGCpnr3DMdYMxf8EPEPVn_1vsZXxXlaZiI5mnNElYQMu20R303ftf2Ug68VenR3-DtZbQc0t3OffjZLVTb5fKlN25Mz37_g0PyBq3kItybQu_4besrSzDn6gdwux3GOXkIK4GnpI6bM20xn8ef6_j04iXqIxhei26PYb4e1W4ZYpGalGtpBNWaUUs0Lbl1xGAxiH_MWQSvuu1Udsqs7gd8fFUtJzRRfoGVVmGBI1ifSZ-2jCJXyC2jZSj9CYO9Gn4g_oo5k7kPwBG86MxFYTTwVzy6dqPxuQoBVlApiwjiK2QEpYjiZZpH8KQ1tZkeJOUY4QWN4HUwmH8qqDZPBu_C19P_E1-DO_3B4YE62D3afwZ3234M3wD9HOabs7FbQZjXmNXgWjF8vG4L_AWOuVV3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3tAAhSDRE2Sb-BHbBw6oy6qlUBB0pXIytuMgBMqu2qzQ8qP4K_wlxs5mSxFF4tADtxxG0Wg8j2-S8TcAj1hVSmaoypzFTocxTzKlPHatiPepqbBgx3VAr_bK7TF7ccAPVuB7fxem44dYfnALkRHzdQjwaVVvHpOGunk7GQTmIKn6ocpdP_-KLdvR050hnu8GIaPn-1vb2WKrQOawGeAZqz3CDEQdxhNhaWHqQta2KEovakaEqYRDPa1UkucEu5NKccNt7qwTsjRlIDrAlH-elbkKqyKGb5d0VZTncSFaYDXLmCJkMWiP-m7-qu2JEniuNpM_oduTYDlWu9EV-NHbqRty-TyYtXbgvv1GIfn_GPIqXF4A7_RZFynXYMU31-FCt4pzfgPWI0tJk7aHxmE1Tz816fT4HupNGJ-JbrdgtZk0fg1SkducG2kFNYZRRwytuPPEYiuIbyxZAo_709Ruwase1nt80R0jNNHBwNroaOAENpbS045P5BS5NXQMbT5iqtfjdyT8YC5kGdJvAg97b9GYC8IPHtP4yexIx_QqqJQqgfQUGUEpYniZlwnc7jxtqQfJOeZ3QRN4Ev3lrwrqrff7r-PTnX8TfwAX3wxH-uXO3u5duNQNY4Tp53uw2h7O_DpivNbej4GVwoezdsCfElVUJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuron+tracing+in+perspective&rft.jtitle=Cytometry.+Part+A&rft.au=Meijering%2C+Erik&rft.date=2010-07-01&rft.issn=1552-4930&rft.eissn=1552-4930&rft.volume=77&rft.issue=7&rft.spage=693&rft_id=info:doi/10.1002%2Fcyto.a.20895&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |