Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean
Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on...
Saved in:
Published in | Environmental microbiology reports Vol. 8; no. 5; pp. 896 - 904 |
---|---|
Main Authors | , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2016
John Wiley & Sons, Inc Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. |
---|---|
AbstractList | Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2-2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine-1-carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2-2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine-1-carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M . oryzae . In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. |
Author | Ma, Zongwang Ongena, Marc Hua, Gia Khuong Hoang Höfte, Monica |
Author_xml | – sequence: 1 givenname: Zongwang surname: Ma fullname: Ma, Zongwang organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium – sequence: 2 givenname: Gia Khuong Hoang surname: Hua fullname: Hua, Gia Khuong Hoang organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium – sequence: 3 givenname: Marc surname: Ongena fullname: Ongena, Marc organization: Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium – sequence: 4 givenname: Monica surname: Höfte fullname: Höfte, Monica email: monica.hofte@ugent.be, monica.hofte@ugent.be organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27557735$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1TAQhSNURB-wZocssWGTWz_iOFmiq75EC6jisRw59qS45NohvoEGif-OQ9orxAbLkkej75zR-Bxmez54zLLnjK5YOsdMySrnnNcrxgtZPMoOdp29v-r97DDGW0rLoqb8SbbPlZRKCXmQ_boOHZLQkv4Lev3TeYxEe0vMZDpnSOf60GO_dTb1-yHY0aAlzUT6iKMNm-B1JLFfkfXVNeOaOJ_uAsUpbnGTPAaMLm61N2mOJ4NL7zyhQe2fZo9b3UV8dv8eZR9PTz6sz_PLd2cX69eXuSlqWeQMRV3QAm1rObe6lIhlY5gSTLdGCyOLpqG6bptWl2VtjbCVqSgWjMkm8UIcZWLx7RzeIIShcfCdQ9BuqcfuBrSBBoHzsgJOy_RzSfVqUaXFv40Yt7Bx0WDXaY9hjMAqWStWq1Il9OU_6G0YB592AkHr2VTVPFHHC2WGEOOALfSD2-hhAkZhzhPmxGBODP7kmRQv7n3HZoN2xz8EmIByAX64Dqf_-cHJ1UXx4JwvwpQN3u2EevgKaR8l4fPbM3ivTj9RJip4I34DHWS7Zg |
CitedBy_id | crossref_primary_10_1111_1462_2920_14520 crossref_primary_10_1111_1758_2229_12474 crossref_primary_10_1139_cjm_2023_0117 crossref_primary_10_1002_mbo3_499 crossref_primary_10_1016_j_biocontrol_2021_104808 crossref_primary_10_3389_fmicb_2023_1231353 crossref_primary_10_3389_fpls_2020_594530 crossref_primary_10_1016_j_biocontrol_2018_10_005 crossref_primary_10_1021_acssynbio_0c00161 crossref_primary_10_3389_fpls_2017_00238 crossref_primary_10_1007_s11274_021_03063_w crossref_primary_10_1080_1040841X_2021_1946009 crossref_primary_10_1094_PHYTOFR_02_24_0012_R crossref_primary_10_3389_fmicb_2022_1079348 crossref_primary_10_3390_microorganisms10091759 crossref_primary_10_1080_09583157_2021_2013440 crossref_primary_10_3390_ijms222212094 crossref_primary_10_1111_nph_18221 crossref_primary_10_1186_s41938_022_00620_9 crossref_primary_10_1080_09583157_2019_1700908 crossref_primary_10_1111_mpp_12857 crossref_primary_10_1038_s41598_020_72156_7 crossref_primary_10_3389_fpls_2019_00901 crossref_primary_10_1007_s11104_018_3679_5 crossref_primary_10_1016_j_eng_2023_05_016 crossref_primary_10_1016_j_biocontrol_2020_104291 crossref_primary_10_1016_j_postharvbio_2019_05_011 crossref_primary_10_1128_AEM_02831_20 crossref_primary_10_3389_fmicb_2018_01867 crossref_primary_10_31857_S0002188123050071 crossref_primary_10_1038_s41598_018_26838_y crossref_primary_10_1016_j_biocontrol_2021_104548 crossref_primary_10_1039_C7NP00062F crossref_primary_10_3390_molecules27020372 crossref_primary_10_1038_s41396_022_01337_1 crossref_primary_10_1007_s00374_024_01836_7 crossref_primary_10_3390_su12135446 crossref_primary_10_1016_j_stress_2023_100334 crossref_primary_10_1007_s12374_023_09404_6 crossref_primary_10_3389_fmicb_2019_01409 crossref_primary_10_1111_1462_2920_14395 crossref_primary_10_1016_j_rhisph_2022_100611 crossref_primary_10_3389_fbioe_2024_1363183 crossref_primary_10_3389_fmicb_2020_560406 crossref_primary_10_3390_antibiotics10111366 crossref_primary_10_3389_fbioe_2020_01014 crossref_primary_10_1007_s12038_021_00240_9 crossref_primary_10_1016_j_sajb_2021_08_018 crossref_primary_10_1016_j_pmpp_2021_101754 crossref_primary_10_3390_microorganisms10051053 crossref_primary_10_1007_s00299_017_2187_z crossref_primary_10_1016_j_biocontrol_2024_105441 crossref_primary_10_1002_ps_5546 crossref_primary_10_1128_spectrum_01261_22 crossref_primary_10_1007_s40858_018_0231_3 crossref_primary_10_1099_jmm_0_001157 crossref_primary_10_1016_j_postharvbio_2023_112545 |
Cites_doi | 10.1111/j.1439-0434.2009.01609.x 10.1021/cr020473j 10.1128/AEM.02009-09 10.1093/jxb/ert026 10.1094/MPMI-19-1406 10.1146/annurev.phyto.44.013106.145710 10.1094/MPMI-09-13-0262-R 10.1111/j.1574-6968.1993.tb05868.x 10.1111/mpp.12170 10.1111/j.1365-2672.2007.03345.x 10.1016/j.pmpp.2015.05.010 10.1016/j.resmic.2010.04.007 10.1111/j.1462-5822.2011.01664.x 10.1021/ja00007a040 10.1016/j.tibtech.2014.07.002 10.1111/j.1462-2920.2007.01501.x 10.1094/MPMI.2002.15.11.1147 10.1021/es702290a 10.1111/1462-2920.12462 10.1186/1471-2229-9-9 10.1007/s10658-006-0002-8 10.1093/jxb/ert375 10.1111/j.1462-2920.2006.01202.x 10.1126/science.1171647 10.3389/fpls.2015.00219 10.21775/9781908230584.07 10.1094/PHYTO-11-10-0315 10.1111/j.1574-6976.2010.00221.x 10.1111/1758-2229.12310 10.1016/j.resmic.2010.01.003 10.1111/1758-2229.12286 10.1186/s12864-015-1763-2 10.1111/j.1469-8137.2007.02138.x 10.1104/pp.108.127878 10.1046/j.1365-2958.2003.03800.x 10.1016/S0065-2296(09)51006-3 10.1111/j.1364-3703.2011.00783.x 10.6064/2012/963401 10.3389/fmicb.2016.00382 10.1016/j.bbrc.2015.03.143 |
ContentType | Journal Article Web Resource |
Copyright | 2016 Society for Applied Microbiology and John Wiley & Sons Ltd 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. Copyright John Wiley & Sons, Inc. 2016 |
Copyright_xml | – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: Copyright John Wiley & Sons, Inc. 2016 |
DBID | BSCLL NPM AAYXX CITATION 7X8 Q33 |
DOI | 10.1111/1758-2229.12454 |
DatabaseName | Istex PubMed CrossRef MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1758-2229 |
EndPage | 904 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_206758 1011111758222912454 10_1111_1758_2229_12454 27557735 EMI412454 ark_67375_WNG_P7FV0138_K |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council funderid: 201204910376 – fundername: China Scholarship Council grantid: 201204910376 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM. MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD OVEED P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RPM RWI RX1 SUPJJ TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT NPM AAYXX CITATION 7X8 Q33 |
ID | FETCH-LOGICAL-c4954-1e39404edfd22da65ee6bc1731afca3c54bb0a9fbfa669dc3d8c80e4115b2da33 |
IEDL.DBID | DR2 |
ISSN | 1758-2229 |
IngestDate | Fri Nov 08 14:48:35 EST 2024 Fri Aug 16 07:20:01 EDT 2024 Thu Oct 10 20:56:23 EDT 2024 Fri Aug 23 00:32:02 EDT 2024 Sat Sep 28 08:47:54 EDT 2024 Sat Aug 24 01:03:22 EDT 2024 Wed Oct 30 09:55:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2016 Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4954-1e39404edfd22da65ee6bc1731afca3c54bb0a9fbfa669dc3d8c80e4115b2da33 |
Notes | ArticleID:EMI412454 istex:484408C542C34C9B281A697A94E210A387992EC0 ark:/67375/WNG-P7FV0138-K China Scholarship Council - No. 201204910376 Joint first author. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84992560777 |
OpenAccessLink | http://orbi.ulg.ac.be/handle/2268/206758 |
PMID | 27557735 |
PQID | 3092268792 |
PQPubID | 866375 |
PageCount | 9 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_206758 proquest_miscellaneous_1859719767 proquest_journals_3092268792 crossref_primary_10_1111_1758_2229_12454 pubmed_primary_27557735 wiley_primary_10_1111_1758_2229_12454_EMI412454 istex_primary_ark_67375_WNG_P7FV0138_K |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Environmental microbiology reports |
PublicationTitleAlternate | Environmental Microbiology Reports |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: Wiley-Blackwell |
References | Olorunleke, F.E., Hua, G.K.H., Kieu, N.P., Ma, Z, and Höfte, M. (2015b) Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep 7: 774-781. van Schoonhoven, A and Pastor Corrales, M.A. (1987) Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia 53. p. Audenaert, K., Pattery, T., Cornelis, P, and Höfte, M. (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15: 1147-1156. Baxter, A., Mittler, R, and Suzuki, N. (2014) ROS as key players in plant stress signalling. J Exp Bot 65: 1229-1240. Budzikiewicz, H. (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104: 209-228. Perneel, M., D'hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K, and Höfte, M. (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10: 778-788. Wang, Y and Newman, D.K. (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 42: 2380-2386. D'aes, J., Hua, G.K.H., De Maeyer, K., Pannecoucque, J., Forrez I., Ongena, M. et al. (2011) Biological control of Rhizoctonia root rot on bean by phenazine-and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101: 996-1004. Ma, Z., Geudens, N., Kieu, N.P., Sinnaeve, D., Ongena, M., Martins, J, and Höfte, M. (2016) Biosynthesis, chemical structure and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol 7: 382. Ruffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C, and Maurhofer, M. (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16: 609. Flury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., et al., (2016) Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative Genomics. isme J in press, doi: 1751-7262/16 Laursen, J.B and Nielsen, J. (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104: 1663-1686. Raaijmakers, J.M., De Bruijn, I., Nybroe, O, and Ongena, M. (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34: 1037-1062. Höfte, M and Altier, N. (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161: 464-471. Lamb, C and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275. D'aes, J., Kieu, N.P., Léclère, V., Tokarski, C., Olorunleke F.E., De Maeyer, K. et al. (2014) To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ Microbiol 16: 2282-2300. De Vleesschauwer, D., Chernin, L, and Höfte, M.M. (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9: 9. Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S, and Poinssot, B. (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6: 219. Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D et al, (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13: 414-430. Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P et al, (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16: 177-187. De Vleesschauwer, D., Cornelis, P, and Höfte, M. (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19: 1406-1419. De Vleesschauwer, D and Höfte, M. (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51: 223-281. Henry, G., Deleu, M., Jourdan, E., Thonart, P, and Ongena, M. (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13: 1824-1837. Glick, B.R. (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012: 963401. Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J., De Vos, P, and Höfte, M. (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103: 1007-1020. Talbot, N.J., Ebbole, D.J, and Hamer, J.E. (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5: 1575-1590. Kang, B.R., Han, S.B., Zdor, R.E., Anderson, A.J., Spencer, M., Yang, K.Y et al, (2007) Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J Microbiol Biotechnol 17: 586-593. Debois, D., Fernandez, O., Franzil, L., Jourdan, E., Brogniez, A., Willems, L et al, (2015) Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ Microbiol Rep 7: 570-582. Thuan, N.T.N., Bigirimana, J., Roumen, E., Van Der Straeten, D, and Höfte, M. (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114: 381-396. De Vleesschauwer, D., Djavaheri, M., Bakker, P.A, and Höfte, M. (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148: 1996-2012. King, E.O., Ward, M.K, and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B et al, (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9: 1084-1090. Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M, and De Vleesschauwer, D. (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91: 20-30. Nutkins, J.C., Mortishiresmith, R.J., Packman, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K, and Williams, D.H. (1991) Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 113: 2621-2627. Boller, T and He, S.Y. (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744. Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P et al, (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact 27: 87-100. Mavrodi, D.V., Peever, T.L., Mavrodi, O.V., Parejko, J.A., Raaijmakers, J.M., Lemanceau, P et al, (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76: 866-879. Tran, H., Ficke, A., Asiimwe, T., Höfte, M, and Raaijmakers, J.M. (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175: 731-742. Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y, and Suzuki, S. (2015) Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem Biophys Res Commun 460: 1015-1020. Velivelli, S.L., De Vos, P., Kromann, P., Declerck, S, and Prestwich, B.D. (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32: 493-496. Walters, D.R., Ratsep, J, and Havis, N.D. (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64: 1263-1280. Nerey, Y., Pannecoucque, J., Hernandez, H.P., Diaz, M., Espinosa, R., De Vos, S et al, (2010) Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. J Phytopathol 158: 236-243. Ramos, I., Dietrich, L.E., Price-Whelan, A, and Newman, D.K. (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161: 187-191. Mavrodi, D.V., Blankenfeldt, W, and Thomashow, L.S. (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44: 417-445. Takegami, J.C., Beaver, J.S., Godoy-Lutz, G., Echavez-Badel, R, and Steadman, J.R. (2004) Inheritance of web blight resistance in common bean. J Agric Univ PR 88: 45-54. 2007; 17 2015; 460 2007; 103 2010; 34 2004; 88 2010; 76 2002; 15 2015; 6 2015; 16 2012; 2012 2004; 104 1991; 113 1954; 44 2015b; 7 1997; 48 2013; 64 2014; 27 2006; 19 2011; 13 2010; 161 2008; 10 2008; 148 2012; 13 1993; 104 2015; 7 2014; 65 1993; 5 2006; 114 2016; 7 2009; 51 2015a 2006; 44 2010; 158 2007; 175 2014; 16 1987 2007; 9 2009; 9 2016 2015; 91 2008; 42 2011; 101 2009; 324 1989 2014; 32 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_43_1 e_1_2_5_29_1 Schoonhoven A (e_1_2_5_45_1) 1987 Talbot N.J. (e_1_2_5_41_1) 1993; 5 e_1_2_5_42_1 e_1_2_5_20_1 Flury P. (e_1_2_5_17_1) 2016 Kang B.R. (e_1_2_5_22_1) 2007; 17 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 King E.O. (e_1_2_5_24_1) 1954; 44 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 Takegami J.C. (e_1_2_5_40_1) 2004; 88 e_1_2_5_19_1 Gálvez G.E. (e_1_2_5_18_1) 1989 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 460 start-page: 1015 year: 2015 end-page: 1020 article-title: Cyclic lipopeptide iturin A structure‐dependently induces defense response in plants by activating SA and JA signaling pathways publication-title: Biochem Biophys Res Commun – volume: 158 start-page: 236 year: 2010 end-page: 243 article-title: spp. causing root and hypocotyl rot in in Cuba publication-title: J Phytopathol – volume: 5 start-page: 1575 year: 1993 end-page: 1590 article-title: Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus publication-title: Plant Cell – volume: 16 start-page: 2282 year: 2014 end-page: 2300 article-title: To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain CMR12a publication-title: Environ Microbiol – volume: 76 start-page: 866 year: 2010 end-page: 879 article-title: Diversity and evolution of the phenazine biosynthesis pathway publication-title: Appl Environ Microbiol – volume: 103 start-page: 1007 year: 2007 end-page: 1020 article-title: Characterization of CMR5c and CMR12a, novel fluorescent strains from the cocoyam rhizosphere with biocontrol activity publication-title: J Appl Microbiol – volume: 104 start-page: 209 year: 1993 end-page: 228 article-title: Secondary metabolites from fluorescent pseudomonads publication-title: FEMS Microbiol Rev – volume: 91 start-page: 20 year: 2015 end-page: 30 article-title: Role of cyclic lipopeptides produced by in mounting induced immunity in rice ( L publication-title: Physiol Mol Plant Pathol – volume: 13 start-page: 414 year: 2012 end-page: 430 article-title: The Top 10 fungal pathogens in molecular plant pathology publication-title: Mol Plant Pathol – volume: 42 start-page: 2380 year: 2008 end-page: 2386 article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen publication-title: Environ Sci Technol – volume: 17 start-page: 586 year: 2007 end-page: 593 article-title: Inhibition of seed germination and induction of systemic disease resistance by O6 requires phenazine production regulated by the global regulator, GacS publication-title: J Microbiol Biotechnol – volume: 9 start-page: 1084 year: 2007 end-page: 1090 article-title: Surfactin and fengycin lipopeptides of as elicitors of induced systemic resistance in plants publication-title: Environ Microbiol – volume: 48 start-page: 251 year: 1997 end-page: 275 article-title: The oxidative burst in plant disease resistance publication-title: Annu Rev Plant Physiol Plant Mol Biol – volume: 34 start-page: 1037 year: 2010 end-page: 1062 article-title: Natural functions of lipopeptides from and : more than surfactants and antibiotics publication-title: FEMS Microbiol Rev – start-page: 53 year: 1987 article-title: Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT) publication-title: Cali, Colombia – volume: 19 start-page: 1406 year: 2006 end-page: 1419 article-title: Redox‐active pyocyanin secreted by 7NSK2 triggers systemic resistance to but enhances susceptibility in rice publication-title: Mol Plant Microbe Interact – volume: 2012 start-page: 963401 year: 2012 article-title: Plant growth‐promoting bacteria: mechanisms and applications publication-title: Scientifica – volume: 7 start-page: 774 year: 2015b end-page: 781 article-title: Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by sp. CMR12a publication-title: Environ Microbiol Rep – volume: 148 start-page: 1996 year: 2008 end-page: 2012 article-title: WCS374r‐induced systemic resistance in rice against is based on pseudobactin‐mediated priming for a salicylic acid‐repressible multifaceted defense response publication-title: Plant Physiol – volume: 113 start-page: 2621 year: 1991 end-page: 2627 article-title: Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Paine publication-title: J Am Chem Soc – volume: 16 start-page: 609 year: 2015 article-title: Evolutionary patchwork of an insecticidal toxin shared between plant‐associated pseudomonads and the insect pathogens and publication-title: BMC Genomics – volume: 175 start-page: 731 year: 2007 end-page: 742 article-title: Role of the cyclic lipopeptide massetolide A in biological control of and in colonization of tomato plants by publication-title: New Phytol – volume: 32 start-page: 493 year: 2014 end-page: 496 article-title: Biological control agents: from field to market, problems, and challenges publication-title: Trends Biotechnol – year: 2016 article-title: Insect pathogenicity in plant‐beneficial pseudomonads: phylogenetic distribution and comparative Genomics publication-title: isme J – volume: 16 start-page: 177 year: 2015 end-page: 187 article-title: Cyclic lipopeptides from activate distinct patterns of defence responses in grapevine publication-title: Mol Plant Pathol – year: 2015a – volume: 64 start-page: 1263 year: 2013 end-page: 1280 article-title: Controlling crop diseases using induced resistance: challenges for the future publication-title: J Exp Bot – volume: 324 start-page: 742 year: 2009 end-page: 744 article-title: Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens publication-title: Science – start-page: 195 year: 1989 end-page: 209 – volume: 9 start-page: 9 year: 2009 article-title: Differential effectiveness of IC1270‐induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice publication-title: BMC Plant Biol – volume: 7 start-page: 382 year: 2016 article-title: Biosynthesis, chemical structure and structure‐activity relationship of orfamide lipopeptides produced by and related species publication-title: Front Microbiol – volume: 88 start-page: 45 year: 2004 end-page: 54 article-title: Inheritance of web blight resistance in common bean publication-title: J Agric Univ PR – volume: 114 start-page: 381 year: 2006 end-page: 396 article-title: Molecular and pathotype analysis of the rice blast fungus in North Vietnam publication-title: Eur J Plant Pathol – volume: 27 start-page: 87 year: 2014 end-page: 100 article-title: Plant defense stimulation by natural isolates of depends on efficient surfactin production publication-title: Mol Plant Microbe Interact – volume: 44 start-page: 301 year: 1954 end-page: 307 article-title: Two simple media for the demonstration of pyocyanin and fluorescin publication-title: J Lab Clin Med – volume: 101 start-page: 996 year: 2011 end-page: 1004 article-title: Biological control of Rhizoctonia root rot on bean by phenazine‐and cyclic lipopeptide‐producing CMR12a publication-title: Phytopathology – volume: 104 start-page: 1663 year: 2004 end-page: 1686 article-title: Phenazine natural products: biosynthesis, synthetic analogues, and biological activity publication-title: Chem Rev – volume: 15 start-page: 1147 year: 2002 end-page: 1156 article-title: Induction of systemic resistance to in tomato by 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin publication-title: Mol Plant Microbe Interact – volume: 161 start-page: 187 year: 2010 end-page: 191 article-title: Phenazines affect biofilm formation by in similar ways at various scales publication-title: Res Microbiol – volume: 6 start-page: 219 year: 2015 article-title: Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline publication-title: Front Plant Sci – volume: 7 start-page: 570 year: 2015 end-page: 582 article-title: Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin publication-title: Environ Microbiol Rep – volume: 51 start-page: 223 year: 2009 end-page: 281 article-title: Rhizobacteria‐induced systemic resistance publication-title: Adv Bot Res – volume: 161 start-page: 464 year: 2010 end-page: 471 article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems publication-title: Res Microbiol – volume: 10 start-page: 778 year: 2008 end-page: 788 article-title: Phenazines and biosurfactants interact in the biological control of soil‐borne diseases caused by spp publication-title: Environ Microbiol – volume: 13 start-page: 1824 year: 2011 end-page: 1837 article-title: The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune‐related defence responses publication-title: Cell Microbiol – volume: 44 start-page: 417 year: 2006 end-page: 445 article-title: Phenazine compounds in fluorescent spp. biosynthesis and regulation publication-title: Annu Rev Phytopathol – volume: 65 start-page: 1229 year: 2014 end-page: 1240 article-title: ROS as key players in plant stress signalling publication-title: J Exp Bot – ident: e_1_2_5_30_1 doi: 10.1111/j.1439-0434.2009.01609.x – ident: e_1_2_5_26_1 doi: 10.1021/cr020473j – ident: e_1_2_5_29_1 doi: 10.1128/AEM.02009-09 – start-page: 53 year: 1987 ident: e_1_2_5_45_1 article-title: Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT) publication-title: Cali, Colombia contributor: fullname: Schoonhoven A – ident: e_1_2_5_47_1 doi: 10.1093/jxb/ert026 – ident: e_1_2_5_10_1 doi: 10.1094/MPMI-19-1406 – ident: e_1_2_5_28_1 doi: 10.1146/annurev.phyto.44.013106.145710 – ident: e_1_2_5_6_1 doi: 10.1094/MPMI-09-13-0262-R – ident: e_1_2_5_5_1 doi: 10.1111/j.1574-6968.1993.tb05868.x – ident: e_1_2_5_16_1 doi: 10.1111/mpp.12170 – volume: 44 start-page: 301 year: 1954 ident: e_1_2_5_24_1 article-title: Two simple media for the demonstration of pyocyanin and fluorescin publication-title: J Lab Clin Med contributor: fullname: King E.O. – ident: e_1_2_5_36_1 doi: 10.1111/j.1365-2672.2007.03345.x – volume: 5 start-page: 1575 year: 1993 ident: e_1_2_5_41_1 article-title: Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea publication-title: Plant Cell contributor: fullname: Talbot N.J. – ident: e_1_2_5_7_1 doi: 10.1016/j.pmpp.2015.05.010 – year: 2016 ident: e_1_2_5_17_1 article-title: Insect pathogenicity in plant‐beneficial pseudomonads: phylogenetic distribution and comparative Genomics publication-title: isme J contributor: fullname: Flury P. – ident: e_1_2_5_21_1 doi: 10.1016/j.resmic.2010.04.007 – ident: e_1_2_5_20_1 doi: 10.1111/j.1462-5822.2011.01664.x – ident: e_1_2_5_31_1 doi: 10.1021/ja00007a040 – ident: e_1_2_5_46_1 doi: 10.1016/j.tibtech.2014.07.002 – ident: e_1_2_5_35_1 doi: 10.1111/j.1462-2920.2007.01501.x – ident: e_1_2_5_2_1 doi: 10.1094/MPMI.2002.15.11.1147 – ident: e_1_2_5_48_1 doi: 10.1021/es702290a – ident: e_1_2_5_8_1 doi: 10.1111/1462-2920.12462 – volume: 17 start-page: 586 year: 2007 ident: e_1_2_5_22_1 article-title: Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS publication-title: J Microbiol Biotechnol contributor: fullname: Kang B.R. – ident: e_1_2_5_11_1 doi: 10.1186/1471-2229-9-9 – ident: e_1_2_5_42_1 doi: 10.1007/s10658-006-0002-8 – ident: e_1_2_5_3_1 doi: 10.1093/jxb/ert375 – ident: e_1_2_5_34_1 doi: 10.1111/j.1462-2920.2006.01202.x – ident: e_1_2_5_4_1 doi: 10.1126/science.1171647 – ident: e_1_2_5_44_1 doi: 10.3389/fpls.2015.00219 – start-page: 195 volume-title: Bean Production Problems in the Tropics year: 1989 ident: e_1_2_5_18_1 contributor: fullname: Gálvez G.E. – ident: e_1_2_5_32_1 doi: 10.21775/9781908230584.07 – ident: e_1_2_5_9_1 doi: 10.1094/PHYTO-11-10-0315 – ident: e_1_2_5_37_1 doi: 10.1111/j.1574-6976.2010.00221.x – ident: e_1_2_5_33_1 doi: 10.1111/1758-2229.12310 – ident: e_1_2_5_38_1 doi: 10.1016/j.resmic.2010.01.003 – ident: e_1_2_5_15_1 doi: 10.1111/1758-2229.12286 – ident: e_1_2_5_39_1 doi: 10.1186/s12864-015-1763-2 – volume: 88 start-page: 45 year: 2004 ident: e_1_2_5_40_1 article-title: Inheritance of web blight resistance in common bean publication-title: J Agric Univ PR contributor: fullname: Takegami J.C. – ident: e_1_2_5_43_1 doi: 10.1111/j.1469-8137.2007.02138.x – ident: e_1_2_5_12_1 doi: 10.1104/pp.108.127878 – ident: e_1_2_5_25_1 doi: 10.1046/j.1365-2958.2003.03800.x – ident: e_1_2_5_13_1 doi: 10.1016/S0065-2296(09)51006-3 – ident: e_1_2_5_14_1 doi: 10.1111/j.1364-3703.2011.00783.x – ident: e_1_2_5_19_1 doi: 10.6064/2012/963401 – ident: e_1_2_5_27_1 doi: 10.3389/fmicb.2016.00382 – ident: e_1_2_5_23_1 doi: 10.1016/j.bbrc.2015.03.143 |
RestrictionsOnAccess | open access |
SSID | ssj0064902 |
Score | 2.392647 |
Snippet | Summary
Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct... Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism... Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct... |
SourceID | liege proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 896 |
SubjectTerms | Antagonism Bacteria Beans Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire Biosynthesis Blight Disease resistance Experiments Leaves Life sciences Lipopeptides Metabolites Microorganisms Mutants Pathogens Phenazine Plant diseases Plant resistance Pseudomonas Rice blast Sciences du vivant Soil microorganisms Soil resistance Web blight Webs |
Title | Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean |
URI | https://api.istex.fr/ark:/67375/WNG-P7FV0138-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12454 https://www.ncbi.nlm.nih.gov/pubmed/27557735 https://www.proquest.com/docview/3092268792 https://search.proquest.com/docview/1859719767 http://orbi.ulg.ac.be/handle/2268/206758 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA6yIvji_VJdJYKID3Zsk7aZPMrquCi7yOCqbyG3yrClLdPpsiP43z0nbQd3EUSEgSmd03SSnJPzpfn6hZDn0iWWeStiZxMeZ8wmsUmFizWkIq1zmydhu7ej4-LwJPvwLZ_YhPguzKAPsXvghpERxmsMcG2634Ic8h70MWNyBikqR0XQlAskdb1d7gSkimxkHU62o7gPcnkuXX8hL13FJj6H7wpXrv8EPi9i2ZCMFjeJmaoxcFBOZ_3GzOyPSwqP_1XPW-TGCFXpm8G3bpMrvr5Drg2bV27vkp_LpvK0KSmyxIJIdUd17ajd2mplabVqmxYpMw7Ot0FX1jtqtrTtfO8a8H7d0a6d0YOjZco0XdXwGYwGdWkoY-07hLfgl7SpKcofhTsYr-t75GTx7vPBYTxu5hBbmINlcepxD_bMu9Ix5nSRe18Ymwqe6tJqbvPMmETL0pS6KKSz3M3tPPEZIFYD9pzfJ3t1U_uHhEphOACpMuGlzDJT6DKZSzN30jOJL-JG5OXUlaodNDvUNNfB1lTYmiq0ZkRehK7e2en1KVLdRK6-Hr9Xn8TiCy7lqo8ReRV8QTVrs1JnTKEsdzjuq-9KW2U8FFtA2WEKFpH9yWXUOCh0iicSTYRkEXm2-xnCGddodO2bvlMAn6RIASOKiDwYXG3335jIcyF4HpHXwWH-VjkFkZyFo0f_fMVjch2gYTHQFvfJ3mbd-ycAvzbmaYiwX7dSIec |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-6i-iL-G311AgiPtizTZNm83gcrqt3u8hxex6-hHxVFktbtrfiPvi_O0nb5U4EEQoN7TRtM5nML5nJDEKvhE0McYbH1iRZTIlJYp1yGytQRUoxw5KQ7m2-yGdL-umcnV_aC9PFh9gtuHnJCOO1F3C_IH1JykHxAZMJEfugoxi9jsbMW_VGaHxwtvy6HMbjnPaehwN5H-DH-_P8UcUV3TT2zfwTzqW3Xv8NgF7Fs0EhTe-g2z2SxAcd6--ia666h250uSW399Gvk7p0uC6wd-IKMaRbrCqLzdaUK4PLVVM33qPFwvUmhH11Fustblq3sTV0TtXittnHh_OTlCi8quDoiLrgz1AHzNQ9-oRug-sK--hE4Q3aqeoBWk7fnx7O4j7XQmxgikTj1PkU6dTZwhJiVc6cy7VJeZaqwqjMMKp1okShC5XnwprMTswkcRQApQb6LHuIRlVduccIC64zwDlFkhWCUp2rIpkIPbHCEeH3yUbozdDKsulCashhKuIZIj1DZGBIhF4HLuzo1Pq790TjTH5ZfJCf-fTMW1rlUYTeBjbJeq1X8geRPmp2KG_Kb1IZqR1Um0PdYYYUob2Bm7KX2VZmifAkXJAIvdzdBmnzJhRVuXrTSkA3gqcA4XiEHnW9YPdthDPGecYi9C50i3_9nARBo6H05L-feIFuzk7nx_L44-LoKboFKC7vPAz30OhivXHPACld6Oe9KPwGoWUGgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0DsUXvz-qp0YQ8cGubZo2m0c5XU_PW47FU99CvirLLW3ZbsUV_N-dpNvFOwQRodDQTtMmmcn80kx-AXgqbGKoMzy2JsliRk0S65TbWKErUio3eRK2ezuaFgcn7P2XfIgm9Gthen6I7Q83bxmhv_YG3tjyNyNHv4dtTKkYoYvK2UXYZQXiX4-LZlsGqYJtwg4H4Q27jw_mOZfBGce06-v4O54Xfur6T-jzLJgN3mhyDfRQjj4I5XTUrfTI_DhH8fhfBb0OVzdYlbzqlesGXHDVTbjU7165vgU_Z_XCkbokPkwssFS3RFWWmLVZzA1ZzJu68TEzFq83gVjWWaLXpGldZ2tUf9WSthmR_aNZShWZV3j0Qj29NOaxdK3Ht6iYpK6I5z8Kb9BOVbfhZPLm4_5BvNnNITY4CGNx6vwm7MzZ0lJqVZE7V2iT8ixVpVGZyZnWiRKlLlVRCGsyOzbjxDGErBrls-wO7FR15e4BEVxniKTKJCsFY7pQZTIWemyFo8KvxI3g-dCUsulJO-Qw2PG1KX1tylCbETwLTb2VU8tTH-vGc_l5-lYe88knP5crDyN4EXRB1ks9l9-o9LzcId0tvkplpHaYbYF5hzFYBHuDyshNr9DKLBFehAsawZPtbbRnP0mjKld3rUT8JHiKIJFHcLdXte23UZ7nnGd5BC-DwvytcBJNmYXU_X9-4jFcPn49kR_eTQ8fwBWEiUUfwrgHO6tl5x4iFFvpR8HYfgEqDiSu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+phenazines+and+cyclic+lipopeptides+produced+by+pseudomonas+sp.+CMR12a+in+induced+systemic+resistance+on+rice+and+bean&rft.jtitle=Environmental+microbiology+reports&rft.au=Ma%2C+Zongwang&rft.au=Hua%2C+Gia+Khuong+Hoang&rft.au=Ongena%2C+Marc&rft.au=H%C3%B6fte%2C+Monica&rft.date=2016-10-01&rft.eissn=1758-2229&rft.volume=8&rft.issue=5&rft.spage=896&rft_id=info:doi/10.1111%2F1758-2229.12454&rft_id=info%3Apmid%2F27557735&rft.externalDocID=27557735 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2229&client=summon |