Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean

Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology reports Vol. 8; no. 5; pp. 896 - 904
Main Authors Ma, Zongwang, Hua, Gia Khuong Hoang, Ongena, Marc, Höfte, Monica
Format Journal Article Web Resource
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2016
John Wiley & Sons, Inc
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent.
AbstractList Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2-2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine-1-carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent.
Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2-2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine-1-carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M . oryzae . In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent.
Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism against soilborne pathogens. Here we show that Pseudomonas sp. CMR12a is also able to induce systemic resistance to Magnaporthe oryzae on rice and to the web blight pathogen Rhizoctonia solani AG2‐2 on bean. Plant assays with biosynthesis mutants of Pseudomonas sp. CMR12a impaired in the production of phenazines and/or CLPs and purified metabolites revealed that distinct bacterial determinants are responsible for inducing systemic resistance in these two pathosystems. In rice, mutants impaired in phenazine production completely lost their ability to induce systemic resistance, while a soil drench with pure phenazine‐1‐carboxamide (PCN) at a concentration of 0.1 or 1 μM was active in inducing resistance against M. oryzae. In bean, mutants that only produced phenazines, sessilins or orfamides were still able to induce systemic resistance against Rhizoctonia web blight, but a balanced production of these metabolites was needed. This study not only shows that Pseudomonas sp. CMR12a can protect rice to blast disease and bean to web blight disease, but also displays that the determinants involved in induced systemic resistance are plant, pathogen and concentration dependent.
Author Ma, Zongwang
Ongena, Marc
Hua, Gia Khuong Hoang
Höfte, Monica
Author_xml – sequence: 1
  givenname: Zongwang
  surname: Ma
  fullname: Ma, Zongwang
  organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
– sequence: 2
  givenname: Gia Khuong Hoang
  surname: Hua
  fullname: Hua, Gia Khuong Hoang
  organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
– sequence: 3
  givenname: Marc
  surname: Ongena
  fullname: Ongena, Marc
  organization: Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
– sequence: 4
  givenname: Monica
  surname: Höfte
  fullname: Höfte, Monica
  email: monica.hofte@ugent.be, monica.hofte@ugent.be
  organization: Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27557735$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhSNURB-wZocssWGTWz_iOFmiq75EC6jisRw59qS45NohvoEGif-OQ9orxAbLkkej75zR-Bxmez54zLLnjK5YOsdMySrnnNcrxgtZPMoOdp29v-r97DDGW0rLoqb8SbbPlZRKCXmQ_boOHZLQkv4Lev3TeYxEe0vMZDpnSOf60GO_dTb1-yHY0aAlzUT6iKMNm-B1JLFfkfXVNeOaOJ_uAsUpbnGTPAaMLm61N2mOJ4NL7zyhQe2fZo9b3UV8dv8eZR9PTz6sz_PLd2cX69eXuSlqWeQMRV3QAm1rObe6lIhlY5gSTLdGCyOLpqG6bptWl2VtjbCVqSgWjMkm8UIcZWLx7RzeIIShcfCdQ9BuqcfuBrSBBoHzsgJOy_RzSfVqUaXFv40Yt7Bx0WDXaY9hjMAqWStWq1Il9OU_6G0YB592AkHr2VTVPFHHC2WGEOOALfSD2-hhAkZhzhPmxGBODP7kmRQv7n3HZoN2xz8EmIByAX64Dqf_-cHJ1UXx4JwvwpQN3u2EevgKaR8l4fPbM3ivTj9RJip4I34DHWS7Zg
CitedBy_id crossref_primary_10_1111_1462_2920_14520
crossref_primary_10_1111_1758_2229_12474
crossref_primary_10_1139_cjm_2023_0117
crossref_primary_10_1002_mbo3_499
crossref_primary_10_1016_j_biocontrol_2021_104808
crossref_primary_10_3389_fmicb_2023_1231353
crossref_primary_10_3389_fpls_2020_594530
crossref_primary_10_1016_j_biocontrol_2018_10_005
crossref_primary_10_1021_acssynbio_0c00161
crossref_primary_10_3389_fpls_2017_00238
crossref_primary_10_1007_s11274_021_03063_w
crossref_primary_10_1080_1040841X_2021_1946009
crossref_primary_10_1094_PHYTOFR_02_24_0012_R
crossref_primary_10_3389_fmicb_2022_1079348
crossref_primary_10_3390_microorganisms10091759
crossref_primary_10_1080_09583157_2021_2013440
crossref_primary_10_3390_ijms222212094
crossref_primary_10_1111_nph_18221
crossref_primary_10_1186_s41938_022_00620_9
crossref_primary_10_1080_09583157_2019_1700908
crossref_primary_10_1111_mpp_12857
crossref_primary_10_1038_s41598_020_72156_7
crossref_primary_10_3389_fpls_2019_00901
crossref_primary_10_1007_s11104_018_3679_5
crossref_primary_10_1016_j_eng_2023_05_016
crossref_primary_10_1016_j_biocontrol_2020_104291
crossref_primary_10_1016_j_postharvbio_2019_05_011
crossref_primary_10_1128_AEM_02831_20
crossref_primary_10_3389_fmicb_2018_01867
crossref_primary_10_31857_S0002188123050071
crossref_primary_10_1038_s41598_018_26838_y
crossref_primary_10_1016_j_biocontrol_2021_104548
crossref_primary_10_1039_C7NP00062F
crossref_primary_10_3390_molecules27020372
crossref_primary_10_1038_s41396_022_01337_1
crossref_primary_10_1007_s00374_024_01836_7
crossref_primary_10_3390_su12135446
crossref_primary_10_1016_j_stress_2023_100334
crossref_primary_10_1007_s12374_023_09404_6
crossref_primary_10_3389_fmicb_2019_01409
crossref_primary_10_1111_1462_2920_14395
crossref_primary_10_1016_j_rhisph_2022_100611
crossref_primary_10_3389_fbioe_2024_1363183
crossref_primary_10_3389_fmicb_2020_560406
crossref_primary_10_3390_antibiotics10111366
crossref_primary_10_3389_fbioe_2020_01014
crossref_primary_10_1007_s12038_021_00240_9
crossref_primary_10_1016_j_sajb_2021_08_018
crossref_primary_10_1016_j_pmpp_2021_101754
crossref_primary_10_3390_microorganisms10051053
crossref_primary_10_1007_s00299_017_2187_z
crossref_primary_10_1016_j_biocontrol_2024_105441
crossref_primary_10_1002_ps_5546
crossref_primary_10_1128_spectrum_01261_22
crossref_primary_10_1007_s40858_018_0231_3
crossref_primary_10_1099_jmm_0_001157
crossref_primary_10_1016_j_postharvbio_2023_112545
Cites_doi 10.1111/j.1439-0434.2009.01609.x
10.1021/cr020473j
10.1128/AEM.02009-09
10.1093/jxb/ert026
10.1094/MPMI-19-1406
10.1146/annurev.phyto.44.013106.145710
10.1094/MPMI-09-13-0262-R
10.1111/j.1574-6968.1993.tb05868.x
10.1111/mpp.12170
10.1111/j.1365-2672.2007.03345.x
10.1016/j.pmpp.2015.05.010
10.1016/j.resmic.2010.04.007
10.1111/j.1462-5822.2011.01664.x
10.1021/ja00007a040
10.1016/j.tibtech.2014.07.002
10.1111/j.1462-2920.2007.01501.x
10.1094/MPMI.2002.15.11.1147
10.1021/es702290a
10.1111/1462-2920.12462
10.1186/1471-2229-9-9
10.1007/s10658-006-0002-8
10.1093/jxb/ert375
10.1111/j.1462-2920.2006.01202.x
10.1126/science.1171647
10.3389/fpls.2015.00219
10.21775/9781908230584.07
10.1094/PHYTO-11-10-0315
10.1111/j.1574-6976.2010.00221.x
10.1111/1758-2229.12310
10.1016/j.resmic.2010.01.003
10.1111/1758-2229.12286
10.1186/s12864-015-1763-2
10.1111/j.1469-8137.2007.02138.x
10.1104/pp.108.127878
10.1046/j.1365-2958.2003.03800.x
10.1016/S0065-2296(09)51006-3
10.1111/j.1364-3703.2011.00783.x
10.6064/2012/963401
10.3389/fmicb.2016.00382
10.1016/j.bbrc.2015.03.143
ContentType Journal Article
Web Resource
Copyright 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Copyright John Wiley & Sons, Inc. 2016
Copyright_xml – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: Copyright John Wiley & Sons, Inc. 2016
DBID BSCLL
NPM
AAYXX
CITATION
7X8
Q33
DOI 10.1111/1758-2229.12454
DatabaseName Istex
PubMed
CrossRef
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1758-2229
EndPage 904
ExternalDocumentID oai_orbi_ulg_ac_be_2268_206758
1011111758222912454
10_1111_1758_2229_12454
27557735
EMI412454
ark_67375_WNG_P7FV0138_K
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 201204910376
– fundername: China Scholarship Council
  grantid: 201204910376
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM.
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
OVEED
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RWI
RX1
SUPJJ
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7X8
Q33
ID FETCH-LOGICAL-c4954-1e39404edfd22da65ee6bc1731afca3c54bb0a9fbfa669dc3d8c80e4115b2da33
IEDL.DBID DR2
ISSN 1758-2229
IngestDate Fri Nov 08 14:48:35 EST 2024
Fri Aug 16 07:20:01 EDT 2024
Thu Oct 10 20:56:23 EDT 2024
Fri Aug 23 00:32:02 EDT 2024
Sat Sep 28 08:47:54 EDT 2024
Sat Aug 24 01:03:22 EDT 2024
Wed Oct 30 09:55:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4954-1e39404edfd22da65ee6bc1731afca3c54bb0a9fbfa669dc3d8c80e4115b2da33
Notes ArticleID:EMI412454
istex:484408C542C34C9B281A697A94E210A387992EC0
ark:/67375/WNG-P7FV0138-K
China Scholarship Council - No. 201204910376
Joint first author.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84992560777
OpenAccessLink http://orbi.ulg.ac.be/handle/2268/206758
PMID 27557735
PQID 3092268792
PQPubID 866375
PageCount 9
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_206758
proquest_miscellaneous_1859719767
proquest_journals_3092268792
crossref_primary_10_1111_1758_2229_12454
pubmed_primary_27557735
wiley_primary_10_1111_1758_2229_12454_EMI412454
istex_primary_ark_67375_WNG_P7FV0138_K
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Environmental microbiology reports
PublicationTitleAlternate Environmental Microbiology Reports
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: Wiley-Blackwell
References Olorunleke, F.E., Hua, G.K.H., Kieu, N.P., Ma, Z, and Höfte, M. (2015b) Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CMR12a. Environ Microbiol Rep 7: 774-781.
van Schoonhoven, A and Pastor Corrales, M.A. (1987) Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia 53. p.
Audenaert, K., Pattery, T., Cornelis, P, and Höfte, M. (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15: 1147-1156.
Baxter, A., Mittler, R, and Suzuki, N. (2014) ROS as key players in plant stress signalling. J Exp Bot 65: 1229-1240.
Budzikiewicz, H. (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104: 209-228.
Perneel, M., D'hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K, and Höfte, M. (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10: 778-788.
Wang, Y and Newman, D.K. (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 42: 2380-2386.
D'aes, J., Hua, G.K.H., De Maeyer, K., Pannecoucque, J., Forrez I., Ongena, M. et al. (2011) Biological control of Rhizoctonia root rot on bean by phenazine-and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101: 996-1004.
Ma, Z., Geudens, N., Kieu, N.P., Sinnaeve, D., Ongena, M., Martins, J, and Höfte, M. (2016) Biosynthesis, chemical structure and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front Microbiol 7: 382.
Ruffner, B., Péchy-Tarr, M., Höfte, M., Bloemberg, G., Grunder, J., Keel, C, and Maurhofer, M. (2015) Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16: 609.
Flury, P., Aellen, N., Ruffner, B., Péchy-Tarr, M., Fataar, S., Metla, Z., et al., (2016) Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative Genomics. isme J in press, doi: 1751-7262/16
Laursen, J.B and Nielsen, J. (2004) Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem Rev 104: 1663-1686.
Raaijmakers, J.M., De Bruijn, I., Nybroe, O, and Ongena, M. (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34: 1037-1062.
Höfte, M and Altier, N. (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161: 464-471.
Lamb, C and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275.
D'aes, J., Kieu, N.P., Léclère, V., Tokarski, C., Olorunleke F.E., De Maeyer, K. et al. (2014) To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ Microbiol 16: 2282-2300.
De Vleesschauwer, D., Chernin, L, and Höfte, M.M. (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol 9: 9.
Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S, and Poinssot, B. (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6: 219.
Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D et al, (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13: 414-430.
Farace, G., Fernandez, O., Jacquens, L., Coutte, F., Krier, F., Jacques, P et al, (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16: 177-187.
De Vleesschauwer, D., Cornelis, P, and Höfte, M. (2006) Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol Plant Microbe Interact 19: 1406-1419.
De Vleesschauwer, D and Höfte, M. (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51: 223-281.
Henry, G., Deleu, M., Jourdan, E., Thonart, P, and Ongena, M. (2011) The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol 13: 1824-1837.
Glick, B.R. (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012: 963401.
Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J., De Vos, P, and Höfte, M. (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103: 1007-1020.
Talbot, N.J., Ebbole, D.J, and Hamer, J.E. (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5: 1575-1590.
Kang, B.R., Han, S.B., Zdor, R.E., Anderson, A.J., Spencer, M., Yang, K.Y et al, (2007) Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J Microbiol Biotechnol 17: 586-593.
Debois, D., Fernandez, O., Franzil, L., Jourdan, E., Brogniez, A., Willems, L et al, (2015) Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin. Environ Microbiol Rep 7: 570-582.
Thuan, N.T.N., Bigirimana, J., Roumen, E., Van Der Straeten, D, and Höfte, M. (2006) Molecular and pathotype analysis of the rice blast fungus in North Vietnam. Eur J Plant Pathol 114: 381-396.
De Vleesschauwer, D., Djavaheri, M., Bakker, P.A, and Höfte, M. (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148: 1996-2012.
King, E.O., Ward, M.K, and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307.
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B et al, (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9: 1084-1090.
Chandler, S., Van Hese, N., Coutte, F., Jacques, P., Höfte, M, and De Vleesschauwer, D. (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91: 20-30.
Nutkins, J.C., Mortishiresmith, R.J., Packman, L.C., Brodey, C.L., Rainey, P.B., Johnstone, K, and Williams, D.H. (1991) Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J Am Chem Soc 113: 2621-2627.
Boller, T and He, S.Y. (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324: 742-744.
Cawoy, H., Mariutto, M., Henry, G., Fisher, C., Vasilyeva, N., Thonart, P et al, (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact 27: 87-100.
Mavrodi, D.V., Peever, T.L., Mavrodi, O.V., Parejko, J.A., Raaijmakers, J.M., Lemanceau, P et al, (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76: 866-879.
Tran, H., Ficke, A., Asiimwe, T., Höfte, M, and Raaijmakers, J.M. (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175: 731-742.
Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y, and Suzuki, S. (2015) Cyclic lipopeptide iturin A structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochem Biophys Res Commun 460: 1015-1020.
Velivelli, S.L., De Vos, P., Kromann, P., Declerck, S, and Prestwich, B.D. (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32: 493-496.
Walters, D.R., Ratsep, J, and Havis, N.D. (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64: 1263-1280.
Nerey, Y., Pannecoucque, J., Hernandez, H.P., Diaz, M., Espinosa, R., De Vos, S et al, (2010) Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. J Phytopathol 158: 236-243.
Ramos, I., Dietrich, L.E., Price-Whelan, A, and Newman, D.K. (2010) Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res Microbiol 161: 187-191.
Mavrodi, D.V., Blankenfeldt, W, and Thomashow, L.S. (2006) Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44: 417-445.
Takegami, J.C., Beaver, J.S., Godoy-Lutz, G., Echavez-Badel, R, and Steadman, J.R. (2004) Inheritance of web blight resistance in common bean. J Agric Univ PR 88: 45-54.
2007; 17
2015; 460
2007; 103
2010; 34
2004; 88
2010; 76
2002; 15
2015; 6
2015; 16
2012; 2012
2004; 104
1991; 113
1954; 44
2015b; 7
1997; 48
2013; 64
2014; 27
2006; 19
2011; 13
2010; 161
2008; 10
2008; 148
2012; 13
1993; 104
2015; 7
2014; 65
1993; 5
2006; 114
2016; 7
2009; 51
2015a
2006; 44
2010; 158
2007; 175
2014; 16
1987
2007; 9
2009; 9
2016
2015; 91
2008; 42
2011; 101
2009; 324
1989
2014; 32
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_43_1
e_1_2_5_29_1
Schoonhoven A (e_1_2_5_45_1) 1987
Talbot N.J. (e_1_2_5_41_1) 1993; 5
e_1_2_5_42_1
e_1_2_5_20_1
Flury P. (e_1_2_5_17_1) 2016
Kang B.R. (e_1_2_5_22_1) 2007; 17
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
King E.O. (e_1_2_5_24_1) 1954; 44
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
Takegami J.C. (e_1_2_5_40_1) 2004; 88
e_1_2_5_19_1
Gálvez G.E. (e_1_2_5_18_1) 1989
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 460
  start-page: 1015
  year: 2015
  end-page: 1020
  article-title: Cyclic lipopeptide iturin A structure‐dependently induces defense response in plants by activating SA and JA signaling pathways
  publication-title: Biochem Biophys Res Commun
– volume: 158
  start-page: 236
  year: 2010
  end-page: 243
  article-title: spp. causing root and hypocotyl rot in in Cuba
  publication-title: J Phytopathol
– volume: 5
  start-page: 1575
  year: 1993
  end-page: 1590
  article-title: Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus
  publication-title: Plant Cell
– volume: 16
  start-page: 2282
  year: 2014
  end-page: 2300
  article-title: To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain CMR12a
  publication-title: Environ Microbiol
– volume: 76
  start-page: 866
  year: 2010
  end-page: 879
  article-title: Diversity and evolution of the phenazine biosynthesis pathway
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 1007
  year: 2007
  end-page: 1020
  article-title: Characterization of CMR5c and CMR12a, novel fluorescent strains from the cocoyam rhizosphere with biocontrol activity
  publication-title: J Appl Microbiol
– volume: 104
  start-page: 209
  year: 1993
  end-page: 228
  article-title: Secondary metabolites from fluorescent pseudomonads
  publication-title: FEMS Microbiol Rev
– volume: 91
  start-page: 20
  year: 2015
  end-page: 30
  article-title: Role of cyclic lipopeptides produced by in mounting induced immunity in rice ( L
  publication-title: Physiol Mol Plant Pathol
– volume: 13
  start-page: 414
  year: 2012
  end-page: 430
  article-title: The Top 10 fungal pathogens in molecular plant pathology
  publication-title: Mol Plant Pathol
– volume: 42
  start-page: 2380
  year: 2008
  end-page: 2386
  article-title: Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen
  publication-title: Environ Sci Technol
– volume: 17
  start-page: 586
  year: 2007
  end-page: 593
  article-title: Inhibition of seed germination and induction of systemic disease resistance by O6 requires phenazine production regulated by the global regulator, GacS
  publication-title: J Microbiol Biotechnol
– volume: 9
  start-page: 1084
  year: 2007
  end-page: 1090
  article-title: Surfactin and fengycin lipopeptides of as elicitors of induced systemic resistance in plants
  publication-title: Environ Microbiol
– volume: 48
  start-page: 251
  year: 1997
  end-page: 275
  article-title: The oxidative burst in plant disease resistance
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
– volume: 34
  start-page: 1037
  year: 2010
  end-page: 1062
  article-title: Natural functions of lipopeptides from and : more than surfactants and antibiotics
  publication-title: FEMS Microbiol Rev
– start-page: 53
  year: 1987
  article-title: Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT)
  publication-title: Cali, Colombia
– volume: 19
  start-page: 1406
  year: 2006
  end-page: 1419
  article-title: Redox‐active pyocyanin secreted by 7NSK2 triggers systemic resistance to but enhances susceptibility in rice
  publication-title: Mol Plant Microbe Interact
– volume: 2012
  start-page: 963401
  year: 2012
  article-title: Plant growth‐promoting bacteria: mechanisms and applications
  publication-title: Scientifica
– volume: 7
  start-page: 774
  year: 2015b
  end-page: 781
  article-title: Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by sp. CMR12a
  publication-title: Environ Microbiol Rep
– volume: 148
  start-page: 1996
  year: 2008
  end-page: 2012
  article-title: WCS374r‐induced systemic resistance in rice against is based on pseudobactin‐mediated priming for a salicylic acid‐repressible multifaceted defense response
  publication-title: Plant Physiol
– volume: 113
  start-page: 2621
  year: 1991
  end-page: 2627
  article-title: Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Paine
  publication-title: J Am Chem Soc
– volume: 16
  start-page: 609
  year: 2015
  article-title: Evolutionary patchwork of an insecticidal toxin shared between plant‐associated pseudomonads and the insect pathogens and
  publication-title: BMC Genomics
– volume: 175
  start-page: 731
  year: 2007
  end-page: 742
  article-title: Role of the cyclic lipopeptide massetolide A in biological control of and in colonization of tomato plants by
  publication-title: New Phytol
– volume: 32
  start-page: 493
  year: 2014
  end-page: 496
  article-title: Biological control agents: from field to market, problems, and challenges
  publication-title: Trends Biotechnol
– year: 2016
  article-title: Insect pathogenicity in plant‐beneficial pseudomonads: phylogenetic distribution and comparative Genomics
  publication-title: isme J
– volume: 16
  start-page: 177
  year: 2015
  end-page: 187
  article-title: Cyclic lipopeptides from activate distinct patterns of defence responses in grapevine
  publication-title: Mol Plant Pathol
– year: 2015a
– volume: 64
  start-page: 1263
  year: 2013
  end-page: 1280
  article-title: Controlling crop diseases using induced resistance: challenges for the future
  publication-title: J Exp Bot
– volume: 324
  start-page: 742
  year: 2009
  end-page: 744
  article-title: Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens
  publication-title: Science
– start-page: 195
  year: 1989
  end-page: 209
– volume: 9
  start-page: 9
  year: 2009
  article-title: Differential effectiveness of IC1270‐induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice
  publication-title: BMC Plant Biol
– volume: 7
  start-page: 382
  year: 2016
  article-title: Biosynthesis, chemical structure and structure‐activity relationship of orfamide lipopeptides produced by and related species
  publication-title: Front Microbiol
– volume: 88
  start-page: 45
  year: 2004
  end-page: 54
  article-title: Inheritance of web blight resistance in common bean
  publication-title: J Agric Univ PR
– volume: 114
  start-page: 381
  year: 2006
  end-page: 396
  article-title: Molecular and pathotype analysis of the rice blast fungus in North Vietnam
  publication-title: Eur J Plant Pathol
– volume: 27
  start-page: 87
  year: 2014
  end-page: 100
  article-title: Plant defense stimulation by natural isolates of depends on efficient surfactin production
  publication-title: Mol Plant Microbe Interact
– volume: 44
  start-page: 301
  year: 1954
  end-page: 307
  article-title: Two simple media for the demonstration of pyocyanin and fluorescin
  publication-title: J Lab Clin Med
– volume: 101
  start-page: 996
  year: 2011
  end-page: 1004
  article-title: Biological control of Rhizoctonia root rot on bean by phenazine‐and cyclic lipopeptide‐producing CMR12a
  publication-title: Phytopathology
– volume: 104
  start-page: 1663
  year: 2004
  end-page: 1686
  article-title: Phenazine natural products: biosynthesis, synthetic analogues, and biological activity
  publication-title: Chem Rev
– volume: 15
  start-page: 1147
  year: 2002
  end-page: 1156
  article-title: Induction of systemic resistance to in tomato by 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin
  publication-title: Mol Plant Microbe Interact
– volume: 161
  start-page: 187
  year: 2010
  end-page: 191
  article-title: Phenazines affect biofilm formation by in similar ways at various scales
  publication-title: Res Microbiol
– volume: 6
  start-page: 219
  year: 2015
  article-title: Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline
  publication-title: Front Plant Sci
– volume: 7
  start-page: 570
  year: 2015
  end-page: 582
  article-title: Plant polysaccharides initiate underground crosstalk with bacilli by inducing synthesis of the immunogenic lipopeptide surfactin
  publication-title: Environ Microbiol Rep
– volume: 51
  start-page: 223
  year: 2009
  end-page: 281
  article-title: Rhizobacteria‐induced systemic resistance
  publication-title: Adv Bot Res
– volume: 161
  start-page: 464
  year: 2010
  end-page: 471
  article-title: Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems
  publication-title: Res Microbiol
– volume: 10
  start-page: 778
  year: 2008
  end-page: 788
  article-title: Phenazines and biosurfactants interact in the biological control of soil‐borne diseases caused by spp
  publication-title: Environ Microbiol
– volume: 13
  start-page: 1824
  year: 2011
  end-page: 1837
  article-title: The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune‐related defence responses
  publication-title: Cell Microbiol
– volume: 44
  start-page: 417
  year: 2006
  end-page: 445
  article-title: Phenazine compounds in fluorescent spp. biosynthesis and regulation
  publication-title: Annu Rev Phytopathol
– volume: 65
  start-page: 1229
  year: 2014
  end-page: 1240
  article-title: ROS as key players in plant stress signalling
  publication-title: J Exp Bot
– ident: e_1_2_5_30_1
  doi: 10.1111/j.1439-0434.2009.01609.x
– ident: e_1_2_5_26_1
  doi: 10.1021/cr020473j
– ident: e_1_2_5_29_1
  doi: 10.1128/AEM.02009-09
– start-page: 53
  year: 1987
  ident: e_1_2_5_45_1
  article-title: Standard system for the evalution of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT)
  publication-title: Cali, Colombia
  contributor:
    fullname: Schoonhoven A
– ident: e_1_2_5_47_1
  doi: 10.1093/jxb/ert026
– ident: e_1_2_5_10_1
  doi: 10.1094/MPMI-19-1406
– ident: e_1_2_5_28_1
  doi: 10.1146/annurev.phyto.44.013106.145710
– ident: e_1_2_5_6_1
  doi: 10.1094/MPMI-09-13-0262-R
– ident: e_1_2_5_5_1
  doi: 10.1111/j.1574-6968.1993.tb05868.x
– ident: e_1_2_5_16_1
  doi: 10.1111/mpp.12170
– volume: 44
  start-page: 301
  year: 1954
  ident: e_1_2_5_24_1
  article-title: Two simple media for the demonstration of pyocyanin and fluorescin
  publication-title: J Lab Clin Med
  contributor:
    fullname: King E.O.
– ident: e_1_2_5_36_1
  doi: 10.1111/j.1365-2672.2007.03345.x
– volume: 5
  start-page: 1575
  year: 1993
  ident: e_1_2_5_41_1
  article-title: Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea
  publication-title: Plant Cell
  contributor:
    fullname: Talbot N.J.
– ident: e_1_2_5_7_1
  doi: 10.1016/j.pmpp.2015.05.010
– year: 2016
  ident: e_1_2_5_17_1
  article-title: Insect pathogenicity in plant‐beneficial pseudomonads: phylogenetic distribution and comparative Genomics
  publication-title: isme J
  contributor:
    fullname: Flury P.
– ident: e_1_2_5_21_1
  doi: 10.1016/j.resmic.2010.04.007
– ident: e_1_2_5_20_1
  doi: 10.1111/j.1462-5822.2011.01664.x
– ident: e_1_2_5_31_1
  doi: 10.1021/ja00007a040
– ident: e_1_2_5_46_1
  doi: 10.1016/j.tibtech.2014.07.002
– ident: e_1_2_5_35_1
  doi: 10.1111/j.1462-2920.2007.01501.x
– ident: e_1_2_5_2_1
  doi: 10.1094/MPMI.2002.15.11.1147
– ident: e_1_2_5_48_1
  doi: 10.1021/es702290a
– ident: e_1_2_5_8_1
  doi: 10.1111/1462-2920.12462
– volume: 17
  start-page: 586
  year: 2007
  ident: e_1_2_5_22_1
  article-title: Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS
  publication-title: J Microbiol Biotechnol
  contributor:
    fullname: Kang B.R.
– ident: e_1_2_5_11_1
  doi: 10.1186/1471-2229-9-9
– ident: e_1_2_5_42_1
  doi: 10.1007/s10658-006-0002-8
– ident: e_1_2_5_3_1
  doi: 10.1093/jxb/ert375
– ident: e_1_2_5_34_1
  doi: 10.1111/j.1462-2920.2006.01202.x
– ident: e_1_2_5_4_1
  doi: 10.1126/science.1171647
– ident: e_1_2_5_44_1
  doi: 10.3389/fpls.2015.00219
– start-page: 195
  volume-title: Bean Production Problems in the Tropics
  year: 1989
  ident: e_1_2_5_18_1
  contributor:
    fullname: Gálvez G.E.
– ident: e_1_2_5_32_1
  doi: 10.21775/9781908230584.07
– ident: e_1_2_5_9_1
  doi: 10.1094/PHYTO-11-10-0315
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1574-6976.2010.00221.x
– ident: e_1_2_5_33_1
  doi: 10.1111/1758-2229.12310
– ident: e_1_2_5_38_1
  doi: 10.1016/j.resmic.2010.01.003
– ident: e_1_2_5_15_1
  doi: 10.1111/1758-2229.12286
– ident: e_1_2_5_39_1
  doi: 10.1186/s12864-015-1763-2
– volume: 88
  start-page: 45
  year: 2004
  ident: e_1_2_5_40_1
  article-title: Inheritance of web blight resistance in common bean
  publication-title: J Agric Univ PR
  contributor:
    fullname: Takegami J.C.
– ident: e_1_2_5_43_1
  doi: 10.1111/j.1469-8137.2007.02138.x
– ident: e_1_2_5_12_1
  doi: 10.1104/pp.108.127878
– ident: e_1_2_5_25_1
  doi: 10.1046/j.1365-2958.2003.03800.x
– ident: e_1_2_5_13_1
  doi: 10.1016/S0065-2296(09)51006-3
– ident: e_1_2_5_14_1
  doi: 10.1111/j.1364-3703.2011.00783.x
– ident: e_1_2_5_19_1
  doi: 10.6064/2012/963401
– ident: e_1_2_5_27_1
  doi: 10.3389/fmicb.2016.00382
– ident: e_1_2_5_23_1
  doi: 10.1016/j.bbrc.2015.03.143
RestrictionsOnAccess open access
SSID ssj0064902
Score 2.392647
Snippet Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct...
Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct antagonism...
Summary Pseudomonas sp. CMR12a produces two different classes of cyclic lipopeptides (CLPs) (orfamides and sessilins), which all play a role in direct...
SourceID liege
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 896
SubjectTerms Antagonism
Bacteria
Beans
Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Biosynthesis
Blight
Disease resistance
Experiments
Leaves
Life sciences
Lipopeptides
Metabolites
Microorganisms
Mutants
Pathogens
Phenazine
Plant diseases
Plant resistance
Pseudomonas
Rice blast
Sciences du vivant
Soil microorganisms
Soil resistance
Web blight
Webs
Title Role of phenazines and cyclic lipopeptides produced by pseudomonas sp. CMR12a in induced systemic resistance on rice and bean
URI https://api.istex.fr/ark:/67375/WNG-P7FV0138-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12454
https://www.ncbi.nlm.nih.gov/pubmed/27557735
https://www.proquest.com/docview/3092268792
https://search.proquest.com/docview/1859719767
http://orbi.ulg.ac.be/handle/2268/206758
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA6yIvji_VJdJYKID3Zsk7aZPMrquCi7yOCqbyG3yrClLdPpsiP43z0nbQd3EUSEgSmd03SSnJPzpfn6hZDn0iWWeStiZxMeZ8wmsUmFizWkIq1zmydhu7ej4-LwJPvwLZ_YhPguzKAPsXvghpERxmsMcG2634Ic8h70MWNyBikqR0XQlAskdb1d7gSkimxkHU62o7gPcnkuXX8hL13FJj6H7wpXrv8EPi9i2ZCMFjeJmaoxcFBOZ_3GzOyPSwqP_1XPW-TGCFXpm8G3bpMrvr5Drg2bV27vkp_LpvK0KSmyxIJIdUd17ajd2mplabVqmxYpMw7Ot0FX1jtqtrTtfO8a8H7d0a6d0YOjZco0XdXwGYwGdWkoY-07hLfgl7SpKcofhTsYr-t75GTx7vPBYTxu5hBbmINlcepxD_bMu9Ix5nSRe18Ymwqe6tJqbvPMmETL0pS6KKSz3M3tPPEZIFYD9pzfJ3t1U_uHhEphOACpMuGlzDJT6DKZSzN30jOJL-JG5OXUlaodNDvUNNfB1lTYmiq0ZkRehK7e2en1KVLdRK6-Hr9Xn8TiCy7lqo8ReRV8QTVrs1JnTKEsdzjuq-9KW2U8FFtA2WEKFpH9yWXUOCh0iicSTYRkEXm2-xnCGddodO2bvlMAn6RIASOKiDwYXG3335jIcyF4HpHXwWH-VjkFkZyFo0f_fMVjch2gYTHQFvfJ3mbd-ycAvzbmaYiwX7dSIec
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-6i-iL-G311AgiPtizTZNm83gcrqt3u8hxex6-hHxVFktbtrfiPvi_O0nb5U4EEQoN7TRtM5nML5nJDEKvhE0McYbH1iRZTIlJYp1yGytQRUoxw5KQ7m2-yGdL-umcnV_aC9PFh9gtuHnJCOO1F3C_IH1JykHxAZMJEfugoxi9jsbMW_VGaHxwtvy6HMbjnPaehwN5H-DH-_P8UcUV3TT2zfwTzqW3Xv8NgF7Fs0EhTe-g2z2SxAcd6--ia666h250uSW399Gvk7p0uC6wd-IKMaRbrCqLzdaUK4PLVVM33qPFwvUmhH11Fustblq3sTV0TtXittnHh_OTlCi8quDoiLrgz1AHzNQ9-oRug-sK--hE4Q3aqeoBWk7fnx7O4j7XQmxgikTj1PkU6dTZwhJiVc6cy7VJeZaqwqjMMKp1okShC5XnwprMTswkcRQApQb6LHuIRlVduccIC64zwDlFkhWCUp2rIpkIPbHCEeH3yUbozdDKsulCashhKuIZIj1DZGBIhF4HLuzo1Pq790TjTH5ZfJCf-fTMW1rlUYTeBjbJeq1X8geRPmp2KG_Kb1IZqR1Um0PdYYYUob2Bm7KX2VZmifAkXJAIvdzdBmnzJhRVuXrTSkA3gqcA4XiEHnW9YPdthDPGecYi9C50i3_9nARBo6H05L-feIFuzk7nx_L44-LoKboFKC7vPAz30OhivXHPACld6Oe9KPwGoWUGgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0DsUXvz-qp0YQ8cGubZo2m0c5XU_PW47FU99CvirLLW3ZbsUV_N-dpNvFOwQRodDQTtMmmcn80kx-AXgqbGKoMzy2JsliRk0S65TbWKErUio3eRK2ezuaFgcn7P2XfIgm9Gthen6I7Q83bxmhv_YG3tjyNyNHv4dtTKkYoYvK2UXYZQXiX4-LZlsGqYJtwg4H4Q27jw_mOZfBGce06-v4O54Xfur6T-jzLJgN3mhyDfRQjj4I5XTUrfTI_DhH8fhfBb0OVzdYlbzqlesGXHDVTbjU7165vgU_Z_XCkbokPkwssFS3RFWWmLVZzA1ZzJu68TEzFq83gVjWWaLXpGldZ2tUf9WSthmR_aNZShWZV3j0Qj29NOaxdK3Ht6iYpK6I5z8Kb9BOVbfhZPLm4_5BvNnNITY4CGNx6vwm7MzZ0lJqVZE7V2iT8ixVpVGZyZnWiRKlLlVRCGsyOzbjxDGErBrls-wO7FR15e4BEVxniKTKJCsFY7pQZTIWemyFo8KvxI3g-dCUsulJO-Qw2PG1KX1tylCbETwLTb2VU8tTH-vGc_l5-lYe88knP5crDyN4EXRB1ks9l9-o9LzcId0tvkplpHaYbYF5hzFYBHuDyshNr9DKLBFehAsawZPtbbRnP0mjKld3rUT8JHiKIJFHcLdXte23UZ7nnGd5BC-DwvytcBJNmYXU_X9-4jFcPn49kR_eTQ8fwBWEiUUfwrgHO6tl5x4iFFvpR8HYfgEqDiSu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+phenazines+and+cyclic+lipopeptides+produced+by+pseudomonas+sp.+CMR12a+in+induced+systemic+resistance+on+rice+and+bean&rft.jtitle=Environmental+microbiology+reports&rft.au=Ma%2C+Zongwang&rft.au=Hua%2C+Gia+Khuong+Hoang&rft.au=Ongena%2C+Marc&rft.au=H%C3%B6fte%2C+Monica&rft.date=2016-10-01&rft.eissn=1758-2229&rft.volume=8&rft.issue=5&rft.spage=896&rft_id=info:doi/10.1111%2F1758-2229.12454&rft_id=info%3Apmid%2F27557735&rft.externalDocID=27557735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2229&client=summon