Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity an...
Saved in:
Published in | Global ecology and biogeography Vol. 21; no. 4; pp. 498 - 507 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2012
Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation: After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions: Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors. |
---|---|
AbstractList | Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation: After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions: Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors. Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors. ABSTRACT Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors. |
Author | Jiménez-Valverde, Alberto |
Author_xml | – sequence: 1 givenname: Alberto surname: Jiménez-Valverde fullname: Jiménez-Valverde, Alberto email: alberto.jimenez@uma.es organization: Department of Animal Biology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain and Azorean Biodiversity Group, University of Azores, Angra do Heroísmo, Portugal |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604540$$DView record in Pascal Francis |
BookMark | eNqNkt1u0zAcxSM0JLbBIyBZQohx0WLHH3EkhDSqrQwmkNAGiBvLcf5Z3aVOsZ2tewceGqeZerELtNzY1vmd44-Tg2zPdQ6yDBE8Jel7t5wSJsRE5lROc0zIFGMh6XTzJNvfCXu7ef7rWXYQwhJjzBkX-9nfMxfs1SIGZF3sUFwA0h406l0Nfrv0YMDepEW3Bq-jdVfILLTXJoK3IVqDTO9vAB0dX87eIh2QRrUNxtuVdQnvHFqBDr2HtAMKazAWwkBEb6t-1Lsa2jYFP8-eNroN8OJ-PMwuT08uZp8m59_mZ7Pj84lhJacTSRpGc13hWktZNUVZM1Y3TVkQURGQeYEbrpkGWdaC1nlR4aIyvOK6FExWpqSH2Zsxd-27Pz2EqFbpxOkM2kHXB1UKSQrBKE3k0X9JwigRDBelTOirB-iy671L91ApTMgclwVP1Ot7Sgej28ZrZ2xQ6_Rc2t-pnAvMOMOJkyNnfBeCh2aHEKyG4tVSDZ2qoV81FK-2xatNsn54YDU2bpuIXtv2MQHvx4Bb28LdozdW85OPaZLsL0f7MsTO7-yMMMIxG_TJqKd_ADY7XftrJQpacPXz61zx718uPrMfv5Wg_wA-nuM5 |
CODEN | GEBIFS |
CitedBy_id | crossref_primary_10_1371_journal_pone_0056812 crossref_primary_10_1007_s10113_023_02050_1 crossref_primary_10_1007_s12652_021_02917_3 crossref_primary_10_1002_ece3_1120 crossref_primary_10_1016_j_gecco_2024_e03394 crossref_primary_10_3390_app10072573 crossref_primary_10_3390_jzbg4030042 crossref_primary_10_1016_j_foreco_2017_08_008 crossref_primary_10_1002_ece3_5726 crossref_primary_10_1002_ece3_4517 crossref_primary_10_1002_ece3_5609 crossref_primary_10_1186_s13640_018_0284_8 crossref_primary_10_1038_s41598_023_47624_5 crossref_primary_10_15531_KSCCR_2023_14_1_067 crossref_primary_10_1007_s10841_024_00619_7 crossref_primary_10_1007_s10584_020_02926_9 crossref_primary_10_3390_axioms11100549 crossref_primary_10_1111_tmi_12916 crossref_primary_10_1371_journal_pone_0192887 crossref_primary_10_1002_ece3_4526 crossref_primary_10_1016_j_agsy_2021_103205 crossref_primary_10_1007_s11356_022_22920_1 crossref_primary_10_1111_2041_210X_12352 crossref_primary_10_58837_tnh_24_1_260221 crossref_primary_10_3354_esr00668 crossref_primary_10_1016_j_gecco_2024_e03371 crossref_primary_10_1111_ddi_12868 crossref_primary_10_1016_j_jnc_2024_126754 crossref_primary_10_1139_cjfr_2015_0373 crossref_primary_10_1016_j_ijpharm_2025_125500 crossref_primary_10_1515_mammalia_2018_0191 crossref_primary_10_1186_s13071_018_2847_z crossref_primary_10_1111_ecog_04942 crossref_primary_10_1111_ddi_13955 crossref_primary_10_3390_ani13142293 crossref_primary_10_3390_land10020210 crossref_primary_10_1016_j_jnc_2012_11_005 crossref_primary_10_1007_s10493_023_00778_3 crossref_primary_10_1016_j_biocon_2020_108909 crossref_primary_10_7901_2169_3358_2014_1_660 crossref_primary_10_1007_s10530_013_0559_z crossref_primary_10_1371_journal_pone_0157723 crossref_primary_10_1371_journal_pone_0132346 crossref_primary_10_1371_journal_pone_0140061 crossref_primary_10_1016_j_gloenvcha_2023_102742 crossref_primary_10_1093_botlinnean_boab039 crossref_primary_10_1071_ZO18036 crossref_primary_10_1016_j_ecolind_2021_108202 crossref_primary_10_1371_journal_pone_0088635 crossref_primary_10_3390_f11090996 crossref_primary_10_3390_biology11091293 crossref_primary_10_1016_j_dsr2_2013_06_010 crossref_primary_10_1108_PAR_08_2022_0121 crossref_primary_10_3897_mbmg_7_99979 crossref_primary_10_1016_j_scitotenv_2017_09_277 crossref_primary_10_4218_etrij_2018_0039 crossref_primary_10_1016_j_biocon_2014_04_013 crossref_primary_10_3390_ani10040649 crossref_primary_10_1016_j_ecolmodel_2015_06_002 crossref_primary_10_3390_su12197945 crossref_primary_10_1016_j_jnc_2024_126731 crossref_primary_10_1007_s10531_013_0606_1 crossref_primary_10_1016_j_ecolind_2020_106289 crossref_primary_10_3389_fpls_2021_738769 crossref_primary_10_1016_j_scitotenv_2020_141793 crossref_primary_10_1676_13_165_1 crossref_primary_10_1016_j_agrformet_2024_110328 crossref_primary_10_1002_ecy_4297 crossref_primary_10_3389_fenvs_2020_00069 crossref_primary_10_1371_journal_pone_0140162 crossref_primary_10_1371_journal_pone_0211171 crossref_primary_10_1186_s12911_020_01271_2 crossref_primary_10_1007_s10661_021_09311_8 crossref_primary_10_1016_j_apgeog_2015_11_014 crossref_primary_10_1016_j_jenvman_2025_124185 crossref_primary_10_1126_sciadv_abp9908 crossref_primary_10_1890_ES13_00066_1 crossref_primary_10_1016_j_avrs_2023_100092 crossref_primary_10_1177_03611981211027873 crossref_primary_10_1371_journal_pone_0128023 crossref_primary_10_1111_bij_12142 crossref_primary_10_1007_s10531_020_02075_6 crossref_primary_10_1371_journal_pone_0204644 crossref_primary_10_1016_j_vetpar_2014_12_016 crossref_primary_10_1111_ddi_12782 crossref_primary_10_1007_s10750_015_2280_7 crossref_primary_10_1007_s11056_023_09968_8 crossref_primary_10_3390_insects13030221 crossref_primary_10_1007_s10584_020_02687_5 crossref_primary_10_1002_ece3_6874 crossref_primary_10_1111_ecog_02205 crossref_primary_10_3389_fevo_2019_00207 crossref_primary_10_3389_fevo_2022_814966 crossref_primary_10_1111_ecog_04503 crossref_primary_10_1016_j_ijdrr_2020_101687 crossref_primary_10_1111_jbi_13402 crossref_primary_10_1111_jbi_14733 crossref_primary_10_1111_ecog_01474 crossref_primary_10_3390_app8112121 crossref_primary_10_1038_s41598_023_39917_6 crossref_primary_10_1111_bij_12477 crossref_primary_10_1071_PC16006 crossref_primary_10_1016_j_jglr_2018_11_007 crossref_primary_10_1128_AEM_01237_20 crossref_primary_10_1111_2041_210X_13140 crossref_primary_10_3389_fmars_2018_00419 crossref_primary_10_1371_journal_pone_0210062 crossref_primary_10_1007_s40808_024_02089_x crossref_primary_10_1093_sysbio_syt104 crossref_primary_10_1111_ecog_02438 crossref_primary_10_3390_land14040678 crossref_primary_10_3390_biology11081219 crossref_primary_10_1080_24701394_2020_1742332 crossref_primary_10_1007_s11258_022_01233_w crossref_primary_10_1016_j_ecolind_2020_107147 crossref_primary_10_55230_mabjournal_v53i6_11 crossref_primary_10_1016_j_ecolmodel_2023_110514 crossref_primary_10_1007_s12524_018_0852_5 crossref_primary_10_1016_j_oregeorev_2023_105627 crossref_primary_10_1080_13658816_2012_721553 crossref_primary_10_1016_j_ecoinf_2012_07_002 crossref_primary_10_1111_2041_210X_13142 crossref_primary_10_1002_ece3_6096 crossref_primary_10_1002_ece3_7068 crossref_primary_10_3390_app13169445 crossref_primary_10_1016_j_scitotenv_2024_176851 crossref_primary_10_1371_journal_pone_0173041 crossref_primary_10_1016_j_ecolmodel_2021_109686 crossref_primary_10_1080_0952813X_2022_2120087 crossref_primary_10_1111_mec_15996 crossref_primary_10_1111_2041_210X_13956 crossref_primary_10_3390_d14121076 crossref_primary_10_1111_gcb_13274 crossref_primary_10_1080_13658816_2013_871016 crossref_primary_10_1139_cjb_2012_0205 crossref_primary_10_1016_j_jhevol_2014_06_003 crossref_primary_10_1111_ecog_00719 crossref_primary_10_1111_geb_12974 crossref_primary_10_1007_s11258_023_01291_8 crossref_primary_10_1086_692819 crossref_primary_10_3354_meps12538 crossref_primary_10_3390_rs15122999 crossref_primary_10_2982_028_112_0501 crossref_primary_10_7717_peerj_6281 crossref_primary_10_1002_jwmg_22235 crossref_primary_10_3354_meps13744 crossref_primary_10_1111_een_13200 crossref_primary_10_1007_s10113_023_02175_3 crossref_primary_10_1038_s41598_024_56918_1 crossref_primary_10_1016_j_agsy_2024_103900 crossref_primary_10_3390_insects13080687 crossref_primary_10_3957_056_053_0185 crossref_primary_10_1016_j_ecoinf_2013_11_002 crossref_primary_10_1080_03736687_2022_2032541 crossref_primary_10_1111_ddi_12341 crossref_primary_10_1007_s10841_023_00536_1 crossref_primary_10_1111_ecog_00749 crossref_primary_10_1016_j_scitotenv_2022_154485 crossref_primary_10_1640_0002_8444_112_4_354 crossref_primary_10_1016_j_biocon_2022_109523 crossref_primary_10_1038_s41598_025_94922_1 crossref_primary_10_1371_journal_pone_0067573 crossref_primary_10_1371_journal_pone_0187906 crossref_primary_10_1016_j_jspr_2023_102089 crossref_primary_10_1007_s11069_020_04453_3 crossref_primary_10_1111_2041_210X_12403 crossref_primary_10_1017_S0376892922000030 crossref_primary_10_1111_aje_12517 crossref_primary_10_3389_fendo_2022_849549 crossref_primary_10_1111_ddi_13200 crossref_primary_10_3390_biology11040588 crossref_primary_10_3390_f15020277 crossref_primary_10_3389_fmars_2020_00303 crossref_primary_10_1016_j_pld_2021_06_010 crossref_primary_10_1371_journal_pntd_0010715 crossref_primary_10_3390_plants13233347 crossref_primary_10_1016_j_ecolmodel_2021_109774 crossref_primary_10_3390_f10050425 crossref_primary_10_1016_j_scitotenv_2020_140786 crossref_primary_10_3389_feart_2021_659296 crossref_primary_10_3390_app11156777 crossref_primary_10_1007_s42974_024_00183_9 crossref_primary_10_1016_j_ecmx_2025_100965 crossref_primary_10_3391_ai_2023_18_4_111481 crossref_primary_10_1016_j_watbs_2025_100380 crossref_primary_10_1515_mammalia_2022_0059 crossref_primary_10_1086_713175 crossref_primary_10_1016_j_ecolmodel_2020_109194 crossref_primary_10_1016_j_ecolmodel_2020_109071 crossref_primary_10_1007_s10531_021_02126_6 crossref_primary_10_1016_j_ecolind_2024_112179 crossref_primary_10_1111_geb_12545 crossref_primary_10_3390_biom13030420 crossref_primary_10_1016_j_scitotenv_2022_155157 crossref_primary_10_1016_j_limno_2015_08_002 crossref_primary_10_1371_journal_pone_0137021 crossref_primary_10_3390_w13162280 crossref_primary_10_7717_peerj_4071 crossref_primary_10_3390_ijerph191912382 crossref_primary_10_3390_fire7030065 crossref_primary_10_1002_ece3_1209 crossref_primary_10_1038_s41586_023_06471_0 crossref_primary_10_3390_f11050507 crossref_primary_10_1111_1365_2664_13799 crossref_primary_10_1007_s10531_019_01921_6 crossref_primary_10_3390_rs16193602 crossref_primary_10_1016_j_sajb_2017_10_020 crossref_primary_10_1111_icad_12288 crossref_primary_10_1371_journal_pone_0090121 crossref_primary_10_1007_s11069_020_04264_6 crossref_primary_10_1590_0001_3765202320201421 crossref_primary_10_3389_fmars_2023_1222382 crossref_primary_10_3390_f11060684 crossref_primary_10_1016_j_pecon_2021_04_002 crossref_primary_10_3390_d14020100 crossref_primary_10_1016_j_compenvurbsys_2017_11_006 crossref_primary_10_1007_s10344_014_0894_0 crossref_primary_10_1007_s13201_023_01905_6 crossref_primary_10_1016_j_ecolmodel_2015_01_019 crossref_primary_10_1002_ece3_1579 crossref_primary_10_1016_j_compag_2024_109283 crossref_primary_10_1007_s11258_024_01458_x crossref_primary_10_1016_j_pocean_2019_04_007 crossref_primary_10_1080_10106049_2019_1687594 crossref_primary_10_1111_ddi_70005 crossref_primary_10_1111_ecog_05080 crossref_primary_10_1016_j_agsy_2022_103429 crossref_primary_10_3390_agronomy13081985 crossref_primary_10_3390_land11060806 crossref_primary_10_1111_ddi_12389 crossref_primary_10_1016_j_ijppaw_2020_04_011 crossref_primary_10_1016_j_scitotenv_2019_136165 crossref_primary_10_1111_wre_12021 crossref_primary_10_1016_j_eiar_2020_106474 crossref_primary_10_1002_jwmg_22351 crossref_primary_10_1371_journal_pone_0068337 crossref_primary_10_1016_j_foreco_2018_05_018 crossref_primary_10_1007_s10584_023_03526_z crossref_primary_10_1016_j_ecoinf_2023_102387 crossref_primary_10_1007_s10531_012_0413_0 crossref_primary_10_1007_s11356_024_32076_9 crossref_primary_10_1111_cobi_12218 crossref_primary_10_1111_ecog_01509 crossref_primary_10_1007_s11205_021_02754_z crossref_primary_10_1016_j_ecolmodel_2015_09_009 crossref_primary_10_1111_geb_12514 crossref_primary_10_1021_es503223k crossref_primary_10_1111_gcb_14698 crossref_primary_10_1525_elementa_2020_20_00058 crossref_primary_10_1111_1755_0998_12184 crossref_primary_10_1111_ddi_12279 crossref_primary_10_1038_s41598_024_71029_7 crossref_primary_10_1016_j_ecolmodel_2021_109453 crossref_primary_10_7717_peerj_17386 crossref_primary_10_1088_1755_1315_1276_1_012054 crossref_primary_10_3389_feart_2023_1193677 crossref_primary_10_1007_s44288_024_00037_x crossref_primary_10_1016_j_ecolind_2019_105714 crossref_primary_10_2478_s11756_019_00215_0 crossref_primary_10_3390_insects13080750 crossref_primary_10_1016_j_scitotenv_2017_02_188 crossref_primary_10_1002_aqc_3594 crossref_primary_10_1016_j_biocon_2022_109573 crossref_primary_10_1636_JoA_S_21_044 crossref_primary_10_1016_j_foreco_2022_120677 crossref_primary_10_1016_j_ecoinf_2023_102393 crossref_primary_10_1111_ddi_12031 crossref_primary_10_5194_we_13_13_2013 crossref_primary_10_1002_ece3_6492 crossref_primary_10_1016_j_ecolmodel_2020_109202 crossref_primary_10_1016_j_ijmedinf_2019_02_002 crossref_primary_10_1002_ece3_7226 crossref_primary_10_1515_psr_2019_0029 crossref_primary_10_1038_s41598_020_80062_1 crossref_primary_10_1002_ece3_10161 crossref_primary_10_3389_fcosc_2023_1235595 crossref_primary_10_1016_j_meegid_2021_105034 crossref_primary_10_1111_ibi_12194 crossref_primary_10_1111_ecog_05450 crossref_primary_10_7717_peerj_12879 crossref_primary_10_1029_2021EF002630 crossref_primary_10_1111_geb_12342 crossref_primary_10_1111_gcb_16142 crossref_primary_10_1111_gcb_17232 crossref_primary_10_1111_ibi_13046 crossref_primary_10_1177_0309133314521448 crossref_primary_10_1111_ddi_12160 crossref_primary_10_1111_ddi_13491 crossref_primary_10_1111_geb_12580 crossref_primary_10_1017_S0959270917000326 crossref_primary_10_1016_j_gecco_2014_09_011 crossref_primary_10_1002_eap_2502 crossref_primary_10_1080_19475705_2019_1615559 crossref_primary_10_1016_j_dsr_2016_07_005 crossref_primary_10_3389_fclim_2021_715837 crossref_primary_10_1128_aem_00018_22 crossref_primary_10_3389_fevo_2023_1305573 crossref_primary_10_1016_j_indcrop_2022_115888 crossref_primary_10_1080_07038992_2015_1065708 crossref_primary_10_1016_j_indcrop_2024_120427 crossref_primary_10_1038_s41598_018_30044_1 crossref_primary_10_1002_aqc_3614 crossref_primary_10_1016_j_scitotenv_2019_06_508 crossref_primary_10_2139_ssrn_3810495 crossref_primary_10_3390_su15020895 crossref_primary_10_1111_ecog_05119 crossref_primary_10_2994_SAJH_D_16_00007_1 crossref_primary_10_5358_hsj_43_135 crossref_primary_10_1016_j_jmbbm_2022_105097 crossref_primary_10_1111_bij_12718 crossref_primary_10_1371_journal_pone_0074819 crossref_primary_10_1145_3587463 crossref_primary_10_1007_s40808_022_01661_7 crossref_primary_10_1016_j_ecoinf_2023_102346 crossref_primary_10_1016_j_ecoinf_2023_102343 crossref_primary_10_1016_j_ecolind_2014_04_004 crossref_primary_10_1016_j_biocon_2013_07_001 crossref_primary_10_1111_geb_12684 crossref_primary_10_3390_biology12050652 crossref_primary_10_1016_j_scitotenv_2015_09_003 crossref_primary_10_1016_j_jenvman_2023_118934 crossref_primary_10_3390_plants11050684 crossref_primary_10_3390_f15020316 crossref_primary_10_1111_ddi_13030 crossref_primary_10_1016_j_chnaes_2022_05_009 crossref_primary_10_3390_insects14050476 crossref_primary_10_1016_j_scitotenv_2024_172523 crossref_primary_10_1002_jwmg_22659 crossref_primary_10_3390_rs17010046 crossref_primary_10_1016_j_ecolmodel_2020_109353 crossref_primary_10_1007_s11069_021_04733_6 crossref_primary_10_1898_NWN21_17 crossref_primary_10_3390_f13060820 crossref_primary_10_1002_zoo_21477 crossref_primary_10_1016_j_ecoinf_2021_101501 crossref_primary_10_1146_annurev_ecolsys_102320_093722 crossref_primary_10_1016_j_ecolmodel_2024_110692 crossref_primary_10_1016_j_rse_2024_114583 crossref_primary_10_1071_WF15121 crossref_primary_10_2989_16085914_2014_926856 crossref_primary_10_3390_plants12203561 crossref_primary_10_1111_fog_12279 crossref_primary_10_1016_j_ecolmodel_2017_06_006 crossref_primary_10_1371_journal_pone_0245973 crossref_primary_10_1016_j_envsoft_2017_11_009 crossref_primary_10_1086_713071 crossref_primary_10_1002_ece3_6295 crossref_primary_10_1016_j_ecolmodel_2014_01_020 crossref_primary_10_1016_j_foreco_2025_122658 crossref_primary_10_3390_d13050212 crossref_primary_10_1007_s11852_016_0422_3 crossref_primary_10_1111_jzs_12423 crossref_primary_10_1186_s41610_020_0147_y crossref_primary_10_3390_atmos13101616 crossref_primary_10_1007_s10530_012_0386_7 crossref_primary_10_1007_s10530_019_02024_7 crossref_primary_10_1111_geb_12138 crossref_primary_10_1002_ece3_8002 crossref_primary_10_1111_cobi_13851 crossref_primary_10_3120_0024_9637_67_4_170 crossref_primary_10_1002_ecs2_1549 crossref_primary_10_1002_ajb2_1788 crossref_primary_10_1007_s11355_019_00381_y crossref_primary_10_1093_botlinnean_bow020 crossref_primary_10_1002_ece3_70277 crossref_primary_10_1016_j_gecco_2022_e02025 crossref_primary_10_1016_j_zool_2020_125852 crossref_primary_10_3390_life15020323 crossref_primary_10_1093_jisesa_iez118 crossref_primary_10_1094_PDIS_04_16_0492_RE crossref_primary_10_1016_j_jaridenv_2022_104819 crossref_primary_10_7717_peerj_12783 crossref_primary_10_1139_cjfas_2023_0378 crossref_primary_10_1007_s00114_024_01951_3 crossref_primary_10_1007_s10531_021_02144_4 crossref_primary_10_1111_geb_12007 crossref_primary_10_1371_journal_pone_0190831 crossref_primary_10_1080_01650521_2019_1616957 crossref_primary_10_1016_j_ecolmodel_2021_109502 crossref_primary_10_1111_ecog_07218 crossref_primary_10_1111_j_1466_8238_2012_00781_x crossref_primary_10_1155_2022_5905230 crossref_primary_10_3390_su13158133 crossref_primary_10_1038_s41598_023_28590_4 crossref_primary_10_1111_ele_12604 crossref_primary_10_7717_peerj_5668 crossref_primary_10_2196_38053 crossref_primary_10_1590_0001_3765201820180308 crossref_primary_10_3389_fmars_2022_983685 crossref_primary_10_1002_pst_1734 crossref_primary_10_1186_s13071_019_3368_0 crossref_primary_10_1111_jav_01238 crossref_primary_10_3375_043_035_0115 crossref_primary_10_1093_jpe_rtu041 crossref_primary_10_1111_geb_13204 crossref_primary_10_1007_s13592_022_00942_5 crossref_primary_10_3390_f7110250 crossref_primary_10_1186_s40555_014_0050_2 crossref_primary_10_3390_d15020157 crossref_primary_10_3389_fevo_2022_882282 crossref_primary_10_1007_s10336_021_01867_z crossref_primary_10_1016_j_ecolmodel_2022_109910 crossref_primary_10_3390_d17030167 crossref_primary_10_1111_2041_210X_13826 crossref_primary_10_1111_ecog_06358 crossref_primary_10_1371_journal_pone_0091049 crossref_primary_10_3389_fpls_2022_921310 crossref_primary_10_1111_jeb_12244 crossref_primary_10_1002_ece3_3936 crossref_primary_10_1890_11_1936_1 crossref_primary_10_1371_journal_pone_0079295 crossref_primary_10_3897_vz_71_e62729 crossref_primary_10_3390_insects15020081 crossref_primary_10_1371_journal_pone_0288508 crossref_primary_10_1371_journal_pone_0132054 crossref_primary_10_3390_land11111971 crossref_primary_10_1111_jpy_12322 crossref_primary_10_1002_ece3_10565 crossref_primary_10_1071_WR20196 crossref_primary_10_1038_s41467_024_45290_3 crossref_primary_10_1016_j_cliser_2022_100330 crossref_primary_10_1007_s00500_023_08951_x crossref_primary_10_1007_s10811_020_02300_3 crossref_primary_10_3120_0024_9637_60_3_193 crossref_primary_10_1111_fog_12104 crossref_primary_10_1371_journal_pone_0070038 crossref_primary_10_1016_j_scitotenv_2017_06_219 crossref_primary_10_2139_ssrn_4014260 crossref_primary_10_3897_natureconservation_34_29575 crossref_primary_10_1371_journal_pone_0298755 crossref_primary_10_1038_s41598_021_83174_4 crossref_primary_10_31413_nativa_v7i5_7214 crossref_primary_10_1002_ece3_11300 crossref_primary_10_1093_biolinnean_blaa142 crossref_primary_10_3390_plants13213097 crossref_primary_10_1007_s11069_024_06691_1 crossref_primary_10_1016_j_resourpol_2025_105515 crossref_primary_10_1111_ecog_04630 crossref_primary_10_3390_math9131570 crossref_primary_10_1007_s10661_021_09448_6 crossref_primary_10_1890_15_0926 crossref_primary_10_1016_j_dsr_2020_103229 crossref_primary_10_3390_rs13173361 crossref_primary_10_1371_journal_pone_0187589 crossref_primary_10_1111_j_1600_0587_2013_00393_x crossref_primary_10_1007_s40747_021_00442_6 crossref_primary_10_1007_s00477_018_1558_5 crossref_primary_10_1007_s11676_022_01459_4 crossref_primary_10_1071_WR14171 crossref_primary_10_1007_s40415_022_00833_0 crossref_primary_10_1080_17550874_2023_2274839 crossref_primary_10_1007_s10750_019_3904_0 crossref_primary_10_1111_jbi_14009 crossref_primary_10_1016_j_scitotenv_2024_174095 crossref_primary_10_1002_ece3_9827 crossref_primary_10_1016_j_ecolind_2023_110217 crossref_primary_10_1111_jbi_14130 crossref_primary_10_1016_j_ecolmodel_2024_110864 crossref_primary_10_3390_f13030475 crossref_primary_10_1016_j_ecolmodel_2024_110982 crossref_primary_10_3390_f12111451 crossref_primary_10_1007_s10530_022_02928_x crossref_primary_10_1016_j_biocon_2017_06_039 crossref_primary_10_1111_jzo_13159 crossref_primary_10_1371_journal_pone_0167128 crossref_primary_10_1007_s11069_017_2921_4 crossref_primary_10_1016_j_jaridenv_2020_104200 crossref_primary_10_1017_S0954102021000183 crossref_primary_10_25225_fozo_v63_i3_a7_2014 crossref_primary_10_1111_jbi_14365 crossref_primary_10_3390_f6010001 crossref_primary_10_1016_j_catena_2017_01_010 crossref_primary_10_1017_S0030605318000923 crossref_primary_10_1016_j_ecolmodel_2024_110734 crossref_primary_10_2807_1560_7917_ES_2024_29_44_2400084 crossref_primary_10_1080_14772000_2022_2046657 crossref_primary_10_1111_aec_12274 crossref_primary_10_1016_j_ecolmodel_2013_01_024 crossref_primary_10_1007_s12665_023_11007_w crossref_primary_10_1002_eap_2437 crossref_primary_10_1002_ece3_70547 crossref_primary_10_2139_ssrn_4759469 crossref_primary_10_3390_ecologies5030025 crossref_primary_10_1111_ecog_04687 crossref_primary_10_1111_ecog_04563 crossref_primary_10_1016_j_brainres_2024_148947 crossref_primary_10_1016_j_fishres_2018_10_011 crossref_primary_10_1016_j_jhydrol_2018_12_002 crossref_primary_10_1109_TKDE_2024_3437781 crossref_primary_10_14309_ctg_0000000000000606 crossref_primary_10_1016_j_jenvman_2022_116555 crossref_primary_10_1111_aec_12164 crossref_primary_10_3390_agriculture12010074 crossref_primary_10_1007_s11063_022_10927_1 crossref_primary_10_1002_jnm_3134 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1007_s10841_015_9810_5 crossref_primary_10_1017_S0030605316000922 crossref_primary_10_1177_1533033820983804 crossref_primary_10_3389_fmars_2023_1126682 crossref_primary_10_1016_j_ecoinf_2015_06_007 crossref_primary_10_1371_journal_pone_0041526 crossref_primary_10_1038_s41598_021_82474_z crossref_primary_10_1650_CONDOR_16_86_1 crossref_primary_10_1016_j_ecolind_2024_111899 crossref_primary_10_3390_agronomy14092080 crossref_primary_10_1007_s42991_021_00151_0 crossref_primary_10_1670_14_014 crossref_primary_10_1002_eap_2338 crossref_primary_10_1016_j_ecolmodel_2015_05_018 crossref_primary_10_1007_s10344_018_1221_y crossref_primary_10_1007_s10980_013_9935_4 crossref_primary_10_1111_fwb_12719 crossref_primary_10_3390_f13101559 crossref_primary_10_1111_ecog_02282 crossref_primary_10_1186_s13040_023_00322_4 crossref_primary_10_3390_insects9030094 crossref_primary_10_1016_j_gecco_2021_e01862 crossref_primary_10_1016_j_ecolmodel_2024_110667 crossref_primary_10_1111_jbi_13361 crossref_primary_10_1038_s42003_022_04358_w crossref_primary_10_1111_geb_12087 crossref_primary_10_1111_jbi_12393 crossref_primary_10_1016_j_ecoinf_2020_101092 crossref_primary_10_3390_insects11060383 crossref_primary_10_3390_biology11010110 crossref_primary_10_1111_csp2_12978 crossref_primary_10_1002_ece3_7210 crossref_primary_10_3897_natureconservation_43_63876 crossref_primary_10_1002_rse2_63 crossref_primary_10_1371_journal_pone_0217896 crossref_primary_10_1007_s12517_019_4932_9 crossref_primary_10_1007_s11852_023_00991_7 crossref_primary_10_1016_j_ecolmodel_2023_110592 crossref_primary_10_1016_j_ecolind_2017_08_014 crossref_primary_10_1111_ecog_03123 crossref_primary_10_1016_j_biocon_2020_108680 crossref_primary_10_1071_WF24024 crossref_primary_10_1016_j_ecolind_2023_110488 crossref_primary_10_1016_j_gecco_2021_e01735 |
Cites_doi | 10.1016/S0304-3800(02)00349-6 10.1007/978-1-4899-3242-6 10.1016/j.jclinepi.2007.10.011 10.1177/0272989X9101100204 10.1111/j.1365-2699.2010.02465.x 10.1093/clinchem/39.4.561 10.1016/j.ecolmodel.2005.03.026 10.1080/136588199241391 10.1214/10-AOAS331 10.1111/j.1466-8238.2007.00358.x 10.1016/S0031-3203(98)00154-X 10.1016/j.ecolmodel.2008.05.015 10.1080/01621459.2000.10473930 10.1177/001316446002000104 10.1146/annurev.ecolsys.110308.120159 10.1016/j.actao.2007.02.001 10.1201/9781439800225 10.1017/S0376892997000088 10.1002/joc.1276 10.17161/bi.v3i0.29 10.1111/j.1472-4642.2008.00496.x 10.5735/086.046.0606 10.1111/j.1365-2664.2005.01052.x 10.1177/096228029900800203 10.1111/j.1466-8238.2010.00581.x 10.1016/0895-4356(88)90031-5 10.1111/j.1600-0587.2009.06074.x 10.1111/j.1365-2664.2006.01214.x 10.1111/j.2006.0906-7590.04596.x 10.1016/S0304-3800(02)00327-7 10.1073/pnas.0901637106 10.1016/j.patrec.2005.10.010 10.1093/aje/kwj063 10.1016/j.ecolmodel.2007.11.008 10.1111/j.1541-0420.2008.01116.x 10.1002/bimj.200410133 10.1016/j.apmr.2003.12.002 10.1016/j.ecolmodel.2011.02.011 10.1556/ComEc.10.2009.2.9 10.1111/j.1600-0587.2009.06039.x 10.5670/oceanog.2003.42 10.1016/S0010-4825(99)00025-6 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Blackwell Publishing 2011 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Blackwell Publishing – notice: 2011 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/j.1466-8238.2011.00683.x |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 1466-822X |
EndPage | 507 |
ExternalDocumentID | 3958101591 25604540 10_1111_j_1466_8238_2011_00683_x GEB683 41415043 ark_67375_WNG_5RKTJ4VZ_6 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 0R~ 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD EQZMY ESX F00 F01 F04 FEDTE G-S GODZA GTFYD HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c4953-81f432ab0da88bf79d44dff9716b1e8270f5a4ae89d63d27b07bc5b5a9648bc93 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 03:48:26 EDT 2025 Fri Jul 11 18:35:09 EDT 2025 Fri Jul 25 07:12:26 EDT 2025 Mon Jul 21 09:15:04 EDT 2025 Thu Apr 24 23:00:04 EDT 2025 Tue Jul 01 01:46:03 EDT 2025 Wed Jan 22 16:38:30 EST 2025 Thu Jul 03 21:09:23 EDT 2025 Wed Oct 30 09:51:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Costs Biogeography Error Ecology threshold realized distribution Modeling AUC Specificity Discrimination Spatial distribution Geographic distribution commission/omission errors background data misclassification cost ROC curve sensitivity potential distribution Distribution range |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4953-81f432ab0da88bf79d44dff9716b1e8270f5a4ae89d63d27b07bc5b5a9648bc93 |
Notes | istex:338A8C8DED3F4EC589BF4D44AAA2E3002AB98A4E ArticleID:GEB683 ark:/67375/WNG-5RKTJ4VZ-6 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1766820975 |
PQPubID | 1066347 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_968176433 proquest_miscellaneous_1431640798 proquest_journals_1766820975 pascalfrancis_primary_25604540 crossref_primary_10_1111_j_1466_8238_2011_00683_x crossref_citationtrail_10_1111_j_1466_8238_2011_00683_x wiley_primary_10_1111_j_1466_8238_2011_00683_x_GEB683 jstor_primary_41415043 istex_primary_ark_67375_WNG_5RKTJ4VZ_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Adams, N.M. & Hand, D.J. (2000) An improved measure for comparing diagnostic tests. Computers in Biology and Medicine, 30, 89-96. Jiménez-Valverde, A., Diniz, F., Azevedo, E.B. & Borges, P.A.V. (2009b) Species distribution models do not account for abundance: the case of arthropods on Terceira Island. Annales de Zoologici Fennici, 46, 451-464. Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650. Perkins, N.J. & Schisterman, E.F. (2006) The inconsistency of 'optimal' cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology, 163, 670-675. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. Krzanowski, W.J. & Hand, D.J. (2009) ROC curves for continuous data. Chapman and Hall, Boca Raton, FL. Elith, J. & Leathwick, J. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677-697. Thompson, W.D. & Walter, S.D. (1988) A reappraisal of the kappa coefficient. Journal of Clinical Epidemiology, 41, 949-958. Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling (in press). Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J. (2009) Presence-only data and the EM algorithm. Biometrics, 65, 554-563. McCullagh, P. & Nelder, J.A. (1989) Generalized linear models. Chapman and Hall, London. Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213, 63-72. Shapiro, D.E. (1999) The interpretation of diagnostic tests. Statistical Methods in Medical Research, 8, 113-134. Perkins, N.J. & Schisterman, E.F. (2005) The Youden index and the optimal cut-point corrected for measurement error. Biometrical Journal, 47, 428-441. Zweig, M.H. & Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561-577. Stockwell, D.R.B. & Peters, D.P. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143-158. R Development Core Team (2008) R: a language and environment for statistical computing, version 2.7.2.R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org (accessed August 2008). Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874. Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42, 720-730. Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130. Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890. Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114. Kaivanto, K. (2008) Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion. Journal of Clinical Epidemiology, 61, 517-518. Santika, T. (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecology and Biogeography, 20, 181-192. Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402. Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R. & Stewart, A.M. (2003) Niche modelling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16, 120-127. Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46. Jiménez-Valverde, A., Decae, A.E. & Arnedo, M.A. (2011) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. Journal of Biogeography, doi: 10.1111/j.1365-2699.2010.02465.x Adams, N.M. & Hand, D.J. (1999) Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32, 1139-1147. Manly, B.F.J., McDonald, L., Thomas, D.L., McDonald, T.L. & Erickson, W.P. (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer Press, New York. Soberón, J. (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159-167. Pepe, M.S. (2000) Receiver operating characteristic methodology. Journal of the American Statistical Association, 95, 308-311. Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211-232. Hilden, J. (1991) The area under the ROC curve and its competitors. Medical Decision Making, 11, 95-101. Peterson, A.T. (2006) Uses and requirements of ecological niches models and related distributional models. Biodiversity Informatics, 3, 59-72. Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369. Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2009a) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10, 196-205. Tooth, L.R. & Ottenbacher, K.J. (2004) The k statistic in rehabilitation research: an examination. Archives of Physical Medicine and Rehabilitation, 85, 1371-1376. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. 2010; 33 2004; 85 2009; 40 2009; 65 2009b; 46 2011 1991; 11 1997; 24 2008; 17 2009 2008; 14 2000; 95 2008 2005; 42 2003; 16 2006; 3 1991 2002 2007; 31 1999; 8 2005; 25 2005; 47 1993; 39 1960; 20 2009a; 10 2006; 43 2006; 190 2006; 27 2000; 30 2003; 162 2006; 163 2011; 20 1999; 13 2006; 29 2003; 160 2008; 217 1999; 32 2008; 213 1988; 41 2008; 61 2010; 4 1989 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_19_1 R Development Core Team (e_1_2_7_35_1) 2008 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Busby J.R. (e_1_2_7_7_1) 1991 Manly B.F.J. (e_1_2_7_28_1) 2002 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – reference: Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211-232. – reference: Jiménez-Valverde, A., Decae, A.E. & Arnedo, M.A. (2011) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. Journal of Biogeography, doi: 10.1111/j.1365-2699.2010.02465.x – reference: Krzanowski, W.J. & Hand, D.J. (2009) ROC curves for continuous data. Chapman and Hall, Boca Raton, FL. – reference: Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2009a) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10, 196-205. – reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. – reference: Soberón, J. (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159-167. – reference: Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42, 720-730. – reference: Adams, N.M. & Hand, D.J. (1999) Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32, 1139-1147. – reference: Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. – reference: Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369. – reference: Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890. – reference: Jiménez-Valverde, A., Diniz, F., Azevedo, E.B. & Borges, P.A.V. (2009b) Species distribution models do not account for abundance: the case of arthropods on Terceira Island. Annales de Zoologici Fennici, 46, 451-464. – reference: Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J. (2009) Presence-only data and the EM algorithm. Biometrics, 65, 554-563. – reference: Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650. – reference: Adams, N.M. & Hand, D.J. (2000) An improved measure for comparing diagnostic tests. Computers in Biology and Medicine, 30, 89-96. – reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. – reference: Elith, J. & Leathwick, J. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677-697. – reference: Peterson, A.T. (2006) Uses and requirements of ecological niches models and related distributional models. Biodiversity Informatics, 3, 59-72. – reference: Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130. – reference: Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874. – reference: Pepe, M.S. (2000) Receiver operating characteristic methodology. Journal of the American Statistical Association, 95, 308-311. – reference: Zweig, M.H. & Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561-577. – reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49. – reference: Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213, 63-72. – reference: Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402. – reference: Perkins, N.J. & Schisterman, E.F. (2005) The Youden index and the optimal cut-point corrected for measurement error. Biometrical Journal, 47, 428-441. – reference: Shapiro, D.E. (1999) The interpretation of diagnostic tests. Statistical Methods in Medical Research, 8, 113-134. – reference: Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46. – reference: Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114. – reference: Stockwell, D.R.B. & Peters, D.P. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143-158. – reference: Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R. & Stewart, A.M. (2003) Niche modelling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16, 120-127. – reference: Tooth, L.R. & Ottenbacher, K.J. (2004) The k statistic in rehabilitation research: an examination. Archives of Physical Medicine and Rehabilitation, 85, 1371-1376. – reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. – reference: Manly, B.F.J., McDonald, L., Thomas, D.L., McDonald, T.L. & Erickson, W.P. (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer Press, New York. – reference: Santika, T. (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecology and Biogeography, 20, 181-192. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Kaivanto, K. (2008) Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion. Journal of Clinical Epidemiology, 61, 517-518. – reference: Thompson, W.D. & Walter, S.D. (1988) A reappraisal of the kappa coefficient. Journal of Clinical Epidemiology, 41, 949-958. – reference: Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling (in press). – reference: R Development Core Team (2008) R: a language and environment for statistical computing, version 2.7.2.R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org (accessed August 2008). – reference: Perkins, N.J. & Schisterman, E.F. (2006) The inconsistency of 'optimal' cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology, 163, 670-675. – reference: Hilden, J. (1991) The area under the ROC curve and its competitors. Medical Decision Making, 11, 95-101. – reference: McCullagh, P. & Nelder, J.A. (1989) Generalized linear models. Chapman and Hall, London. – reference: Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58. – year: 2009 – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 30 start-page: 89 year: 2000 end-page: 96 article-title: An improved measure for comparing diagnostic tests publication-title: Computers in Biology and Medicine – volume: 160 start-page: 115 year: 2003 end-page: 130 article-title: Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance publication-title: Ecological Modelling – volume: 217 start-page: 48 year: 2008 end-page: 58 article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa publication-title: Ecological Modelling – volume: 95 start-page: 308 year: 2000 end-page: 311 article-title: Receiver operating characteristic methodology publication-title: Journal of the American Statistical Association – volume: 16 start-page: 120 year: 2003 end-page: 127 article-title: Niche modelling and geographic range predictions in the marine environment using a machine‐learning algorithm publication-title: Oceanography – volume: 24 start-page: 38 year: 1997 end-page: 49 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environmental Conservation – volume: 32 start-page: 1139 year: 1999 end-page: 1147 article-title: Comparing classifiers when the misallocation costs are uncertain publication-title: Pattern Recognition – volume: 33 start-page: 103 year: 2010 end-page: 114 article-title: The uncertain nature of absences and their importance in species distribution modelling publication-title: Ecography – volume: 43 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution and Systematics – volume: 20 start-page: 37 year: 1960 end-page: 46 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement – volume: 27 start-page: 861 year: 2006 end-page: 874 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – year: 1989 – start-page: 64 year: 1991 end-page: 68 – volume: 61 start-page: 517 year: 2008 end-page: 518 article-title: Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion publication-title: Journal of Clinical Epidemiology – volume: 39 start-page: 561 year: 1993 end-page: 577 article-title: Receiver‐operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine publication-title: Clinical Chemistry – volume: 20 start-page: 181 year: 2011 end-page: 192 article-title: Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data publication-title: Global Ecology and Biogeography – volume: 13 start-page: 143 year: 1999 end-page: 158 article-title: The GARP modelling system: problems and solutions to automated spatial prediction publication-title: International Journal of Geographical Information Science – volume: 4 start-page: 1383 year: 2010 end-page: 1402 article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology publication-title: Annals of Applied Statistics – volume: 42 start-page: 720 year: 2005 end-page: 730 article-title: The continuing challenges of testing species distribution models publication-title: Journal of Applied Ecology – volume: 33 start-page: 159 year: 2010 end-page: 167 article-title: Niche and area of distribution modeling: a population ecology perspective publication-title: Ecography – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 46 start-page: 451 year: 2009b end-page: 464 article-title: Species distribution models do not account for abundance: the case of arthropods on Terceira Island publication-title: Annales de Zoologici Fennici – volume: 41 start-page: 949 year: 1988 end-page: 958 article-title: A reappraisal of the kappa coefficient publication-title: Journal of Clinical Epidemiology – year: 2011 article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling publication-title: Ecological Modelling – volume: 163 start-page: 670 year: 2006 end-page: 675 article-title: The inconsistency of ‘optimal’ cutpoints obtained using two criteria based on the receiver operating characteristic curve publication-title: American Journal of Epidemiology – volume: 17 start-page: 145 year: 2008 end-page: 151 article-title: AUC: a misleading measure of the performance of predictive distribution models publication-title: Global Ecology and Biogeography – volume: 213 start-page: 63 year: 2008 end-page: 72 article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modelling publication-title: Ecological Modelling – volume: 31 start-page: 361 year: 2007 end-page: 369 article-title: Threshold criteria for conversion of probability of species presence to either–or presence–absence publication-title: Acta Oecologica – volume: 8 start-page: 113 year: 1999 end-page: 134 article-title: The interpretation of diagnostic tests publication-title: Statistical Methods in Medical Research – year: 2002 – year: 2008 – volume: 11 start-page: 95 year: 1991 end-page: 101 article-title: The area under the ROC curve and its competitors publication-title: Medical Decision Making – volume: 10 start-page: 196 year: 2009a end-page: 205 article-title: The effect of prevalence and its interaction with sample size on the reliability of species distribution models publication-title: Community Ecology – year: 2011 article-title: Environmental suitability of new reported localities of the funnelweb spider : an assessment using potential distribution modelling with presence‐only techniques publication-title: Journal of Biogeography – volume: 85 start-page: 1371 year: 2004 end-page: 1376 article-title: The statistic in rehabilitation research: an examination publication-title: Archives of Physical Medicine and Rehabilitation – volume: 65 start-page: 554 year: 2009 end-page: 563 article-title: Presence‐only data and the EM algorithm publication-title: Biometrics – volume: 47 start-page: 428 year: 2005 end-page: 441 article-title: The Youden index and the optimal cut‐point corrected for measurement error publication-title: Biometrical Journal – volume: 162 start-page: 211 year: 2003 end-page: 232 article-title: Evaluating predictive models of species’ distributions: criteria for selecting optimal models publication-title: Ecological Modelling – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species’ distributions from occurrence data publication-title: Ecography – volume: 106 start-page: 19644 year: 2009 end-page: 19650 article-title: Niches and distributional areas: concepts, methods, and assumptions publication-title: Proceedings of the National Academy of Sciences USA – volume: 14 start-page: 885 year: 2008 end-page: 890 article-title: Not as good as they seem: the importance of concepts in species distribution modelling publication-title: Diversity and Distributions – volume: 3 start-page: 59 year: 2006 end-page: 72 article-title: Uses and requirements of ecological niches models and related distributional models publication-title: Biodiversity Informatics – ident: e_1_2_7_5_1 doi: 10.1016/S0304-3800(02)00349-6 – ident: e_1_2_7_27_1 doi: 10.1007/978-1-4899-3242-6 – ident: e_1_2_7_23_1 doi: 10.1016/j.jclinepi.2007.10.011 – ident: e_1_2_7_17_1 doi: 10.1177/0272989X9101100204 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2699.2010.02465.x – ident: e_1_2_7_14_1 – ident: e_1_2_7_47_1 doi: 10.1093/clinchem/39.4.561 – start-page: 64 volume-title: Nature conservation: cost effective biological surveys and data analysis year: 1991 ident: e_1_2_7_7_1 – ident: e_1_2_7_34_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_7_40_1 doi: 10.1080/136588199241391 – ident: e_1_2_7_45_1 doi: 10.1214/10-AOAS331 – ident: e_1_2_7_25_1 doi: 10.1111/j.1466-8238.2007.00358.x – ident: e_1_2_7_2_1 doi: 10.1016/S0031-3203(98)00154-X – ident: e_1_2_7_15_1 doi: 10.1016/j.ecolmodel.2008.05.015 – ident: e_1_2_7_29_1 doi: 10.1080/01621459.2000.10473930 – ident: e_1_2_7_8_1 doi: 10.1177/001316446002000104 – ident: e_1_2_7_9_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_7_18_1 doi: 10.1016/j.actao.2007.02.001 – ident: e_1_2_7_24_1 doi: 10.1201/9781439800225 – ident: e_1_2_7_13_1 doi: 10.1017/S0376892997000088 – ident: e_1_2_7_16_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_32_1 doi: 10.17161/bi.v3i0.29 – ident: e_1_2_7_19_1 doi: 10.1111/j.1472-4642.2008.00496.x – ident: e_1_2_7_21_1 doi: 10.5735/086.046.0606 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2664.2005.01052.x – ident: e_1_2_7_37_1 doi: 10.1177/096228029900800203 – volume-title: Resource selection by animals: statistical design and analysis for field studies year: 2002 ident: e_1_2_7_28_1 – volume-title: R: a language and environment for statistical computing year: 2008 ident: e_1_2_7_35_1 – ident: e_1_2_7_36_1 doi: 10.1111/j.1466-8238.2010.00581.x – ident: e_1_2_7_41_1 doi: 10.1016/0895-4356(88)90031-5 – ident: e_1_2_7_38_1 doi: 10.1111/j.1600-0587.2009.06074.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_7_10_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_7_11_1 doi: 10.1016/S0304-3800(02)00327-7 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.0901637106 – ident: e_1_2_7_12_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_2_7_31_1 doi: 10.1093/aje/kwj063 – ident: e_1_2_7_33_1 doi: 10.1016/j.ecolmodel.2007.11.008 – ident: e_1_2_7_44_1 doi: 10.1111/j.1541-0420.2008.01116.x – ident: e_1_2_7_30_1 doi: 10.1002/bimj.200410133 – ident: e_1_2_7_42_1 doi: 10.1016/j.apmr.2003.12.002 – ident: e_1_2_7_6_1 doi: 10.1016/j.ecolmodel.2011.02.011 – ident: e_1_2_7_20_1 doi: 10.1556/ComEc.10.2009.2.9 – ident: e_1_2_7_26_1 doi: 10.1111/j.1600-0587.2009.06039.x – ident: e_1_2_7_46_1 doi: 10.5670/oceanog.2003.42 – ident: e_1_2_7_3_1 doi: 10.1016/S0010-4825(99)00025-6 |
SSID | ssj0005456 |
Score | 2.558496 |
Snippet | Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species... ABSTRACT Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of... Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species... Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 498 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Applied ecology AUC background data Biogeography Biological and medical sciences commission/omission errors Conceptual lattices Discrimination Ecological modeling environmental factors Fall lines Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques MACROECOLOGICAL METHODS Methods and techniques (sampling, tagging, trapping, modelling...) misclassification cost Modeling Population ecology potential distribution Predictive modeling realized distribution ROC curve sensitivity Simulations Species specificity Synecology threshold |
Title | Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling |
URI | https://api.istex.fr/ark:/67375/WNG-5RKTJ4VZ-6/fulltext.pdf https://www.jstor.org/stable/41415043 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1466-8238.2011.00683.x https://www.proquest.com/docview/1766820975 https://www.proquest.com/docview/1431640798 https://www.proquest.com/docview/968176433 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQEBIvfAwqAmMyEkLwkCofju08jqnbGGIP0woVL5bt2NJUSKemRYPfwI_mXifNyATShHhr2uuksa-vT5xzzyXkZZZ7wOE2jbnM8ph55mPtMh_70jGfOVlVAhOcP5zwoyk7nhWzjv-EuTCtPkS_4YYzI8RrnODaNNcnOY_hErJT4ky4zMeIJ5G6hfjo9EpJCoFCm2iETbLZkNTzxxMNVqrb2OmXG9IiMih1A53o2-oXA3j6O8gNq9TBfTLf3F9LTpmP1ysztj-uST_-nw54QO51YJbutd73kNxy9Ta5MwlC2N-3yWhylUUHZl0YaR6Rn-_qBjcFGnperxYUMCjVAF4pJrQtwyHEYYeMEbq4QNVnWF-pHUhLU7tefnP09d50_w3VDdUU84vbGmXoa_Rru_kJV6CYTXruGrTo63vRUAIIc_Efk-nB5Gz_KO7KQsQWybCxTD3LM22SSktpvCgrxirvUQvLpE5mIvGFZtrJsuJ5lQmTCGMLU-iSM2lsmY_IVr2o3RNCtS6MdCZJrTQAVZy0QstKAobkomJSR0RsXEDZTjMdS3d8UYNnJ65wEBQOggqDoC4jkvYtL1rdkBu0eRW8rG-gl3Pk3YlCfTo5VMXp-7Nj9vGz4hEZBTfsDVkKOCxheUR2B37ZGyCwRa3FiOxsHFV1wapRqBEKQLAURURe9D9DmMF3R7p2izXYoGQCPPyXMiL0LzYll3AqlsPfKILj3vjO1eHkLXx4-o_tnpG78G3WEqp2yNZquXbPASuuzG6IAr8AN29bgQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQXHoVV05ZiJITgkFUeTuIcS7Xt9rWHahdWXCzbsaWqJVttdlHhN_CjmXGyKalAqhC3RJnJwx6PPzsz3xDyNoot4HAd-imPYp9ZZn1pIuvb3DAbGV4UGSY4n43S4YQdT5NpUw4Ic2Fqfoh2ww1HhvPXOMBxQ_ruKE99eAZvqDiDlMd9AJTrWODbra_Ob7mkECrUqUaoE027YT1_vFNnrlrHZr9ZhS1iDKWsoBltXf-iA1B_h7lunjp4Sq5WX1iHp1z2lwvV1z_ukD_-pyZ4Rp40eJbu1Qb4nDww5QZ5OHBc2N83SG9wm0gHYo0nqV6Qn0dlhfsCFb0oFzMKMJRKwK8Uc9rm7hRcscGgETq7RuJnmGKp7rBLU72cfzP0_d5k_wOVFZUUU4zrMmVobvRrvf8JT6CYUHphKpRoS3xRVwUI0_FfksnBYLw_9JvKEL7GeFifh5bFkVRBITlXNssLxgprkQ5LhYZHWWATyaTheZHGRZSpIFM6UYnMU8aVzuMeWStnpdkkVMpEcaOCUHMFaMVwnUlecICRaVYwLj2SrWxA6IY2Hat3XInO8ikV2AkCO0G4ThA3HglbzeuaOuQeOu-cmbUKcn6JoXdZIj6PDkVyfjI-Zp--iNQjPWeHrSALAYoFLPbIbscwWwHEtki36JGdlaWKxl9VAmlCAQvmWeKRN-1l8DT4-0iWZrYEGWRNgPV_zj1C_yKTpxxuxWJ4jcRZ7r2_XBwOPsLB1j_qvSaPhuOzU3F6NDrZJo9BIqrjq3bI2mK-NK8AOi7UrnMJvwDTWF-c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJhAvfAyqBcYwEkLwkCofjuM8jq3dF1RoWqHixbJjW5oKadW0aPA38Edzl6QZmUCaEG-JcpcP-3z-2bn7HSEvo9gBDs9Dn4so9pljzlc2cr7LLHORFcakmOD8fsSPxuxkkkya-CfMhan5IdoNNxwZlb_GAT437vog5z48QjRMnAEXcR_w5CbjgUALPzi7opJCpFBnGqFONOlG9fzxTp2pahNb_XIdtYghlKqEVnR1-YsOPv0d5VbT1PA-ma4_sI5OmfZXS93Pf1zjfvw_LfCA3GvQLN2rze8huWWLLXJ7UDFhf98ivcFVGh2INX6kfER-Hhcl7gqU9KJYziiAUKoAvVLMaFtUp-CILYaM0NkcaZ9hgqV5h1ua5qvFN0tf743331BVUkUxwbguUobGRr_Wu5_wBIrppBe2RIm2wBetagBhMv5jMh4OzveP_KYuhJ9jNKwvQsfiSOnAKCG0SzPDmHEOybB0aEWUBi5RTFmRGR6bKNVBqvNEJyrjTOg8i3tko5gVdptQpRItrA7CXGjAKlbkqRJGAIjkqWFCeSRdm4DMG9J0rN3xRXYWT1xiJ0jsBFl1grz0SNhqzmvikBvovKqsrFVQiykG3qWJ_DQ6lMnZ6fkJ-_hZco_0KjNsBVkIQCxgsUd2O3bZCiCyRbJFj-ysDVU23qqUSBIKSDBLE4-8aC-Dn8GfR6qwsxXIIGcCrP4z4RH6F5mMC7gVi-E1kspwb_zl8nDwFg6e_KPec3Lnw8FQvjsenT4ld0EgqoOrdsjGcrGyzwA3LvVu5RB-AXwiXlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+area+under+the+receiver+operating+characteristic+curve+%28AUC%29+as+a+discrimination+measure+in+species+distribution+modelling&rft.jtitle=Global+ecology+and+biogeography&rft.au=Jimenez-Valverde%2C+Alberto&rft.date=2012-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=21&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1111%2Fj.1466-8238.2011.00683.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3958101591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |