Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling

Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity an...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 21; no. 4; pp. 498 - 507
Main Author Jiménez-Valverde, Alberto
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation: After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions: Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors.
AbstractList Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation: After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions: Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors.
Aim  The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation  After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions  Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors.
ABSTRACT Aim  The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species distribution models. Here, I used simulated data to examine the interdependence of the AUC and classical discrimination measures (sensitivity and specificity) derived for the application of a threshold. I shall further exemplify with simulated data the implications of using the AUC to evaluate potential versus realized distribution models. Innovation  After applying the threshold that makes sensitivity and specificity equal, a strong relationship between the AUC and these two measures was found. This result is corroborated with real data. On the other hand, the AUC penalizes the models that estimate potential distributions (the regions where the species could survive and reproduce due to the existence of suitable environmental conditions), and favours those that estimate realized distributions (the regions where the species actually lives). Main conclusions  Firstly, the independence of the AUC from the threshold selection may be irrelevant in practice. This result also emphasizes the fact that the AUC assumes nothing about the relative costs of errors of omission and commission. However, in most real situations this premise may not be optimal. Measures derived from a contingency table for different cost ratio scenarios, together with the ROC curve, may be more informative than reporting just a single AUC value. Secondly, the AUC is only truly informative when there are true instances of absence available and the objective is the estimation of the realized distribution. When the potential distribution is the goal of the research, the AUC is not an appropriate performance measure because the weight of commission errors is much lower than that of omission errors.
Author Jiménez-Valverde, Alberto
Author_xml – sequence: 1
  givenname: Alberto
  surname: Jiménez-Valverde
  fullname: Jiménez-Valverde, Alberto
  email: alberto.jimenez@uma.es
  organization: Department of Animal Biology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain and Azorean Biodiversity Group, University of Azores, Angra do Heroísmo, Portugal
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604540$$DView record in Pascal Francis
BookMark eNqNkt1u0zAcxSM0JLbBIyBZQohx0WLHH3EkhDSqrQwmkNAGiBvLcf5Z3aVOsZ2tewceGqeZerELtNzY1vmd44-Tg2zPdQ6yDBE8Jel7t5wSJsRE5lROc0zIFGMh6XTzJNvfCXu7ef7rWXYQwhJjzBkX-9nfMxfs1SIGZF3sUFwA0h406l0Nfrv0YMDepEW3Bq-jdVfILLTXJoK3IVqDTO9vAB0dX87eIh2QRrUNxtuVdQnvHFqBDr2HtAMKazAWwkBEb6t-1Lsa2jYFP8-eNroN8OJ-PMwuT08uZp8m59_mZ7Pj84lhJacTSRpGc13hWktZNUVZM1Y3TVkQURGQeYEbrpkGWdaC1nlR4aIyvOK6FExWpqSH2Zsxd-27Pz2EqFbpxOkM2kHXB1UKSQrBKE3k0X9JwigRDBelTOirB-iy671L91ApTMgclwVP1Ot7Sgej28ZrZ2xQ6_Rc2t-pnAvMOMOJkyNnfBeCh2aHEKyG4tVSDZ2qoV81FK-2xatNsn54YDU2bpuIXtv2MQHvx4Bb28LdozdW85OPaZLsL0f7MsTO7-yMMMIxG_TJqKd_ADY7XftrJQpacPXz61zx718uPrMfv5Wg_wA-nuM5
CODEN GEBIFS
CitedBy_id crossref_primary_10_1371_journal_pone_0056812
crossref_primary_10_1007_s10113_023_02050_1
crossref_primary_10_1007_s12652_021_02917_3
crossref_primary_10_1002_ece3_1120
crossref_primary_10_1016_j_gecco_2024_e03394
crossref_primary_10_3390_app10072573
crossref_primary_10_3390_jzbg4030042
crossref_primary_10_1016_j_foreco_2017_08_008
crossref_primary_10_1002_ece3_5726
crossref_primary_10_1002_ece3_4517
crossref_primary_10_1002_ece3_5609
crossref_primary_10_1186_s13640_018_0284_8
crossref_primary_10_1038_s41598_023_47624_5
crossref_primary_10_15531_KSCCR_2023_14_1_067
crossref_primary_10_1007_s10841_024_00619_7
crossref_primary_10_1007_s10584_020_02926_9
crossref_primary_10_3390_axioms11100549
crossref_primary_10_1111_tmi_12916
crossref_primary_10_1371_journal_pone_0192887
crossref_primary_10_1002_ece3_4526
crossref_primary_10_1016_j_agsy_2021_103205
crossref_primary_10_1007_s11356_022_22920_1
crossref_primary_10_1111_2041_210X_12352
crossref_primary_10_58837_tnh_24_1_260221
crossref_primary_10_3354_esr00668
crossref_primary_10_1016_j_gecco_2024_e03371
crossref_primary_10_1111_ddi_12868
crossref_primary_10_1016_j_jnc_2024_126754
crossref_primary_10_1139_cjfr_2015_0373
crossref_primary_10_1016_j_ijpharm_2025_125500
crossref_primary_10_1515_mammalia_2018_0191
crossref_primary_10_1186_s13071_018_2847_z
crossref_primary_10_1111_ecog_04942
crossref_primary_10_1111_ddi_13955
crossref_primary_10_3390_ani13142293
crossref_primary_10_3390_land10020210
crossref_primary_10_1016_j_jnc_2012_11_005
crossref_primary_10_1007_s10493_023_00778_3
crossref_primary_10_1016_j_biocon_2020_108909
crossref_primary_10_7901_2169_3358_2014_1_660
crossref_primary_10_1007_s10530_013_0559_z
crossref_primary_10_1371_journal_pone_0157723
crossref_primary_10_1371_journal_pone_0132346
crossref_primary_10_1371_journal_pone_0140061
crossref_primary_10_1016_j_gloenvcha_2023_102742
crossref_primary_10_1093_botlinnean_boab039
crossref_primary_10_1071_ZO18036
crossref_primary_10_1016_j_ecolind_2021_108202
crossref_primary_10_1371_journal_pone_0088635
crossref_primary_10_3390_f11090996
crossref_primary_10_3390_biology11091293
crossref_primary_10_1016_j_dsr2_2013_06_010
crossref_primary_10_1108_PAR_08_2022_0121
crossref_primary_10_3897_mbmg_7_99979
crossref_primary_10_1016_j_scitotenv_2017_09_277
crossref_primary_10_4218_etrij_2018_0039
crossref_primary_10_1016_j_biocon_2014_04_013
crossref_primary_10_3390_ani10040649
crossref_primary_10_1016_j_ecolmodel_2015_06_002
crossref_primary_10_3390_su12197945
crossref_primary_10_1016_j_jnc_2024_126731
crossref_primary_10_1007_s10531_013_0606_1
crossref_primary_10_1016_j_ecolind_2020_106289
crossref_primary_10_3389_fpls_2021_738769
crossref_primary_10_1016_j_scitotenv_2020_141793
crossref_primary_10_1676_13_165_1
crossref_primary_10_1016_j_agrformet_2024_110328
crossref_primary_10_1002_ecy_4297
crossref_primary_10_3389_fenvs_2020_00069
crossref_primary_10_1371_journal_pone_0140162
crossref_primary_10_1371_journal_pone_0211171
crossref_primary_10_1186_s12911_020_01271_2
crossref_primary_10_1007_s10661_021_09311_8
crossref_primary_10_1016_j_apgeog_2015_11_014
crossref_primary_10_1016_j_jenvman_2025_124185
crossref_primary_10_1126_sciadv_abp9908
crossref_primary_10_1890_ES13_00066_1
crossref_primary_10_1016_j_avrs_2023_100092
crossref_primary_10_1177_03611981211027873
crossref_primary_10_1371_journal_pone_0128023
crossref_primary_10_1111_bij_12142
crossref_primary_10_1007_s10531_020_02075_6
crossref_primary_10_1371_journal_pone_0204644
crossref_primary_10_1016_j_vetpar_2014_12_016
crossref_primary_10_1111_ddi_12782
crossref_primary_10_1007_s10750_015_2280_7
crossref_primary_10_1007_s11056_023_09968_8
crossref_primary_10_3390_insects13030221
crossref_primary_10_1007_s10584_020_02687_5
crossref_primary_10_1002_ece3_6874
crossref_primary_10_1111_ecog_02205
crossref_primary_10_3389_fevo_2019_00207
crossref_primary_10_3389_fevo_2022_814966
crossref_primary_10_1111_ecog_04503
crossref_primary_10_1016_j_ijdrr_2020_101687
crossref_primary_10_1111_jbi_13402
crossref_primary_10_1111_jbi_14733
crossref_primary_10_1111_ecog_01474
crossref_primary_10_3390_app8112121
crossref_primary_10_1038_s41598_023_39917_6
crossref_primary_10_1111_bij_12477
crossref_primary_10_1071_PC16006
crossref_primary_10_1016_j_jglr_2018_11_007
crossref_primary_10_1128_AEM_01237_20
crossref_primary_10_1111_2041_210X_13140
crossref_primary_10_3389_fmars_2018_00419
crossref_primary_10_1371_journal_pone_0210062
crossref_primary_10_1007_s40808_024_02089_x
crossref_primary_10_1093_sysbio_syt104
crossref_primary_10_1111_ecog_02438
crossref_primary_10_3390_land14040678
crossref_primary_10_3390_biology11081219
crossref_primary_10_1080_24701394_2020_1742332
crossref_primary_10_1007_s11258_022_01233_w
crossref_primary_10_1016_j_ecolind_2020_107147
crossref_primary_10_55230_mabjournal_v53i6_11
crossref_primary_10_1016_j_ecolmodel_2023_110514
crossref_primary_10_1007_s12524_018_0852_5
crossref_primary_10_1016_j_oregeorev_2023_105627
crossref_primary_10_1080_13658816_2012_721553
crossref_primary_10_1016_j_ecoinf_2012_07_002
crossref_primary_10_1111_2041_210X_13142
crossref_primary_10_1002_ece3_6096
crossref_primary_10_1002_ece3_7068
crossref_primary_10_3390_app13169445
crossref_primary_10_1016_j_scitotenv_2024_176851
crossref_primary_10_1371_journal_pone_0173041
crossref_primary_10_1016_j_ecolmodel_2021_109686
crossref_primary_10_1080_0952813X_2022_2120087
crossref_primary_10_1111_mec_15996
crossref_primary_10_1111_2041_210X_13956
crossref_primary_10_3390_d14121076
crossref_primary_10_1111_gcb_13274
crossref_primary_10_1080_13658816_2013_871016
crossref_primary_10_1139_cjb_2012_0205
crossref_primary_10_1016_j_jhevol_2014_06_003
crossref_primary_10_1111_ecog_00719
crossref_primary_10_1111_geb_12974
crossref_primary_10_1007_s11258_023_01291_8
crossref_primary_10_1086_692819
crossref_primary_10_3354_meps12538
crossref_primary_10_3390_rs15122999
crossref_primary_10_2982_028_112_0501
crossref_primary_10_7717_peerj_6281
crossref_primary_10_1002_jwmg_22235
crossref_primary_10_3354_meps13744
crossref_primary_10_1111_een_13200
crossref_primary_10_1007_s10113_023_02175_3
crossref_primary_10_1038_s41598_024_56918_1
crossref_primary_10_1016_j_agsy_2024_103900
crossref_primary_10_3390_insects13080687
crossref_primary_10_3957_056_053_0185
crossref_primary_10_1016_j_ecoinf_2013_11_002
crossref_primary_10_1080_03736687_2022_2032541
crossref_primary_10_1111_ddi_12341
crossref_primary_10_1007_s10841_023_00536_1
crossref_primary_10_1111_ecog_00749
crossref_primary_10_1016_j_scitotenv_2022_154485
crossref_primary_10_1640_0002_8444_112_4_354
crossref_primary_10_1016_j_biocon_2022_109523
crossref_primary_10_1038_s41598_025_94922_1
crossref_primary_10_1371_journal_pone_0067573
crossref_primary_10_1371_journal_pone_0187906
crossref_primary_10_1016_j_jspr_2023_102089
crossref_primary_10_1007_s11069_020_04453_3
crossref_primary_10_1111_2041_210X_12403
crossref_primary_10_1017_S0376892922000030
crossref_primary_10_1111_aje_12517
crossref_primary_10_3389_fendo_2022_849549
crossref_primary_10_1111_ddi_13200
crossref_primary_10_3390_biology11040588
crossref_primary_10_3390_f15020277
crossref_primary_10_3389_fmars_2020_00303
crossref_primary_10_1016_j_pld_2021_06_010
crossref_primary_10_1371_journal_pntd_0010715
crossref_primary_10_3390_plants13233347
crossref_primary_10_1016_j_ecolmodel_2021_109774
crossref_primary_10_3390_f10050425
crossref_primary_10_1016_j_scitotenv_2020_140786
crossref_primary_10_3389_feart_2021_659296
crossref_primary_10_3390_app11156777
crossref_primary_10_1007_s42974_024_00183_9
crossref_primary_10_1016_j_ecmx_2025_100965
crossref_primary_10_3391_ai_2023_18_4_111481
crossref_primary_10_1016_j_watbs_2025_100380
crossref_primary_10_1515_mammalia_2022_0059
crossref_primary_10_1086_713175
crossref_primary_10_1016_j_ecolmodel_2020_109194
crossref_primary_10_1016_j_ecolmodel_2020_109071
crossref_primary_10_1007_s10531_021_02126_6
crossref_primary_10_1016_j_ecolind_2024_112179
crossref_primary_10_1111_geb_12545
crossref_primary_10_3390_biom13030420
crossref_primary_10_1016_j_scitotenv_2022_155157
crossref_primary_10_1016_j_limno_2015_08_002
crossref_primary_10_1371_journal_pone_0137021
crossref_primary_10_3390_w13162280
crossref_primary_10_7717_peerj_4071
crossref_primary_10_3390_ijerph191912382
crossref_primary_10_3390_fire7030065
crossref_primary_10_1002_ece3_1209
crossref_primary_10_1038_s41586_023_06471_0
crossref_primary_10_3390_f11050507
crossref_primary_10_1111_1365_2664_13799
crossref_primary_10_1007_s10531_019_01921_6
crossref_primary_10_3390_rs16193602
crossref_primary_10_1016_j_sajb_2017_10_020
crossref_primary_10_1111_icad_12288
crossref_primary_10_1371_journal_pone_0090121
crossref_primary_10_1007_s11069_020_04264_6
crossref_primary_10_1590_0001_3765202320201421
crossref_primary_10_3389_fmars_2023_1222382
crossref_primary_10_3390_f11060684
crossref_primary_10_1016_j_pecon_2021_04_002
crossref_primary_10_3390_d14020100
crossref_primary_10_1016_j_compenvurbsys_2017_11_006
crossref_primary_10_1007_s10344_014_0894_0
crossref_primary_10_1007_s13201_023_01905_6
crossref_primary_10_1016_j_ecolmodel_2015_01_019
crossref_primary_10_1002_ece3_1579
crossref_primary_10_1016_j_compag_2024_109283
crossref_primary_10_1007_s11258_024_01458_x
crossref_primary_10_1016_j_pocean_2019_04_007
crossref_primary_10_1080_10106049_2019_1687594
crossref_primary_10_1111_ddi_70005
crossref_primary_10_1111_ecog_05080
crossref_primary_10_1016_j_agsy_2022_103429
crossref_primary_10_3390_agronomy13081985
crossref_primary_10_3390_land11060806
crossref_primary_10_1111_ddi_12389
crossref_primary_10_1016_j_ijppaw_2020_04_011
crossref_primary_10_1016_j_scitotenv_2019_136165
crossref_primary_10_1111_wre_12021
crossref_primary_10_1016_j_eiar_2020_106474
crossref_primary_10_1002_jwmg_22351
crossref_primary_10_1371_journal_pone_0068337
crossref_primary_10_1016_j_foreco_2018_05_018
crossref_primary_10_1007_s10584_023_03526_z
crossref_primary_10_1016_j_ecoinf_2023_102387
crossref_primary_10_1007_s10531_012_0413_0
crossref_primary_10_1007_s11356_024_32076_9
crossref_primary_10_1111_cobi_12218
crossref_primary_10_1111_ecog_01509
crossref_primary_10_1007_s11205_021_02754_z
crossref_primary_10_1016_j_ecolmodel_2015_09_009
crossref_primary_10_1111_geb_12514
crossref_primary_10_1021_es503223k
crossref_primary_10_1111_gcb_14698
crossref_primary_10_1525_elementa_2020_20_00058
crossref_primary_10_1111_1755_0998_12184
crossref_primary_10_1111_ddi_12279
crossref_primary_10_1038_s41598_024_71029_7
crossref_primary_10_1016_j_ecolmodel_2021_109453
crossref_primary_10_7717_peerj_17386
crossref_primary_10_1088_1755_1315_1276_1_012054
crossref_primary_10_3389_feart_2023_1193677
crossref_primary_10_1007_s44288_024_00037_x
crossref_primary_10_1016_j_ecolind_2019_105714
crossref_primary_10_2478_s11756_019_00215_0
crossref_primary_10_3390_insects13080750
crossref_primary_10_1016_j_scitotenv_2017_02_188
crossref_primary_10_1002_aqc_3594
crossref_primary_10_1016_j_biocon_2022_109573
crossref_primary_10_1636_JoA_S_21_044
crossref_primary_10_1016_j_foreco_2022_120677
crossref_primary_10_1016_j_ecoinf_2023_102393
crossref_primary_10_1111_ddi_12031
crossref_primary_10_5194_we_13_13_2013
crossref_primary_10_1002_ece3_6492
crossref_primary_10_1016_j_ecolmodel_2020_109202
crossref_primary_10_1016_j_ijmedinf_2019_02_002
crossref_primary_10_1002_ece3_7226
crossref_primary_10_1515_psr_2019_0029
crossref_primary_10_1038_s41598_020_80062_1
crossref_primary_10_1002_ece3_10161
crossref_primary_10_3389_fcosc_2023_1235595
crossref_primary_10_1016_j_meegid_2021_105034
crossref_primary_10_1111_ibi_12194
crossref_primary_10_1111_ecog_05450
crossref_primary_10_7717_peerj_12879
crossref_primary_10_1029_2021EF002630
crossref_primary_10_1111_geb_12342
crossref_primary_10_1111_gcb_16142
crossref_primary_10_1111_gcb_17232
crossref_primary_10_1111_ibi_13046
crossref_primary_10_1177_0309133314521448
crossref_primary_10_1111_ddi_12160
crossref_primary_10_1111_ddi_13491
crossref_primary_10_1111_geb_12580
crossref_primary_10_1017_S0959270917000326
crossref_primary_10_1016_j_gecco_2014_09_011
crossref_primary_10_1002_eap_2502
crossref_primary_10_1080_19475705_2019_1615559
crossref_primary_10_1016_j_dsr_2016_07_005
crossref_primary_10_3389_fclim_2021_715837
crossref_primary_10_1128_aem_00018_22
crossref_primary_10_3389_fevo_2023_1305573
crossref_primary_10_1016_j_indcrop_2022_115888
crossref_primary_10_1080_07038992_2015_1065708
crossref_primary_10_1016_j_indcrop_2024_120427
crossref_primary_10_1038_s41598_018_30044_1
crossref_primary_10_1002_aqc_3614
crossref_primary_10_1016_j_scitotenv_2019_06_508
crossref_primary_10_2139_ssrn_3810495
crossref_primary_10_3390_su15020895
crossref_primary_10_1111_ecog_05119
crossref_primary_10_2994_SAJH_D_16_00007_1
crossref_primary_10_5358_hsj_43_135
crossref_primary_10_1016_j_jmbbm_2022_105097
crossref_primary_10_1111_bij_12718
crossref_primary_10_1371_journal_pone_0074819
crossref_primary_10_1145_3587463
crossref_primary_10_1007_s40808_022_01661_7
crossref_primary_10_1016_j_ecoinf_2023_102346
crossref_primary_10_1016_j_ecoinf_2023_102343
crossref_primary_10_1016_j_ecolind_2014_04_004
crossref_primary_10_1016_j_biocon_2013_07_001
crossref_primary_10_1111_geb_12684
crossref_primary_10_3390_biology12050652
crossref_primary_10_1016_j_scitotenv_2015_09_003
crossref_primary_10_1016_j_jenvman_2023_118934
crossref_primary_10_3390_plants11050684
crossref_primary_10_3390_f15020316
crossref_primary_10_1111_ddi_13030
crossref_primary_10_1016_j_chnaes_2022_05_009
crossref_primary_10_3390_insects14050476
crossref_primary_10_1016_j_scitotenv_2024_172523
crossref_primary_10_1002_jwmg_22659
crossref_primary_10_3390_rs17010046
crossref_primary_10_1016_j_ecolmodel_2020_109353
crossref_primary_10_1007_s11069_021_04733_6
crossref_primary_10_1898_NWN21_17
crossref_primary_10_3390_f13060820
crossref_primary_10_1002_zoo_21477
crossref_primary_10_1016_j_ecoinf_2021_101501
crossref_primary_10_1146_annurev_ecolsys_102320_093722
crossref_primary_10_1016_j_ecolmodel_2024_110692
crossref_primary_10_1016_j_rse_2024_114583
crossref_primary_10_1071_WF15121
crossref_primary_10_2989_16085914_2014_926856
crossref_primary_10_3390_plants12203561
crossref_primary_10_1111_fog_12279
crossref_primary_10_1016_j_ecolmodel_2017_06_006
crossref_primary_10_1371_journal_pone_0245973
crossref_primary_10_1016_j_envsoft_2017_11_009
crossref_primary_10_1086_713071
crossref_primary_10_1002_ece3_6295
crossref_primary_10_1016_j_ecolmodel_2014_01_020
crossref_primary_10_1016_j_foreco_2025_122658
crossref_primary_10_3390_d13050212
crossref_primary_10_1007_s11852_016_0422_3
crossref_primary_10_1111_jzs_12423
crossref_primary_10_1186_s41610_020_0147_y
crossref_primary_10_3390_atmos13101616
crossref_primary_10_1007_s10530_012_0386_7
crossref_primary_10_1007_s10530_019_02024_7
crossref_primary_10_1111_geb_12138
crossref_primary_10_1002_ece3_8002
crossref_primary_10_1111_cobi_13851
crossref_primary_10_3120_0024_9637_67_4_170
crossref_primary_10_1002_ecs2_1549
crossref_primary_10_1002_ajb2_1788
crossref_primary_10_1007_s11355_019_00381_y
crossref_primary_10_1093_botlinnean_bow020
crossref_primary_10_1002_ece3_70277
crossref_primary_10_1016_j_gecco_2022_e02025
crossref_primary_10_1016_j_zool_2020_125852
crossref_primary_10_3390_life15020323
crossref_primary_10_1093_jisesa_iez118
crossref_primary_10_1094_PDIS_04_16_0492_RE
crossref_primary_10_1016_j_jaridenv_2022_104819
crossref_primary_10_7717_peerj_12783
crossref_primary_10_1139_cjfas_2023_0378
crossref_primary_10_1007_s00114_024_01951_3
crossref_primary_10_1007_s10531_021_02144_4
crossref_primary_10_1111_geb_12007
crossref_primary_10_1371_journal_pone_0190831
crossref_primary_10_1080_01650521_2019_1616957
crossref_primary_10_1016_j_ecolmodel_2021_109502
crossref_primary_10_1111_ecog_07218
crossref_primary_10_1111_j_1466_8238_2012_00781_x
crossref_primary_10_1155_2022_5905230
crossref_primary_10_3390_su13158133
crossref_primary_10_1038_s41598_023_28590_4
crossref_primary_10_1111_ele_12604
crossref_primary_10_7717_peerj_5668
crossref_primary_10_2196_38053
crossref_primary_10_1590_0001_3765201820180308
crossref_primary_10_3389_fmars_2022_983685
crossref_primary_10_1002_pst_1734
crossref_primary_10_1186_s13071_019_3368_0
crossref_primary_10_1111_jav_01238
crossref_primary_10_3375_043_035_0115
crossref_primary_10_1093_jpe_rtu041
crossref_primary_10_1111_geb_13204
crossref_primary_10_1007_s13592_022_00942_5
crossref_primary_10_3390_f7110250
crossref_primary_10_1186_s40555_014_0050_2
crossref_primary_10_3390_d15020157
crossref_primary_10_3389_fevo_2022_882282
crossref_primary_10_1007_s10336_021_01867_z
crossref_primary_10_1016_j_ecolmodel_2022_109910
crossref_primary_10_3390_d17030167
crossref_primary_10_1111_2041_210X_13826
crossref_primary_10_1111_ecog_06358
crossref_primary_10_1371_journal_pone_0091049
crossref_primary_10_3389_fpls_2022_921310
crossref_primary_10_1111_jeb_12244
crossref_primary_10_1002_ece3_3936
crossref_primary_10_1890_11_1936_1
crossref_primary_10_1371_journal_pone_0079295
crossref_primary_10_3897_vz_71_e62729
crossref_primary_10_3390_insects15020081
crossref_primary_10_1371_journal_pone_0288508
crossref_primary_10_1371_journal_pone_0132054
crossref_primary_10_3390_land11111971
crossref_primary_10_1111_jpy_12322
crossref_primary_10_1002_ece3_10565
crossref_primary_10_1071_WR20196
crossref_primary_10_1038_s41467_024_45290_3
crossref_primary_10_1016_j_cliser_2022_100330
crossref_primary_10_1007_s00500_023_08951_x
crossref_primary_10_1007_s10811_020_02300_3
crossref_primary_10_3120_0024_9637_60_3_193
crossref_primary_10_1111_fog_12104
crossref_primary_10_1371_journal_pone_0070038
crossref_primary_10_1016_j_scitotenv_2017_06_219
crossref_primary_10_2139_ssrn_4014260
crossref_primary_10_3897_natureconservation_34_29575
crossref_primary_10_1371_journal_pone_0298755
crossref_primary_10_1038_s41598_021_83174_4
crossref_primary_10_31413_nativa_v7i5_7214
crossref_primary_10_1002_ece3_11300
crossref_primary_10_1093_biolinnean_blaa142
crossref_primary_10_3390_plants13213097
crossref_primary_10_1007_s11069_024_06691_1
crossref_primary_10_1016_j_resourpol_2025_105515
crossref_primary_10_1111_ecog_04630
crossref_primary_10_3390_math9131570
crossref_primary_10_1007_s10661_021_09448_6
crossref_primary_10_1890_15_0926
crossref_primary_10_1016_j_dsr_2020_103229
crossref_primary_10_3390_rs13173361
crossref_primary_10_1371_journal_pone_0187589
crossref_primary_10_1111_j_1600_0587_2013_00393_x
crossref_primary_10_1007_s40747_021_00442_6
crossref_primary_10_1007_s00477_018_1558_5
crossref_primary_10_1007_s11676_022_01459_4
crossref_primary_10_1071_WR14171
crossref_primary_10_1007_s40415_022_00833_0
crossref_primary_10_1080_17550874_2023_2274839
crossref_primary_10_1007_s10750_019_3904_0
crossref_primary_10_1111_jbi_14009
crossref_primary_10_1016_j_scitotenv_2024_174095
crossref_primary_10_1002_ece3_9827
crossref_primary_10_1016_j_ecolind_2023_110217
crossref_primary_10_1111_jbi_14130
crossref_primary_10_1016_j_ecolmodel_2024_110864
crossref_primary_10_3390_f13030475
crossref_primary_10_1016_j_ecolmodel_2024_110982
crossref_primary_10_3390_f12111451
crossref_primary_10_1007_s10530_022_02928_x
crossref_primary_10_1016_j_biocon_2017_06_039
crossref_primary_10_1111_jzo_13159
crossref_primary_10_1371_journal_pone_0167128
crossref_primary_10_1007_s11069_017_2921_4
crossref_primary_10_1016_j_jaridenv_2020_104200
crossref_primary_10_1017_S0954102021000183
crossref_primary_10_25225_fozo_v63_i3_a7_2014
crossref_primary_10_1111_jbi_14365
crossref_primary_10_3390_f6010001
crossref_primary_10_1016_j_catena_2017_01_010
crossref_primary_10_1017_S0030605318000923
crossref_primary_10_1016_j_ecolmodel_2024_110734
crossref_primary_10_2807_1560_7917_ES_2024_29_44_2400084
crossref_primary_10_1080_14772000_2022_2046657
crossref_primary_10_1111_aec_12274
crossref_primary_10_1016_j_ecolmodel_2013_01_024
crossref_primary_10_1007_s12665_023_11007_w
crossref_primary_10_1002_eap_2437
crossref_primary_10_1002_ece3_70547
crossref_primary_10_2139_ssrn_4759469
crossref_primary_10_3390_ecologies5030025
crossref_primary_10_1111_ecog_04687
crossref_primary_10_1111_ecog_04563
crossref_primary_10_1016_j_brainres_2024_148947
crossref_primary_10_1016_j_fishres_2018_10_011
crossref_primary_10_1016_j_jhydrol_2018_12_002
crossref_primary_10_1109_TKDE_2024_3437781
crossref_primary_10_14309_ctg_0000000000000606
crossref_primary_10_1016_j_jenvman_2022_116555
crossref_primary_10_1111_aec_12164
crossref_primary_10_3390_agriculture12010074
crossref_primary_10_1007_s11063_022_10927_1
crossref_primary_10_1002_jnm_3134
crossref_primary_10_1111_ecog_06852
crossref_primary_10_1007_s10841_015_9810_5
crossref_primary_10_1017_S0030605316000922
crossref_primary_10_1177_1533033820983804
crossref_primary_10_3389_fmars_2023_1126682
crossref_primary_10_1016_j_ecoinf_2015_06_007
crossref_primary_10_1371_journal_pone_0041526
crossref_primary_10_1038_s41598_021_82474_z
crossref_primary_10_1650_CONDOR_16_86_1
crossref_primary_10_1016_j_ecolind_2024_111899
crossref_primary_10_3390_agronomy14092080
crossref_primary_10_1007_s42991_021_00151_0
crossref_primary_10_1670_14_014
crossref_primary_10_1002_eap_2338
crossref_primary_10_1016_j_ecolmodel_2015_05_018
crossref_primary_10_1007_s10344_018_1221_y
crossref_primary_10_1007_s10980_013_9935_4
crossref_primary_10_1111_fwb_12719
crossref_primary_10_3390_f13101559
crossref_primary_10_1111_ecog_02282
crossref_primary_10_1186_s13040_023_00322_4
crossref_primary_10_3390_insects9030094
crossref_primary_10_1016_j_gecco_2021_e01862
crossref_primary_10_1016_j_ecolmodel_2024_110667
crossref_primary_10_1111_jbi_13361
crossref_primary_10_1038_s42003_022_04358_w
crossref_primary_10_1111_geb_12087
crossref_primary_10_1111_jbi_12393
crossref_primary_10_1016_j_ecoinf_2020_101092
crossref_primary_10_3390_insects11060383
crossref_primary_10_3390_biology11010110
crossref_primary_10_1111_csp2_12978
crossref_primary_10_1002_ece3_7210
crossref_primary_10_3897_natureconservation_43_63876
crossref_primary_10_1002_rse2_63
crossref_primary_10_1371_journal_pone_0217896
crossref_primary_10_1007_s12517_019_4932_9
crossref_primary_10_1007_s11852_023_00991_7
crossref_primary_10_1016_j_ecolmodel_2023_110592
crossref_primary_10_1016_j_ecolind_2017_08_014
crossref_primary_10_1111_ecog_03123
crossref_primary_10_1016_j_biocon_2020_108680
crossref_primary_10_1071_WF24024
crossref_primary_10_1016_j_ecolind_2023_110488
crossref_primary_10_1016_j_gecco_2021_e01735
Cites_doi 10.1016/S0304-3800(02)00349-6
10.1007/978-1-4899-3242-6
10.1016/j.jclinepi.2007.10.011
10.1177/0272989X9101100204
10.1111/j.1365-2699.2010.02465.x
10.1093/clinchem/39.4.561
10.1016/j.ecolmodel.2005.03.026
10.1080/136588199241391
10.1214/10-AOAS331
10.1111/j.1466-8238.2007.00358.x
10.1016/S0031-3203(98)00154-X
10.1016/j.ecolmodel.2008.05.015
10.1080/01621459.2000.10473930
10.1177/001316446002000104
10.1146/annurev.ecolsys.110308.120159
10.1016/j.actao.2007.02.001
10.1201/9781439800225
10.1017/S0376892997000088
10.1002/joc.1276
10.17161/bi.v3i0.29
10.1111/j.1472-4642.2008.00496.x
10.5735/086.046.0606
10.1111/j.1365-2664.2005.01052.x
10.1177/096228029900800203
10.1111/j.1466-8238.2010.00581.x
10.1016/0895-4356(88)90031-5
10.1111/j.1600-0587.2009.06074.x
10.1111/j.1365-2664.2006.01214.x
10.1111/j.2006.0906-7590.04596.x
10.1016/S0304-3800(02)00327-7
10.1073/pnas.0901637106
10.1016/j.patrec.2005.10.010
10.1093/aje/kwj063
10.1016/j.ecolmodel.2007.11.008
10.1111/j.1541-0420.2008.01116.x
10.1002/bimj.200410133
10.1016/j.apmr.2003.12.002
10.1016/j.ecolmodel.2011.02.011
10.1556/ComEc.10.2009.2.9
10.1111/j.1600-0587.2009.06039.x
10.5670/oceanog.2003.42
10.1016/S0010-4825(99)00025-6
ContentType Journal Article
Copyright Copyright © 2011 Blackwell Publishing
2011 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Blackwell Publishing
– notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/j.1466-8238.2011.00683.x
DatabaseName Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Entomology Abstracts
AGRICOLA

Ecology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
1466-822X
EndPage 507
ExternalDocumentID 3958101591
25604540
10_1111_j_1466_8238_2011_00683_x
GEB683
41415043
ark_67375_WNG_5RKTJ4VZ_6
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
0R~
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-c4953-81f432ab0da88bf79d44dff9716b1e8270f5a4ae89d63d27b07bc5b5a9648bc93
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 03:48:26 EDT 2025
Fri Jul 11 18:35:09 EDT 2025
Fri Jul 25 07:12:26 EDT 2025
Mon Jul 21 09:15:04 EDT 2025
Thu Apr 24 23:00:04 EDT 2025
Tue Jul 01 01:46:03 EDT 2025
Wed Jan 22 16:38:30 EST 2025
Thu Jul 03 21:09:23 EDT 2025
Wed Oct 30 09:51:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Costs
Biogeography
Error
Ecology
threshold
realized distribution
Modeling
AUC
Specificity
Discrimination
Spatial distribution
Geographic distribution
commission/omission errors
background data
misclassification cost
ROC curve
sensitivity
potential distribution
Distribution range
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4953-81f432ab0da88bf79d44dff9716b1e8270f5a4ae89d63d27b07bc5b5a9648bc93
Notes istex:338A8C8DED3F4EC589BF4D44AAA2E3002AB98A4E
ArticleID:GEB683
ark:/67375/WNG-5RKTJ4VZ-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1766820975
PQPubID 1066347
PageCount 10
ParticipantIDs proquest_miscellaneous_968176433
proquest_miscellaneous_1431640798
proquest_journals_1766820975
pascalfrancis_primary_25604540
crossref_primary_10_1111_j_1466_8238_2011_00683_x
crossref_citationtrail_10_1111_j_1466_8238_2011_00683_x
wiley_primary_10_1111_j_1466_8238_2011_00683_x_GEB683
jstor_primary_41415043
istex_primary_ark_67375_WNG_5RKTJ4VZ_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Adams, N.M. & Hand, D.J. (2000) An improved measure for comparing diagnostic tests. Computers in Biology and Medicine, 30, 89-96.
Jiménez-Valverde, A., Diniz, F., Azevedo, E.B. & Borges, P.A.V. (2009b) Species distribution models do not account for abundance: the case of arthropods on Terceira Island. Annales de Zoologici Fennici, 46, 451-464.
Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650.
Perkins, N.J. & Schisterman, E.F. (2006) The inconsistency of 'optimal' cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology, 163, 670-675.
Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Krzanowski, W.J. & Hand, D.J. (2009) ROC curves for continuous data. Chapman and Hall, Boca Raton, FL.
Elith, J. & Leathwick, J. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677-697.
Thompson, W.D. & Walter, S.D. (1988) A reappraisal of the kappa coefficient. Journal of Clinical Epidemiology, 41, 949-958.
Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling (in press).
Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J. (2009) Presence-only data and the EM algorithm. Biometrics, 65, 554-563.
McCullagh, P. & Nelder, J.A. (1989) Generalized linear models. Chapman and Hall, London.
Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213, 63-72.
Shapiro, D.E. (1999) The interpretation of diagnostic tests. Statistical Methods in Medical Research, 8, 113-134.
Perkins, N.J. & Schisterman, E.F. (2005) The Youden index and the optimal cut-point corrected for measurement error. Biometrical Journal, 47, 428-441.
Zweig, M.H. & Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561-577.
Stockwell, D.R.B. & Peters, D.P. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143-158.
R Development Core Team (2008) R: a language and environment for statistical computing, version 2.7.2.R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org (accessed August 2008).
Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874.
Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42, 720-730.
Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130.
Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890.
Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114.
Kaivanto, K. (2008) Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion. Journal of Clinical Epidemiology, 61, 517-518.
Santika, T. (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecology and Biogeography, 20, 181-192.
Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402.
Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R. & Stewart, A.M. (2003) Niche modelling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16, 120-127.
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
Jiménez-Valverde, A., Decae, A.E. & Arnedo, M.A. (2011) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. Journal of Biogeography, doi: 10.1111/j.1365-2699.2010.02465.x
Adams, N.M. & Hand, D.J. (1999) Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32, 1139-1147.
Manly, B.F.J., McDonald, L., Thomas, D.L., McDonald, T.L. & Erickson, W.P. (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer Press, New York.
Soberón, J. (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159-167.
Pepe, M.S. (2000) Receiver operating characteristic methodology. Journal of the American Statistical Association, 95, 308-311.
Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211-232.
Hilden, J. (1991) The area under the ROC curve and its competitors. Medical Decision Making, 11, 95-101.
Peterson, A.T. (2006) Uses and requirements of ecological niches models and related distributional models. Biodiversity Informatics, 3, 59-72.
Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369.
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2009a) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10, 196-205.
Tooth, L.R. & Ottenbacher, K.J. (2004) The k statistic in rehabilitation research: an examination. Archives of Physical Medicine and Rehabilitation, 85, 1371-1376.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
2010; 33
2004; 85
2009; 40
2009; 65
2009b; 46
2011
1991; 11
1997; 24
2008; 17
2009
2008; 14
2000; 95
2008
2005; 42
2003; 16
2006; 3
1991
2002
2007; 31
1999; 8
2005; 25
2005; 47
1993; 39
1960; 20
2009a; 10
2006; 43
2006; 190
2006; 27
2000; 30
2003; 162
2006; 163
2011; 20
1999; 13
2006; 29
2003; 160
2008; 217
1999; 32
2008; 213
1988; 41
2008; 61
2010; 4
1989
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
R Development Core Team (e_1_2_7_35_1) 2008
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Busby J.R. (e_1_2_7_7_1) 1991
Manly B.F.J. (e_1_2_7_28_1) 2002
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling, 162, 211-232.
– reference: Jiménez-Valverde, A., Decae, A.E. & Arnedo, M.A. (2011) Environmental suitability of new reported localities of the funnelweb spider Macrothele calpeiana: an assessment using potential distribution modelling with presence-only techniques. Journal of Biogeography, doi: 10.1111/j.1365-2699.2010.02465.x
– reference: Krzanowski, W.J. & Hand, D.J. (2009) ROC curves for continuous data. Chapman and Hall, Boca Raton, FL.
– reference: Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2009a) The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecology, 10, 196-205.
– reference: Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
– reference: Soberón, J. (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography, 33, 159-167.
– reference: Vaughan, I.P. & Ormerod, S.J. (2005) The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42, 720-730.
– reference: Adams, N.M. & Hand, D.J. (1999) Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32, 1139-1147.
– reference: Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151.
– reference: Jiménez-Valverde, A. & Lobo, J.M. (2007) Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecologica, 31, 361-369.
– reference: Jiménez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890.
– reference: Jiménez-Valverde, A., Diniz, F., Azevedo, E.B. & Borges, P.A.V. (2009b) Species distribution models do not account for abundance: the case of arthropods on Terceira Island. Annales de Zoologici Fennici, 46, 451-464.
– reference: Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J. (2009) Presence-only data and the EM algorithm. Biometrics, 65, 554-563.
– reference: Soberón, J. & Nakamura, M. (2009) Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences USA, 106, 19644-19650.
– reference: Adams, N.M. & Hand, D.J. (2000) An improved measure for comparing diagnostic tests. Computers in Biology and Medicine, 30, 89-96.
– reference: Elith, J., Graham, C.H., Anderson, R.P. et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
– reference: Elith, J. & Leathwick, J. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40, 677-697.
– reference: Peterson, A.T. (2006) Uses and requirements of ecological niches models and related distributional models. Biodiversity Informatics, 3, 59-72.
– reference: Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130.
– reference: Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, 27, 861-874.
– reference: Pepe, M.S. (2000) Receiver operating characteristic methodology. Journal of the American Statistical Association, 95, 308-311.
– reference: Zweig, M.H. & Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 39, 561-577.
– reference: Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38-49.
– reference: Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modelling. Ecological Modelling, 213, 63-72.
– reference: Warton, D.I. & Shepherd, L.C. (2010) Poisson point process models solve the 'pseudo-absence problem' for presence-only data in ecology. Annals of Applied Statistics, 4, 1383-1402.
– reference: Perkins, N.J. & Schisterman, E.F. (2005) The Youden index and the optimal cut-point corrected for measurement error. Biometrical Journal, 47, 428-441.
– reference: Shapiro, D.E. (1999) The interpretation of diagnostic tests. Statistical Methods in Medical Research, 8, 113-134.
– reference: Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-46.
– reference: Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography, 33, 103-114.
– reference: Stockwell, D.R.B. & Peters, D.P. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143-158.
– reference: Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, C.R. & Stewart, A.M. (2003) Niche modelling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16, 120-127.
– reference: Tooth, L.R. & Ottenbacher, K.J. (2004) The k statistic in rehabilitation research: an examination. Archives of Physical Medicine and Rehabilitation, 85, 1371-1376.
– reference: Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232.
– reference: Manly, B.F.J., McDonald, L., Thomas, D.L., McDonald, T.L. & Erickson, W.P. (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer Press, New York.
– reference: Santika, T. (2011) Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. Global Ecology and Biogeography, 20, 181-192.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Kaivanto, K. (2008) Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion. Journal of Clinical Epidemiology, 61, 517-518.
– reference: Thompson, W.D. & Walter, S.D. (1988) A reappraisal of the kappa coefficient. Journal of Clinical Epidemiology, 41, 949-958.
– reference: Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling (in press).
– reference: R Development Core Team (2008) R: a language and environment for statistical computing, version 2.7.2.R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org (accessed August 2008).
– reference: Perkins, N.J. & Schisterman, E.F. (2006) The inconsistency of 'optimal' cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology, 163, 670-675.
– reference: Hilden, J. (1991) The area under the ROC curve and its competitors. Medical Decision Making, 11, 95-101.
– reference: McCullagh, P. & Nelder, J.A. (1989) Generalized linear models. Chapman and Hall, London.
– reference: Freeman, E.A. & Moisen, G.G. (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
– year: 2009
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 30
  start-page: 89
  year: 2000
  end-page: 96
  article-title: An improved measure for comparing diagnostic tests
  publication-title: Computers in Biology and Medicine
– volume: 160
  start-page: 115
  year: 2003
  end-page: 130
  article-title: Assessment of alternative approaches for bioclimatic modeling with special emphasis on the Mahalanobis distance
  publication-title: Ecological Modelling
– volume: 217
  start-page: 48
  year: 2008
  end-page: 58
  article-title: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
  publication-title: Ecological Modelling
– volume: 95
  start-page: 308
  year: 2000
  end-page: 311
  article-title: Receiver operating characteristic methodology
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 120
  year: 2003
  end-page: 127
  article-title: Niche modelling and geographic range predictions in the marine environment using a machine‐learning algorithm
  publication-title: Oceanography
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 32
  start-page: 1139
  year: 1999
  end-page: 1147
  article-title: Comparing classifiers when the misallocation costs are uncertain
  publication-title: Pattern Recognition
– volume: 33
  start-page: 103
  year: 2010
  end-page: 114
  article-title: The uncertain nature of absences and their importance in species distribution modelling
  publication-title: Ecography
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution and Systematics
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– year: 1989
– start-page: 64
  year: 1991
  end-page: 68
– volume: 61
  start-page: 517
  year: 2008
  end-page: 518
  article-title: Maximization of the sum of sensitivity and specificity as a diagnostic cutpoint criterion
  publication-title: Journal of Clinical Epidemiology
– volume: 39
  start-page: 561
  year: 1993
  end-page: 577
  article-title: Receiver‐operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine
  publication-title: Clinical Chemistry
– volume: 20
  start-page: 181
  year: 2011
  end-page: 192
  article-title: Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data
  publication-title: Global Ecology and Biogeography
– volume: 13
  start-page: 143
  year: 1999
  end-page: 158
  article-title: The GARP modelling system: problems and solutions to automated spatial prediction
  publication-title: International Journal of Geographical Information Science
– volume: 4
  start-page: 1383
  year: 2010
  end-page: 1402
  article-title: Poisson point process models solve the ‘pseudo‐absence problem’ for presence‐only data in ecology
  publication-title: Annals of Applied Statistics
– volume: 42
  start-page: 720
  year: 2005
  end-page: 730
  article-title: The continuing challenges of testing species distribution models
  publication-title: Journal of Applied Ecology
– volume: 33
  start-page: 159
  year: 2010
  end-page: 167
  article-title: Niche and area of distribution modeling: a population ecology perspective
  publication-title: Ecography
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 46
  start-page: 451
  year: 2009b
  end-page: 464
  article-title: Species distribution models do not account for abundance: the case of arthropods on Terceira Island
  publication-title: Annales de Zoologici Fennici
– volume: 41
  start-page: 949
  year: 1988
  end-page: 958
  article-title: A reappraisal of the kappa coefficient
  publication-title: Journal of Clinical Epidemiology
– year: 2011
  article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling
  publication-title: Ecological Modelling
– volume: 163
  start-page: 670
  year: 2006
  end-page: 675
  article-title: The inconsistency of ‘optimal’ cutpoints obtained using two criteria based on the receiver operating characteristic curve
  publication-title: American Journal of Epidemiology
– volume: 17
  start-page: 145
  year: 2008
  end-page: 151
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
– volume: 213
  start-page: 63
  year: 2008
  end-page: 72
  article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modelling
  publication-title: Ecological Modelling
– volume: 31
  start-page: 361
  year: 2007
  end-page: 369
  article-title: Threshold criteria for conversion of probability of species presence to either–or presence–absence
  publication-title: Acta Oecologica
– volume: 8
  start-page: 113
  year: 1999
  end-page: 134
  article-title: The interpretation of diagnostic tests
  publication-title: Statistical Methods in Medical Research
– year: 2002
– year: 2008
– volume: 11
  start-page: 95
  year: 1991
  end-page: 101
  article-title: The area under the ROC curve and its competitors
  publication-title: Medical Decision Making
– volume: 10
  start-page: 196
  year: 2009a
  end-page: 205
  article-title: The effect of prevalence and its interaction with sample size on the reliability of species distribution models
  publication-title: Community Ecology
– year: 2011
  article-title: Environmental suitability of new reported localities of the funnelweb spider : an assessment using potential distribution modelling with presence‐only techniques
  publication-title: Journal of Biogeography
– volume: 85
  start-page: 1371
  year: 2004
  end-page: 1376
  article-title: The statistic in rehabilitation research: an examination
  publication-title: Archives of Physical Medicine and Rehabilitation
– volume: 65
  start-page: 554
  year: 2009
  end-page: 563
  article-title: Presence‐only data and the EM algorithm
  publication-title: Biometrics
– volume: 47
  start-page: 428
  year: 2005
  end-page: 441
  article-title: The Youden index and the optimal cut‐point corrected for measurement error
  publication-title: Biometrical Journal
– volume: 162
  start-page: 211
  year: 2003
  end-page: 232
  article-title: Evaluating predictive models of species’ distributions: criteria for selecting optimal models
  publication-title: Ecological Modelling
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species’ distributions from occurrence data
  publication-title: Ecography
– volume: 106
  start-page: 19644
  year: 2009
  end-page: 19650
  article-title: Niches and distributional areas: concepts, methods, and assumptions
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 14
  start-page: 885
  year: 2008
  end-page: 890
  article-title: Not as good as they seem: the importance of concepts in species distribution modelling
  publication-title: Diversity and Distributions
– volume: 3
  start-page: 59
  year: 2006
  end-page: 72
  article-title: Uses and requirements of ecological niches models and related distributional models
  publication-title: Biodiversity Informatics
– ident: e_1_2_7_5_1
  doi: 10.1016/S0304-3800(02)00349-6
– ident: e_1_2_7_27_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jclinepi.2007.10.011
– ident: e_1_2_7_17_1
  doi: 10.1177/0272989X9101100204
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2699.2010.02465.x
– ident: e_1_2_7_14_1
– ident: e_1_2_7_47_1
  doi: 10.1093/clinchem/39.4.561
– start-page: 64
  volume-title: Nature conservation: cost effective biological surveys and data analysis
  year: 1991
  ident: e_1_2_7_7_1
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_7_40_1
  doi: 10.1080/136588199241391
– ident: e_1_2_7_45_1
  doi: 10.1214/10-AOAS331
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: e_1_2_7_2_1
  doi: 10.1016/S0031-3203(98)00154-X
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ecolmodel.2008.05.015
– ident: e_1_2_7_29_1
  doi: 10.1080/01621459.2000.10473930
– ident: e_1_2_7_8_1
  doi: 10.1177/001316446002000104
– ident: e_1_2_7_9_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_7_18_1
  doi: 10.1016/j.actao.2007.02.001
– ident: e_1_2_7_24_1
  doi: 10.1201/9781439800225
– ident: e_1_2_7_13_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_7_16_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_32_1
  doi: 10.17161/bi.v3i0.29
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1472-4642.2008.00496.x
– ident: e_1_2_7_21_1
  doi: 10.5735/086.046.0606
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2664.2005.01052.x
– ident: e_1_2_7_37_1
  doi: 10.1177/096228029900800203
– volume-title: Resource selection by animals: statistical design and analysis for field studies
  year: 2002
  ident: e_1_2_7_28_1
– volume-title: R: a language and environment for statistical computing
  year: 2008
  ident: e_1_2_7_35_1
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1466-8238.2010.00581.x
– ident: e_1_2_7_41_1
  doi: 10.1016/0895-4356(88)90031-5
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1600-0587.2009.06074.x
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_7_10_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_7_11_1
  doi: 10.1016/S0304-3800(02)00327-7
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.0901637106
– ident: e_1_2_7_12_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_7_31_1
  doi: 10.1093/aje/kwj063
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ecolmodel.2007.11.008
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1541-0420.2008.01116.x
– ident: e_1_2_7_30_1
  doi: 10.1002/bimj.200410133
– ident: e_1_2_7_42_1
  doi: 10.1016/j.apmr.2003.12.002
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ecolmodel.2011.02.011
– ident: e_1_2_7_20_1
  doi: 10.1556/ComEc.10.2009.2.9
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1600-0587.2009.06039.x
– ident: e_1_2_7_46_1
  doi: 10.5670/oceanog.2003.42
– ident: e_1_2_7_3_1
  doi: 10.1016/S0010-4825(99)00025-6
SSID ssj0005456
Score 2.558496
Snippet Aim: The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species...
ABSTRACT Aim  The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of...
Aim  The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species...
Aim The area under the receiver operating characteristic (ROC) curve (AUC) is a widely used statistic for assessing the discriminatory capacity of species...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 498
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
AUC
background data
Biogeography
Biological and medical sciences
commission/omission errors
Conceptual lattices
Discrimination
Ecological modeling
environmental factors
Fall lines
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
MACROECOLOGICAL METHODS
Methods and techniques (sampling, tagging, trapping, modelling...)
misclassification cost
Modeling
Population ecology
potential distribution
Predictive modeling
realized distribution
ROC curve
sensitivity
Simulations
Species
specificity
Synecology
threshold
Title Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
URI https://api.istex.fr/ark:/67375/WNG-5RKTJ4VZ-6/fulltext.pdf
https://www.jstor.org/stable/41415043
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1466-8238.2011.00683.x
https://www.proquest.com/docview/1766820975
https://www.proquest.com/docview/1431640798
https://www.proquest.com/docview/968176433
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQEBIvfAwqAmMyEkLwkCofju08jqnbGGIP0woVL5bt2NJUSKemRYPfwI_mXifNyATShHhr2uuksa-vT5xzzyXkZZZ7wOE2jbnM8ph55mPtMh_70jGfOVlVAhOcP5zwoyk7nhWzjv-EuTCtPkS_4YYzI8RrnODaNNcnOY_hErJT4ky4zMeIJ5G6hfjo9EpJCoFCm2iETbLZkNTzxxMNVqrb2OmXG9IiMih1A53o2-oXA3j6O8gNq9TBfTLf3F9LTpmP1ysztj-uST_-nw54QO51YJbutd73kNxy9Ta5MwlC2N-3yWhylUUHZl0YaR6Rn-_qBjcFGnperxYUMCjVAF4pJrQtwyHEYYeMEbq4QNVnWF-pHUhLU7tefnP09d50_w3VDdUU84vbGmXoa_Rru_kJV6CYTXruGrTo63vRUAIIc_Efk-nB5Gz_KO7KQsQWybCxTD3LM22SSktpvCgrxirvUQvLpE5mIvGFZtrJsuJ5lQmTCGMLU-iSM2lsmY_IVr2o3RNCtS6MdCZJrTQAVZy0QstKAobkomJSR0RsXEDZTjMdS3d8UYNnJ65wEBQOggqDoC4jkvYtL1rdkBu0eRW8rG-gl3Pk3YlCfTo5VMXp-7Nj9vGz4hEZBTfsDVkKOCxheUR2B37ZGyCwRa3FiOxsHFV1wapRqBEKQLAURURe9D9DmMF3R7p2izXYoGQCPPyXMiL0LzYll3AqlsPfKILj3vjO1eHkLXx4-o_tnpG78G3WEqp2yNZquXbPASuuzG6IAr8AN29bgQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQXHoVV05ZiJITgkFUeTuIcS7Xt9rWHahdWXCzbsaWqJVttdlHhN_CjmXGyKalAqhC3RJnJwx6PPzsz3xDyNoot4HAd-imPYp9ZZn1pIuvb3DAbGV4UGSY4n43S4YQdT5NpUw4Ic2Fqfoh2ww1HhvPXOMBxQ_ruKE99eAZvqDiDlMd9AJTrWODbra_Ob7mkECrUqUaoE027YT1_vFNnrlrHZr9ZhS1iDKWsoBltXf-iA1B_h7lunjp4Sq5WX1iHp1z2lwvV1z_ukD_-pyZ4Rp40eJbu1Qb4nDww5QZ5OHBc2N83SG9wm0gHYo0nqV6Qn0dlhfsCFb0oFzMKMJRKwK8Uc9rm7hRcscGgETq7RuJnmGKp7rBLU72cfzP0_d5k_wOVFZUUU4zrMmVobvRrvf8JT6CYUHphKpRoS3xRVwUI0_FfksnBYLw_9JvKEL7GeFifh5bFkVRBITlXNssLxgprkQ5LhYZHWWATyaTheZHGRZSpIFM6UYnMU8aVzuMeWStnpdkkVMpEcaOCUHMFaMVwnUlecICRaVYwLj2SrWxA6IY2Hat3XInO8ikV2AkCO0G4ThA3HglbzeuaOuQeOu-cmbUKcn6JoXdZIj6PDkVyfjI-Zp--iNQjPWeHrSALAYoFLPbIbscwWwHEtki36JGdlaWKxl9VAmlCAQvmWeKRN-1l8DT4-0iWZrYEGWRNgPV_zj1C_yKTpxxuxWJ4jcRZ7r2_XBwOPsLB1j_qvSaPhuOzU3F6NDrZJo9BIqrjq3bI2mK-NK8AOi7UrnMJvwDTWF-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJhAvfAyqBcYwEkLwkCofjuM8jq3dF1RoWqHixbJjW5oKadW0aPA38Edzl6QZmUCaEG-JcpcP-3z-2bn7HSEvo9gBDs9Dn4so9pljzlc2cr7LLHORFcakmOD8fsSPxuxkkkya-CfMhan5IdoNNxwZlb_GAT437vog5z48QjRMnAEXcR_w5CbjgUALPzi7opJCpFBnGqFONOlG9fzxTp2pahNb_XIdtYghlKqEVnR1-YsOPv0d5VbT1PA-ma4_sI5OmfZXS93Pf1zjfvw_LfCA3GvQLN2rze8huWWLLXJ7UDFhf98ivcFVGh2INX6kfER-Hhcl7gqU9KJYziiAUKoAvVLMaFtUp-CILYaM0NkcaZ9hgqV5h1ua5qvFN0tf743331BVUkUxwbguUobGRr_Wu5_wBIrppBe2RIm2wBetagBhMv5jMh4OzveP_KYuhJ9jNKwvQsfiSOnAKCG0SzPDmHEOybB0aEWUBi5RTFmRGR6bKNVBqvNEJyrjTOg8i3tko5gVdptQpRItrA7CXGjAKlbkqRJGAIjkqWFCeSRdm4DMG9J0rN3xRXYWT1xiJ0jsBFl1grz0SNhqzmvikBvovKqsrFVQiykG3qWJ_DQ6lMnZ6fkJ-_hZco_0KjNsBVkIQCxgsUd2O3bZCiCyRbJFj-ysDVU23qqUSBIKSDBLE4-8aC-Dn8GfR6qwsxXIIGcCrP4z4RH6F5mMC7gVi-E1kspwb_zl8nDwFg6e_KPec3Lnw8FQvjsenT4ld0EgqoOrdsjGcrGyzwA3LvVu5RB-AXwiXlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+the+area+under+the+receiver+operating+characteristic+curve+%28AUC%29+as+a+discrimination+measure+in+species+distribution+modelling&rft.jtitle=Global+ecology+and+biogeography&rft.au=Jimenez-Valverde%2C+Alberto&rft.date=2012-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=21&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1111%2Fj.1466-8238.2011.00683.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3958101591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon