Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats

Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC‐mass spectrometry. The main constituents in the juice were hesperetin an...

Full description

Saved in:
Bibliographic Details
Published inBioFactors (Oxford) Vol. 40; no. 3; pp. 327 - 335
Main Authors Escudero-López, Blanca, Calani, Luca, Fernández-Pachón, María-Soledad, Ortega, Ángeles, Brighenti, Furio, Crozier, Alan, Del Rio, Daniele
Format Journal Article
LanguageEnglish
Published Netherlands Blackwell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC‐mass spectrometry. The main constituents in the juice were hesperetin and naringenin‐O‐glycosides, apigenin‐6,8‐C‐diglucoside, and ferulic acid‐4′‐O‐glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin‐7‐O‐glucuronide, naringenin‐4′‐O‐glucuronide, and an isosakuranetin‐O‐glucuronide, peaking 6 h after intake at concentrations of ∼10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid‐4'‐O‐glucuronide and dihydroferulic acid‐4′‐O‐sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid‐4′‐glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion. © 2013 BioFactors, 40(3):327–335, 2014
AbstractList Two milliliters of a fermented, pasteurized orange juice containing ~1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC-mass spectrometry. The main constituents in the juice were hesperetin and naringenin-O-glycosides, apigenin-6,8-C-diglucoside, and ferulic acid-4'-O-glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin-7-O-glucuronide, naringenin-4'-O-glucuronide, and an isosakuranetin-O-glucuronide, peaking 6 h after intake at concentrations of ~10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid-4'-O-glucuronide and dihydroferulic acid-4'-O-sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid-4'-glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion.
Two milliliters of a fermented, pasteurized orange juice containing 1% alcohol and 2.3 mu mol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC-mass spectrometry. The main constituents in the juice were hesperetin and naringenin-O-glycosides, apigenin-6,8-C-diglucoside, and ferulic acid-4'-O-glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin-7-O-glucuronide, naringenin-4'-O-glucuronide, and an isosakuranetin-O-glucuronide, peaking 6 h after intake at concentrations of 10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid-4'-O-glucuronide and dihydroferulic acid-4'-O-sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid-4'-glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion. copyright 2013 BioFactors, 40(3):327-335, 2014
Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC‐mass spectrometry. The main constituents in the juice were hesperetin and naringenin‐O‐glycosides, apigenin‐6,8‐C‐diglucoside, and ferulic acid‐4′‐O‐glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin‐7‐O‐glucuronide, naringenin‐4′‐O‐glucuronide, and an isosakuranetin‐O‐glucuronide, peaking 6 h after intake at concentrations of ∼10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid‐4'‐O‐glucuronide and dihydroferulic acid‐4′‐O‐sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid‐4′‐glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion. © 2013 BioFactors, 40(3):327–335, 2014
Abstract Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which plasma and urine collected over a 36 h period were analyzed by UHPLC‐mass spectrometry. The main constituents in the juice were hesperetin and naringenin‐ O ‐glycosides, apigenin‐6,8‐ C ‐diglucoside, and ferulic acid‐4′‐ O ‐glucoside. Plasma contained seven flavanone glucuronides, with the principal metabolites, naringenin‐7‐ O ‐glucuronide, naringenin‐4′‐ O ‐glucuronide, and an isosakuranetin‐ O ‐glucuronide, peaking 6 h after intake at concentrations of ∼10 nmol/L. Urinary excretion of four hesperetin glucuronides was equivalent to 0.28% of intake while that of the two naringenin glucuronides was 2.8% of intake. The plasma and urine data suggest that while some absorption occurred in the small intestine, the main site of uptake was the colon. Urine also contained dihydroferulic acid‐4'‐ O ‐glucuronide and dihydroferulic acid‐4′‐ O ‐sulfate which were excreted in quantities corresponding to 48.2% of the ingested ferulic acid‐4′‐glucoside. This indicates that the hydroxycinnamate is much more bioavailable than the flavanones in the rat model. Conversion of the ferulic acid glucoside to the dihydroferulic acid metabolites involves the action of colonic microbial glycosidases and reductases/hydrogenases followed by postabsorption phase II metabolism before renal excretion. © 2013 BioFactors, 40(3):327–335, 2014
Author Calani, Luca
Escudero-López, Blanca
Fernández-Pachón, María-Soledad
Ortega, Ángeles
Del Rio, Daniele
Brighenti, Furio
Crozier, Alan
Author_xml – sequence: 1
  givenname: Blanca
  surname: Escudero-López
  fullname: Escudero-López, Blanca
  organization: Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, Spain
– sequence: 2
  givenname: Luca
  surname: Calani
  fullname: Calani, Luca
  organization: Department of Food Science, The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, University of Parma, Parma, Italy
– sequence: 3
  givenname: María-Soledad
  surname: Fernández-Pachón
  fullname: Fernández-Pachón, María-Soledad
  organization: Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, Spain
– sequence: 4
  givenname: Ángeles
  surname: Ortega
  fullname: Ortega, Ángeles
  organization: Department of Molecular Biology and Biochemistry Engineering, Area of Nutrition and Food Sciences, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Sevilla, Spain
– sequence: 5
  givenname: Furio
  surname: Brighenti
  fullname: Brighenti, Furio
  organization: Department of Food Science, The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, University of Parma, Parma, Italy
– sequence: 6
  givenname: Alan
  surname: Crozier
  fullname: Crozier, Alan
  organization: Plant Products and Human Nutrition Group, School of Medicine, University of Glasgow, Glasgow, UK
– sequence: 7
  givenname: Daniele
  surname: Del Rio
  fullname: Del Rio, Daniele
  email: daniele.delrio@unipr.it
  organization: Department of Food Science, The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, University of Parma, Parma, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24255025$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1P3DAQQK2Kqiy0h_6BykeQCPg7zhFQ-aigXECVuFh2Mm5NEzvYWZX9981qt9wqcZrDvHkavT20E1MEhD5TckwJYScuJH9MqWTv0ILqmlWaaLqDFqSRtFKC8120V8oTIZQToT-gXSaYlITJBXo4dSXlcQopHuEBJutSH8pwhG3sMLy0GdYrnDz2kAeIE3Q4ZRt_An5ahhbwwZj61eH4C2LqCw4RZzuVj-i9t32BT9u5jx4uvt6fX1U3d5fX56c3VSsaySouOHOuqX0HnNWtoop5opwGrxi1bTM_3LhOO2kZ84Iy3qrG-rrRwvqGcMr30cHGO-b0vIQymSGUFvreRkjLYqgUhDE-a96AcqW0qIWe0cMN2uZUSgZvxhwGm1eGErMObtbBzTr4zH7ZapdugO6V_Fd4Bk42wJ_Qw-r_JnN2fXexVVabi1AmeHm9sPm3UTWvpfnx_dJ8u3q8PXvk90bzvwd8mkA
CitedBy_id crossref_primary_10_1002_jsfa_8774
crossref_primary_10_1016_j_abb_2020_108627
crossref_primary_10_1016_j_jep_2024_117703
crossref_primary_10_1002_biof_1363
crossref_primary_10_3945_an_114_007328
crossref_primary_10_3390_antiox12101795
crossref_primary_10_1016_j_algal_2023_103140
crossref_primary_10_3390_nu9121328
crossref_primary_10_1007_s11064_018_2495_x
crossref_primary_10_3390_molecules27020391
crossref_primary_10_3390_nu15245089
crossref_primary_10_1016_j_jff_2015_08_012
crossref_primary_10_1016_j_semcancer_2015_02_007
crossref_primary_10_3390_nu14081560
crossref_primary_10_1016_j_fct_2015_02_006
crossref_primary_10_1016_j_jff_2020_104158
crossref_primary_10_1002_mnfr_201400745
crossref_primary_10_1016_j_foodres_2017_09_031
crossref_primary_10_3390_foods11091256
crossref_primary_10_1016_j_fochx_2022_100557
crossref_primary_10_1039_C8FO01778F
crossref_primary_10_1002_bmc_5327
crossref_primary_10_3390_molecules25235522
Cites_doi 10.1021/jf801974v
10.1021/jf980007o
10.1007/s002160051521
10.1002/jsfa.2204
10.1371/journal.pone.0039836
10.1002/mnfr.200800287
10.1016/j.talanta.2012.05.042
10.1017/S0007114509993679
10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B
10.1021/jf0000528
10.1079/BJN2001482
10.1017/S000711450803081X
10.1021/jf100752j
10.1124/dmd.109.031047
10.1016/j.mam.2011.10.016
10.1080/10715760000300281
10.1186/1754-1611-6-6
10.1080/15287394.2010.511549
10.1016/j.biopha.2006.07.083
10.1124/dmd.109.028019
10.1021/jf0491411
10.3390/12081641
10.1080/1040869059096
10.1111/j.1749-6632.2002.tb02934.x
10.1093/jn/132.2.172
10.1039/c3fo60024f
10.1021/jf401240p
10.1021/jf9011642
ContentType Journal Article
Copyright 2013 International Union of Biochemistry and Molecular Biology, Inc.
Copyright_xml – notice: 2013 International Union of Biochemistry and Molecular Biology, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1002/biof.1152
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1872-8081
EndPage 335
ExternalDocumentID 10_1002_biof_1152
24255025
BIOF1152
ark_67375_WNG_JHZMBZ3T_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
05W
0R~
10A
1OC
33P
36B
3SF
4.4
4P2
52S
52U
52V
53G
5GY
5RE
8-1
A00
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
ESTFP
ESX
F5P
FUBAC
G-S
GODZA
HGLYW
HZ~
IOS
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OIG
OVD
P2P
P2W
P4E
QB0
ROL
SUPJJ
SV3
TEORI
TUS
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
WYJ
XG1
XV2
Y6R
ZZTAW
.GJ
23N
31~
AAFNC
ABUBZ
ACPQW
ADZMO
AFRHK
ASPBG
AVWKF
AZFZN
CAG
COF
FEDTE
HVGLF
MET
MIO
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4952-3432bb97fde327c6162f06b8ef621ac90019bd8b5a22f4123c69af7984af90313
ISSN 0951-6433
IngestDate Sat Aug 17 02:22:12 EDT 2024
Wed Jul 24 18:16:26 EDT 2024
Fri Aug 23 02:27:12 EDT 2024
Sat Sep 28 07:54:46 EDT 2024
Sat Aug 24 01:12:03 EDT 2024
Wed Oct 30 09:54:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords orange juice
hydroxycinnamates
urinary excretion
bioavailability
colon microbiota
rats
flavanones
Language English
License 2013 International Union of Biochemistry and Molecular Biology, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4952-3432bb97fde327c6162f06b8ef621ac90019bd8b5a22f4123c69af7984af90313
Notes istex:42F834096B19EE61B62883B253739B6FF3DE4C46
ArticleID:BIOF1152
ark:/67375/WNG-JHZMBZ3T-8
Blanca Escudero‐López and Luca Calani contributed equally to the work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24255025
PQID 1536684748
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1540223019
proquest_miscellaneous_1536684748
crossref_primary_10_1002_biof_1152
pubmed_primary_24255025
wiley_primary_10_1002_biof_1152_BIOF1152
istex_primary_ark_67375_WNG_JHZMBZ3T_8
PublicationCentury 2000
PublicationDate May/June 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May/June 2014
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle BioFactors (Oxford)
PublicationTitleAlternate BioFactors
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Urpi-Sarda, M., Rothwell, J., Morand, C., and Manach, C.(2012) Bioavailability of flavanones. In Flavonoids and Related Compounds.Bioavailability and Function. (Spencer J.P.E. and Crozier, A., eds). pp. 1−44, CRC Press, Boca Raton, FL.
Roowi, S., Mullen, W., Edwards, C. A., and Crozier, A. (2009) Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans. Mol. Nutr. Food Res. 53, S68-S75.
Jin, M. J., Kim, U., Kim, I. S., Kim, Y., Kim, D. -H., et al. (2010) Effects gut microflora on pharmacokinetics of hesperidin: a study on non-antibiotic and pseudo-germ-free rats. J. Toxicol. Environ. Health 73, 1441−1450.
Bourne, L., Paganga, G., Baxter, D., Hughes, P., and Rice-Evans, C. (2000) Absorption of ferulic acid from low-alcohol beer. Free Radic. Res. 32, 273-280.
Gil-Izquierdo, A., Gil, M. I., Ferreres, F., and Tomás-Barberán, F. A. (2001) In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem. 49, 1035-1041.
Borges, G., Lean, M. E. J., Roberts, S. A., and Crozier, A. (2013) Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in the small and large intestine. Food Funct. 4, 754-762.
Lapidot, T., Harel, S., Granit, R., and Kanner, J. (1998) Bioavailability of red wine athocyanins as detected in human. J. Agric. Food Chem. 46, 4297-4302.
Gattuso, G., Barreca, D., Gargiulli, C., Leuzzi, U., and Caristi, C. (2007) Flavonoid composition of citrus juices. Molecules 12, 1641-1673.
Vallejo, F., Larrosa, M., Escudero, E., Zafrilla, M. P., Cerdá, B., et al. (2010) Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agric. Food Chem. 58, 6516-6524.
Spencer, J. P., Vafeiadou, K., Williams, R. J., and Vauzour, D. (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 33, 83-97.
Quini, C. C., Américo, M. F., Corá, L. A., Calabresi, M. F., Alvarez, M., et al. (2012) Employment of a noninvasive magnetic method for evaluation of gastrointestinal transit in rats. J. Biol. Eng. 6, 6.
Yamashita, S., Sakane, T., Harada, M., Sugiura, N., Koda, H., et al. (2002) Absorption and metabolism of antioxidative polyphenolic compounds in red wine. Ann. NY Acad. Sci. 957, 325-328.
Matsumoto, H., Ikoma, Y., Sugiura, M., Yano, M., and Hasegawa, Y. (2004) Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma. J. Agric. Food Chem. 52, 6653-6659.
Gu, J., Zhong, D., and Chen, X. (1999) Analysis of O-glucuronide conjugates in urine by electrospray ion trap mass spectrometry. Fresenius J. Anal. Chem. 365, 553-558.
Escudero-Lopez, B., Cerrillo, I., Herrero-Martín, G. Hornero-Méndez, D. Gil-Izquierdo, A., et al. (2013) Fermented orange juice: source of higher carotenoid and flavanone content. J. Agric. Food Chem. 61, 8773−8782.
Brett, G. M., Hollands, W., Needs, P. W., Teucher, B., Dainty, J. R., et al. (2009) Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br. J. Nutr. 101, 664-675.
Scalbert, A., Manach, C., Morand, C., Rémésy, C., and Jiménez, L. (2005) Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45, 287-306.
Abad-Garcia, B., Garmón-Lobato, S., Berrueta, L. A., Gallo, B., and Vicente, F. (2012) On line characterization of 58 phenolic compounds in citrus fruit juices from Spanish cultivarsby high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 99, 213−224.
Del Rio, D., Mateos, A. M., Spencer, J. P. E., Tognolini, M., Borges, G., et al. (2013) Dietary (poly)phenolics in human health and disease: Structures, bioavailability, evidence of protective effects and potential mechanisms. Antioxid. Redox Signal. 18, 1818−1892.
Brand, W., Boersma, M. G., Bik, H., Hoek-van den Hil, E. F., Vervoort, J., et al. (2010) Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab. Dispos. 38, 617-625.
Kroon, P. and Williamson, G. (2005) Polyphenols: Dietary components with established benefits to health? J. Sci. Food Agric. 85, 1239-1240.
DuPont, M. S., Bennett, R. N., Mellon, F. A., and Williamson, G. (2002) Polyphenols from alcoholic apple cider are absorbed, metabolized and excreted by humans. J. Nutr. 132, 172-175.
Tomás-Barberán, F. and Gil, M. I., eds. (2008) Improving the Health-Promoting Properties of Fruits and Vegetables. CRC Press, Boca Raton, FL.
Mullen, W., Archeveque, M. -A., Edwards, C. A., and Crozier, A. (2008) Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full fat yogurt. J. Agric. Food Chem. 56, 11157-11164
Stalmach, A., Mullen, W., Barron, D., Uchida, K., Yokota, T., et al. (2009) Metabolite profiling of hydroxycinnamate derivatives in plasma and urine following the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metab. Dispos. 37, 1759-1768.
Delucchi, F., Berni, R., Frati, C., Cavalli, S., Graiani, G., et al. (2012) Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One 7, e39836.
Stalmach, A., Mullen, W., Pecorari, M., Serafini, M., and Crozier, A. (2009) Bioavailability of C-linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas. J. Agric. Food Chem. 57, 7104-7111.
Tomás-Barberán, F. A. and Clifford, M. N. (2000) Flavanones, chalcones and dihydrochalcones-Nature, occurrence and dietary burden. J. Sci. Food Agric. 80, 1073-1080.
Donovan, J. L., Kasim-Karakas, S., German, J. B., and Waterhouse, A. L. (2002) Urinary excretion of catechin metabolites by human subjects after red wine consumption. Br. J. Nutr. 87, 31-37.
Bredsdorff, L., Nielsen, I. L., Rasmussen, S. E., Cornett, C., Barron, D., et al. (2010) Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects. Br. J. Nutr. 103, 1602-1609.
Silberberg, M., Gil-Izquierdo, A., Combaret, L., Remesy, C., Scalbert, A., et al. (2006) Flavanone metabolism in healthy and tumor-bearing rats. Biomed. Pharmacother. 60, 529-535.
2010; 38
2013; 4
2010; 58
2012
2002; 132
2010; 103
2013; 61
2005; 85
2008
2008; 56
2002; 957
2001; 49
1999; 365
2012; 33
2012; 99
2007; 12
2005; 45
1998; 46
2013; 18
2006; 60
2004; 52
2009; 57
2009; 53
2000; 32
2002; 87
2009; 101
2000; 80
2012; 6
2012; 7
2009; 37
2010; 73
Tomás‐Barberán F. and (e_1_2_6_3_1) 2008
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Rio D. (e_1_2_6_6_1) 2013; 18
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Urpi‐Sarda M. (e_1_2_6_25_1) 2012
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 56
  start-page: 11157
  year: 2008
  end-page: 11164
  article-title: Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full fat yogurt
  publication-title: J. Agric. Food Chem
– volume: 58
  start-page: 6516
  year: 2010
  end-page: 6524
  article-title: Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans
  publication-title: J. Agric. Food Chem
– volume: 38
  start-page: 617
  year: 2010
  end-page: 625
  article-title: Phase II metabolism of hesperetin by individual UDP‐glucuronosyltransferases and sulfotransferases and rat and human tissue samples
  publication-title: Drug Metab. Dispos
– volume: 46
  start-page: 4297
  year: 1998
  end-page: 4302
  article-title: Bioavailability of red wine athocyanins as detected in human
  publication-title: J. Agric. Food Chem
– volume: 61
  start-page: 8773
  year: 2013
  end-page: 8782
  article-title: Fermented orange juice: source of higher carotenoid and flavanone content
  publication-title: J. Agric. Food Chem
– volume: 87
  start-page: 31
  year: 2002
  end-page: 37
  article-title: Urinary excretion of catechin metabolites by human subjects after red wine consumption
  publication-title: Br. J. Nutr
– volume: 80
  start-page: 1073
  year: 2000
  end-page: 1080
  article-title: Flavanones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden
  publication-title: J. Sci. Food Agric
– volume: 18
  start-page: 1818−1892
  year: 2013
  article-title: Dietary (poly)phenolics in human health and disease: Structures, bioavailability, evidence of protective effects and potential mechanisms
  publication-title: Antioxid. Redox Signal
– volume: 103
  start-page: 1602
  year: 2010
  end-page: 1609
  article-title: Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α‐rhamnosidase‐treated orange juice in human subjects
  publication-title: Br. J. Nutr
– volume: 53
  start-page: S68
  year: 2009
  end-page: S75
  article-title: Yoghurt impacts on the excretion of phenolic acids derived from colonic breakdown of orange juice flavanones in humans
  publication-title: Mol. Nutr. Food Res
– volume: 4
  start-page: 754
  year: 2013
  end-page: 762
  article-title: Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in the small and large intestine
  publication-title: Food Funct
– volume: 6
  start-page: 6
  year: 2012
  article-title: Employment of a noninvasive magnetic method for evaluation of gastrointestinal transit in rats
  publication-title: J. Biol. Eng
– volume: 99
  start-page: 213−224
  year: 2012
  article-title: On line characterization of 58 phenolic compounds in citrus fruit juices from Spanish cultivarsby high‐performance liquid chromatography with photodiode‐array detection coupled to electrospray ionization triple quadrupole mass spectrometry
  publication-title: Talanta
– volume: 60
  start-page: 529
  year: 2006
  end-page: 535
  article-title: Flavanone metabolism in healthy and tumor‐bearing rats
  publication-title: Biomed. Pharmacother
– volume: 49
  start-page: 1035
  year: 2001
  end-page: 1041
  article-title: In vitro availability of flavonoids and other phenolics in orange juice
  publication-title: J. Agric. Food Chem
– volume: 12
  start-page: 1641
  year: 2007
  end-page: 1673
  article-title: Flavonoid composition of citrus juices
  publication-title: Molecules
– volume: 52
  start-page: 6653
  year: 2004
  end-page: 6659
  article-title: Identification and quantification of the conjugated metabolites derived from orally administered hesperidin in rat plasma
  publication-title: J. Agric. Food Chem
– volume: 73
  start-page: 1441−1450
  year: 2010
  article-title: Effects gut microflora on pharmacokinetics of hesperidin: a study on non‐antibiotic and pseudo‐germ‐free rats
  publication-title: J. Toxicol. Environ. Health
– year: 2008
– volume: 7
  start-page: e39836
  year: 2012
  article-title: Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho‐functional ventricular remodeling in type‐1 diabetic rats
  publication-title: PLoS One
– volume: 57
  start-page: 7104
  year: 2009
  end-page: 7111
  article-title: Bioavailability of ‐linked dihydrochalcone and flavanone glucosides in humans following ingestion of unfermented and fermented rooibos teas
  publication-title: J. Agric. Food Chem
– volume: 33
  start-page: 83
  year: 2012
  end-page: 97
  article-title: Neuroinflammation: modulation by flavonoids and mechanisms of action
  publication-title: Mol. Aspects Med
– volume: 101
  start-page: 664
  year: 2009
  end-page: 675
  article-title: Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion
  publication-title: Br. J. Nutr
– volume: 32
  start-page: 273
  year: 2000
  end-page: 280
  article-title: Absorption of ferulic acid from low‐alcohol beer
  publication-title: Free Radic. Res
– volume: 957
  start-page: 325
  year: 2002
  end-page: 328
  article-title: Absorption and metabolism of antioxidative polyphenolic compounds in red wine
  publication-title: Ann. NY Acad. Sci
– volume: 37
  start-page: 1759
  year: 2009
  end-page: 1768
  article-title: Metabolite profiling of hydroxycinnamate derivatives in plasma and urine following the ingestion of coffee by humans: Identification of biomarkers of coffee consumption
  publication-title: Drug Metab. Dispos
– volume: 365
  start-page: 553
  year: 1999
  end-page: 558
  article-title: Analysis of ‐glucuronide conjugates in urine by electrospray ion trap mass spectrometry
  publication-title: Fresenius J. Anal. Chem
– volume: 85
  start-page: 1239
  year: 2005
  end-page: 1240
  article-title: Polyphenols: Dietary components with established benefits to health?
  publication-title: J. Sci. Food Agric
– volume: 45
  start-page: 287
  year: 2005
  end-page: 306
  article-title: Dietary polyphenols and the prevention of diseases
  publication-title: Crit. Rev. Food Sci. Nutr
– volume: 132
  start-page: 172
  year: 2002
  end-page: 175
  article-title: Polyphenols from alcoholic apple cider are absorbed, metabolized and excreted by humans
  publication-title: J. Nutr
– start-page: 1−44
  year: 2012
– ident: e_1_2_6_20_1
  doi: 10.1021/jf801974v
– volume-title: Improving the Health‐Promoting Properties of Fruits and Vegetables
  year: 2008
  ident: e_1_2_6_3_1
  contributor:
    fullname: Tomás‐Barberán F. and
– ident: e_1_2_6_11_1
  doi: 10.1021/jf980007o
– ident: e_1_2_6_21_1
  doi: 10.1007/s002160051521
– ident: e_1_2_6_2_1
  doi: 10.1002/jsfa.2204
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0039836
– ident: e_1_2_6_30_1
  doi: 10.1002/mnfr.200800287
– start-page: 1−44
  volume-title: Bioavailability of flavanones. In Flavonoids and Related Compounds.Bioavailability and Function
  year: 2012
  ident: e_1_2_6_25_1
  contributor:
    fullname: Urpi‐Sarda M.
– ident: e_1_2_6_9_1
  doi: 10.1016/j.talanta.2012.05.042
– ident: e_1_2_6_19_1
  doi: 10.1017/S0007114509993679
– ident: e_1_2_6_7_1
  doi: 10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>3.0.CO;2-B
– ident: e_1_2_6_8_1
  doi: 10.1021/jf0000528
– ident: e_1_2_6_14_1
  doi: 10.1079/BJN2001482
– ident: e_1_2_6_31_1
  doi: 10.1017/S000711450803081X
– ident: e_1_2_6_18_1
  doi: 10.1021/jf100752j
– ident: e_1_2_6_29_1
  doi: 10.1124/dmd.109.031047
– ident: e_1_2_6_5_1
  doi: 10.1016/j.mam.2011.10.016
– ident: e_1_2_6_12_1
  doi: 10.1080/10715760000300281
– ident: e_1_2_6_23_1
  doi: 10.1186/1754-1611-6-6
– ident: e_1_2_6_27_1
  doi: 10.1080/15287394.2010.511549
– ident: e_1_2_6_32_1
  doi: 10.1016/j.biopha.2006.07.083
– ident: e_1_2_6_22_1
  doi: 10.1124/dmd.109.028019
– ident: e_1_2_6_28_1
  doi: 10.1021/jf0491411
– ident: e_1_2_6_17_1
  doi: 10.3390/12081641
– ident: e_1_2_6_4_1
  doi: 10.1080/1040869059096
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1749-6632.2002.tb02934.x
– ident: e_1_2_6_13_1
  doi: 10.1093/jn/132.2.172
– ident: e_1_2_6_26_1
  doi: 10.1039/c3fo60024f
– volume: 18
  start-page: 1818−1892
  year: 2013
  ident: e_1_2_6_6_1
  article-title: Dietary (poly)phenolics in human health and disease: Structures, bioavailability, evidence of protective effects and potential mechanisms
  publication-title: Antioxid. Redox Signal
  contributor:
    fullname: Rio D.
– ident: e_1_2_6_10_1
  doi: 10.1021/jf401240p
– ident: e_1_2_6_24_1
  doi: 10.1021/jf9011642
SSID ssj0013048
Score 2.252482
Snippet Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which...
Two milliliters of a fermented, pasteurized orange juice containing ~1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage after which...
Abstract Two milliliters of a fermented, pasteurized orange juice containing ∼1% alcohol and 2.3 μmol of (poly)phenolic compounds was fed to rats by gavage...
Two milliliters of a fermented, pasteurized orange juice containing 1% alcohol and 2.3 mu mol of (poly)phenolic compounds was fed to rats by gavage after which...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 327
SubjectTerms Administration, Oral
Animals
Beverages
bioavailability
Citrus
Citrus sinensis - chemistry
colon microbiota
Fermentation
flavanones
Fruit - chemistry
Gastrointestinal Absorption
hydroxycinnamates
Male
orange juice
Plant Extracts - administration & dosage
Plant Extracts - pharmacokinetics
Polyphenols - administration & dosage
Polyphenols - pharmacokinetics
rats
Rats, Wistar
urinary excretion
Title Absorption, metabolism, and excretion of fermented orange juice (poly)phenols in rats
URI https://api.istex.fr/ark:/67375/WNG-JHZMBZ3T-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiof.1152
https://www.ncbi.nlm.nih.gov/pubmed/24255025
https://search.proquest.com/docview/1536684748
https://search.proquest.com/docview/1540223019
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6F5gFeELQc4dKCUFWUusS3_Ri3CaFKUyQSEfVltV7vQiC1oxxSgD_PjNexG1FQ4cWyHGtjzXw7O_cQ8jrhaGgIkH6uIw3H4hLkoGcbse0Lx7NarlBYjXw28Hoj53Tsjmu1n1erS5bxkfhxbV3J_3AVngFfsUr2HzhbLgoP4B74C1fgMFxvxON2vMjm-Z5HSl3KJXB0iqkURUqmXAssUtQqoQIZjA04kyZwPf0sm19XICRQw5xlOG46xGyvbJrnxwIsFlvh3knWLQbzYHvStc6IL30InYVYJXKeGX2Mu0f2TLuloyk6TKoox1TPj2r2V9VT9GPnwXoTndnGBy6-6DXSopIo__GEGx-zqUx4UjqF50tZ-IQxLVduuS9Mp0oWPJJa5AY-yOSWHtyykcm6hVOBPfuKgLV1J4HirLZ1q5PfjgHdVjaeZAqOBN0hd7vV9uCcdUf9Pht2xsNbpG6BlALxWG9HJ1G3CkKBdNs0o2pZb8vltlSYOu7G9XX2yba5k-srw3vkbmFo0LZGzX1Sk-ku2WunfJldfqf7NE_9zWMqu-T28Wbs3x4ZVaA6pBWkDikAipaAopmiJaCoBhTNAUUPEE5vCjDRSUoRTA_IqNsZHveMYvaGIcBktgysN47j0FeJBJILz_Qs1fLiQCrPMrkI0TSIkyB2uWUpB9Qf4YVc-WHgcBViP9CHZCfNUvmY0Nh0TCVbiRfbgROKgNsJaI0mHC22ChLuN8irDTnZTLdYYbqZtsWQ5gxp3iD7OaHLN_j8G-Yk-i77NHjHTnsXZ9GFPWRBg7zccIIB5TD8xVOZrRYMznbPA2XM-es7Dii1cOiFDfJIs7H8RzTOXTARGuQg5-ufP5ZF78-7ePPkBh_zlNyp9sUzsrOcr-RzUHSX8YsCkL8AJ6GnSA
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absorption%2C+metabolism%2C+and+excretion+of+fermented+orange+juice+%28poly%29phenols+in+rats&rft.jtitle=BioFactors+%28Oxford%29&rft.au=Escudero-L%C3%B3pez%2C+Blanca&rft.au=Calani%2C+Luca&rft.au=Fern%C3%A1ndez-Pach%C3%B3n%2C+Mar%C3%ADa-Soledad&rft.au=Ortega%2C+Angeles&rft.date=2014-05-01&rft.eissn=1872-8081&rft.volume=40&rft.issue=3&rft.spage=327&rft.epage=335&rft_id=info:doi/10.1002%2Fbiof.1152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-6433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-6433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-6433&client=summon