3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported....
Saved in:
Published in | Advanced energy materials Vol. 4; no. 8; pp. np - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.06.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.
3D hyperbranched carbon nanorod‐sulfur nanocomposites are synthesized and applied as cathode materials for lithium‐sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion. |
---|---|
AbstractList | Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.
3D hyperbranched carbon nanorod‐sulfur nanocomposites are synthesized and applied as cathode materials for lithium‐sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion. Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium-sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g-1 at a 0.1C current rate and exhibit stable cycling performance. The as-prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g-1 at 1C, 861 mAh g-1 at 5C, and 663 mAh g-1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self-discharge, and confine the volume expansion on cycling. High capacity, excellent high-rate performance, and long cycle life render the as-developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium-sulfur batteries. [PUBLICATION ABSTRACT] Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium-sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g super(-1) at a 0.1C current rate and exhibit stable cycling performance. The as-prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g super(-1) at 1C, 861 mAh g super(-1) at 5C, and 663 mAh g super(-1) at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self-discharge, and confine the volume expansion on cycling. High capacity, excellent high-rate performance, and long cycle life render the as-developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium-sulfur batteries. 3D hyperbranched carbon nanorod-sulfur nanocomposites are synthesized and applied as cathode materials for lithium-sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion. Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g ‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g ‐1 at 1C, 861 mAh g ‐1 at 5C, and 663 mAh g ‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries. |
Author | Liu, Hao Li, Kefei Huang, Xiaodan Yeoh, Waikong Chen, Shuangqiang Wang, Guoxiu Sun, Bing Zhang, Jinqiang |
Author_xml | – sequence: 1 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 2 givenname: Xiaodan surname: Huang fullname: Huang, Xiaodan organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 4 givenname: Bing surname: Sun fullname: Sun, Bing organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 5 givenname: Waikong surname: Yeoh fullname: Yeoh, Waikong organization: Australian Centre for Microscopy and Microanalysis The University of Sydney, NSW 2006, Australia – sequence: 6 givenname: Kefei surname: Li fullname: Li, Kefei organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 7 givenname: Jinqiang surname: Zhang fullname: Zhang, Jinqiang organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia – sequence: 8 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu email: Guoxiu.wang@uts.edu.au organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia |
BookMark | eNqFkM9r2zAYhs3oYF3X686CXXZxqs_6YfuYZW1dSLOybmw3ocifF3W2lUkyXf77qqSEURj9EHzv4XmE9L7NjkY3Ypa9BzoDSoszjeMwKygwCqWEV9kxSOC5rDg9OmRWvMlOQ7ijaXgNlLHjbM0-k2a3Rb_2ejQbbEnj-t7dk4X2azeSlR6ddy2Ze7OxEU2cPAbSOU8a-2uT36BPeUgqkqWNGzsN-e3Ud5Mnn3SM6C2Gd9nrTvcBT5_2Sfb94vzbosmXXy6vFvNlbngtIO-oYRI7Y0wtBJVUtshEVYk11MhLKVoBGrAo2hokl1C1oLnpBBNtUYqWSXaSfdzfu_Xuz4QhqsEGg32vR3RTUFCWlJWC8SKhH56hd27yY3qdAsHSqYSARPE9ZbwLwWOnjI06WjdGr22vgKrH7tVj9-rQfdJmz7Stt4P2u_8L9V64tz3uXqDV_Hx1_a-b710bIv49uNr_VrJMv1U_Vpdq-fX6ovnJbxVnD890pzs |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2015_05_034 crossref_primary_10_1007_s12274_017_1659_3 crossref_primary_10_1016_j_cej_2018_08_176 crossref_primary_10_1002_advs_201700934 crossref_primary_10_1002_chem_201704590 crossref_primary_10_1016_j_nanoen_2022_107904 crossref_primary_10_1039_C5TA05146K crossref_primary_10_1039_C8SE00167G crossref_primary_10_1016_j_scib_2021_10_008 crossref_primary_10_1016_j_mtchem_2022_101138 crossref_primary_10_1039_D0TA06222G crossref_primary_10_1007_s12598_020_01439_9 crossref_primary_10_1088_1361_6528_aaf517 crossref_primary_10_1002_adma_201602913 crossref_primary_10_1002_smtd_201700345 crossref_primary_10_1039_C7TA08520F crossref_primary_10_3390_app7101036 crossref_primary_10_1038_srep33871 crossref_primary_10_1039_C6RA05560E crossref_primary_10_1039_C4CC04868G crossref_primary_10_1002_smll_201800616 crossref_primary_10_1039_C5TA00343A crossref_primary_10_1016_j_mser_2017_09_001 crossref_primary_10_1039_D3CP02863A crossref_primary_10_1002_smll_201804786 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1246_cl_150909 crossref_primary_10_1016_j_renene_2016_06_062 crossref_primary_10_1021_acsami_7b04583 crossref_primary_10_1007_s12274_016_1243_2 crossref_primary_10_1016_j_nanoen_2014_11_001 crossref_primary_10_1021_acsami_1c15133 crossref_primary_10_1155_er_9740805 crossref_primary_10_1016_j_carbon_2022_04_030 crossref_primary_10_1007_s10008_023_05607_6 crossref_primary_10_1149_2_0201805jes crossref_primary_10_1002_chem_201702387 crossref_primary_10_1007_s12274_017_1737_6 crossref_primary_10_1016_j_electacta_2017_09_001 crossref_primary_10_4028_www_scientific_net_AMR_1120_1121_493 crossref_primary_10_1002_aenm_201700283 crossref_primary_10_1021_nn503220h crossref_primary_10_1021_acs_chemrev_5b00731 crossref_primary_10_1039_D0DT01620A crossref_primary_10_1002_adma_201606823 crossref_primary_10_1002_adma_202006019 crossref_primary_10_1021_acsami_8b03611 crossref_primary_10_1039_C7QI00726D crossref_primary_10_1002_adma_201404210 crossref_primary_10_1007_s40820_019_0249_1 crossref_primary_10_1016_j_electacta_2014_06_071 crossref_primary_10_1016_j_ensm_2016_07_001 crossref_primary_10_1039_D0TA00284D crossref_primary_10_1016_j_est_2024_112347 crossref_primary_10_3390_en15041543 crossref_primary_10_1038_s41467_022_31943_8 crossref_primary_10_1002_adfm_201402815 crossref_primary_10_1002_aenm_202002180 crossref_primary_10_1016_j_carbon_2017_08_062 crossref_primary_10_1021_acsami_0c22597 crossref_primary_10_1038_s43246_025_00734_1 crossref_primary_10_1039_C6RA16361K crossref_primary_10_1016_j_carbon_2015_03_008 crossref_primary_10_1007_s40820_023_01120_7 crossref_primary_10_1016_j_electacta_2017_05_090 crossref_primary_10_1021_acsomega_7b01156 crossref_primary_10_1016_j_nanoen_2017_01_025 crossref_primary_10_1007_s11581_019_03018_0 crossref_primary_10_1016_j_jpowsour_2015_05_048 crossref_primary_10_1039_C4TA04103H crossref_primary_10_1002_adma_201901125 crossref_primary_10_1039_D0DT01435D crossref_primary_10_1002_smll_201402354 crossref_primary_10_1007_s11581_015_1528_6 crossref_primary_10_1021_acsnano_9b09231 crossref_primary_10_1002_adma_202204636 crossref_primary_10_1016_j_poly_2019_01_068 crossref_primary_10_1016_j_jpowsour_2017_05_043 crossref_primary_10_1039_C4TA02097A crossref_primary_10_1002_aenm_201702839 crossref_primary_10_1016_j_matchemphys_2016_05_044 crossref_primary_10_1039_C9CP01036J crossref_primary_10_1002_smll_202006504 crossref_primary_10_1007_s40820_020_00521_2 crossref_primary_10_1002_cnma_201600065 crossref_primary_10_1002_aenm_201402263 crossref_primary_10_1002_adma_201801993 crossref_primary_10_1149_2_0361810jes crossref_primary_10_1002_aenm_201802213 crossref_primary_10_1039_C7TA08859K crossref_primary_10_1016_j_colsurfa_2024_134824 crossref_primary_10_3390_batteries8050045 crossref_primary_10_3390_nano8040181 crossref_primary_10_1016_j_cej_2020_125295 crossref_primary_10_1016_j_jallcom_2018_02_225 crossref_primary_10_1016_j_electacta_2018_03_149 crossref_primary_10_1021_acs_iecr_8b01969 crossref_primary_10_1016_j_carbon_2017_03_035 crossref_primary_10_1016_j_electacta_2018_12_009 crossref_primary_10_1002_advs_202104375 crossref_primary_10_1016_j_ijhydene_2015_09_062 crossref_primary_10_1039_C8TA05303K crossref_primary_10_1039_C7TA00799J crossref_primary_10_1039_C5RA17629H crossref_primary_10_1016_j_ssi_2016_04_019 crossref_primary_10_1039_C5RA05481H crossref_primary_10_1016_j_ensm_2019_05_013 crossref_primary_10_1016_j_renene_2015_08_005 crossref_primary_10_1002_inf2_12304 crossref_primary_10_1016_j_apmate_2021_09_006 crossref_primary_10_1016_j_apsusc_2020_146785 crossref_primary_10_1039_C5RA18567J crossref_primary_10_1002_smll_201700087 crossref_primary_10_1007_s12274_021_3423_y crossref_primary_10_1016_j_isci_2018_07_021 crossref_primary_10_1007_s11051_014_2789_0 crossref_primary_10_1039_C5NR01015B crossref_primary_10_1002_aenm_202102739 crossref_primary_10_1016_j_apsusc_2020_145639 crossref_primary_10_1016_j_compositesb_2020_108004 crossref_primary_10_1002_aenm_201601767 crossref_primary_10_1021_acsnano_9b06263 crossref_primary_10_1038_ncomms8278 crossref_primary_10_1039_C8TA11375K crossref_primary_10_1021_acssuschemeng_9b07502 crossref_primary_10_1007_s40843_014_0006_0 crossref_primary_10_1039_C5CP05447H crossref_primary_10_1016_j_carbon_2015_09_034 crossref_primary_10_1149_2_0061801jes crossref_primary_10_1039_C4TA02007C crossref_primary_10_1002_aenm_201501369 crossref_primary_10_1016_j_ensm_2016_04_002 crossref_primary_10_1016_j_carbon_2017_08_035 crossref_primary_10_1002_adma_201707483 crossref_primary_10_1002_aesr_202100007 crossref_primary_10_1021_acsenergylett_7b00009 crossref_primary_10_1088_0957_4484_27_47_474001 crossref_primary_10_1039_C4CC08008D crossref_primary_10_1021_acsami_7b09808 crossref_primary_10_1002_adma_201602300 crossref_primary_10_1002_adma_201604563 crossref_primary_10_1016_j_electacta_2015_06_052 crossref_primary_10_1002_chem_201705211 crossref_primary_10_1039_C6TA10111A crossref_primary_10_1039_C7RA11373K crossref_primary_10_1039_C5RA24338F crossref_primary_10_1021_acs_nanolett_5b00064 crossref_primary_10_1016_j_mseb_2016_04_009 crossref_primary_10_1088_1361_6528_abf000 crossref_primary_10_1016_j_nanoen_2018_12_019 crossref_primary_10_1039_C6MH00426A crossref_primary_10_1016_j_apsusc_2016_03_070 crossref_primary_10_1016_j_cej_2019_03_034 crossref_primary_10_1039_C7TA08620B crossref_primary_10_1016_j_cej_2021_131911 crossref_primary_10_1142_S1793292020300029 crossref_primary_10_1016_j_nanoen_2015_05_006 |
Cites_doi | 10.1021/nl304795g 10.1002/aenm.201201080 10.1016/j.jpowsour.2013.02.018 10.1021/nl901890x 10.1021/nl025753t 10.1021/ja2062659 10.1021/nl2027684 10.1039/c1nr10642b 10.1073/pnas.1220992110 10.1016/j.carbon.2013.02.037 10.1021/nn2027159 10.1039/c2cc17925c 10.1016/j.nanoen.2011.11.001 10.1002/adma.201303166 10.1126/science.1157131 10.1002/adma.201103392 10.1039/c0cp02477e 10.1021/nl200658a 10.1063/1.1502003 10.1016/j.electacta.2012.03.050 10.1002/cctc.201000037 10.1002/anie.201100637 10.1038/nmat2460 10.1039/c2cs35256g 10.1002/anie.201300680 10.1039/c1cc11159k 10.1021/jp050545l 10.1002/asia.201200004 10.1126/science.1058120 10.1016/S2095-4956(13)60009-1 10.1038/ncomms2327 10.1007/s12274-013-0374-y 10.1002/aenm.201200017 10.1088/0953-8984/23/7/072204 10.1002/anie.201205292 10.1038/ncomms1293 10.1016/j.nanoen.2012.10.003 10.1021/nl025884u 10.1039/c3ta10865a 10.1016/j.carbon.2012.05.040 10.1002/cssc.201300260 10.1016/j.nanoen.2012.11.012 10.1007/s12274-012-0279-1 10.1021/nl4016683 10.1038/ncomms2163 10.1021/nl049728u 10.1149/1.2937304 10.1021/nl202297p 10.1016/j.jpowsour.2011.11.073 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201301761 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 3322939321 10_1002_aenm_201301761 AENM201301761 ark_67375_WNG_LRMFHX4S_4 |
Genre | article |
GrantInformation_xml | – fundername: ARC Future Fellowship project funderid: FT110100800 – fundername: China Scholarship Council funderid: 2011689009 – fundername: Australian Research Council (ARC) funderid: DP1093855 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4951-f0c36efccc9550606de35885b19e4765d51a1e22d9164618d1a4cf535d275d363 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 11 00:50:59 EDT 2025 Fri Jul 25 12:22:22 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 01:43:11 EDT 2025 Wed Jan 22 17:02:14 EST 2025 Wed Oct 30 09:52:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4951-f0c36efccc9550606de35885b19e4765d51a1e22d9164618d1a4cf535d275d363 |
Notes | istex:84E7B803114CF9E3FB16A45742A18ED2FAAF6F43 Australian Research Council (ARC) - No. DP1093855 ArticleID:AENM201301761 China Scholarship Council - No. 2011689009 ARC Future Fellowship project - No. FT110100800 ark:/67375/WNG-LRMFHX4S-4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1531538551 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1770375342 proquest_journals_1531538551 crossref_citationtrail_10_1002_aenm_201301761 crossref_primary_10_1002_aenm_201301761 wiley_primary_10_1002_aenm_201301761_AENM201301761 istex_primary_ark_67375_WNG_LRMFHX4S_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationTitleAlternate | Adv. Energy Mater |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | M.-K. Song, Y. Zhang, E. J. Cairns, Nano Lett. 2013. S. Chen, P. Bao, X. Huang, B. Sun, G. Wang, Nano Res. 2013, 7, 85. K. L. Klug, V. P. Dravid, Appl. Phys. Lett. 2002, 81, 1687. X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500. S. Chen, W. Yeoh, Q. Liu, G. Wang, Carbon 2012, 50, 4557. G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644. Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Phys. Chem. Chem. Phys. 2011, 13, 7660. G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, Adv. Energy Mater. 2012, 2, 1238. R. Joshi, J. Engstler, L. Houben, M. Bar Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, J. J. Schneider, ChemCatChem 2010, 2, 1069. Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2012, 1, 107. J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 2002, 3, 235. K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576. R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, K. Amine, Nano Lett. 2013, 13, 4642. J.-Q. Huang, Q. Zhang, S.-M. Zhang, X.-F. Liu, W. Zhu, W.-Z. Qian, F. Wei, Carbon 2013, 58, 99. C. Zu, A. Manthiram, Adv. Energy Mater. 2013, 3, 1008. S. Chen, P. Bao, G. Wang, Nano Energy 2013, 2, 425. Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. B. Wang, K. Li, D. Su, H. Ahn, G. Wang, Chem. Asian J. 2012, 7, 1637. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331. N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904. K. Li, B. Wang, D. Su, J. Park, H. Ahn, G. Wang, J. Power Sources 2012, 202, 389. Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Angew. Chem. Int. Ed. 2013, 52, 7460. Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018. J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288. M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060. L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, J. Energy Chem. 2013, 22, 72. T. P. McNicholas, L. Ding, D. Yuan, J. Liu, Nano Lett. 2009, 9, 3646. Y. Liu, H. Zhan, Y. Zhou, Electrochim. Acta 2012, 70, 241. G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Chem. Commun. 2011, 47, 5976. Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 2005, 109, 11204. R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154. J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287. C. Zhang, H. B. Wu, C. Yuan, Z. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592. K. Zhang, Q. Zhao, Z. Tao, J. Chen, Nano Res. 2013, 6, 38. X. Ji, S. Evers, R. Black, L. F. Nazar, Nat. Commun. 2011, 2, 325. S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547. S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097. Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947. Y. Zou, Y. Wang, ACS Nano 2011, 5, 8108. D. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 2004, 4, 871. D. N. Fronczek, W. G. Bessler, J. Power Sources 2013, 244, 183. W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. USA 2013, 110, 7148. S. Chen, P. Chen, Y. Wang, Nanoscale 2011, 3, 4323. L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, J. Mater. Chem. A 2013, 1, 9517. J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao, S.-M. Zhang, W. Zhu, W.-Z. Qian, F. Wei, Nano Energy 2013, 2, 314. G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265. H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, L. Chen, Sci. Rep. 2013, 3. F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, R. Chen, ChemSusChem 2013, 6, 1438. G. Sneha, B. Cameron, G. Siping, F. Keisuke, A. D. Peter, A. K. Jeffry, J. Phys.: Condens. Matter 2011, 23, 072204. 2013; 3 2013; 4 2013; 25 2011; 2 2013; 1 2013; 2 2013; 22 2013; 42 2013; 244 2004; 4 2002; 2 2011; 11 2002; 3 2002; 81 2011; 13 2012; 202 2013; 7 2008; 320 2011; 3 2013; 6 2011; 5 2011; 133 2012; 51 2012; 50 2012; 70 2012; 2 2012; 3 2013; 58 2012; 1 2013; 13 2001; 291 2011; 50 2013; 52 2009; 9 2005; 109 2009; 8 2011; 23 2013; 110 2012; 48 2011; 47 2013 2008; 155 2012; 24 2012; 7 2010; 2 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Chen H. (e_1_2_6_23_1) 2013; 3 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 Song M.‐K. (e_1_2_6_48_1) 2013 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: S. Chen, P. Bao, X. Huang, B. Sun, G. Wang, Nano Res. 2013, 7, 85. – reference: G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265. – reference: Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018. – reference: J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 2002, 3, 235. – reference: M.-K. Song, Y. Zhang, E. J. Cairns, Nano Lett. 2013. – reference: L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, J. Mater. Chem. A 2013, 1, 9517. – reference: M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060. – reference: Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947. – reference: C. Zu, A. Manthiram, Adv. Energy Mater. 2013, 3, 1008. – reference: R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, K. Amine, Nano Lett. 2013, 13, 4642. – reference: B. Wang, K. Li, D. Su, H. Ahn, G. Wang, Chem. Asian J. 2012, 7, 1637. – reference: D. N. Fronczek, W. G. Bessler, J. Power Sources 2013, 244, 183. – reference: N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904. – reference: H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644. – reference: J.-Q. Huang, Q. Zhang, S.-M. Zhang, X.-F. Liu, W. Zhu, W.-Z. Qian, F. Wei, Carbon 2013, 58, 99. – reference: R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154. – reference: G. Sneha, B. Cameron, G. Siping, F. Keisuke, A. D. Peter, A. K. Jeffry, J. Phys.: Condens. Matter 2011, 23, 072204. – reference: Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331. – reference: Y. Zou, Y. Wang, ACS Nano 2011, 5, 8108. – reference: K. Li, B. Wang, D. Su, J. Park, H. Ahn, G. Wang, J. Power Sources 2012, 202, 389. – reference: J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao, S.-M. Zhang, W. Zhu, W.-Z. Qian, F. Wei, Nano Energy 2013, 2, 314. – reference: Y. Liu, H. Zhan, Y. Zhou, Electrochim. Acta 2012, 70, 241. – reference: J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288. – reference: F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, R. Chen, ChemSusChem 2013, 6, 1438. – reference: H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, L. Chen, Sci. Rep. 2013, 3. – reference: C. Zhang, H. B. Wu, C. Yuan, Z. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592. – reference: K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576. – reference: G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Chem. Commun. 2011, 47, 5976. – reference: X. Ji, S. Evers, R. Black, L. F. Nazar, Nat. Commun. 2011, 2, 325. – reference: W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. USA 2013, 110, 7148. – reference: G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, Adv. Energy Mater. 2012, 2, 1238. – reference: T. P. McNicholas, L. Ding, D. Yuan, J. Liu, Nano Lett. 2009, 9, 3646. – reference: R. Joshi, J. Engstler, L. Houben, M. Bar Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, J. J. Schneider, ChemCatChem 2010, 2, 1069. – reference: D. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 2004, 4, 871. – reference: L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, J. Energy Chem. 2013, 22, 72. – reference: S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097. – reference: S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547. – reference: K. L. Klug, V. P. Dravid, Appl. Phys. Lett. 2002, 81, 1687. – reference: L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176. – reference: Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166. – reference: S. Chen, P. Bao, G. Wang, Nano Energy 2013, 2, 425. – reference: K. Zhang, Q. Zhao, Z. Tao, J. Chen, Nano Res. 2013, 6, 38. – reference: S. Chen, P. Chen, Y. Wang, Nanoscale 2011, 3, 4323. – reference: Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Angew. Chem. Int. Ed. 2013, 52, 7460. – reference: X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500. – reference: J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287. – reference: S. Chen, W. Yeoh, Q. Liu, G. Wang, Carbon 2012, 50, 4557. – reference: Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 2005, 109, 11204. – reference: Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2012, 1, 107. – reference: Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Phys. Chem. Chem. Phys. 2011, 13, 7660. – reference: G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462. – volume: 11 start-page: 4288 year: 2011 publication-title: Nano Lett. – volume: 50 start-page: 5904 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1287 year: 2002 publication-title: Nano Lett. – volume: 5 start-page: 8108 year: 2011 publication-title: ACS Nano – volume: 3 start-page: 235 year: 2002 publication-title: Nano Lett. – volume: 3 year: 2013 publication-title: Sci. Rep. – volume: 70 start-page: 241 year: 2012 publication-title: Electrochim. Acta – volume: 109 start-page: 11204 year: 2005 publication-title: J. Phys. Chem. B – volume: 23 start-page: 072204 year: 2011 publication-title: J. Phys.: Condens. Matter – volume: 25 start-page: 6547 year: 2013 publication-title: Adv. Mater. – volume: 52 start-page: 7460 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 1176 year: 2012 publication-title: Adv. Mater. – volume: 291 start-page: 1947 year: 2001 publication-title: Science – volume: 202 start-page: 389 year: 2012 publication-title: J. Power Sources – volume: 13 start-page: 7660 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 85 year: 2013 publication-title: Nano Res. – year: 2013 publication-title: Nano Lett. – volume: 2 start-page: 425 year: 2013 publication-title: Nano Energy – volume: 2 start-page: 1238 year: 2012 publication-title: Adv. Energy Mater. – volume: 51 start-page: 9592 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 320 start-page: 1060 year: 2008 publication-title: Science – volume: 244 start-page: 183 year: 2013 publication-title: J. Power Sources – volume: 2 start-page: 325 year: 2011 publication-title: Nat. Commun. – volume: 48 start-page: 4097 year: 2012 publication-title: Chem. Commun. – volume: 6 start-page: 1438 year: 2013 publication-title: ChemSusChem – volume: 6 start-page: 38 year: 2013 publication-title: Nano Res. – volume: 3 start-page: 1166 year: 2012 publication-title: Nat. Commun. – volume: 4 start-page: 1331 year: 2013 publication-title: Nat. Commun. – volume: 58 start-page: 99 year: 2013 publication-title: Carbon – volume: 110 start-page: 7148 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 500 year: 2009 publication-title: Nat. Mater. – volume: 50 start-page: 4557 year: 2012 publication-title: Carbon – volume: 133 start-page: 16154 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1008 year: 2013 publication-title: Adv. Energy Mater. – volume: 1 start-page: 107 year: 2012 publication-title: Nano Energy – volume: 2 start-page: 1069 year: 2010 publication-title: ChemCatChem – volume: 81 start-page: 1687 year: 2002 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 4323 year: 2011 publication-title: Nanoscale – volume: 2 start-page: 314 year: 2013 publication-title: Nano Energy – volume: 1 start-page: 9517 year: 2013 publication-title: J. Mater. Chem. A – volume: 22 start-page: 72 year: 2013 publication-title: J. Energy Chem. – volume: 42 start-page: 3018 year: 2013 publication-title: Chem. Soc. Rev. – volume: 155 start-page: A576 year: 2008 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 4642 year: 2013 publication-title: Nano Lett. – volume: 11 start-page: 4462 year: 2011 publication-title: Nano Lett. – volume: 4 start-page: 871 year: 2004 publication-title: Nano Lett. – volume: 9 start-page: 3646 year: 2009 publication-title: Nano Lett. – volume: 47 start-page: 5976 year: 2011 publication-title: Chem. Commun. – volume: 11 start-page: 2644 year: 2011 publication-title: Nano Lett. – volume: 7 start-page: 1637 year: 2012 publication-title: Chem. Asian J. – volume: 13 start-page: 1265 year: 2013 publication-title: Nano Lett. – ident: e_1_2_6_31_1 doi: 10.1021/nl304795g – ident: e_1_2_6_26_1 doi: 10.1002/aenm.201201080 – ident: e_1_2_6_4_1 doi: 10.1016/j.jpowsour.2013.02.018 – ident: e_1_2_6_15_1 doi: 10.1021/nl901890x – ident: e_1_2_6_36_1 doi: 10.1021/nl025753t – ident: e_1_2_6_22_1 doi: 10.1021/ja2062659 – ident: e_1_2_6_16_1 doi: 10.1021/nl2027684 – ident: e_1_2_6_44_1 doi: 10.1039/c1nr10642b – ident: e_1_2_6_25_1 doi: 10.1073/pnas.1220992110 – ident: e_1_2_6_14_1 doi: 10.1016/j.carbon.2013.02.037 – ident: e_1_2_6_42_1 doi: 10.1021/nn2027159 – ident: e_1_2_6_13_1 doi: 10.1039/c2cc17925c – ident: e_1_2_6_27_1 doi: 10.1016/j.nanoen.2011.11.001 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201303166 – ident: e_1_2_6_34_1 doi: 10.1126/science.1157131 – year: 2013 ident: e_1_2_6_48_1 publication-title: Nano Lett. – ident: e_1_2_6_5_1 doi: 10.1002/adma.201103392 – ident: e_1_2_6_46_1 doi: 10.1039/c0cp02477e – ident: e_1_2_6_17_1 doi: 10.1021/nl200658a – ident: e_1_2_6_38_1 doi: 10.1063/1.1502003 – ident: e_1_2_6_28_1 doi: 10.1016/j.electacta.2012.03.050 – ident: e_1_2_6_51_1 doi: 10.1002/cctc.201000037 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201100637 – volume: 3 year: 2013 ident: e_1_2_6_23_1 publication-title: Sci. Rep. – ident: e_1_2_6_9_1 doi: 10.1038/nmat2460 – ident: e_1_2_6_1_1 doi: 10.1039/c2cs35256g – ident: e_1_2_6_30_1 doi: 10.1002/anie.201300680 – ident: e_1_2_6_43_1 doi: 10.1039/c1cc11159k – ident: e_1_2_6_37_1 doi: 10.1021/jp050545l – ident: e_1_2_6_19_1 doi: 10.1002/asia.201200004 – ident: e_1_2_6_39_1 doi: 10.1126/science.1058120 – ident: e_1_2_6_3_1 doi: 10.1016/S2095-4956(13)60009-1 – ident: e_1_2_6_20_1 doi: 10.1038/ncomms2327 – ident: e_1_2_6_50_1 doi: 10.1007/s12274-013-0374-y – ident: e_1_2_6_7_1 doi: 10.1002/aenm.201200017 – ident: e_1_2_6_40_1 doi: 10.1088/0953-8984/23/7/072204 – ident: e_1_2_6_12_1 doi: 10.1002/anie.201205292 – ident: e_1_2_6_21_1 doi: 10.1038/ncomms1293 – ident: e_1_2_6_18_1 doi: 10.1016/j.nanoen.2012.10.003 – ident: e_1_2_6_35_1 doi: 10.1021/nl025884u – ident: e_1_2_6_47_1 doi: 10.1039/c3ta10865a – ident: e_1_2_6_45_1 doi: 10.1016/j.carbon.2012.05.040 – ident: e_1_2_6_24_1 doi: 10.1002/cssc.201300260 – ident: e_1_2_6_41_1 doi: 10.1016/j.nanoen.2012.11.012 – ident: e_1_2_6_10_1 doi: 10.1007/s12274-012-0279-1 – ident: e_1_2_6_49_1 doi: 10.1021/nl4016683 – ident: e_1_2_6_8_1 doi: 10.1038/ncomms2163 – ident: e_1_2_6_33_1 doi: 10.1021/nl049728u – ident: e_1_2_6_2_1 doi: 10.1149/1.2937304 – ident: e_1_2_6_6_1 doi: 10.1021/nl202297p – ident: e_1_2_6_29_1 doi: 10.1016/j.jpowsour.2011.11.073 |
SSID | ssj0000491033 |
Score | 2.4979055 |
Snippet | Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis... Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | Architecture Carbon Cathodes hierarchical nanostructures hollow carbon nanorods Lithium Lithium sulfur batteries nanoarchitecture Nanocomposites Nanostructure Sulfur Three dimensional |
Title | 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-LRMFHX4S-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201301761 https://www.proquest.com/docview/1531538551 https://www.proquest.com/docview/1770375342 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fr9IwFG708qImRq8auV5NTYw-kCld2w0eiYDEABqByFuz_tiFeN3uRRaNf72n6zY2f8SrLwsrzRj9vp6e055-ReiZjqNQmzDyaEyox7giXgQ4e0GsISIKJJV5yv9sHkxW7O2a1xba890le_lSff_tvpL_QRXKAFe7S_YfkK0eCgXwGfCFKyAM1ythTIedCcSRO2lPx9iA6zgBVNOvNotDAqpgOVOwj51BbbEgl1_Iszu897U9A9PtfrPNPnuL7DzOdh2nulnmF5YitWW6gHH7BcHXdX_ykCLgbNhik0XJ2SUQ7-zAmmJeer2NUl3LA9pm-eAXpYfVKXeAfDmkFjMShB0ypwojCkO-F_SKeUtTL3PSTKXlZTWC9WpWNLmojcfu5hdL75RjI5NYOQEYiEnoRN2bktrzd2K8mk7FcrReXkctH2IJMIatwXA2XVRTcRAkkS7Nt2KUb17Ke3b9V82faLgvLdsTvzVik3qEk7soyzvodhFb4IEjyl10zSTH6FYd_WN0syZAeQ9JOsQNBmHHIOwYhAsG4QaDMLAG_8wg3GQQrhh0H63Go-XriVecuuEpCJaJF3cVDUyslOpzqz4ZaEN5r8cl6RsWBlxzEhHj-7pvpelIT5OIqZhTrv2QaxrQB-goSRPzEGEiFfWVzxSXlMUMguuAxbEdBXxJqNRt5JWNKVQhSW9PRjkXTkzbF7bxRdX4bfSiqn_hxFj-WPN5jk1VLdp9simMIRcf52_E9MNsPFmzhWBtdFqCJ4qe_UWAF2AdAQgm2uhp9TXYXbuYFiUmzaBOGNrjoynz28jPQf_LK4nBaD6r7k6u8OBH6Mahe52io_0uM4_BBd7LJwWFfwDQK7Bx |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Hyperbranched+Hollow+Carbon+Nanorod+Architectures+for+High-Performance+Lithium-Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Shuangqiang&rft.au=Huang%2C+Xiaodan&rft.au=Liu%2C+Hao&rft.au=Sun%2C+Bing&rft.date=2014-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=4&rft.issue=8&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Faenm.201301761&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |