3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries

Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported....

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 4; no. 8; pp. np - n/a
Main Authors Chen, Shuangqiang, Huang, Xiaodan, Liu, Hao, Sun, Bing, Yeoh, Waikong, Li, Kefei, Zhang, Jinqiang, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.06.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries. 3D hyperbranched carbon nanorod‐sulfur nanocomposites are synthesized and applied as cathode materials for lithium‐sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion.
AbstractList Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g‐1 at 1C, 861 mAh g‐1 at 5C, and 663 mAh g‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries. 3D hyperbranched carbon nanorod‐sulfur nanocomposites are synthesized and applied as cathode materials for lithium‐sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion.
Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium-sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g-1 at a 0.1C current rate and exhibit stable cycling performance. The as-prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g-1 at 1C, 861 mAh g-1 at 5C, and 663 mAh g-1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self-discharge, and confine the volume expansion on cycling. High capacity, excellent high-rate performance, and long cycle life render the as-developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium-sulfur batteries. [PUBLICATION ABSTRACT]
Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium-sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g super(-1) at a 0.1C current rate and exhibit stable cycling performance. The as-prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g super(-1) at 1C, 861 mAh g super(-1) at 5C, and 663 mAh g super(-1) at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self-discharge, and confine the volume expansion on cycling. High capacity, excellent high-rate performance, and long cycle life render the as-developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium-sulfur batteries. 3D hyperbranched carbon nanorod-sulfur nanocomposites are synthesized and applied as cathode materials for lithium-sulfur batteries. The composite materials deliver high specific capacity, excellent high rate capability, and extended cycle life. The superior performance is attributed to the nanomaze architecture and high aspect ratio of carbon nanorods, which suppress the dissolution of polysulfides and confine volume expansion.
Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis of 3D hyperbranched hollow carbon nanorod encapsulated sulfur nanocomposites as cathode materials for lithium‐sulfur batteries is reported. The sulfur nanocomposite cathodes deliver a high specific capacity of 1378 mAh g ‐1 at a 0.1C current rate and exhibit stable cycling performance. The as‐prepared sulfur nanocomposites also achieve excellent high rate capacities and cyclability, such as 990 mAh g ‐1 at 1C, 861 mAh g ‐1 at 5C, and 663 mAh g ‐1 at 10C, extending to more than 500 cycles. The superior electrochemical performance are ascribed to the unique 3D hyperbranched hollow carbon nanorod architectures and high length/radius aspect ratio of the carbon nanorods, which can effectively prevent the dissolution of polysulfides, decrease self‐discharge, and confine the volume expansion on cycling. High capacity, excellent high‐rate performance, and long cycle life render the as‐developed sulfur/carbon nanorod nanocomposites a promising cathode material for lithium‐sulfur batteries.
Author Liu, Hao
Li, Kefei
Huang, Xiaodan
Yeoh, Waikong
Chen, Shuangqiang
Wang, Guoxiu
Sun, Bing
Zhang, Jinqiang
Author_xml – sequence: 1
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 2
  givenname: Xiaodan
  surname: Huang
  fullname: Huang, Xiaodan
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 4
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 5
  givenname: Waikong
  surname: Yeoh
  fullname: Yeoh, Waikong
  organization: Australian Centre for Microscopy and Microanalysis The University of Sydney, NSW 2006, Australia
– sequence: 6
  givenname: Kefei
  surname: Li
  fullname: Li, Kefei
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 7
  givenname: Jinqiang
  surname: Zhang
  fullname: Zhang, Jinqiang
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
– sequence: 8
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  email: Guoxiu.wang@uts.edu.au
  organization: Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, NSW, 2007, Sydney, Australia
BookMark eNqFkM9r2zAYhs3oYF3X686CXXZxqs_6YfuYZW1dSLOybmw3ocifF3W2lUkyXf77qqSEURj9EHzv4XmE9L7NjkY3Ypa9BzoDSoszjeMwKygwCqWEV9kxSOC5rDg9OmRWvMlOQ7ijaXgNlLHjbM0-k2a3Rb_2ejQbbEnj-t7dk4X2azeSlR6ddy2Ze7OxEU2cPAbSOU8a-2uT36BPeUgqkqWNGzsN-e3Ud5Mnn3SM6C2Gd9nrTvcBT5_2Sfb94vzbosmXXy6vFvNlbngtIO-oYRI7Y0wtBJVUtshEVYk11MhLKVoBGrAo2hokl1C1oLnpBBNtUYqWSXaSfdzfu_Xuz4QhqsEGg32vR3RTUFCWlJWC8SKhH56hd27yY3qdAsHSqYSARPE9ZbwLwWOnjI06WjdGr22vgKrH7tVj9-rQfdJmz7Stt4P2u_8L9V64tz3uXqDV_Hx1_a-b710bIv49uNr_VrJMv1U_Vpdq-fX6ovnJbxVnD890pzs
CitedBy_id crossref_primary_10_1016_j_nanoen_2015_05_034
crossref_primary_10_1007_s12274_017_1659_3
crossref_primary_10_1016_j_cej_2018_08_176
crossref_primary_10_1002_advs_201700934
crossref_primary_10_1002_chem_201704590
crossref_primary_10_1016_j_nanoen_2022_107904
crossref_primary_10_1039_C5TA05146K
crossref_primary_10_1039_C8SE00167G
crossref_primary_10_1016_j_scib_2021_10_008
crossref_primary_10_1016_j_mtchem_2022_101138
crossref_primary_10_1039_D0TA06222G
crossref_primary_10_1007_s12598_020_01439_9
crossref_primary_10_1088_1361_6528_aaf517
crossref_primary_10_1002_adma_201602913
crossref_primary_10_1002_smtd_201700345
crossref_primary_10_1039_C7TA08520F
crossref_primary_10_3390_app7101036
crossref_primary_10_1038_srep33871
crossref_primary_10_1039_C6RA05560E
crossref_primary_10_1039_C4CC04868G
crossref_primary_10_1002_smll_201800616
crossref_primary_10_1039_C5TA00343A
crossref_primary_10_1016_j_mser_2017_09_001
crossref_primary_10_1039_D3CP02863A
crossref_primary_10_1002_smll_201804786
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1246_cl_150909
crossref_primary_10_1016_j_renene_2016_06_062
crossref_primary_10_1021_acsami_7b04583
crossref_primary_10_1007_s12274_016_1243_2
crossref_primary_10_1016_j_nanoen_2014_11_001
crossref_primary_10_1021_acsami_1c15133
crossref_primary_10_1155_er_9740805
crossref_primary_10_1016_j_carbon_2022_04_030
crossref_primary_10_1007_s10008_023_05607_6
crossref_primary_10_1149_2_0201805jes
crossref_primary_10_1002_chem_201702387
crossref_primary_10_1007_s12274_017_1737_6
crossref_primary_10_1016_j_electacta_2017_09_001
crossref_primary_10_4028_www_scientific_net_AMR_1120_1121_493
crossref_primary_10_1002_aenm_201700283
crossref_primary_10_1021_nn503220h
crossref_primary_10_1021_acs_chemrev_5b00731
crossref_primary_10_1039_D0DT01620A
crossref_primary_10_1002_adma_201606823
crossref_primary_10_1002_adma_202006019
crossref_primary_10_1021_acsami_8b03611
crossref_primary_10_1039_C7QI00726D
crossref_primary_10_1002_adma_201404210
crossref_primary_10_1007_s40820_019_0249_1
crossref_primary_10_1016_j_electacta_2014_06_071
crossref_primary_10_1016_j_ensm_2016_07_001
crossref_primary_10_1039_D0TA00284D
crossref_primary_10_1016_j_est_2024_112347
crossref_primary_10_3390_en15041543
crossref_primary_10_1038_s41467_022_31943_8
crossref_primary_10_1002_adfm_201402815
crossref_primary_10_1002_aenm_202002180
crossref_primary_10_1016_j_carbon_2017_08_062
crossref_primary_10_1021_acsami_0c22597
crossref_primary_10_1038_s43246_025_00734_1
crossref_primary_10_1039_C6RA16361K
crossref_primary_10_1016_j_carbon_2015_03_008
crossref_primary_10_1007_s40820_023_01120_7
crossref_primary_10_1016_j_electacta_2017_05_090
crossref_primary_10_1021_acsomega_7b01156
crossref_primary_10_1016_j_nanoen_2017_01_025
crossref_primary_10_1007_s11581_019_03018_0
crossref_primary_10_1016_j_jpowsour_2015_05_048
crossref_primary_10_1039_C4TA04103H
crossref_primary_10_1002_adma_201901125
crossref_primary_10_1039_D0DT01435D
crossref_primary_10_1002_smll_201402354
crossref_primary_10_1007_s11581_015_1528_6
crossref_primary_10_1021_acsnano_9b09231
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1016_j_poly_2019_01_068
crossref_primary_10_1016_j_jpowsour_2017_05_043
crossref_primary_10_1039_C4TA02097A
crossref_primary_10_1002_aenm_201702839
crossref_primary_10_1016_j_matchemphys_2016_05_044
crossref_primary_10_1039_C9CP01036J
crossref_primary_10_1002_smll_202006504
crossref_primary_10_1007_s40820_020_00521_2
crossref_primary_10_1002_cnma_201600065
crossref_primary_10_1002_aenm_201402263
crossref_primary_10_1002_adma_201801993
crossref_primary_10_1149_2_0361810jes
crossref_primary_10_1002_aenm_201802213
crossref_primary_10_1039_C7TA08859K
crossref_primary_10_1016_j_colsurfa_2024_134824
crossref_primary_10_3390_batteries8050045
crossref_primary_10_3390_nano8040181
crossref_primary_10_1016_j_cej_2020_125295
crossref_primary_10_1016_j_jallcom_2018_02_225
crossref_primary_10_1016_j_electacta_2018_03_149
crossref_primary_10_1021_acs_iecr_8b01969
crossref_primary_10_1016_j_carbon_2017_03_035
crossref_primary_10_1016_j_electacta_2018_12_009
crossref_primary_10_1002_advs_202104375
crossref_primary_10_1016_j_ijhydene_2015_09_062
crossref_primary_10_1039_C8TA05303K
crossref_primary_10_1039_C7TA00799J
crossref_primary_10_1039_C5RA17629H
crossref_primary_10_1016_j_ssi_2016_04_019
crossref_primary_10_1039_C5RA05481H
crossref_primary_10_1016_j_ensm_2019_05_013
crossref_primary_10_1016_j_renene_2015_08_005
crossref_primary_10_1002_inf2_12304
crossref_primary_10_1016_j_apmate_2021_09_006
crossref_primary_10_1016_j_apsusc_2020_146785
crossref_primary_10_1039_C5RA18567J
crossref_primary_10_1002_smll_201700087
crossref_primary_10_1007_s12274_021_3423_y
crossref_primary_10_1016_j_isci_2018_07_021
crossref_primary_10_1007_s11051_014_2789_0
crossref_primary_10_1039_C5NR01015B
crossref_primary_10_1002_aenm_202102739
crossref_primary_10_1016_j_apsusc_2020_145639
crossref_primary_10_1016_j_compositesb_2020_108004
crossref_primary_10_1002_aenm_201601767
crossref_primary_10_1021_acsnano_9b06263
crossref_primary_10_1038_ncomms8278
crossref_primary_10_1039_C8TA11375K
crossref_primary_10_1021_acssuschemeng_9b07502
crossref_primary_10_1007_s40843_014_0006_0
crossref_primary_10_1039_C5CP05447H
crossref_primary_10_1016_j_carbon_2015_09_034
crossref_primary_10_1149_2_0061801jes
crossref_primary_10_1039_C4TA02007C
crossref_primary_10_1002_aenm_201501369
crossref_primary_10_1016_j_ensm_2016_04_002
crossref_primary_10_1016_j_carbon_2017_08_035
crossref_primary_10_1002_adma_201707483
crossref_primary_10_1002_aesr_202100007
crossref_primary_10_1021_acsenergylett_7b00009
crossref_primary_10_1088_0957_4484_27_47_474001
crossref_primary_10_1039_C4CC08008D
crossref_primary_10_1021_acsami_7b09808
crossref_primary_10_1002_adma_201602300
crossref_primary_10_1002_adma_201604563
crossref_primary_10_1016_j_electacta_2015_06_052
crossref_primary_10_1002_chem_201705211
crossref_primary_10_1039_C6TA10111A
crossref_primary_10_1039_C7RA11373K
crossref_primary_10_1039_C5RA24338F
crossref_primary_10_1021_acs_nanolett_5b00064
crossref_primary_10_1016_j_mseb_2016_04_009
crossref_primary_10_1088_1361_6528_abf000
crossref_primary_10_1016_j_nanoen_2018_12_019
crossref_primary_10_1039_C6MH00426A
crossref_primary_10_1016_j_apsusc_2016_03_070
crossref_primary_10_1016_j_cej_2019_03_034
crossref_primary_10_1039_C7TA08620B
crossref_primary_10_1016_j_cej_2021_131911
crossref_primary_10_1142_S1793292020300029
crossref_primary_10_1016_j_nanoen_2015_05_006
Cites_doi 10.1021/nl304795g
10.1002/aenm.201201080
10.1016/j.jpowsour.2013.02.018
10.1021/nl901890x
10.1021/nl025753t
10.1021/ja2062659
10.1021/nl2027684
10.1039/c1nr10642b
10.1073/pnas.1220992110
10.1016/j.carbon.2013.02.037
10.1021/nn2027159
10.1039/c2cc17925c
10.1016/j.nanoen.2011.11.001
10.1002/adma.201303166
10.1126/science.1157131
10.1002/adma.201103392
10.1039/c0cp02477e
10.1021/nl200658a
10.1063/1.1502003
10.1016/j.electacta.2012.03.050
10.1002/cctc.201000037
10.1002/anie.201100637
10.1038/nmat2460
10.1039/c2cs35256g
10.1002/anie.201300680
10.1039/c1cc11159k
10.1021/jp050545l
10.1002/asia.201200004
10.1126/science.1058120
10.1016/S2095-4956(13)60009-1
10.1038/ncomms2327
10.1007/s12274-013-0374-y
10.1002/aenm.201200017
10.1088/0953-8984/23/7/072204
10.1002/anie.201205292
10.1038/ncomms1293
10.1016/j.nanoen.2012.10.003
10.1021/nl025884u
10.1039/c3ta10865a
10.1016/j.carbon.2012.05.040
10.1002/cssc.201300260
10.1016/j.nanoen.2012.11.012
10.1007/s12274-012-0279-1
10.1021/nl4016683
10.1038/ncomms2163
10.1021/nl049728u
10.1149/1.2937304
10.1021/nl202297p
10.1016/j.jpowsour.2011.11.073
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201301761
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 3322939321
10_1002_aenm_201301761
AENM201301761
ark_67375_WNG_LRMFHX4S_4
Genre article
GrantInformation_xml – fundername: ARC Future Fellowship project
  funderid: FT110100800
– fundername: China Scholarship Council
  funderid: 2011689009
– fundername: Australian Research Council (ARC)
  funderid: DP1093855
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4951-f0c36efccc9550606de35885b19e4765d51a1e22d9164618d1a4cf535d275d363
ISSN 1614-6832
IngestDate Fri Jul 11 00:50:59 EDT 2025
Fri Jul 25 12:22:22 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 01:43:11 EDT 2025
Wed Jan 22 17:02:14 EST 2025
Wed Oct 30 09:52:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4951-f0c36efccc9550606de35885b19e4765d51a1e22d9164618d1a4cf535d275d363
Notes istex:84E7B803114CF9E3FB16A45742A18ED2FAAF6F43
Australian Research Council (ARC) - No. DP1093855
ArticleID:AENM201301761
China Scholarship Council - No. 2011689009
ARC Future Fellowship project - No. FT110100800
ark:/67375/WNG-LRMFHX4S-4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1531538551
PQPubID 886389
PageCount 9
ParticipantIDs proquest_miscellaneous_1770375342
proquest_journals_1531538551
crossref_citationtrail_10_1002_aenm_201301761
crossref_primary_10_1002_aenm_201301761
wiley_primary_10_1002_aenm_201301761_AENM201301761
istex_primary_ark_67375_WNG_LRMFHX4S_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationTitleAlternate Adv. Energy Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References M.-K. Song, Y. Zhang, E. J. Cairns, Nano Lett. 2013.
S. Chen, P. Bao, X. Huang, B. Sun, G. Wang, Nano Res. 2013, 7, 85.
K. L. Klug, V. P. Dravid, Appl. Phys. Lett. 2002, 81, 1687.
X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
S. Chen, W. Yeoh, Q. Liu, G. Wang, Carbon 2012, 50, 4557.
G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462.
L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.
H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644.
Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Phys. Chem. Chem. Phys. 2011, 13, 7660.
G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, Adv. Energy Mater. 2012, 2, 1238.
R. Joshi, J. Engstler, L. Houben, M. Bar Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, J. J. Schneider, ChemCatChem 2010, 2, 1069.
Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2012, 1, 107.
J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 2002, 3, 235.
K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576.
R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, K. Amine, Nano Lett. 2013, 13, 4642.
J.-Q. Huang, Q. Zhang, S.-M. Zhang, X.-F. Liu, W. Zhu, W.-Z. Qian, F. Wei, Carbon 2013, 58, 99.
C. Zu, A. Manthiram, Adv. Energy Mater. 2013, 3, 1008.
S. Chen, P. Bao, G. Wang, Nano Energy 2013, 2, 425.
Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.
B. Wang, K. Li, D. Su, H. Ahn, G. Wang, Chem. Asian J. 2012, 7, 1637.
Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331.
N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904.
K. Li, B. Wang, D. Su, J. Park, H. Ahn, G. Wang, J. Power Sources 2012, 202, 389.
Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Angew. Chem. Int. Ed. 2013, 52, 7460.
Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018.
J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288.
M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060.
L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, J. Energy Chem. 2013, 22, 72.
T. P. McNicholas, L. Ding, D. Yuan, J. Liu, Nano Lett. 2009, 9, 3646.
Y. Liu, H. Zhan, Y. Zhou, Electrochim. Acta 2012, 70, 241.
G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Chem. Commun. 2011, 47, 5976.
Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 2005, 109, 11204.
R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154.
J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287.
C. Zhang, H. B. Wu, C. Yuan, Z. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592.
K. Zhang, Q. Zhao, Z. Tao, J. Chen, Nano Res. 2013, 6, 38.
X. Ji, S. Evers, R. Black, L. F. Nazar, Nat. Commun. 2011, 2, 325.
S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547.
S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097.
Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
Y. Zou, Y. Wang, ACS Nano 2011, 5, 8108.
D. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 2004, 4, 871.
D. N. Fronczek, W. G. Bessler, J. Power Sources 2013, 244, 183.
W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. USA 2013, 110, 7148.
S. Chen, P. Chen, Y. Wang, Nanoscale 2011, 3, 4323.
L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, J. Mater. Chem. A 2013, 1, 9517.
J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao, S.-M. Zhang, W. Zhu, W.-Z. Qian, F. Wei, Nano Energy 2013, 2, 314.
G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265.
H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, L. Chen, Sci. Rep. 2013, 3.
F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, R. Chen, ChemSusChem 2013, 6, 1438.
G. Sneha, B. Cameron, G. Siping, F. Keisuke, A. D. Peter, A. K. Jeffry, J. Phys.: Condens. Matter 2011, 23, 072204.
2013; 3
2013; 4
2013; 25
2011; 2
2013; 1
2013; 2
2013; 22
2013; 42
2013; 244
2004; 4
2002; 2
2011; 11
2002; 3
2002; 81
2011; 13
2012; 202
2013; 7
2008; 320
2011; 3
2013; 6
2011; 5
2011; 133
2012; 51
2012; 50
2012; 70
2012; 2
2012; 3
2013; 58
2012; 1
2013; 13
2001; 291
2011; 50
2013; 52
2009; 9
2005; 109
2009; 8
2011; 23
2013; 110
2012; 48
2011; 47
2013
2008; 155
2012; 24
2012; 7
2010; 2
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Chen H. (e_1_2_6_23_1) 2013; 3
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
Song M.‐K. (e_1_2_6_48_1) 2013
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: S. Chen, P. Bao, X. Huang, B. Sun, G. Wang, Nano Res. 2013, 7, 85.
– reference: G. Zheng, Q. Zhang, J. J. Cha, Y. Yang, W. Li, Z. W. Seh, Y. Cui, Nano Lett. 2013, 13, 1265.
– reference: Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018.
– reference: J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 2002, 3, 235.
– reference: M.-K. Song, Y. Zhang, E. J. Cairns, Nano Lett. 2013.
– reference: L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, J. Mater. Chem. A 2013, 1, 9517.
– reference: M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008, 320, 1060.
– reference: Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
– reference: C. Zu, A. Manthiram, Adv. Energy Mater. 2013, 3, 1008.
– reference: R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, K. Amine, Nano Lett. 2013, 13, 4642.
– reference: B. Wang, K. Li, D. Su, H. Ahn, G. Wang, Chem. Asian J. 2012, 7, 1637.
– reference: D. N. Fronczek, W. G. Bessler, J. Power Sources 2013, 244, 183.
– reference: N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904.
– reference: H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644.
– reference: J.-Q. Huang, Q. Zhang, S.-M. Zhang, X.-F. Liu, W. Zhu, W.-Z. Qian, F. Wei, Carbon 2013, 58, 99.
– reference: R. Demir-Cakan, M. Morcrette, F. Nouar, C. Davoisne, T. Devic, D. Gonbeau, R. Dominko, C. Serre, G. Férey, J.-M. Tarascon, J. Am. Chem. Soc. 2011, 133, 16154.
– reference: G. Sneha, B. Cameron, G. Siping, F. Keisuke, A. D. Peter, A. K. Jeffry, J. Phys.: Condens. Matter 2011, 23, 072204.
– reference: Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331.
– reference: Y. Zou, Y. Wang, ACS Nano 2011, 5, 8108.
– reference: K. Li, B. Wang, D. Su, J. Park, H. Ahn, G. Wang, J. Power Sources 2012, 202, 389.
– reference: J.-Q. Huang, X.-F. Liu, Q. Zhang, C.-M. Chen, M.-Q. Zhao, S.-M. Zhang, W. Zhu, W.-Z. Qian, F. Wei, Nano Energy 2013, 2, 314.
– reference: Y. Liu, H. Zhan, Y. Zhou, Electrochim. Acta 2012, 70, 241.
– reference: J. Guo, Y. Xu, C. Wang, Nano Lett. 2011, 11, 4288.
– reference: F. Wu, J. Chen, L. Li, T. Zhao, Z. Liu, R. Chen, ChemSusChem 2013, 6, 1438.
– reference: H. Chen, W. Dong, J. Ge, C. Wang, X. Wu, W. Lu, L. Chen, Sci. Rep. 2013, 3.
– reference: C. Zhang, H. B. Wu, C. Yuan, Z. Guo, X. W. Lou, Angew. Chem. Int. Ed. 2012, 51, 9592.
– reference: K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576.
– reference: G. Ning, Z. Fan, G. Wang, J. Gao, W. Qian, F. Wei, Chem. Commun. 2011, 47, 5976.
– reference: X. Ji, S. Evers, R. Black, L. F. Nazar, Nat. Commun. 2011, 2, 325.
– reference: W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu, Y. Cui, Proc. Natl. Acad. Sci. USA 2013, 110, 7148.
– reference: G.-C. Li, G.-R. Li, S.-H. Ye, X.-P. Gao, Adv. Energy Mater. 2012, 2, 1238.
– reference: T. P. McNicholas, L. Ding, D. Yuan, J. Liu, Nano Lett. 2009, 9, 3646.
– reference: R. Joshi, J. Engstler, L. Houben, M. Bar Sadan, A. Weidenkaff, P. Mandaliev, A. Issanin, J. J. Schneider, ChemCatChem 2010, 2, 1069.
– reference: D. Wang, F. Qian, C. Yang, Z. Zhong, C. M. Lieber, Nano Lett. 2004, 4, 871.
– reference: L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang, J. Chen, J. Energy Chem. 2013, 22, 72.
– reference: S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel, M. J. Hoffmann, Chem. Commun. 2012, 48, 4097.
– reference: S. Moon, Y. H. Jung, W. K. Jung, D. S. Jung, J. W. Choi, D. K. Kim, Adv. Mater. 2013, 25, 6547.
– reference: K. L. Klug, V. P. Dravid, Appl. Phys. Lett. 2002, 81, 1687.
– reference: L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, L. V. Saraf, Z. Nie, G. J. Exarhos, J. Liu, Adv. Mater. 2012, 24, 1176.
– reference: Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166.
– reference: S. Chen, P. Bao, G. Wang, Nano Energy 2013, 2, 425.
– reference: K. Zhang, Q. Zhao, Z. Tao, J. Chen, Nano Res. 2013, 6, 38.
– reference: S. Chen, P. Chen, Y. Wang, Nanoscale 2011, 3, 4323.
– reference: Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Angew. Chem. Int. Ed. 2013, 52, 7460.
– reference: X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
– reference: J. Y. Lao, J. G. Wen, Z. F. Ren, Nano Lett. 2002, 2, 1287.
– reference: S. Chen, W. Yeoh, Q. Liu, G. Wang, Carbon 2012, 50, 4557.
– reference: Y. Hao, G. Meng, C. Ye, X. Zhang, L. Zhang, J. Phys. Chem. B 2005, 109, 11204.
– reference: Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 2012, 1, 107.
– reference: Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie, Z. Yang, J. Liu, Phys. Chem. Chem. Phys. 2011, 13, 7660.
– reference: G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, Y. Cui, Nano Lett. 2011, 11, 4462.
– volume: 11
  start-page: 4288
  year: 2011
  publication-title: Nano Lett.
– volume: 50
  start-page: 5904
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1287
  year: 2002
  publication-title: Nano Lett.
– volume: 5
  start-page: 8108
  year: 2011
  publication-title: ACS Nano
– volume: 3
  start-page: 235
  year: 2002
  publication-title: Nano Lett.
– volume: 3
  year: 2013
  publication-title: Sci. Rep.
– volume: 70
  start-page: 241
  year: 2012
  publication-title: Electrochim. Acta
– volume: 109
  start-page: 11204
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 23
  start-page: 072204
  year: 2011
  publication-title: J. Phys.: Condens. Matter
– volume: 25
  start-page: 6547
  year: 2013
  publication-title: Adv. Mater.
– volume: 52
  start-page: 7460
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 1176
  year: 2012
  publication-title: Adv. Mater.
– volume: 291
  start-page: 1947
  year: 2001
  publication-title: Science
– volume: 202
  start-page: 389
  year: 2012
  publication-title: J. Power Sources
– volume: 13
  start-page: 7660
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 85
  year: 2013
  publication-title: Nano Res.
– year: 2013
  publication-title: Nano Lett.
– volume: 2
  start-page: 425
  year: 2013
  publication-title: Nano Energy
– volume: 2
  start-page: 1238
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 9592
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 320
  start-page: 1060
  year: 2008
  publication-title: Science
– volume: 244
  start-page: 183
  year: 2013
  publication-title: J. Power Sources
– volume: 2
  start-page: 325
  year: 2011
  publication-title: Nat. Commun.
– volume: 48
  start-page: 4097
  year: 2012
  publication-title: Chem. Commun.
– volume: 6
  start-page: 1438
  year: 2013
  publication-title: ChemSusChem
– volume: 6
  start-page: 38
  year: 2013
  publication-title: Nano Res.
– volume: 3
  start-page: 1166
  year: 2012
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1331
  year: 2013
  publication-title: Nat. Commun.
– volume: 58
  start-page: 99
  year: 2013
  publication-title: Carbon
– volume: 110
  start-page: 7148
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 500
  year: 2009
  publication-title: Nat. Mater.
– volume: 50
  start-page: 4557
  year: 2012
  publication-title: Carbon
– volume: 133
  start-page: 16154
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1008
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 107
  year: 2012
  publication-title: Nano Energy
– volume: 2
  start-page: 1069
  year: 2010
  publication-title: ChemCatChem
– volume: 81
  start-page: 1687
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 4323
  year: 2011
  publication-title: Nanoscale
– volume: 2
  start-page: 314
  year: 2013
  publication-title: Nano Energy
– volume: 1
  start-page: 9517
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 72
  year: 2013
  publication-title: J. Energy Chem.
– volume: 42
  start-page: 3018
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 155
  start-page: A576
  year: 2008
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 4642
  year: 2013
  publication-title: Nano Lett.
– volume: 11
  start-page: 4462
  year: 2011
  publication-title: Nano Lett.
– volume: 4
  start-page: 871
  year: 2004
  publication-title: Nano Lett.
– volume: 9
  start-page: 3646
  year: 2009
  publication-title: Nano Lett.
– volume: 47
  start-page: 5976
  year: 2011
  publication-title: Chem. Commun.
– volume: 11
  start-page: 2644
  year: 2011
  publication-title: Nano Lett.
– volume: 7
  start-page: 1637
  year: 2012
  publication-title: Chem. Asian J.
– volume: 13
  start-page: 1265
  year: 2013
  publication-title: Nano Lett.
– ident: e_1_2_6_31_1
  doi: 10.1021/nl304795g
– ident: e_1_2_6_26_1
  doi: 10.1002/aenm.201201080
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jpowsour.2013.02.018
– ident: e_1_2_6_15_1
  doi: 10.1021/nl901890x
– ident: e_1_2_6_36_1
  doi: 10.1021/nl025753t
– ident: e_1_2_6_22_1
  doi: 10.1021/ja2062659
– ident: e_1_2_6_16_1
  doi: 10.1021/nl2027684
– ident: e_1_2_6_44_1
  doi: 10.1039/c1nr10642b
– ident: e_1_2_6_25_1
  doi: 10.1073/pnas.1220992110
– ident: e_1_2_6_14_1
  doi: 10.1016/j.carbon.2013.02.037
– ident: e_1_2_6_42_1
  doi: 10.1021/nn2027159
– ident: e_1_2_6_13_1
  doi: 10.1039/c2cc17925c
– ident: e_1_2_6_27_1
  doi: 10.1016/j.nanoen.2011.11.001
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201303166
– ident: e_1_2_6_34_1
  doi: 10.1126/science.1157131
– year: 2013
  ident: e_1_2_6_48_1
  publication-title: Nano Lett.
– ident: e_1_2_6_5_1
  doi: 10.1002/adma.201103392
– ident: e_1_2_6_46_1
  doi: 10.1039/c0cp02477e
– ident: e_1_2_6_17_1
  doi: 10.1021/nl200658a
– ident: e_1_2_6_38_1
  doi: 10.1063/1.1502003
– ident: e_1_2_6_28_1
  doi: 10.1016/j.electacta.2012.03.050
– ident: e_1_2_6_51_1
  doi: 10.1002/cctc.201000037
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201100637
– volume: 3
  year: 2013
  ident: e_1_2_6_23_1
  publication-title: Sci. Rep.
– ident: e_1_2_6_9_1
  doi: 10.1038/nmat2460
– ident: e_1_2_6_1_1
  doi: 10.1039/c2cs35256g
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201300680
– ident: e_1_2_6_43_1
  doi: 10.1039/c1cc11159k
– ident: e_1_2_6_37_1
  doi: 10.1021/jp050545l
– ident: e_1_2_6_19_1
  doi: 10.1002/asia.201200004
– ident: e_1_2_6_39_1
  doi: 10.1126/science.1058120
– ident: e_1_2_6_3_1
  doi: 10.1016/S2095-4956(13)60009-1
– ident: e_1_2_6_20_1
  doi: 10.1038/ncomms2327
– ident: e_1_2_6_50_1
  doi: 10.1007/s12274-013-0374-y
– ident: e_1_2_6_7_1
  doi: 10.1002/aenm.201200017
– ident: e_1_2_6_40_1
  doi: 10.1088/0953-8984/23/7/072204
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.201205292
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms1293
– ident: e_1_2_6_18_1
  doi: 10.1016/j.nanoen.2012.10.003
– ident: e_1_2_6_35_1
  doi: 10.1021/nl025884u
– ident: e_1_2_6_47_1
  doi: 10.1039/c3ta10865a
– ident: e_1_2_6_45_1
  doi: 10.1016/j.carbon.2012.05.040
– ident: e_1_2_6_24_1
  doi: 10.1002/cssc.201300260
– ident: e_1_2_6_41_1
  doi: 10.1016/j.nanoen.2012.11.012
– ident: e_1_2_6_10_1
  doi: 10.1007/s12274-012-0279-1
– ident: e_1_2_6_49_1
  doi: 10.1021/nl4016683
– ident: e_1_2_6_8_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_6_33_1
  doi: 10.1021/nl049728u
– ident: e_1_2_6_2_1
  doi: 10.1149/1.2937304
– ident: e_1_2_6_6_1
  doi: 10.1021/nl202297p
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jpowsour.2011.11.073
SSID ssj0000491033
Score 2.4979055
Snippet Lithium‐sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis...
Lithium-sulfur batteries have been plagued for a long time by low Coulombic efficiency, fast capacity loss, and poor high rate performance. Here, the synthesis...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms Architecture
Carbon
Cathodes
hierarchical nanostructures
hollow carbon nanorods
Lithium
Lithium sulfur batteries
nanoarchitecture
Nanocomposites
Nanostructure
Sulfur
Three dimensional
Title 3D Hyperbranched Hollow Carbon Nanorod Architectures for High-Performance Lithium-Sulfur Batteries
URI https://api.istex.fr/ark:/67375/WNG-LRMFHX4S-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201301761
https://www.proquest.com/docview/1531538551
https://www.proquest.com/docview/1770375342
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fr9IwFG708qImRq8auV5NTYw-kCld2w0eiYDEABqByFuz_tiFeN3uRRaNf72n6zY2f8SrLwsrzRj9vp6e055-ReiZjqNQmzDyaEyox7giXgQ4e0GsISIKJJV5yv9sHkxW7O2a1xba890le_lSff_tvpL_QRXKAFe7S_YfkK0eCgXwGfCFKyAM1ythTIedCcSRO2lPx9iA6zgBVNOvNotDAqpgOVOwj51BbbEgl1_Iszu897U9A9PtfrPNPnuL7DzOdh2nulnmF5YitWW6gHH7BcHXdX_ykCLgbNhik0XJ2SUQ7-zAmmJeer2NUl3LA9pm-eAXpYfVKXeAfDmkFjMShB0ypwojCkO-F_SKeUtTL3PSTKXlZTWC9WpWNLmojcfu5hdL75RjI5NYOQEYiEnoRN2bktrzd2K8mk7FcrReXkctH2IJMIatwXA2XVRTcRAkkS7Nt2KUb17Ke3b9V82faLgvLdsTvzVik3qEk7soyzvodhFb4IEjyl10zSTH6FYd_WN0syZAeQ9JOsQNBmHHIOwYhAsG4QaDMLAG_8wg3GQQrhh0H63Go-XriVecuuEpCJaJF3cVDUyslOpzqz4ZaEN5r8cl6RsWBlxzEhHj-7pvpelIT5OIqZhTrv2QaxrQB-goSRPzEGEiFfWVzxSXlMUMguuAxbEdBXxJqNRt5JWNKVQhSW9PRjkXTkzbF7bxRdX4bfSiqn_hxFj-WPN5jk1VLdp9simMIRcf52_E9MNsPFmzhWBtdFqCJ4qe_UWAF2AdAQgm2uhp9TXYXbuYFiUmzaBOGNrjoynz28jPQf_LK4nBaD6r7k6u8OBH6Mahe52io_0uM4_BBd7LJwWFfwDQK7Bx
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Hyperbranched+Hollow+Carbon+Nanorod+Architectures+for+High-Performance+Lithium-Sulfur+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Shuangqiang&rft.au=Huang%2C+Xiaodan&rft.au=Liu%2C+Hao&rft.au=Sun%2C+Bing&rft.date=2014-06-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=4&rft.issue=8&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Faenm.201301761&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon