Floquet topological insulators
Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (...
Saved in:
Published in | Physica status solidi. PSS-RRL. Rapid research letters Vol. 7; no. 1-2; pp. 101 - 108 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.02.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Time‐periodic perturbations, like an electromagnetic wave, could be used to turn a trivial insulator (or a semimetal) into a topological phase. Several recent proposals to realize such nonequilibrium Chern or topological insulators are reviewed in the framework of the Floquet formalism. The authors also review the possibility to use photons in order to probe stationary topological phases like helical edge states (resp. chiral surface states) of 2D (resp. 3D) topological insulators. |
---|---|
AbstractList | Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non-equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time-independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi-metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [PUBLICATION ABSTRACT] Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time-independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi-metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. magnified image Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) Time‐periodic perturbations, like an electromagnetic wave, could be used to turn a trivial insulator (or a semimetal) into a topological phase. Several recent proposals to realize such nonequilibrium Chern or topological insulators are reviewed in the framework of the Floquet formalism. The authors also review the possibility to use photons in order to probe stationary topological phases like helical edge states (resp. chiral surface states) of 2D (resp. 3D) topological insulators. |
Author | Dóra, Balázs Moessner, Roderich Simon, Ferenc Cayssol, Jérôme |
Author_xml | – sequence: 1 givenname: Jérôme surname: Cayssol fullname: Cayssol, Jérôme email: jcayssol@pks.mpg.de organization: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany – sequence: 2 givenname: Balázs surname: Dóra fullname: Dóra, Balázs organization: BME-MTA Exotic Quantum Phases Research Group, Budapest University of Technology and Economics, Budapest, Hungary – sequence: 3 givenname: Ferenc surname: Simon fullname: Simon, Ferenc organization: Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary – sequence: 4 givenname: Roderich surname: Moessner fullname: Moessner, Roderich organization: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany |
BackLink | https://hal.science/hal-00820826$$DView record in HAL |
BookMark | eNqFkEFLwzAYhoNMcJtePcrAk4fOJE3S5jin28Sh4iYDLyFtU82MzUw6df_eluoQQYTAF8LzfHl5O6BV2EIBcIhgH0GIT1feuz6GCENGKNoBbRQzHDAcwdb2Tske6Hi_hJDyiIRtcDQy9nWtyl5pV9bYR51K09OFXxtZWuf3wW4ujVcHX7ML7kcX8-EkmN6ML4eDaZASTlGQZiyBUmVRhmmayTCFMiY8RZzzjDImGSOYMozCKCaJzBPG8wQimbAMURgqHHbBSbP3SRqxcvpFuo2wUovJYCrqNwhjXB32hir2uGFXro7uS7G0a1dU8QQKCUO8-iuuKNJQqbNVMSoXqS5lqW1ROqmNQFDUrYm6NbFtrdL6v7TvNH8KvBHetVGbf2hxO5vd_XSDxtW-VB9bV7pnwaIwomJxPRZztjg7f5hciSj8BCuIj3o |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_4_043164 crossref_primary_10_1103_PhysRevB_90_045310 crossref_primary_10_1002_lpor_202100614 crossref_primary_10_1103_PhysRevB_96_195303 crossref_primary_10_1103_PhysRevB_96_235409 crossref_primary_10_1038_s41598_024_70995_2 crossref_primary_10_1103_PhysRevLett_133_196601 crossref_primary_10_1103_PhysRevB_109_115431 crossref_primary_10_35848_1882_0786_ac9a22 crossref_primary_10_1103_PhysRevResearch_3_023039 crossref_primary_10_1063_1_4999380 crossref_primary_10_1140_epjb_e2020_100531_4 crossref_primary_10_1103_PhysRevB_110_L241113 crossref_primary_10_1103_PhysRevLett_118_083603 crossref_primary_10_1038_s41928_022_00751_9 crossref_primary_10_1103_PhysRevLett_125_100601 crossref_primary_10_1103_PhysRevB_92_235411 crossref_primary_10_1016_j_crhy_2018_03_002 crossref_primary_10_1103_PhysRevLett_125_183001 crossref_primary_10_1103_PhysRevB_103_155433 crossref_primary_10_3390_cryst9030137 crossref_primary_10_1103_PhysRevB_100_165411 crossref_primary_10_1103_PhysRevB_97_195139 crossref_primary_10_1103_PhysRevResearch_2_043275 crossref_primary_10_1007_JHEP09_2018_082 crossref_primary_10_1103_PhysRevA_91_052122 crossref_primary_10_1103_PhysRevB_105_094510 crossref_primary_10_21468_SciPostPhys_13_2_015 crossref_primary_10_1103_PhysRevB_99_020306 crossref_primary_10_1103_PhysRevB_95_161115 crossref_primary_10_1103_PhysRevResearch_3_033184 crossref_primary_10_1140_epjb_e2014_50465_9 crossref_primary_10_1038_s41467_023_42139_z crossref_primary_10_1103_PhysRevB_98_184514 crossref_primary_10_21468_SciPostPhysCore_7_2_024 crossref_primary_10_1103_PhysRevLett_127_067001 crossref_primary_10_1103_PhysRevB_100_165302 crossref_primary_10_1103_PhysRevB_101_165106 crossref_primary_10_1103_PhysRevB_107_L121407 crossref_primary_10_1103_PhysRevB_109_195123 crossref_primary_10_1103_PhysRevResearch_6_013098 crossref_primary_10_1103_PhysRevX_3_031005 crossref_primary_10_1103_PhysRevB_100_085308 crossref_primary_10_1103_PhysRevB_93_174301 crossref_primary_10_1103_PhysRevB_95_035136 crossref_primary_10_1103_PhysRevB_98_205417 crossref_primary_10_1103_PhysRevB_98_245119 crossref_primary_10_1088_1361_648X_ac709d crossref_primary_10_1103_PhysRevLett_132_136601 crossref_primary_10_1103_PhysRevB_103_205130 crossref_primary_10_1103_PhysRevLett_118_260602 crossref_primary_10_7566_JPSJ_90_081004 crossref_primary_10_22331_q_2023_11_03_1160 crossref_primary_10_1121_10_0001812 crossref_primary_10_1016_j_physe_2022_115496 crossref_primary_10_1103_PhysRevB_102_045414 crossref_primary_10_1002_lpor_202000584 crossref_primary_10_1134_S1063783420110402 crossref_primary_10_1515_zna_2016_0074 crossref_primary_10_1103_PhysRevB_102_235143 crossref_primary_10_21468_SciPostPhys_15_4_148 crossref_primary_10_1103_PhysRevLett_132_146402 crossref_primary_10_1103_PhysRevB_99_075120 crossref_primary_10_1088_0953_8984_27_33_335505 crossref_primary_10_1103_PhysRevB_110_054314 crossref_primary_10_1007_s10773_022_05191_x crossref_primary_10_1016_j_physe_2019_113862 crossref_primary_10_1063_5_0143436 crossref_primary_10_1103_PhysRevLett_125_187702 crossref_primary_10_1364_OL_495156 crossref_primary_10_1103_PhysRevB_110_054310 crossref_primary_10_1103_PhysRevB_96_165443 crossref_primary_10_1103_PhysRevA_100_033406 crossref_primary_10_1103_PhysRevB_100_245412 crossref_primary_10_1103_PhysRevB_99_205146 crossref_primary_10_1103_PhysRevB_102_045419 crossref_primary_10_1103_PhysRevResearch_5_023004 crossref_primary_10_21468_SciPostPhys_9_5_079 crossref_primary_10_1103_PhysRevB_101_104307 crossref_primary_10_1088_1361_648X_ab03b9 crossref_primary_10_1103_PhysRevB_106_195411 crossref_primary_10_1038_s41598_018_28508_5 crossref_primary_10_1103_PhysRevB_101_045123 crossref_primary_10_1103_PhysRevLett_117_013902 crossref_primary_10_1103_PhysRevB_98_235424 crossref_primary_10_1103_PhysRevLett_133_077201 crossref_primary_10_1088_1367_2630_aab2c7 crossref_primary_10_1103_PhysRevA_105_012203 crossref_primary_10_1103_PhysRevB_105_214305 crossref_primary_10_1103_PhysRevB_105_054423 crossref_primary_10_1103_PhysRevA_91_033632 crossref_primary_10_1103_PhysRevA_92_052311 crossref_primary_10_1103_PhysRevB_97_035151 crossref_primary_10_1103_PhysRevB_108_054310 crossref_primary_10_1103_PhysRevB_89_235434 crossref_primary_10_1103_PhysRevA_90_013621 crossref_primary_10_1103_PhysRevB_90_201303 crossref_primary_10_1088_1361_648X_abb1cc crossref_primary_10_1007_s44214_024_00067_z crossref_primary_10_1103_PhysRevA_91_063607 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1103_PhysRevA_111_022430 crossref_primary_10_1103_PhysRevA_97_043851 crossref_primary_10_1103_PhysRevB_91_125105 crossref_primary_10_1103_PhysRevB_88_121406 crossref_primary_10_1103_PhysRevB_92_235436 crossref_primary_10_1103_PhysRevLett_115_246403 crossref_primary_10_1103_PhysRevB_104_L121410 crossref_primary_10_1103_PhysRevB_89_121401 crossref_primary_10_1103_PhysRevB_96_104309 crossref_primary_10_1103_PhysRevB_98_205109 crossref_primary_10_1103_PhysRevLett_115_160402 crossref_primary_10_1016_j_physleta_2020_126429 crossref_primary_10_1088_1674_1056_ad4634 crossref_primary_10_1038_ncomms13918 crossref_primary_10_1103_PhysRevResearch_6_023244 crossref_primary_10_1103_PhysRevB_93_245416 crossref_primary_10_1103_PhysRevB_96_245404 crossref_primary_10_1103_PhysRevB_105_075133 crossref_primary_10_3390_e25101401 crossref_primary_10_1103_PhysRevE_91_052129 crossref_primary_10_1103_PhysRevB_111_064303 crossref_primary_10_1088_0256_307X_38_3_030301 crossref_primary_10_1103_PhysRevB_104_035402 crossref_primary_10_1007_JHEP04_2019_034 crossref_primary_10_1103_PhysRevB_100_054305 crossref_primary_10_1103_PhysRevE_108_L042102 crossref_primary_10_1016_j_aop_2020_168199 crossref_primary_10_1088_1361_648X_ab1026 crossref_primary_10_1103_PhysRevB_94_235447 crossref_primary_10_1103_PhysRevB_105_014306 crossref_primary_10_1103_PhysRevLett_111_100403 crossref_primary_10_1007_JHEP10_2020_013 crossref_primary_10_1103_PhysRevB_95_174306 crossref_primary_10_1103_PhysRevB_105_054205 crossref_primary_10_1103_PhysRevB_106_184106 crossref_primary_10_1007_s10773_024_05625_8 crossref_primary_10_1016_j_pquantelec_2017_07_004 crossref_primary_10_1515_nanoph_2023_0408 crossref_primary_10_3390_condmat4010010 crossref_primary_10_1103_PhysRevB_109_165110 crossref_primary_10_1080_23746149_2020_1870559 crossref_primary_10_1103_PhysRevB_106_245305 crossref_primary_10_1103_PhysRevB_93_205415 crossref_primary_10_1103_PhysRevB_102_094301 crossref_primary_10_1088_1367_2630_17_9_093039 crossref_primary_10_1103_PhysRevA_100_053608 crossref_primary_10_22331_q_2022_03_03_664 crossref_primary_10_1103_PhysRevB_96_155435 crossref_primary_10_1016_j_physe_2023_115698 crossref_primary_10_1016_j_ssc_2015_04_019 crossref_primary_10_1137_22M1474552 crossref_primary_10_1103_PhysRevB_107_235109 crossref_primary_10_1063_1_4952722 crossref_primary_10_1103_PhysRevB_89_235416 crossref_primary_10_1088_1361_648X_ad9722 crossref_primary_10_1088_1361_648X_ad98db crossref_primary_10_1103_PhysRevB_94_125105 crossref_primary_10_1103_PhysRevB_95_014305 crossref_primary_10_1088_1674_1056_ad5d94 crossref_primary_10_1016_j_ssc_2020_114092 crossref_primary_10_1038_ncomms8047 crossref_primary_10_1103_PhysRevLett_114_246802 crossref_primary_10_1038_s42254_021_00388_1 crossref_primary_10_1103_PhysRevB_102_115411 crossref_primary_10_1103_PhysRevB_106_174417 crossref_primary_10_1038_s41598_019_43702_9 crossref_primary_10_1088_2058_9565_aab2b9 crossref_primary_10_1016_j_spmi_2020_106778 crossref_primary_10_1088_1361_648X_ac6eac crossref_primary_10_1103_PhysRevLett_123_126401 crossref_primary_10_1103_PhysRevB_109_165126 crossref_primary_10_1103_PhysRevB_100_014421 crossref_primary_10_1103_PhysRevB_109_184307 crossref_primary_10_1103_PhysRevB_101_195310 crossref_primary_10_1088_1361_648X_ac8a37 crossref_primary_10_1088_0953_8984_29_3_035501 crossref_primary_10_1103_PhysRevLett_118_157201 crossref_primary_10_1209_0295_5075_115_37003 crossref_primary_10_1103_PhysRevB_100_144302 crossref_primary_10_1140_epjd_s10053_022_00485_5 crossref_primary_10_1103_PhysRevB_100_035303 crossref_primary_10_1103_PhysRevB_106_224309 crossref_primary_10_1134_S1063784223900322 crossref_primary_10_1103_PhysRevB_89_075113 crossref_primary_10_1103_PhysRevB_93_241406 crossref_primary_10_1038_s41566_020_00717_3 crossref_primary_10_1021_acsphyschemau_3c00049 crossref_primary_10_1063_1_4990969 crossref_primary_10_1088_1674_1056_accf68 crossref_primary_10_1103_PhysRevB_94_155134 crossref_primary_10_1038_s42005_022_01022_x crossref_primary_10_1103_PhysRevB_93_075405 crossref_primary_10_1364_OE_395504 crossref_primary_10_1103_PhysRevB_105_L081115 crossref_primary_10_1088_1367_2630_ad6b43 crossref_primary_10_1103_PhysRevB_97_195312 crossref_primary_10_1103_PhysRevB_99_045441 crossref_primary_10_1103_PhysRevX_7_021015 crossref_primary_10_1209_0295_5075_126_27002 crossref_primary_10_1063_5_0071224 crossref_primary_10_1103_PhysRevB_109_165418 crossref_primary_10_1103_PhysRevE_93_062119 crossref_primary_10_1088_1361_648X_ab351b crossref_primary_10_1103_PhysRevA_91_023624 crossref_primary_10_1103_PhysRevB_94_144103 crossref_primary_10_1103_PhysRevB_88_245422 crossref_primary_10_1103_PhysRevB_96_041126 crossref_primary_10_1140_epjb_s10051_023_00553_8 crossref_primary_10_1103_PhysRevA_101_033607 crossref_primary_10_1103_PhysRevA_102_011301 crossref_primary_10_1103_PhysRevB_107_085408 crossref_primary_10_1088_1361_648X_aae111 crossref_primary_10_1103_PhysRevB_106_195115 crossref_primary_10_1103_RevModPhys_91_015006 crossref_primary_10_7498_aps_70_20201808 crossref_primary_10_1103_PhysRevResearch_1_032013 crossref_primary_10_1103_PhysRevB_105_L081102 crossref_primary_10_1155_2018_5703197 crossref_primary_10_1088_1367_2630_aade37 crossref_primary_10_1103_PhysRevB_94_214203 crossref_primary_10_1016_j_physleta_2018_03_046 crossref_primary_10_1103_PhysRevB_110_165405 crossref_primary_10_1103_PhysRevB_95_235309 crossref_primary_10_1103_PhysRevB_97_245430 crossref_primary_10_1103_PhysRevB_111_115424 crossref_primary_10_1103_PhysRevB_102_184302 crossref_primary_10_1103_PhysRevB_108_174306 crossref_primary_10_21468_SciPostPhys_16_3_083 crossref_primary_10_1007_s11082_024_07633_8 crossref_primary_10_1038_s41467_021_25511_9 crossref_primary_10_1103_PhysRevResearch_2_022048 crossref_primary_10_1103_PhysRevLett_127_043904 crossref_primary_10_1103_PhysRevLett_120_263202 crossref_primary_10_7498_aps_66_224203 crossref_primary_10_1038_ncomms11439 crossref_primary_10_1103_PhysRevB_95_045102 crossref_primary_10_1103_PhysRevLett_125_106401 crossref_primary_10_1103_PhysRevB_110_165410 crossref_primary_10_1007_s10773_019_04054_2 crossref_primary_10_1016_j_rinp_2023_106257 crossref_primary_10_1103_PhysRevA_89_042327 crossref_primary_10_1103_PhysRevA_94_043611 crossref_primary_10_1088_1361_648X_ac1151 crossref_primary_10_1103_PhysRevB_103_085417 crossref_primary_10_1016_j_physa_2022_127866 crossref_primary_10_1103_PhysRevB_100_075412 crossref_primary_10_1088_1361_648X_abf0c3 crossref_primary_10_1103_PhysRevB_96_155118 crossref_primary_10_21468_SciPostPhys_16_3_077 crossref_primary_10_1140_epjb_e2016_70265_5 crossref_primary_10_1088_2040_8978_18_1_014001 crossref_primary_10_1103_PhysRevLett_124_057001 crossref_primary_10_1088_1361_648X_aa8087 crossref_primary_10_1103_PhysRevB_98_041113 crossref_primary_10_1103_PhysRevA_103_042219 crossref_primary_10_1103_PhysRevA_103_L051101 crossref_primary_10_1103_PhysRevLett_121_126803 crossref_primary_10_1002_pssr_201350502 crossref_primary_10_1088_0034_4885_79_6_066501 crossref_primary_10_1103_PhysRevB_107_165407 crossref_primary_10_1103_PhysRevB_110_165403 crossref_primary_10_1103_PhysRevB_95_144311 crossref_primary_10_1103_PhysRevX_4_031027 crossref_primary_10_1103_PhysRevResearch_2_022023 crossref_primary_10_3390_sym14122546 crossref_primary_10_1103_PhysRevResearch_6_043122 crossref_primary_10_1103_PRXQuantum_3_040312 crossref_primary_10_1103_PhysRevA_110_L040601 crossref_primary_10_1103_PhysRevB_102_205423 crossref_primary_10_1103_PhysRevB_88_245119 crossref_primary_10_1016_j_physrep_2024_11_003 crossref_primary_10_1103_PhysRevA_100_052103 crossref_primary_10_1088_2053_1583_aa6a3b crossref_primary_10_1016_j_physleta_2023_128671 crossref_primary_10_1103_PhysRevB_104_L081411 crossref_primary_10_1103_PhysRevB_98_125129 crossref_primary_10_1103_PhysRevB_97_205406 crossref_primary_10_1021_acs_jpclett_4c00602 crossref_primary_10_1103_PhysRevA_97_063603 crossref_primary_10_1103_PhysRevB_109_235416 crossref_primary_10_1103_PhysRevB_97_085405 crossref_primary_10_1103_PhysRevB_102_024201 crossref_primary_10_1103_PhysRevB_103_L121115 crossref_primary_10_1103_PhysRevA_93_043618 crossref_primary_10_1016_j_aop_2018_10_005 crossref_primary_10_1103_PhysRevA_94_013620 crossref_primary_10_1038_nphys3803 crossref_primary_10_1140_epjb_e2019_100495_6 crossref_primary_10_1142_S0217979223501540 crossref_primary_10_1103_PhysRevB_104_174308 crossref_primary_10_1088_1367_2630_acf0e3 crossref_primary_10_1088_1361_648X_acbffd crossref_primary_10_1002_adma_202401716 crossref_primary_10_1002_adma_202204120 crossref_primary_10_1088_2053_1591_ab2bcd crossref_primary_10_1103_PhysRevLett_119_147202 crossref_primary_10_1103_PhysRevB_104_L140301 crossref_primary_10_1103_PhysRevB_103_094307 crossref_primary_10_1103_PhysRevB_95_125134 crossref_primary_10_1088_0953_8984_25_14_144202 crossref_primary_10_1016_j_crhy_2018_04_003 crossref_primary_10_1103_PhysRevB_88_045118 crossref_primary_10_1103_PhysRevB_106_054307 crossref_primary_10_1103_RevModPhys_93_025001 crossref_primary_10_1103_PhysRevLett_121_237401 crossref_primary_10_1073_pnas_1721096115 crossref_primary_10_1103_PhysRevB_106_214310 crossref_primary_10_1103_PhysRevB_108_235148 crossref_primary_10_1103_PhysRevA_107_013712 crossref_primary_10_1103_PhysRevB_108_L220301 crossref_primary_10_1103_RevModPhys_89_011004 crossref_primary_10_1063_1_4950854 crossref_primary_10_1103_PhysRevB_108_045415 crossref_primary_10_1088_1367_2630_18_9_093013 crossref_primary_10_1103_PhysRevB_91_094502 crossref_primary_10_1088_1361_648X_aad0b2 crossref_primary_10_1088_1402_4896_ad406f crossref_primary_10_1103_PhysRevB_107_094505 crossref_primary_10_1016_j_progsurf_2023_100705 crossref_primary_10_1038_s42005_022_01050_7 crossref_primary_10_1002_qute_201900126 crossref_primary_10_1103_PhysRevA_92_053822 crossref_primary_10_1016_j_crhy_2016_05_003 crossref_primary_10_1146_annurev_conmatphys_031218_013721 crossref_primary_10_1103_PhysRevB_97_184308 crossref_primary_10_22331_q_2020_05_25_270 crossref_primary_10_1103_PhysRevB_98_235112 crossref_primary_10_1088_1361_648X_ac0b60 crossref_primary_10_1038_s41598_020_71196_3 crossref_primary_10_1088_0034_4885_77_12_126401 crossref_primary_10_1103_PhysRevB_94_155112 crossref_primary_10_1103_PhysRevResearch_2_033495 crossref_primary_10_1209_0295_5075_128_36001 crossref_primary_10_7566_JPSJ_86_024713 crossref_primary_10_7566_JPSJ_87_034711 crossref_primary_10_1088_2399_6528_aa8843 crossref_primary_10_1103_PhysRevB_88_155133 crossref_primary_10_1103_PhysRevB_102_085430 crossref_primary_10_1103_PhysRevA_92_023624 crossref_primary_10_1103_PhysRevB_96_205127 crossref_primary_10_1103_PhysRevB_89_205408 crossref_primary_10_1103_PhysRevB_98_245145 crossref_primary_10_1103_PhysRevB_95_104308 crossref_primary_10_1140_epjb_e2020_100509_8 crossref_primary_10_1103_PhysRevB_92_045424 crossref_primary_10_1103_PhysRevB_97_035422 crossref_primary_10_1103_PhysRevB_104_L180303 crossref_primary_10_1103_PhysRevB_99_064306 crossref_primary_10_1038_s41598_018_22779_8 crossref_primary_10_1088_1367_2630_18_10_103014 crossref_primary_10_1103_PhysRevB_111_045302 crossref_primary_10_1103_PhysRevB_102_245416 crossref_primary_10_1103_PhysRevB_97_165142 crossref_primary_10_1103_PhysRevB_100_045423 crossref_primary_10_1103_PhysRevLett_121_030606 crossref_primary_10_1038_s42254_021_00323_4 crossref_primary_10_1103_PhysRevB_94_155122 crossref_primary_10_1103_PhysRevLett_122_110602 crossref_primary_10_1103_PhysRevB_90_115423 crossref_primary_10_1103_PhysRevResearch_4_033184 crossref_primary_10_1103_PhysRevB_94_161111 crossref_primary_10_1103_PhysRevB_99_235408 crossref_primary_10_1103_PhysRevLett_121_076802 crossref_primary_10_1103_PhysRevResearch_2_033143 crossref_primary_10_1016_j_physrep_2013_09_001 crossref_primary_10_1088_1361_648X_ab6cc0 crossref_primary_10_1038_s41524_021_00518_4 crossref_primary_10_1140_epjd_e2015_60220_7 crossref_primary_10_1103_PhysRevB_109_125303 crossref_primary_10_1088_0256_307X_41_4_047102 |
Cites_doi | 10.1103/PhysRevLett.49.405 10.1103/PhysRevB.86.125449 10.1103/PhysRevA.7.2203 10.1063/1.3149495 10.1103/PhysRevB.86.195414 10.1103/PhysRevLett.100.236601 10.1063/1.3293411 10.1103/PhysRevB.74.085308 10.1103/PhysRevLett.106.236803 10.1126/science.1133734 10.1103/PhysRevB.82.235114 10.1088/0957-4484/22/1/015203 10.1103/PhysRevLett.99.047401 10.1103/PhysRevLett.107.216601 10.1103/PhysRevLett.108.056602 10.1103/PhysRevA.79.053639 10.1126/science.1148047 10.1103/RevModPhys.82.3045 10.1126/science.1174736 10.1063/1.3597412 10.1103/RevModPhys.83.1057 10.1088/1367-2630/14/10/103027 10.1103/PhysRevLett.106.236804 10.1103/RevModPhys.83.1523 10.1103/PhysRevLett.106.220402 10.1103/PhysRevB.78.195424 10.1103/PhysRevB.85.115110 10.1103/PhysRevB.83.035309 10.1103/PhysRevLett.105.227402 10.1103/PhysRevB.80.113102 10.1103/PhysRevLett.47.986 10.1103/PhysRevB.82.085310 10.1103/PhysRevLett.106.236802 10.1103/PhysRevB.27.6083 10.1103/PhysRevLett.105.255302 10.1103/PhysRevLett.95.226801 10.1088/0268-1242/25/9/095005 10.1103/PhysRevB.78.195125 10.1103/PhysRevB.83.245436 10.1103/PhysRevLett.103.266801 10.1103/PhysRevB.79.241306 10.1103/PhysRevLett.109.145301 10.1103/PhysRevLett.105.017401 10.1038/nphys1926 10.1103/PhysRevLett.61.2015 10.1103/PhysRevLett.103.046811 10.1103/PhysRevLett.107.136603 10.1103/PhysRevB.84.235108 10.1103/PhysRevLett.95.146802 10.1038/nphys913 10.1103/PhysRevB.79.081406 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Attribution - NonCommercial |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Attribution - NonCommercial |
DBID | BSCLL AAYXX CITATION 7U5 8FD L7M 1XC VOOES |
DOI | 10.1002/pssr.201206451 |
DatabaseName | Istex CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6270 |
EndPage | 108 |
ExternalDocumentID | oai_HAL_hal_00820826v1 2955139651 10_1002_pssr_201206451 PSSR201206451 ark_67375_WNG_T6WBDZHK_7 |
Genre | editorial Feature |
GrantInformation_xml | – fundername: ERC funderid: ERC‐259374‐Sylo – fundername: ANR funderid: 2010‐BLANC‐041902 (ISOTOP) – fundername: Hungarian Scientific Research Funds funderid: K72613; K73361; K101244; CNK80991; TAMOP‐4.2.1/B‐09/1/KMR‐2010‐0002 – fundername: EU/FP7 under contract TEMSSOC |
GroupedDBID | 05W 0R~ 123 1OC 31~ 33P 3SF 4.4 52U 8-1 8UM AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2W PQQKQ ROL SUPJJ WBKPD WGJPS WIH WIK WOHZO WXSBR WYISQ XV2 ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION 7U5 8FD L7M 1XC VOOES |
ID | FETCH-LOGICAL-c4951-cd6b0aed7d25cda3c0a849c1999d566a664256213784bafb69fb01ab6d1503e23 |
ISSN | 1862-6254 |
IngestDate | Fri May 09 12:13:58 EDT 2025 Mon Jul 14 10:26:06 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Tue Jul 01 02:15:06 EDT 2025 Wed Jan 22 16:39:47 EST 2025 Wed Oct 30 09:58:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | topological insulators spin-Hall effect Floquet theory |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4951-cd6b0aed7d25cda3c0a849c1999d566a664256213784bafb69fb01ab6d1503e23 |
Notes | ERC - No. ERC-259374-Sylo ArticleID:PSSR201206451 istex:28276C6FC3D73F5AA372A68EB0240E99EF1528F6 ANR - No. 2010-BLANC-041902 (ISOTOP) ark:/67375/WNG-T6WBDZHK-7 Hungarian Scientific Research Funds - No. K72613; No. K73361; No. K101244; No. CNK80991; No. TAMOP-4.2.1/B-09/1/KMR-2010-0002 EU/FP7 under contract TEMSSOC SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ORCID | 0000-0002-2021-9080 |
OpenAccessLink | https://hal.science/hal-00820826 |
PQID | 1346194258 |
PQPubID | 1036348 |
PageCount | 8 |
ParticipantIDs | hal_primary_oai_HAL_hal_00820826v1 proquest_journals_1346194258 crossref_citationtrail_10_1002_pssr_201206451 crossref_primary_10_1002_pssr_201206451 wiley_primary_10_1002_pssr_201206451_PSSR201206451 istex_primary_ark_67375_WNG_T6WBDZHK_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin – name: Weinheim |
PublicationTitle | Physica status solidi. PSS-RRL. Rapid research letters |
PublicationTitleAlternate | Phys. Status Solidi RRL |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318(5851), 766-770 (2007). X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011). X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010). N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7, 490 (2011), arXiv: 1008.1792. J. K. Asbóth, Phys. Rev. B 86, 195414 (2012). K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011). L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011). X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008). M. J. Schmidt, E. G. Novik, M. Kindermann, and B. Trauzettel, Phys. Rev. B 79, 241306 (2009). E. Morell and L. Torres, Phys. Rev. B 86, 125449 (2012). D. J. Thouless, Phys. Rev. B 27, 6083-6087 (1983). F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). P. Hosur, Phys. Rev. B 83, 035309 (2011). A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325(5938), 294-297 (2009). H. Sambe, Phys. Rev. A 7, 2203-2213 (1973). H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama, Phys. Rev. B 85, 115110 (2012). E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett. 106, 236802 (2011). J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83(11), 1523-1543 (2011). T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010). B. Wittmann, S. N. Danilov, V. Bel'kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25, 095005 (2010). C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). B. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314(5806), 1757 (2006). T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009). Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011). B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett. 108, 056602 (2012). P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109(10), 145301 (2012). T. D. Stanescu, V. Galitski, J. Y. Vaishnav, C. W. Clark, and S. Das Sarma, Phys. Rev. A 79, 053639 (2009). D. S. L. Abergel and T. Chakraborty, Nanotechnology 22, 015203 (2011). L. Fu, Phys. Rev. Lett. 103, 266801 (2009). C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308 (2006). A. Kitaev, Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22-26 June 2008, AIP Conf. Proc. 1134, 22 (2009). M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045-3067 (2010). D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49(6), 405 (1982). I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011). K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009). P. Adroguer, D. Carpentier, J. Cayssol, and E. Orignac, New J. Phys. 14, 103027 (2012). N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett. 105, 255302 (2010). J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. 105, 227402 (2010). J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47(10), 986-989 (1981). X. L. Qi, T. L. Hughes, and S. C. Zhang, Nature Phys. 4, 273 (2008). Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011). T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011), arXiv: 1104.4636. H. Calvo, H. Pastawski, S. Roche, and L. Torres, Appl. Phys. Lett. 98, 232103 (2011). A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008). C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008). H. M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009). C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010). J. I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010). T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011). Wang Yao, A. H. MacDonald, and Qian Niu, Phys. Rev. Lett. 99, 047401 (2007); http://prl.aps.org/abstract/PRL/v99/i4/e047401. 2006; 74 2009; 80 2011 2010; 105 2011; 84 2011; 83 1981; 47 2008; 78 2011; 98 2008; 4 2006; 314 2012; 14 2008; 100 2007; 99 2010; 63 2011; 7 2012; 108 2012; 109 2010; 82 2009; 79 1982; 49 2011; 107 2010; 25 2011; 106 2005; 95 2011; 22 1988; 61 2007; 318 1973; 7 1983; 27 2009; 103 2009; 1134 2012; 86 2009; 325 2012; 85 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_51_2 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_50_2 |
References_xml | – reference: M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318(5851), 766-770 (2007). – reference: J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83(11), 1523-1543 (2011). – reference: T. D. Stanescu, V. Galitski, J. Y. Vaishnav, C. W. Clark, and S. Das Sarma, Phys. Rev. A 79, 053639 (2009). – reference: Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011). – reference: J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47(10), 986-989 (1981). – reference: B. Wittmann, S. N. Danilov, V. Bel'kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25, 095005 (2010). – reference: F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988). – reference: B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett. 108, 056602 (2012). – reference: I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011). – reference: N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett. 105, 255302 (2010). – reference: K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009). – reference: A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325(5938), 294-297 (2009). – reference: C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005). – reference: D. J. Thouless, Phys. Rev. B 27, 6083-6087 (1983). – reference: L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011). – reference: T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011). – reference: J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. 105, 227402 (2010). – reference: T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011), arXiv: 1104.4636. – reference: B. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314(5806), 1757 (2006). – reference: P. Adroguer, D. Carpentier, J. Cayssol, and E. Orignac, New J. Phys. 14, 103027 (2012). – reference: C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010). – reference: A. Kitaev, Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22-26 June 2008, AIP Conf. Proc. 1134, 22 (2009). – reference: X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308 (2006). – reference: H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama, Phys. Rev. B 85, 115110 (2012). – reference: X. L. Qi, T. L. Hughes, and S. C. Zhang, Nature Phys. 4, 273 (2008). – reference: T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010). – reference: K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011). – reference: Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011). – reference: Wang Yao, A. H. MacDonald, and Qian Niu, Phys. Rev. Lett. 99, 047401 (2007); http://prl.aps.org/abstract/PRL/v99/i4/e047401. – reference: J. I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010). – reference: E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett. 106, 236802 (2011). – reference: D. S. L. Abergel and T. Chakraborty, Nanotechnology 22, 015203 (2011). – reference: H. Sambe, Phys. Rev. A 7, 2203-2213 (1973). – reference: L. Fu, Phys. Rev. Lett. 103, 266801 (2009). – reference: N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7, 490 (2011), arXiv: 1008.1792. – reference: M. J. Schmidt, E. G. Novik, M. Kindermann, and B. Trauzettel, Phys. Rev. B 79, 241306 (2009). – reference: M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045-3067 (2010). – reference: P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109(10), 145301 (2012). – reference: X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010). – reference: H. Calvo, H. Pastawski, S. Roche, and L. Torres, Appl. Phys. Lett. 98, 232103 (2011). – reference: P. Hosur, Phys. Rev. B 83, 035309 (2011). – reference: H. M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009). – reference: A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008). – reference: C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005). – reference: X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011). – reference: X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008). – reference: J. K. Asbóth, Phys. Rev. B 86, 195414 (2012). – reference: C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008). – reference: D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49(6), 405 (1982). – reference: T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009). – reference: E. Morell and L. Torres, Phys. Rev. B 86, 125449 (2012). – year: 2011 – volume: 105 start-page: 227402 year: 2010 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 195424 year: 2008 publication-title: Phys. Rev. B – volume: 61 start-page: 2015 year: 1988 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 235114 year: 2010 publication-title: Phys. Rev. B – volume: 83 start-page: 245436 year: 2011 publication-title: Phys. Rev. B – volume: 106 start-page: 236802 year: 2011 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 053639 year: 2009 publication-title: Phys. Rev. A – volume: 108 start-page: 056602 year: 2012 publication-title: Phys. Rev. Lett. – volume: 80 start-page: 113102 year: 2009 publication-title: Phys. Rev. B – volume: 83 start-page: 1057 year: 2011 end-page: 1110 publication-title: Rev. Mod. Phys. – volume: 7 start-page: 490 year: 2011 publication-title: Nature Phys. – volume: 95 start-page: 226801 year: 2005 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 405 issue: 6 year: 1982 publication-title: Phys. Rev. Lett. – volume: 107 start-page: 216601 year: 2011 publication-title: Phys. Rev. Lett. – volume: 106 start-page: 236803 year: 2011 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 195125 year: 2008 publication-title: Phys. Rev. B – volume: 325 start-page: 294 issue: 5938 year: 2009 end-page: 297 publication-title: Science – volume: 105 start-page: 017401 year: 2010 publication-title: Phys. Rev. Lett. – volume: 107 start-page: 136603 year: 2011 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 103027 year: 2012 publication-title: New J. Phys. – volume: 79 start-page: 081406 year: 2009 publication-title: Phys. Rev. B – volume: 85 start-page: 115110 year: 2012 publication-title: Phys. Rev. B – volume: 86 start-page: 195414 year: 2012 publication-title: Phys. Rev. B – volume: 95 start-page: 146802 year: 2005 publication-title: Phys. Rev. Lett. – volume: 27 start-page: 6083 year: 1983 end-page: 6087 publication-title: Phys. Rev. B – volume: 106 start-page: 220402 year: 2011 publication-title: Phys. Rev. Lett. – volume: 100 start-page: 236601 year: 2008 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 273 year: 2008 publication-title: Nature Phys. – volume: 106 start-page: 236804 year: 2011 publication-title: Phys. Rev. Lett. – volume: 109 start-page: 145301 issue: 10 year: 2012 publication-title: Phys. Rev. Lett. – volume: 83 start-page: 1523 issue: 11 year: 2011 end-page: 1543 publication-title: Rev. Mod. Phys. – volume: 86 start-page: 125449 year: 2012 publication-title: Phys. Rev. B – volume: 7 start-page: 2203 year: 1973 end-page: 2213 publication-title: Phys. Rev. A – volume: 63 start-page: 33 year: 2010 publication-title: Phys. Today – volume: 82 start-page: 3045 year: 2010 end-page: 3067 publication-title: Rev. Mod. Phys. – volume: 74 start-page: 085308 year: 2006 publication-title: Phys. Rev. B – volume: 83 start-page: 035309 year: 2011 publication-title: Phys. Rev. B – volume: 103 start-page: 266801 year: 2009 publication-title: Phys. Rev. Lett. – volume: 98 start-page: 232103 year: 2011 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 015203 year: 2011 publication-title: Nanotechnology – volume: 105 start-page: 255302 year: 2010 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 085310 year: 2010 publication-title: Phys. Rev. B – volume: 99 start-page: 047401 year: 2007 publication-title: Phys. Rev. Lett. – volume: 25 start-page: 095005 year: 2010 publication-title: Semicond. Sci. Technol. – volume: 314 start-page: 1757 issue: 5806 year: 2006 publication-title: Science – volume: 318 start-page: 766 issue: 5851 year: 2007 end-page: 770 publication-title: Science – volume: 1134 start-page: 22 year: 2009 article-title: Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22–26 June 2008 publication-title: AIP Conf. Proc. – volume: 103 start-page: 046811 year: 2009 publication-title: Phys. Rev. Lett. – volume: 84 start-page: 235108 year: 2011 publication-title: Phys. Rev. B – volume: 47 start-page: 986 issue: 10 year: 1981 end-page: 989 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 241306 year: 2009 publication-title: Phys. Rev. B – ident: e_1_2_8_38_2 doi: 10.1103/PhysRevLett.49.405 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevB.86.125449 – ident: e_1_2_8_35_2 doi: 10.1103/PhysRevA.7.2203 – ident: e_1_2_8_24_2 doi: 10.1063/1.3149495 – ident: e_1_2_8_37_2 doi: 10.1103/PhysRevB.86.195414 – ident: e_1_2_8_40_2 doi: 10.1103/PhysRevLett.100.236601 – ident: e_1_2_8_18_2 doi: 10.1063/1.3293411 – ident: e_1_2_8_8_2 doi: 10.1103/PhysRevB.74.085308 – ident: e_1_2_8_10_2 doi: 10.1103/PhysRevLett.106.236803 – ident: e_1_2_8_4_2 doi: 10.1126/science.1133734 – ident: e_1_2_8_26_2 – ident: e_1_2_8_21_2 doi: 10.1103/PhysRevB.82.235114 – ident: e_1_2_8_44_2 doi: 10.1088/0957-4484/22/1/015203 – ident: e_1_2_8_54_2 doi: 10.1103/PhysRevLett.99.047401 – ident: e_1_2_8_31_2 doi: 10.1103/PhysRevLett.107.216601 – ident: e_1_2_8_32_2 doi: 10.1103/PhysRevLett.108.056602 – ident: e_1_2_8_36_2 – ident: e_1_2_8_16_2 doi: 10.1103/PhysRevA.79.053639 – ident: e_1_2_8_19_2 doi: 10.1126/science.1148047 – ident: e_1_2_8_5_2 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_8_20_2 doi: 10.1126/science.1174736 – ident: e_1_2_8_28_2 doi: 10.1063/1.3597412 – ident: e_1_2_8_6_2 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_8_51_2 doi: 10.1088/1367-2630/14/10/103027 – ident: e_1_2_8_11_2 doi: 10.1103/PhysRevLett.106.236804 – ident: e_1_2_8_52_2 doi: 10.1103/RevModPhys.83.1523 – ident: e_1_2_8_15_2 doi: 10.1103/PhysRevLett.106.220402 – ident: e_1_2_8_23_2 doi: 10.1103/PhysRevB.78.195424 – ident: e_1_2_8_34_2 doi: 10.1103/PhysRevB.85.115110 – ident: e_1_2_8_33_2 doi: 10.1103/PhysRevB.83.035309 – ident: e_1_2_8_42_2 doi: 10.1103/PhysRevLett.105.227402 – ident: e_1_2_8_13_2 doi: 10.1103/PhysRevB.80.113102 – ident: e_1_2_8_48_2 doi: 10.1103/PhysRevLett.47.986 – ident: e_1_2_8_12_2 doi: 10.1103/PhysRevB.82.085310 – ident: e_1_2_8_9_2 doi: 10.1103/PhysRevLett.106.236802 – ident: e_1_2_8_49_2 doi: 10.1103/PhysRevB.27.6083 – ident: e_1_2_8_17_2 doi: 10.1103/PhysRevLett.105.255302 – ident: e_1_2_8_2_2 doi: 10.1103/PhysRevLett.95.226801 – ident: e_1_2_8_43_2 doi: 10.1088/0268-1242/25/9/095005 – ident: e_1_2_8_22_2 doi: 10.1103/PhysRevB.78.195125 – ident: e_1_2_8_45_2 doi: 10.1103/PhysRevB.83.245436 – ident: e_1_2_8_50_2 doi: 10.1103/PhysRevLett.103.266801 – ident: e_1_2_8_46_2 doi: 10.1103/PhysRevB.79.241306 – ident: e_1_2_8_53_2 doi: 10.1103/PhysRevLett.109.145301 – ident: e_1_2_8_39_2 doi: 10.1103/PhysRevLett.105.017401 – ident: e_1_2_8_25_2 doi: 10.1038/nphys1926 – ident: e_1_2_8_7_2 doi: 10.1103/PhysRevLett.61.2015 – ident: e_1_2_8_14_2 doi: 10.1103/PhysRevLett.103.046811 – ident: e_1_2_8_41_2 doi: 10.1103/PhysRevLett.107.136603 – ident: e_1_2_8_29_2 doi: 10.1103/PhysRevB.84.235108 – ident: e_1_2_8_3_2 doi: 10.1103/PhysRevLett.95.146802 – ident: e_1_2_8_47_2 doi: 10.1038/nphys913 – ident: e_1_2_8_27_2 doi: 10.1103/PhysRevB.79.081406 |
SSID | ssj0059743 |
Score | 2.5219054 |
Snippet | Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as... magnified image Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Condensed Matter Electronics Floquet theory Other Physics Solid state physics spin-Hall effect topological insulators |
Title | Floquet topological insulators |
URI | https://api.istex.fr/ark:/67375/WNG-T6WBDZHK-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201206451 https://www.proquest.com/docview/1346194258 https://hal.science/hal-00820826 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6Vki8ID5FYUwVQvBQpTjOZx-7lhFBN01txyZeLDtJRUXpqjZFsH-Ff5Y723FTtInBS5RYlhP7zuf7Xe6DkFchnUZZN2BOGntTxw-zrtOVVDrSi_2YShHEqmrJ8UmYnPkfLoKLWu1XxWtpU8hOenVtXMn_UBXagK4YJfsPlLWDQgPcA33hChSG661ofDRHsV6A_ri0Mkw5lyOSXlf1zlNNDrQcFJt1Gz5rls067dPx2BmNhp32SCxnGMdijCBzFeRj1e2--IkzURTXf9bVD_ZD_5tli4Fq8Fa6krOYq27ulR1iDDyhNWUVX2jpfAmS1sTcjLAs28xY1owhAotC7Dh16LJYn_pJu2KJ1EIVUJMDOEsbDvJqmy4aUkriqMpwJipSy1XXvCg3T_G10l9nk12CcoE-ewxT8bnbc678t__H8WedEsXqK3q5RQE_P3nPJ-H54eBz8pFHe6TBAIOwOmn0BsfDcXnQIxRT8Rvl9MqcoJS93f2GHZ1n7wt63DZwE__YgTVVcKS0m8l9cs_AklZP89gDUssXD8kdzTXrR-TAcFqrwmmtLac9JmdH7yb9xDGVNZwUALHrpFkoqcizKGNBmgkvpSL2uymmpMhAvxchoFJQjF0vin0ppjLsTiV1hQwzwA9ezrwnpL64XORPSYv6UZhHLGVUwhCUSZkzSTMAblOG4zWJU86dpybtPFY_mXOdMJtxXCtu16pJ3tj-S51w5caeL2EpbSfMk570hhzblGILwPk7dHqtVtp2u4nKTbJfkoKbLb7mruejlY8FcZMwRZ6_fBOHfTuyT89u-_Ln5O52R-2TerHa5C9A2S3kgWG63wbpoRI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Floquet+topological+insulators&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Cayssol%2C+J%C3%A9r%C3%B4me&rft.au=D%C3%B3ra%2C+Bal%C3%A1zs&rft.au=Simon%2C+Ferenc&rft.au=Moessner%2C+Roderich&rft.date=2013-02-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=7&rft.issue=1-2&rft.spage=101&rft.epage=108&rft_id=info:doi/10.1002%2Fpssr.201206451&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_T6WBDZHK_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon |