Floquet topological insulators

Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. PSS-RRL. Rapid research letters Vol. 7; no. 1-2; pp. 101 - 108
Main Authors Cayssol, Jérôme, Dóra, Balázs, Simon, Ferenc, Moessner, Roderich
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.02.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) Time‐periodic perturbations, like an electromagnetic wave, could be used to turn a trivial insulator (or a semimetal) into a topological phase. Several recent proposals to realize such nonequilibrium Chern or topological insulators are reviewed in the framework of the Floquet formalism. The authors also review the possibility to use photons in order to probe stationary topological phases like helical edge states (resp. chiral surface states) of 2D (resp. 3D) topological insulators.
AbstractList Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non-equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time-independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi-metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [PUBLICATION ABSTRACT]
Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time-independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi-metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states.
magnified image Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as backscattering due to disorder. This stems from their peculiar band structure, which provides topological protections. While conventional tools (pressure, doping etc.) to modify the band structure are available, time periodic perturbations can provide tunability by adding time as an extra dimension enhanced to the problem. In this short review, we outline the recent research on topological insulators in non‐equilibrium situations. Firstly, we introduce briefly the Floquet formalism that allows to describe steady states of the electronic system with an effective time‐independent Hamiltonian. Secondly, we summarize recent theoretical work on how light irradiation drives semi‐metallic graphene or a trivial semiconducting system into a topological phase. Finally, we show how photons can be used to probe topological edge or surface states. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) Time‐periodic perturbations, like an electromagnetic wave, could be used to turn a trivial insulator (or a semimetal) into a topological phase. Several recent proposals to realize such nonequilibrium Chern or topological insulators are reviewed in the framework of the Floquet formalism. The authors also review the possibility to use photons in order to probe stationary topological phases like helical edge states (resp. chiral surface states) of 2D (resp. 3D) topological insulators.
Author Dóra, Balázs
Moessner, Roderich
Simon, Ferenc
Cayssol, Jérôme
Author_xml – sequence: 1
  givenname: Jérôme
  surname: Cayssol
  fullname: Cayssol, Jérôme
  email: jcayssol@pks.mpg.de
  organization: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
– sequence: 2
  givenname: Balázs
  surname: Dóra
  fullname: Dóra, Balázs
  organization: BME-MTA Exotic Quantum Phases Research Group, Budapest University of Technology and Economics, Budapest, Hungary
– sequence: 3
  givenname: Ferenc
  surname: Simon
  fullname: Simon, Ferenc
  organization: Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest, Hungary
– sequence: 4
  givenname: Roderich
  surname: Moessner
  fullname: Moessner, Roderich
  organization: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
BackLink https://hal.science/hal-00820826$$DView record in HAL
BookMark eNqFkEFLwzAYhoNMcJtePcrAk4fOJE3S5jin28Sh4iYDLyFtU82MzUw6df_eluoQQYTAF8LzfHl5O6BV2EIBcIhgH0GIT1feuz6GCENGKNoBbRQzHDAcwdb2Tske6Hi_hJDyiIRtcDQy9nWtyl5pV9bYR51K09OFXxtZWuf3wW4ujVcHX7ML7kcX8-EkmN6ML4eDaZASTlGQZiyBUmVRhmmayTCFMiY8RZzzjDImGSOYMozCKCaJzBPG8wQimbAMURgqHHbBSbP3SRqxcvpFuo2wUovJYCrqNwhjXB32hir2uGFXro7uS7G0a1dU8QQKCUO8-iuuKNJQqbNVMSoXqS5lqW1ROqmNQFDUrYm6NbFtrdL6v7TvNH8KvBHetVGbf2hxO5vd_XSDxtW-VB9bV7pnwaIwomJxPRZztjg7f5hciSj8BCuIj3o
CitedBy_id crossref_primary_10_1103_PhysRevResearch_4_043164
crossref_primary_10_1103_PhysRevB_90_045310
crossref_primary_10_1002_lpor_202100614
crossref_primary_10_1103_PhysRevB_96_195303
crossref_primary_10_1103_PhysRevB_96_235409
crossref_primary_10_1038_s41598_024_70995_2
crossref_primary_10_1103_PhysRevLett_133_196601
crossref_primary_10_1103_PhysRevB_109_115431
crossref_primary_10_35848_1882_0786_ac9a22
crossref_primary_10_1103_PhysRevResearch_3_023039
crossref_primary_10_1063_1_4999380
crossref_primary_10_1140_epjb_e2020_100531_4
crossref_primary_10_1103_PhysRevB_110_L241113
crossref_primary_10_1103_PhysRevLett_118_083603
crossref_primary_10_1038_s41928_022_00751_9
crossref_primary_10_1103_PhysRevLett_125_100601
crossref_primary_10_1103_PhysRevB_92_235411
crossref_primary_10_1016_j_crhy_2018_03_002
crossref_primary_10_1103_PhysRevLett_125_183001
crossref_primary_10_1103_PhysRevB_103_155433
crossref_primary_10_3390_cryst9030137
crossref_primary_10_1103_PhysRevB_100_165411
crossref_primary_10_1103_PhysRevB_97_195139
crossref_primary_10_1103_PhysRevResearch_2_043275
crossref_primary_10_1007_JHEP09_2018_082
crossref_primary_10_1103_PhysRevA_91_052122
crossref_primary_10_1103_PhysRevB_105_094510
crossref_primary_10_21468_SciPostPhys_13_2_015
crossref_primary_10_1103_PhysRevB_99_020306
crossref_primary_10_1103_PhysRevB_95_161115
crossref_primary_10_1103_PhysRevResearch_3_033184
crossref_primary_10_1140_epjb_e2014_50465_9
crossref_primary_10_1038_s41467_023_42139_z
crossref_primary_10_1103_PhysRevB_98_184514
crossref_primary_10_21468_SciPostPhysCore_7_2_024
crossref_primary_10_1103_PhysRevLett_127_067001
crossref_primary_10_1103_PhysRevB_100_165302
crossref_primary_10_1103_PhysRevB_101_165106
crossref_primary_10_1103_PhysRevB_107_L121407
crossref_primary_10_1103_PhysRevB_109_195123
crossref_primary_10_1103_PhysRevResearch_6_013098
crossref_primary_10_1103_PhysRevX_3_031005
crossref_primary_10_1103_PhysRevB_100_085308
crossref_primary_10_1103_PhysRevB_93_174301
crossref_primary_10_1103_PhysRevB_95_035136
crossref_primary_10_1103_PhysRevB_98_205417
crossref_primary_10_1103_PhysRevB_98_245119
crossref_primary_10_1088_1361_648X_ac709d
crossref_primary_10_1103_PhysRevLett_132_136601
crossref_primary_10_1103_PhysRevB_103_205130
crossref_primary_10_1103_PhysRevLett_118_260602
crossref_primary_10_7566_JPSJ_90_081004
crossref_primary_10_22331_q_2023_11_03_1160
crossref_primary_10_1121_10_0001812
crossref_primary_10_1016_j_physe_2022_115496
crossref_primary_10_1103_PhysRevB_102_045414
crossref_primary_10_1002_lpor_202000584
crossref_primary_10_1134_S1063783420110402
crossref_primary_10_1515_zna_2016_0074
crossref_primary_10_1103_PhysRevB_102_235143
crossref_primary_10_21468_SciPostPhys_15_4_148
crossref_primary_10_1103_PhysRevLett_132_146402
crossref_primary_10_1103_PhysRevB_99_075120
crossref_primary_10_1088_0953_8984_27_33_335505
crossref_primary_10_1103_PhysRevB_110_054314
crossref_primary_10_1007_s10773_022_05191_x
crossref_primary_10_1016_j_physe_2019_113862
crossref_primary_10_1063_5_0143436
crossref_primary_10_1103_PhysRevLett_125_187702
crossref_primary_10_1364_OL_495156
crossref_primary_10_1103_PhysRevB_110_054310
crossref_primary_10_1103_PhysRevB_96_165443
crossref_primary_10_1103_PhysRevA_100_033406
crossref_primary_10_1103_PhysRevB_100_245412
crossref_primary_10_1103_PhysRevB_99_205146
crossref_primary_10_1103_PhysRevB_102_045419
crossref_primary_10_1103_PhysRevResearch_5_023004
crossref_primary_10_21468_SciPostPhys_9_5_079
crossref_primary_10_1103_PhysRevB_101_104307
crossref_primary_10_1088_1361_648X_ab03b9
crossref_primary_10_1103_PhysRevB_106_195411
crossref_primary_10_1038_s41598_018_28508_5
crossref_primary_10_1103_PhysRevB_101_045123
crossref_primary_10_1103_PhysRevLett_117_013902
crossref_primary_10_1103_PhysRevB_98_235424
crossref_primary_10_1103_PhysRevLett_133_077201
crossref_primary_10_1088_1367_2630_aab2c7
crossref_primary_10_1103_PhysRevA_105_012203
crossref_primary_10_1103_PhysRevB_105_214305
crossref_primary_10_1103_PhysRevB_105_054423
crossref_primary_10_1103_PhysRevA_91_033632
crossref_primary_10_1103_PhysRevA_92_052311
crossref_primary_10_1103_PhysRevB_97_035151
crossref_primary_10_1103_PhysRevB_108_054310
crossref_primary_10_1103_PhysRevB_89_235434
crossref_primary_10_1103_PhysRevA_90_013621
crossref_primary_10_1103_PhysRevB_90_201303
crossref_primary_10_1088_1361_648X_abb1cc
crossref_primary_10_1007_s44214_024_00067_z
crossref_primary_10_1103_PhysRevA_91_063607
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1103_PhysRevA_111_022430
crossref_primary_10_1103_PhysRevA_97_043851
crossref_primary_10_1103_PhysRevB_91_125105
crossref_primary_10_1103_PhysRevB_88_121406
crossref_primary_10_1103_PhysRevB_92_235436
crossref_primary_10_1103_PhysRevLett_115_246403
crossref_primary_10_1103_PhysRevB_104_L121410
crossref_primary_10_1103_PhysRevB_89_121401
crossref_primary_10_1103_PhysRevB_96_104309
crossref_primary_10_1103_PhysRevB_98_205109
crossref_primary_10_1103_PhysRevLett_115_160402
crossref_primary_10_1016_j_physleta_2020_126429
crossref_primary_10_1088_1674_1056_ad4634
crossref_primary_10_1038_ncomms13918
crossref_primary_10_1103_PhysRevResearch_6_023244
crossref_primary_10_1103_PhysRevB_93_245416
crossref_primary_10_1103_PhysRevB_96_245404
crossref_primary_10_1103_PhysRevB_105_075133
crossref_primary_10_3390_e25101401
crossref_primary_10_1103_PhysRevE_91_052129
crossref_primary_10_1103_PhysRevB_111_064303
crossref_primary_10_1088_0256_307X_38_3_030301
crossref_primary_10_1103_PhysRevB_104_035402
crossref_primary_10_1007_JHEP04_2019_034
crossref_primary_10_1103_PhysRevB_100_054305
crossref_primary_10_1103_PhysRevE_108_L042102
crossref_primary_10_1016_j_aop_2020_168199
crossref_primary_10_1088_1361_648X_ab1026
crossref_primary_10_1103_PhysRevB_94_235447
crossref_primary_10_1103_PhysRevB_105_014306
crossref_primary_10_1103_PhysRevLett_111_100403
crossref_primary_10_1007_JHEP10_2020_013
crossref_primary_10_1103_PhysRevB_95_174306
crossref_primary_10_1103_PhysRevB_105_054205
crossref_primary_10_1103_PhysRevB_106_184106
crossref_primary_10_1007_s10773_024_05625_8
crossref_primary_10_1016_j_pquantelec_2017_07_004
crossref_primary_10_1515_nanoph_2023_0408
crossref_primary_10_3390_condmat4010010
crossref_primary_10_1103_PhysRevB_109_165110
crossref_primary_10_1080_23746149_2020_1870559
crossref_primary_10_1103_PhysRevB_106_245305
crossref_primary_10_1103_PhysRevB_93_205415
crossref_primary_10_1103_PhysRevB_102_094301
crossref_primary_10_1088_1367_2630_17_9_093039
crossref_primary_10_1103_PhysRevA_100_053608
crossref_primary_10_22331_q_2022_03_03_664
crossref_primary_10_1103_PhysRevB_96_155435
crossref_primary_10_1016_j_physe_2023_115698
crossref_primary_10_1016_j_ssc_2015_04_019
crossref_primary_10_1137_22M1474552
crossref_primary_10_1103_PhysRevB_107_235109
crossref_primary_10_1063_1_4952722
crossref_primary_10_1103_PhysRevB_89_235416
crossref_primary_10_1088_1361_648X_ad9722
crossref_primary_10_1088_1361_648X_ad98db
crossref_primary_10_1103_PhysRevB_94_125105
crossref_primary_10_1103_PhysRevB_95_014305
crossref_primary_10_1088_1674_1056_ad5d94
crossref_primary_10_1016_j_ssc_2020_114092
crossref_primary_10_1038_ncomms8047
crossref_primary_10_1103_PhysRevLett_114_246802
crossref_primary_10_1038_s42254_021_00388_1
crossref_primary_10_1103_PhysRevB_102_115411
crossref_primary_10_1103_PhysRevB_106_174417
crossref_primary_10_1038_s41598_019_43702_9
crossref_primary_10_1088_2058_9565_aab2b9
crossref_primary_10_1016_j_spmi_2020_106778
crossref_primary_10_1088_1361_648X_ac6eac
crossref_primary_10_1103_PhysRevLett_123_126401
crossref_primary_10_1103_PhysRevB_109_165126
crossref_primary_10_1103_PhysRevB_100_014421
crossref_primary_10_1103_PhysRevB_109_184307
crossref_primary_10_1103_PhysRevB_101_195310
crossref_primary_10_1088_1361_648X_ac8a37
crossref_primary_10_1088_0953_8984_29_3_035501
crossref_primary_10_1103_PhysRevLett_118_157201
crossref_primary_10_1209_0295_5075_115_37003
crossref_primary_10_1103_PhysRevB_100_144302
crossref_primary_10_1140_epjd_s10053_022_00485_5
crossref_primary_10_1103_PhysRevB_100_035303
crossref_primary_10_1103_PhysRevB_106_224309
crossref_primary_10_1134_S1063784223900322
crossref_primary_10_1103_PhysRevB_89_075113
crossref_primary_10_1103_PhysRevB_93_241406
crossref_primary_10_1038_s41566_020_00717_3
crossref_primary_10_1021_acsphyschemau_3c00049
crossref_primary_10_1063_1_4990969
crossref_primary_10_1088_1674_1056_accf68
crossref_primary_10_1103_PhysRevB_94_155134
crossref_primary_10_1038_s42005_022_01022_x
crossref_primary_10_1103_PhysRevB_93_075405
crossref_primary_10_1364_OE_395504
crossref_primary_10_1103_PhysRevB_105_L081115
crossref_primary_10_1088_1367_2630_ad6b43
crossref_primary_10_1103_PhysRevB_97_195312
crossref_primary_10_1103_PhysRevB_99_045441
crossref_primary_10_1103_PhysRevX_7_021015
crossref_primary_10_1209_0295_5075_126_27002
crossref_primary_10_1063_5_0071224
crossref_primary_10_1103_PhysRevB_109_165418
crossref_primary_10_1103_PhysRevE_93_062119
crossref_primary_10_1088_1361_648X_ab351b
crossref_primary_10_1103_PhysRevA_91_023624
crossref_primary_10_1103_PhysRevB_94_144103
crossref_primary_10_1103_PhysRevB_88_245422
crossref_primary_10_1103_PhysRevB_96_041126
crossref_primary_10_1140_epjb_s10051_023_00553_8
crossref_primary_10_1103_PhysRevA_101_033607
crossref_primary_10_1103_PhysRevA_102_011301
crossref_primary_10_1103_PhysRevB_107_085408
crossref_primary_10_1088_1361_648X_aae111
crossref_primary_10_1103_PhysRevB_106_195115
crossref_primary_10_1103_RevModPhys_91_015006
crossref_primary_10_7498_aps_70_20201808
crossref_primary_10_1103_PhysRevResearch_1_032013
crossref_primary_10_1103_PhysRevB_105_L081102
crossref_primary_10_1155_2018_5703197
crossref_primary_10_1088_1367_2630_aade37
crossref_primary_10_1103_PhysRevB_94_214203
crossref_primary_10_1016_j_physleta_2018_03_046
crossref_primary_10_1103_PhysRevB_110_165405
crossref_primary_10_1103_PhysRevB_95_235309
crossref_primary_10_1103_PhysRevB_97_245430
crossref_primary_10_1103_PhysRevB_111_115424
crossref_primary_10_1103_PhysRevB_102_184302
crossref_primary_10_1103_PhysRevB_108_174306
crossref_primary_10_21468_SciPostPhys_16_3_083
crossref_primary_10_1007_s11082_024_07633_8
crossref_primary_10_1038_s41467_021_25511_9
crossref_primary_10_1103_PhysRevResearch_2_022048
crossref_primary_10_1103_PhysRevLett_127_043904
crossref_primary_10_1103_PhysRevLett_120_263202
crossref_primary_10_7498_aps_66_224203
crossref_primary_10_1038_ncomms11439
crossref_primary_10_1103_PhysRevB_95_045102
crossref_primary_10_1103_PhysRevLett_125_106401
crossref_primary_10_1103_PhysRevB_110_165410
crossref_primary_10_1007_s10773_019_04054_2
crossref_primary_10_1016_j_rinp_2023_106257
crossref_primary_10_1103_PhysRevA_89_042327
crossref_primary_10_1103_PhysRevA_94_043611
crossref_primary_10_1088_1361_648X_ac1151
crossref_primary_10_1103_PhysRevB_103_085417
crossref_primary_10_1016_j_physa_2022_127866
crossref_primary_10_1103_PhysRevB_100_075412
crossref_primary_10_1088_1361_648X_abf0c3
crossref_primary_10_1103_PhysRevB_96_155118
crossref_primary_10_21468_SciPostPhys_16_3_077
crossref_primary_10_1140_epjb_e2016_70265_5
crossref_primary_10_1088_2040_8978_18_1_014001
crossref_primary_10_1103_PhysRevLett_124_057001
crossref_primary_10_1088_1361_648X_aa8087
crossref_primary_10_1103_PhysRevB_98_041113
crossref_primary_10_1103_PhysRevA_103_042219
crossref_primary_10_1103_PhysRevA_103_L051101
crossref_primary_10_1103_PhysRevLett_121_126803
crossref_primary_10_1002_pssr_201350502
crossref_primary_10_1088_0034_4885_79_6_066501
crossref_primary_10_1103_PhysRevB_107_165407
crossref_primary_10_1103_PhysRevB_110_165403
crossref_primary_10_1103_PhysRevB_95_144311
crossref_primary_10_1103_PhysRevX_4_031027
crossref_primary_10_1103_PhysRevResearch_2_022023
crossref_primary_10_3390_sym14122546
crossref_primary_10_1103_PhysRevResearch_6_043122
crossref_primary_10_1103_PRXQuantum_3_040312
crossref_primary_10_1103_PhysRevA_110_L040601
crossref_primary_10_1103_PhysRevB_102_205423
crossref_primary_10_1103_PhysRevB_88_245119
crossref_primary_10_1016_j_physrep_2024_11_003
crossref_primary_10_1103_PhysRevA_100_052103
crossref_primary_10_1088_2053_1583_aa6a3b
crossref_primary_10_1016_j_physleta_2023_128671
crossref_primary_10_1103_PhysRevB_104_L081411
crossref_primary_10_1103_PhysRevB_98_125129
crossref_primary_10_1103_PhysRevB_97_205406
crossref_primary_10_1021_acs_jpclett_4c00602
crossref_primary_10_1103_PhysRevA_97_063603
crossref_primary_10_1103_PhysRevB_109_235416
crossref_primary_10_1103_PhysRevB_97_085405
crossref_primary_10_1103_PhysRevB_102_024201
crossref_primary_10_1103_PhysRevB_103_L121115
crossref_primary_10_1103_PhysRevA_93_043618
crossref_primary_10_1016_j_aop_2018_10_005
crossref_primary_10_1103_PhysRevA_94_013620
crossref_primary_10_1038_nphys3803
crossref_primary_10_1140_epjb_e2019_100495_6
crossref_primary_10_1142_S0217979223501540
crossref_primary_10_1103_PhysRevB_104_174308
crossref_primary_10_1088_1367_2630_acf0e3
crossref_primary_10_1088_1361_648X_acbffd
crossref_primary_10_1002_adma_202401716
crossref_primary_10_1002_adma_202204120
crossref_primary_10_1088_2053_1591_ab2bcd
crossref_primary_10_1103_PhysRevLett_119_147202
crossref_primary_10_1103_PhysRevB_104_L140301
crossref_primary_10_1103_PhysRevB_103_094307
crossref_primary_10_1103_PhysRevB_95_125134
crossref_primary_10_1088_0953_8984_25_14_144202
crossref_primary_10_1016_j_crhy_2018_04_003
crossref_primary_10_1103_PhysRevB_88_045118
crossref_primary_10_1103_PhysRevB_106_054307
crossref_primary_10_1103_RevModPhys_93_025001
crossref_primary_10_1103_PhysRevLett_121_237401
crossref_primary_10_1073_pnas_1721096115
crossref_primary_10_1103_PhysRevB_106_214310
crossref_primary_10_1103_PhysRevB_108_235148
crossref_primary_10_1103_PhysRevA_107_013712
crossref_primary_10_1103_PhysRevB_108_L220301
crossref_primary_10_1103_RevModPhys_89_011004
crossref_primary_10_1063_1_4950854
crossref_primary_10_1103_PhysRevB_108_045415
crossref_primary_10_1088_1367_2630_18_9_093013
crossref_primary_10_1103_PhysRevB_91_094502
crossref_primary_10_1088_1361_648X_aad0b2
crossref_primary_10_1088_1402_4896_ad406f
crossref_primary_10_1103_PhysRevB_107_094505
crossref_primary_10_1016_j_progsurf_2023_100705
crossref_primary_10_1038_s42005_022_01050_7
crossref_primary_10_1002_qute_201900126
crossref_primary_10_1103_PhysRevA_92_053822
crossref_primary_10_1016_j_crhy_2016_05_003
crossref_primary_10_1146_annurev_conmatphys_031218_013721
crossref_primary_10_1103_PhysRevB_97_184308
crossref_primary_10_22331_q_2020_05_25_270
crossref_primary_10_1103_PhysRevB_98_235112
crossref_primary_10_1088_1361_648X_ac0b60
crossref_primary_10_1038_s41598_020_71196_3
crossref_primary_10_1088_0034_4885_77_12_126401
crossref_primary_10_1103_PhysRevB_94_155112
crossref_primary_10_1103_PhysRevResearch_2_033495
crossref_primary_10_1209_0295_5075_128_36001
crossref_primary_10_7566_JPSJ_86_024713
crossref_primary_10_7566_JPSJ_87_034711
crossref_primary_10_1088_2399_6528_aa8843
crossref_primary_10_1103_PhysRevB_88_155133
crossref_primary_10_1103_PhysRevB_102_085430
crossref_primary_10_1103_PhysRevA_92_023624
crossref_primary_10_1103_PhysRevB_96_205127
crossref_primary_10_1103_PhysRevB_89_205408
crossref_primary_10_1103_PhysRevB_98_245145
crossref_primary_10_1103_PhysRevB_95_104308
crossref_primary_10_1140_epjb_e2020_100509_8
crossref_primary_10_1103_PhysRevB_92_045424
crossref_primary_10_1103_PhysRevB_97_035422
crossref_primary_10_1103_PhysRevB_104_L180303
crossref_primary_10_1103_PhysRevB_99_064306
crossref_primary_10_1038_s41598_018_22779_8
crossref_primary_10_1088_1367_2630_18_10_103014
crossref_primary_10_1103_PhysRevB_111_045302
crossref_primary_10_1103_PhysRevB_102_245416
crossref_primary_10_1103_PhysRevB_97_165142
crossref_primary_10_1103_PhysRevB_100_045423
crossref_primary_10_1103_PhysRevLett_121_030606
crossref_primary_10_1038_s42254_021_00323_4
crossref_primary_10_1103_PhysRevB_94_155122
crossref_primary_10_1103_PhysRevLett_122_110602
crossref_primary_10_1103_PhysRevB_90_115423
crossref_primary_10_1103_PhysRevResearch_4_033184
crossref_primary_10_1103_PhysRevB_94_161111
crossref_primary_10_1103_PhysRevB_99_235408
crossref_primary_10_1103_PhysRevLett_121_076802
crossref_primary_10_1103_PhysRevResearch_2_033143
crossref_primary_10_1016_j_physrep_2013_09_001
crossref_primary_10_1088_1361_648X_ab6cc0
crossref_primary_10_1038_s41524_021_00518_4
crossref_primary_10_1140_epjd_e2015_60220_7
crossref_primary_10_1103_PhysRevB_109_125303
crossref_primary_10_1088_0256_307X_41_4_047102
Cites_doi 10.1103/PhysRevLett.49.405
10.1103/PhysRevB.86.125449
10.1103/PhysRevA.7.2203
10.1063/1.3149495
10.1103/PhysRevB.86.195414
10.1103/PhysRevLett.100.236601
10.1063/1.3293411
10.1103/PhysRevB.74.085308
10.1103/PhysRevLett.106.236803
10.1126/science.1133734
10.1103/PhysRevB.82.235114
10.1088/0957-4484/22/1/015203
10.1103/PhysRevLett.99.047401
10.1103/PhysRevLett.107.216601
10.1103/PhysRevLett.108.056602
10.1103/PhysRevA.79.053639
10.1126/science.1148047
10.1103/RevModPhys.82.3045
10.1126/science.1174736
10.1063/1.3597412
10.1103/RevModPhys.83.1057
10.1088/1367-2630/14/10/103027
10.1103/PhysRevLett.106.236804
10.1103/RevModPhys.83.1523
10.1103/PhysRevLett.106.220402
10.1103/PhysRevB.78.195424
10.1103/PhysRevB.85.115110
10.1103/PhysRevB.83.035309
10.1103/PhysRevLett.105.227402
10.1103/PhysRevB.80.113102
10.1103/PhysRevLett.47.986
10.1103/PhysRevB.82.085310
10.1103/PhysRevLett.106.236802
10.1103/PhysRevB.27.6083
10.1103/PhysRevLett.105.255302
10.1103/PhysRevLett.95.226801
10.1088/0268-1242/25/9/095005
10.1103/PhysRevB.78.195125
10.1103/PhysRevB.83.245436
10.1103/PhysRevLett.103.266801
10.1103/PhysRevB.79.241306
10.1103/PhysRevLett.109.145301
10.1103/PhysRevLett.105.017401
10.1038/nphys1926
10.1103/PhysRevLett.61.2015
10.1103/PhysRevLett.103.046811
10.1103/PhysRevLett.107.136603
10.1103/PhysRevB.84.235108
10.1103/PhysRevLett.95.146802
10.1038/nphys913
10.1103/PhysRevB.79.081406
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Attribution - NonCommercial
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Attribution - NonCommercial
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
1XC
VOOES
DOI 10.1002/pssr.201206451
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6270
EndPage 108
ExternalDocumentID oai_HAL_hal_00820826v1
2955139651
10_1002_pssr_201206451
PSSR201206451
ark_67375_WNG_T6WBDZHK_7
Genre editorial
Feature
GrantInformation_xml – fundername: ERC
  funderid: ERC‐259374‐Sylo
– fundername: ANR
  funderid: 2010‐BLANC‐041902 (ISOTOP)
– fundername: Hungarian Scientific Research Funds
  funderid: K72613; K73361; K101244; CNK80991; TAMOP‐4.2.1/B‐09/1/KMR‐2010‐0002
– fundername: EU/FP7 under contract TEMSSOC
GroupedDBID 05W
0R~
123
1OC
31~
33P
3SF
4.4
52U
8-1
8UM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
WBKPD
WGJPS
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
7U5
8FD
L7M
1XC
VOOES
ID FETCH-LOGICAL-c4951-cd6b0aed7d25cda3c0a849c1999d566a664256213784bafb69fb01ab6d1503e23
ISSN 1862-6254
IngestDate Fri May 09 12:13:58 EDT 2025
Mon Jul 14 10:26:06 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Tue Jul 01 02:15:06 EDT 2025
Wed Jan 22 16:39:47 EST 2025
Wed Oct 30 09:58:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords topological insulators
spin-Hall effect
Floquet theory
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4951-cd6b0aed7d25cda3c0a849c1999d566a664256213784bafb69fb01ab6d1503e23
Notes ERC - No. ERC-259374-Sylo
ArticleID:PSSR201206451
istex:28276C6FC3D73F5AA372A68EB0240E99EF1528F6
ANR - No. 2010-BLANC-041902 (ISOTOP)
ark:/67375/WNG-T6WBDZHK-7
Hungarian Scientific Research Funds - No. K72613; No. K73361; No. K101244; No. CNK80991; No. TAMOP-4.2.1/B-09/1/KMR-2010-0002
EU/FP7 under contract TEMSSOC
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ORCID 0000-0002-2021-9080
OpenAccessLink https://hal.science/hal-00820826
PQID 1346194258
PQPubID 1036348
PageCount 8
ParticipantIDs hal_primary_oai_HAL_hal_00820826v1
proquest_journals_1346194258
crossref_citationtrail_10_1002_pssr_201206451
crossref_primary_10_1002_pssr_201206451
wiley_primary_10_1002_pssr_201206451_PSSR201206451
istex_primary_ark_67375_WNG_T6WBDZHK_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
– name: Weinheim
PublicationTitle Physica status solidi. PSS-RRL. Rapid research letters
PublicationTitleAlternate Phys. Status Solidi RRL
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318(5851), 766-770 (2007).
X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011).
X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7, 490 (2011), arXiv: 1008.1792.
J. K. Asbóth, Phys. Rev. B 86, 195414 (2012).
K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011).
L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011).
X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
M. J. Schmidt, E. G. Novik, M. Kindermann, and B. Trauzettel, Phys. Rev. B 79, 241306 (2009).
E. Morell and L. Torres, Phys. Rev. B 86, 125449 (2012).
D. J. Thouless, Phys. Rev. B 27, 6083-6087 (1983).
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
P. Hosur, Phys. Rev. B 83, 035309 (2011).
A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325(5938), 294-297 (2009).
H. Sambe, Phys. Rev. A 7, 2203-2213 (1973).
H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama, Phys. Rev. B 85, 115110 (2012).
E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett. 106, 236802 (2011).
J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83(11), 1523-1543 (2011).
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010).
B. Wittmann, S. N. Danilov, V. Bel'kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25, 095005 (2010).
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
B. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314(5806), 1757 (2006).
T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011).
B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett. 108, 056602 (2012).
P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109(10), 145301 (2012).
T. D. Stanescu, V. Galitski, J. Y. Vaishnav, C. W. Clark, and S. Das Sarma, Phys. Rev. A 79, 053639 (2009).
D. S. L. Abergel and T. Chakraborty, Nanotechnology 22, 015203 (2011).
L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308 (2006).
A. Kitaev, Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22-26 June 2008, AIP Conf. Proc. 1134, 22 (2009).
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045-3067 (2010).
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49(6), 405 (1982).
I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).
P. Adroguer, D. Carpentier, J. Cayssol, and E. Orignac, New J. Phys. 14, 103027 (2012).
N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett. 105, 255302 (2010).
J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. 105, 227402 (2010).
J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47(10), 986-989 (1981).
X. L. Qi, T. L. Hughes, and S. C. Zhang, Nature Phys. 4, 273 (2008).
Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011).
T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011), arXiv: 1104.4636.
H. Calvo, H. Pastawski, S. Roche, and L. Torres, Appl. Phys. Lett. 98, 232103 (2011).
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).
C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008).
H. M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009).
C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010).
J. I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011).
Wang Yao, A. H. MacDonald, and Qian Niu, Phys. Rev. Lett. 99, 047401 (2007); http://prl.aps.org/abstract/PRL/v99/i4/e047401.
2006; 74
2009; 80
2011
2010; 105
2011; 84
2011; 83
1981; 47
2008; 78
2011; 98
2008; 4
2006; 314
2012; 14
2008; 100
2007; 99
2010; 63
2011; 7
2012; 108
2012; 109
2010; 82
2009; 79
1982; 49
2011; 107
2010; 25
2011; 106
2005; 95
2011; 22
1988; 61
2007; 318
1973; 7
1983; 27
2009; 103
2009; 1134
2012; 86
2009; 325
2012; 85
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_51_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_50_2
References_xml – reference: M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318(5851), 766-770 (2007).
– reference: J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83(11), 1523-1543 (2011).
– reference: T. D. Stanescu, V. Galitski, J. Y. Vaishnav, C. W. Clark, and S. Das Sarma, Phys. Rev. A 79, 053639 (2009).
– reference: Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011).
– reference: J. Goldstone and F. Wilczek, Phys. Rev. Lett. 47(10), 986-989 (1981).
– reference: B. Wittmann, S. N. Danilov, V. Bel'kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25, 095005 (2010).
– reference: F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
– reference: B. Dóra, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett. 108, 056602 (2012).
– reference: I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).
– reference: N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett. 105, 255302 (2010).
– reference: K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).
– reference: A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325(5938), 294-297 (2009).
– reference: C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
– reference: D. J. Thouless, Phys. Rev. B 27, 6083-6087 (1983).
– reference: L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011).
– reference: T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev. Lett. 106, 236804 (2011).
– reference: J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Phys. Rev. Lett. 105, 227402 (2010).
– reference: T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys. Rev. B 84, 235108 (2011), arXiv: 1104.4636.
– reference: B. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314(5806), 1757 (2006).
– reference: P. Adroguer, D. Carpentier, J. Cayssol, and E. Orignac, New J. Phys. 14, 103027 (2012).
– reference: C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010).
– reference: A. Kitaev, Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22-26 June 2008, AIP Conf. Proc. 1134, 22 (2009).
– reference: X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308 (2006).
– reference: H. T. Ueda, A. Takeuchi, G. Tatara, and T. Yokoyama, Phys. Rev. B 85, 115110 (2012).
– reference: X. L. Qi, T. L. Hughes, and S. C. Zhang, Nature Phys. 4, 273 (2008).
– reference: T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B 82, 235114 (2010).
– reference: K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett. 106, 236803 (2011).
– reference: Y. Zhou and M. W. Wu, Phys. Rev. B 83, 245436 (2011).
– reference: Wang Yao, A. H. MacDonald, and Qian Niu, Phys. Rev. Lett. 99, 047401 (2007); http://prl.aps.org/abstract/PRL/v99/i4/e047401.
– reference: J. I. Inoue and A. Tanaka, Phys. Rev. Lett. 105, 017401 (2010).
– reference: E. Tang, J. W. Mei, and X. G. Wen, Phys. Rev. Lett. 106, 236802 (2011).
– reference: D. S. L. Abergel and T. Chakraborty, Nanotechnology 22, 015203 (2011).
– reference: H. Sambe, Phys. Rev. A 7, 2203-2213 (1973).
– reference: L. Fu, Phys. Rev. Lett. 103, 266801 (2009).
– reference: N. H. Lindner, G. Refael, and V. Galitski, Nature Phys. 7, 490 (2011), arXiv: 1008.1792.
– reference: M. J. Schmidt, E. G. Novik, M. Kindermann, and B. Trauzettel, Phys. Rev. B 79, 241306 (2009).
– reference: M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045-3067 (2010).
– reference: P. Hauke, O. Tieleman, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, and A. Eckardt, Phys. Rev. Lett. 109(10), 145301 (2012).
– reference: X. L. Qi and S. C. Zhang, Phys. Today 63, 33 (2010).
– reference: H. Calvo, H. Pastawski, S. Roche, and L. Torres, Appl. Phys. Lett. 98, 232103 (2011).
– reference: P. Hosur, Phys. Rev. B 83, 035309 (2011).
– reference: H. M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009).
– reference: A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).
– reference: C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
– reference: X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057-1110 (2011).
– reference: X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 195424 (2008).
– reference: J. K. Asbóth, Phys. Rev. B 86, 195414 (2012).
– reference: C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett. 100, 236601 (2008).
– reference: D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49(6), 405 (1982).
– reference: T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
– reference: E. Morell and L. Torres, Phys. Rev. B 86, 125449 (2012).
– year: 2011
– volume: 105
  start-page: 227402
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 195424
  year: 2008
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 2015
  year: 1988
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 235114
  year: 2010
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 245436
  year: 2011
  publication-title: Phys. Rev. B
– volume: 106
  start-page: 236802
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 053639
  year: 2009
  publication-title: Phys. Rev. A
– volume: 108
  start-page: 056602
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 80
  start-page: 113102
  year: 2009
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 1057
  year: 2011
  end-page: 1110
  publication-title: Rev. Mod. Phys.
– volume: 7
  start-page: 490
  year: 2011
  publication-title: Nature Phys.
– volume: 95
  start-page: 226801
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 405
  issue: 6
  year: 1982
  publication-title: Phys. Rev. Lett.
– volume: 107
  start-page: 216601
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 106
  start-page: 236803
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 195125
  year: 2008
  publication-title: Phys. Rev. B
– volume: 325
  start-page: 294
  issue: 5938
  year: 2009
  end-page: 297
  publication-title: Science
– volume: 105
  start-page: 017401
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 107
  start-page: 136603
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 103027
  year: 2012
  publication-title: New J. Phys.
– volume: 79
  start-page: 081406
  year: 2009
  publication-title: Phys. Rev. B
– volume: 85
  start-page: 115110
  year: 2012
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 195414
  year: 2012
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 146802
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 27
  start-page: 6083
  year: 1983
  end-page: 6087
  publication-title: Phys. Rev. B
– volume: 106
  start-page: 220402
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 236601
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 273
  year: 2008
  publication-title: Nature Phys.
– volume: 106
  start-page: 236804
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 145301
  issue: 10
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 83
  start-page: 1523
  issue: 11
  year: 2011
  end-page: 1543
  publication-title: Rev. Mod. Phys.
– volume: 86
  start-page: 125449
  year: 2012
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 2203
  year: 1973
  end-page: 2213
  publication-title: Phys. Rev. A
– volume: 63
  start-page: 33
  year: 2010
  publication-title: Phys. Today
– volume: 82
  start-page: 3045
  year: 2010
  end-page: 3067
  publication-title: Rev. Mod. Phys.
– volume: 74
  start-page: 085308
  year: 2006
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 035309
  year: 2011
  publication-title: Phys. Rev. B
– volume: 103
  start-page: 266801
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 232103
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 015203
  year: 2011
  publication-title: Nanotechnology
– volume: 105
  start-page: 255302
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 085310
  year: 2010
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 047401
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 25
  start-page: 095005
  year: 2010
  publication-title: Semicond. Sci. Technol.
– volume: 314
  start-page: 1757
  issue: 5806
  year: 2006
  publication-title: Science
– volume: 318
  start-page: 766
  issue: 5851
  year: 2007
  end-page: 770
  publication-title: Science
– volume: 1134
  start-page: 22
  year: 2009
  article-title: Advances in Theoretical Physics: Landau Memorial Conference Chernogolovska (Russia), 22–26 June 2008
  publication-title: AIP Conf. Proc.
– volume: 103
  start-page: 046811
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 235108
  year: 2011
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 986
  issue: 10
  year: 1981
  end-page: 989
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 241306
  year: 2009
  publication-title: Phys. Rev. B
– ident: e_1_2_8_38_2
  doi: 10.1103/PhysRevLett.49.405
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevB.86.125449
– ident: e_1_2_8_35_2
  doi: 10.1103/PhysRevA.7.2203
– ident: e_1_2_8_24_2
  doi: 10.1063/1.3149495
– ident: e_1_2_8_37_2
  doi: 10.1103/PhysRevB.86.195414
– ident: e_1_2_8_40_2
  doi: 10.1103/PhysRevLett.100.236601
– ident: e_1_2_8_18_2
  doi: 10.1063/1.3293411
– ident: e_1_2_8_8_2
  doi: 10.1103/PhysRevB.74.085308
– ident: e_1_2_8_10_2
  doi: 10.1103/PhysRevLett.106.236803
– ident: e_1_2_8_4_2
  doi: 10.1126/science.1133734
– ident: e_1_2_8_26_2
– ident: e_1_2_8_21_2
  doi: 10.1103/PhysRevB.82.235114
– ident: e_1_2_8_44_2
  doi: 10.1088/0957-4484/22/1/015203
– ident: e_1_2_8_54_2
  doi: 10.1103/PhysRevLett.99.047401
– ident: e_1_2_8_31_2
  doi: 10.1103/PhysRevLett.107.216601
– ident: e_1_2_8_32_2
  doi: 10.1103/PhysRevLett.108.056602
– ident: e_1_2_8_36_2
– ident: e_1_2_8_16_2
  doi: 10.1103/PhysRevA.79.053639
– ident: e_1_2_8_19_2
  doi: 10.1126/science.1148047
– ident: e_1_2_8_5_2
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_8_20_2
  doi: 10.1126/science.1174736
– ident: e_1_2_8_28_2
  doi: 10.1063/1.3597412
– ident: e_1_2_8_6_2
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_8_51_2
  doi: 10.1088/1367-2630/14/10/103027
– ident: e_1_2_8_11_2
  doi: 10.1103/PhysRevLett.106.236804
– ident: e_1_2_8_52_2
  doi: 10.1103/RevModPhys.83.1523
– ident: e_1_2_8_15_2
  doi: 10.1103/PhysRevLett.106.220402
– ident: e_1_2_8_23_2
  doi: 10.1103/PhysRevB.78.195424
– ident: e_1_2_8_34_2
  doi: 10.1103/PhysRevB.85.115110
– ident: e_1_2_8_33_2
  doi: 10.1103/PhysRevB.83.035309
– ident: e_1_2_8_42_2
  doi: 10.1103/PhysRevLett.105.227402
– ident: e_1_2_8_13_2
  doi: 10.1103/PhysRevB.80.113102
– ident: e_1_2_8_48_2
  doi: 10.1103/PhysRevLett.47.986
– ident: e_1_2_8_12_2
  doi: 10.1103/PhysRevB.82.085310
– ident: e_1_2_8_9_2
  doi: 10.1103/PhysRevLett.106.236802
– ident: e_1_2_8_49_2
  doi: 10.1103/PhysRevB.27.6083
– ident: e_1_2_8_17_2
  doi: 10.1103/PhysRevLett.105.255302
– ident: e_1_2_8_2_2
  doi: 10.1103/PhysRevLett.95.226801
– ident: e_1_2_8_43_2
  doi: 10.1088/0268-1242/25/9/095005
– ident: e_1_2_8_22_2
  doi: 10.1103/PhysRevB.78.195125
– ident: e_1_2_8_45_2
  doi: 10.1103/PhysRevB.83.245436
– ident: e_1_2_8_50_2
  doi: 10.1103/PhysRevLett.103.266801
– ident: e_1_2_8_46_2
  doi: 10.1103/PhysRevB.79.241306
– ident: e_1_2_8_53_2
  doi: 10.1103/PhysRevLett.109.145301
– ident: e_1_2_8_39_2
  doi: 10.1103/PhysRevLett.105.017401
– ident: e_1_2_8_25_2
  doi: 10.1038/nphys1926
– ident: e_1_2_8_7_2
  doi: 10.1103/PhysRevLett.61.2015
– ident: e_1_2_8_14_2
  doi: 10.1103/PhysRevLett.103.046811
– ident: e_1_2_8_41_2
  doi: 10.1103/PhysRevLett.107.136603
– ident: e_1_2_8_29_2
  doi: 10.1103/PhysRevB.84.235108
– ident: e_1_2_8_3_2
  doi: 10.1103/PhysRevLett.95.146802
– ident: e_1_2_8_47_2
  doi: 10.1038/nphys913
– ident: e_1_2_8_27_2
  doi: 10.1103/PhysRevB.79.081406
SSID ssj0059743
Score 2.5219054
Snippet Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small perturbations such as...
magnified image Topological insulators represent unique phases of matter with insulating bulk and conducting edge or surface states, immune to small...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Condensed Matter
Electronics
Floquet theory
Other
Physics
Solid state physics
spin-Hall effect
topological insulators
Title Floquet topological insulators
URI https://api.istex.fr/ark:/67375/WNG-T6WBDZHK-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssr.201206451
https://www.proquest.com/docview/1346194258
https://hal.science/hal-00820826
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe6Vki8ID5FYUwVQvBQpTjOZx-7lhFBN01txyZeLDtJRUXpqjZFsH-Ff5Y723FTtInBS5RYlhP7zuf7Xe6DkFchnUZZN2BOGntTxw-zrtOVVDrSi_2YShHEqmrJ8UmYnPkfLoKLWu1XxWtpU8hOenVtXMn_UBXagK4YJfsPlLWDQgPcA33hChSG661ofDRHsV6A_ri0Mkw5lyOSXlf1zlNNDrQcFJt1Gz5rls067dPx2BmNhp32SCxnGMdijCBzFeRj1e2--IkzURTXf9bVD_ZD_5tli4Fq8Fa6krOYq27ulR1iDDyhNWUVX2jpfAmS1sTcjLAs28xY1owhAotC7Dh16LJYn_pJu2KJ1EIVUJMDOEsbDvJqmy4aUkriqMpwJipSy1XXvCg3T_G10l9nk12CcoE-ewxT8bnbc678t__H8WedEsXqK3q5RQE_P3nPJ-H54eBz8pFHe6TBAIOwOmn0BsfDcXnQIxRT8Rvl9MqcoJS93f2GHZ1n7wt63DZwE__YgTVVcKS0m8l9cs_AklZP89gDUssXD8kdzTXrR-TAcFqrwmmtLac9JmdH7yb9xDGVNZwUALHrpFkoqcizKGNBmgkvpSL2uymmpMhAvxchoFJQjF0vin0ppjLsTiV1hQwzwA9ezrwnpL64XORPSYv6UZhHLGVUwhCUSZkzSTMAblOG4zWJU86dpybtPFY_mXOdMJtxXCtu16pJ3tj-S51w5caeL2EpbSfMk570hhzblGILwPk7dHqtVtp2u4nKTbJfkoKbLb7mruejlY8FcZMwRZ6_fBOHfTuyT89u-_Ln5O52R-2TerHa5C9A2S3kgWG63wbpoRI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Floquet+topological+insulators&rft.jtitle=Physica+status+solidi.+PSS-RRL.+Rapid+research+letters&rft.au=Cayssol%2C+J%C3%A9r%C3%B4me&rft.au=D%C3%B3ra%2C+Bal%C3%A1zs&rft.au=Simon%2C+Ferenc&rft.au=Moessner%2C+Roderich&rft.date=2013-02-01&rft.pub=WILEY-VCH+Verlag&rft.issn=1862-6254&rft.eissn=1862-6270&rft.volume=7&rft.issue=1-2&rft.spage=101&rft.epage=108&rft_id=info:doi/10.1002%2Fpssr.201206451&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_T6WBDZHK_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6254&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6254&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6254&client=summon