Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages

Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes ea...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 10; no. 6; pp. 1460 - 1474
Main Authors Habyarimana, Fabien, Al-khodor, Souhaila, Kalia, Awdhesh, Graham, James E, Price, Christopher T, Garcia, Maria Teresa, Kwaik, Yousef Abu
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.06.2008
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with ~30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the ΔankH and ΔankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
AbstractList Summary Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with ∼30–35 amino acid tandem Ankyrin repeats that are involved in protein–protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the ΔankH and ΔankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post‐exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single‐cell analyses have shown that upon co‐infection of the wild‐type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild‐type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic‐like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic‐like ank genes are triggered upon growth transition into post‐exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with approximately 30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the DeltaankH and DeltaankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin ( ank ) genes encoding proteins with ∼30–35 amino acid tandem Ankyrin repeats that are involved in protein–protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the Δ ankH and Δ ankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga , Hartmanella vermiformis and Tetrahymena pyriformis . A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post‐exponential phase in vitro and within Acanthamoeba polyphaga , and this upregulation is mediated, at least in part, by RpoS. Single‐cell analyses have shown that upon co‐infection of the wild‐type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild‐type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic‐like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic‐like ank genes are triggered upon growth transition into post‐exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various protozoan species and is also capable of causing pneumonia in humans. In silico analysis showed that the three sequenced L. pneumophila genomes each contained a common multigene family of 11 ankyrin (ank) genes encoding proteins with ~30-35 amino acid tandem Ankyrin repeats that are involved in protein-protein interactions in eukaryotic cells. To examine whether the ank genes are involved in tropism of protozoan hosts, we have constructed isogenic mutants of L. pneumophila in ten of the ank genes. Among the mutants, the ΔankH and ΔankJ mutants exhibit significant defects in robust intracellular replication within A. polyphaga, Hartmanella vermiformis and Tetrahymena pyriformis. A similar defect is also exhibited in human macrophages. Most of the ank genes are upregulated by L. pneumophila upon growth transition into the post-exponential phase in vitro and within Acanthamoeba polyphaga, and this upregulation is mediated, at least in part, by RpoS. Single-cell analyses have shown that upon co-infection of the wild-type strain with the ankH or ankJ mutant, the replication defect of the mutant is rescued within communal phagosomes harbouring the wild-type strain, similar to dot/icm mutants. Therefore, at least two of the L. pneumophila eukaryotic-like Ank proteins play a role in intracellular replication of L. pneumophila within amoeba, ciliated protozoa and human macrophages. The Ank proteins may not be involved in host tropism in the aquatic environment. Many of the L. pneumophila eukaryotic-like ank genes are triggered upon growth transition into post-exponential phase in vitro as well as within A. polyphaga. Our data suggest a role for AnkH and AnkJ in modulation of phagosome biogenesis by L. pneumophila independent of evasion of lysosomal fusion and recruitment of the rough endoplasmic reticulum.
Author Graham, James E
Garcia, Maria Teresa
Habyarimana, Fabien
Kwaik, Yousef Abu
Al-khodor, Souhaila
Kalia, Awdhesh
Price, Christopher T
Author_xml – sequence: 1
  fullname: Habyarimana, Fabien
– sequence: 2
  fullname: Al-khodor, Souhaila
– sequence: 3
  fullname: Kalia, Awdhesh
– sequence: 4
  fullname: Graham, James E
– sequence: 5
  fullname: Price, Christopher T
– sequence: 6
  fullname: Garcia, Maria Teresa
– sequence: 7
  fullname: Kwaik, Yousef Abu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18279343$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wF8Ardgl-5LlgUVWlVJ1SQSksrZvkZsYzSZzaiZihfx6nGU23eONr-Zx7jz-fkqPOdEgI5Szkfn1ahzxKRCBywULBWBoyHics3L4iJ4eLo0PNxTE5dW7NGE9lyt6QY56JNJeRPCFPP0yDtDaWDiuk591mZ3VHcdyA3ZlBl0GjN0iX2KGjpqYLXGofpWmA9h2OrelX2tfe0oMFpwft2knXWzOYvwY6ujJucBS6iq7G1p9bKK13wRLdW_K6hsbhu_1-Rh6-XP68-Bos7q6uL84XQRnlMQtqhLioIKqSUqQCs7QuOERQFHkMooKslImMEl7GES94JfM0Z3kGghdFkrE4juQZ-Tj39akeR3SDarUrp0d0aEanEk8rkdkkzGahj-icxVr1VreehOJMTeDVWk1M1cRXTeDVM3i19db3-xlj0WL1YtyT9oLPs-CPbnD3343V5e31VHl_MPu1G3B78IPdqMT_aqx-f7tSN9_vowXPf6lJ_2HW12AULK126uFeMC4Zy3wgH-ofk7mtow
CitedBy_id crossref_primary_10_1111_j_1462_5822_2008_01249_x
crossref_primary_10_1111_j_1462_5822_2009_01351_x
crossref_primary_10_3389_fmicb_2019_00005
crossref_primary_10_1038_ismej_2010_139
crossref_primary_10_1111_mec_13812
crossref_primary_10_1080_15476286_2020_1767952
crossref_primary_10_1093_molbev_msr161
crossref_primary_10_1016_j_ijmm_2010_04_016
crossref_primary_10_1038_nrmicro1967
crossref_primary_10_1128_JB_01578_08
crossref_primary_10_1099_mic_0_001187
crossref_primary_10_1128_JB_01379_09
crossref_primary_10_1111_j_1462_5822_2010_01531_x
crossref_primary_10_1093_molbev_msac037
crossref_primary_10_15252_embj_2023114318
crossref_primary_10_1016_j_mib_2008_12_004
crossref_primary_10_1186_1471_2180_8_218
crossref_primary_10_1128_IAI_01165_15
crossref_primary_10_1128_microbiolspec_MCHD_0007_2015
crossref_primary_10_1371_journal_pone_0059560
crossref_primary_10_1084_jem_20100771
crossref_primary_10_1146_annurev_animal_090120_115444
crossref_primary_10_3389_fmars_2023_1176145
crossref_primary_10_1128_IAI_00882_09
crossref_primary_10_1016_j_tim_2012_03_005
crossref_primary_10_1111_1462_2920_13965
crossref_primary_10_1111_j_1462_2920_2009_02114_x
crossref_primary_10_1128_JB_00778_10
crossref_primary_10_1128_mBio_00135_16
crossref_primary_10_1186_s40168_024_01809_w
crossref_primary_10_1146_annurev_cellbio_100109_104034
crossref_primary_10_2217_fmb_09_47
crossref_primary_10_1086_BBLv223n1p30
crossref_primary_10_1111_cmi_12450
crossref_primary_10_1111_cmi_13384
crossref_primary_10_1128_IAI_01081_08
crossref_primary_10_1111_mec_12384
crossref_primary_10_1093_femspd_ftu009
crossref_primary_10_1016_j_gene_2024_148759
crossref_primary_10_1186_s13059_014_0505_0
crossref_primary_10_1371_journal_pone_0105652
crossref_primary_10_1016_j_mib_2014_11_005
crossref_primary_10_2217_fmb_11_150
crossref_primary_10_1111_mec_14003
crossref_primary_10_1038_ismej_2012_1
crossref_primary_10_1111_j_1462_5822_2009_01328_x
crossref_primary_10_1038_s41598_017_13901_3
crossref_primary_10_1128_JB_00276_15
crossref_primary_10_3389_fcimb_2017_00054
crossref_primary_10_1016_j_ygeno_2021_11_018
crossref_primary_10_1111_j_1365_2958_2008_06453_x
crossref_primary_10_1093_gbe_evv199
crossref_primary_10_1128_JB_01656_08
crossref_primary_10_1371_journal_pone_0055390
crossref_primary_10_1099_mic_0_000075
crossref_primary_10_1128_spectrum_01727_21
crossref_primary_10_1073_pnas_1514568112
crossref_primary_10_1128_IAI_01450_09
crossref_primary_10_1093_jmcb_mjad032
crossref_primary_10_1038_embor_2013_86
crossref_primary_10_1128_JB_00430_13
crossref_primary_10_1128_IAI_01079_13
crossref_primary_10_1016_j_bbrc_2017_11_135
crossref_primary_10_1016_j_tim_2009_11_004
crossref_primary_10_7554_eLife_58114
crossref_primary_10_1371_journal_pone_0197041
crossref_primary_10_1093_femspd_ftad009
crossref_primary_10_1371_journal_ppat_1000704
crossref_primary_10_1111_j_1758_2229_2010_00159_x
crossref_primary_10_1128_mBio_01942_19
crossref_primary_10_1371_journal_pone_0146410
crossref_primary_10_1002_eji_201242835
crossref_primary_10_1128_mBio_03458_20
crossref_primary_10_4161_cl_1_4_18738
crossref_primary_10_1111_j_1462_5822_2011_01710_x
crossref_primary_10_1016_j_str_2016_12_015
crossref_primary_10_1038_cr_2017_66
crossref_primary_10_1128_IAI_00913_09
crossref_primary_10_4161_viru_24290
Cites_doi 10.1046/j.1365-2958.1999.01642.x
10.1006/mpat.1999.0311
10.1128/IAI.68.11.6431-6440.2000
10.1146/annurev.micro.54.1.567
10.1073/pnas.0406239101
10.1074/jbc.M501746200
10.1128/IAI.74.5.3021-3026.2006
10.1128/IAI.73.5.3166-3171.2005
10.1128/JVI.79.16.10750-10763.2005
10.1074/jbc.M410820200
10.1128/AEM.71.1.20-28.2005
10.1091/mbc.8.4.583
10.1186/1471-2105-6-240
10.1128/IAI.66.1.203-212.1998
10.1111/j.1462-5822.2006.00871.x
10.1056/NEJM197712012972201
10.1128/IAI.72.5.2468-2476.2004
10.1046/j.1365-2958.1999.01519.x
10.1128/IAI.65.11.4738-4746.1997
10.1073/pnas.252537899
10.1016/0966-842X(96)10041-X
10.1128/AEM.62.6.2022-2028.1996
10.1128/IAI.66.3.883-892.1998
10.1128/IAI.69.4.2569-2579.2001
10.1128/AEM.64.9.3127-3133.1998
10.1128/JB.182.16.4545-4556.2000
10.1186/gb-2000-1-5-reviews3002
10.1093/emboj/20.22.6180
10.1046/j.1462-2920.2000.00112.x
10.1016/S0022-2836(02)00441-2
10.1128/JB.181.5.1395-1402.1999
10.1128/IAI.68.9.5277-5283.2000
10.1016/j.bbrc.2005.03.127
10.1111/j.1462-5822.2004.00400.x
10.1046/j.1365-2958.2001.02465.x
10.1001/jama.249.23.3184
10.1371/journal.pbio.0020069
10.1073/pnas.0609012103
10.1128/MCB.20.13.4900-4909.2000
10.1111/j.1462-5822.2006.00703.x
10.1128/JB.181.16.4879-4889.1999
10.1128/IAI.70.3.1657-1663.2002
10.1007/s11262-005-1784-z
10.1128/EC.4.6.1102-1115.2005
10.1038/15687
10.1128/IAI.70.11.6273-6283.2002
10.1128/JB.187.22.7716-7726.2005
10.1110/ps.03554604
10.1016/j.tim.2005.08.010
10.1128/IAI.73.9.5339-5349.2005
10.1128/IAI.67.5.2117-2124.1999
10.1046/j.1365-2958.2002.02884.x
10.1126/science.279.5353.1037
10.1186/gb-2004-5-6-r38
10.1128/IAI.67.2.862-870.1999
10.1016/S1286-4579(99)80048-3
10.1002/prot.340170405
10.1038/ng1447
10.1128/IAI.72.7.4040-4051.2004
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd
DBID FBQ
BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/j.1462-2920.2007.01560.x
DatabaseName AGRIS
Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1474
ExternalDocumentID 10_1111_j_1462_2920_2007_01560_x
18279343
EMI1560
ark_67375_WNG_KQS4L19V_0
US201300893479
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01AI43965
– fundername: NIAID NIH HHS
  grantid: R01AI069321
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7X8
ID FETCH-LOGICAL-c4950-fea5bda4d6c272e87fb1a4abb95a2da8c363461c541b1d3979098a21bb6805543
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Tue Dec 03 22:29:28 EST 2024
Fri Dec 06 02:48:51 EST 2024
Sat Sep 28 07:44:57 EDT 2024
Sat Aug 24 01:05:12 EDT 2024
Wed Oct 30 09:48:25 EDT 2024
Wed Dec 27 19:20:42 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4950-fea5bda4d6c272e87fb1a4abb95a2da8c363461c541b1d3979098a21bb6805543
Notes http://dx.doi.org/10.1111/j.1462-2920.2007.01560.x
istex:A574E1BCE19BE8DDACA036EF16D62C12D063CF35
ark:/67375/WNG-KQS4L19V-0
ArticleID:EMI1560
These two authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18279343
PQID 69206384
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_69206384
crossref_primary_10_1111_j_1462_2920_2007_01560_x
pubmed_primary_18279343
wiley_primary_10_1111_j_1462_2920_2007_01560_x_EMI1560
istex_primary_ark_67375_WNG_KQS4L19V_0
fao_agris_US201300893479
PublicationCentury 2000
PublicationDate June 2008
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: June 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Amor, J.C., Swails, J., Zhu, X., Roy, C.R., Nagai, H., Ingmundson, A., et al. (2005) The structure of RalF, an ADP-ribosylation factor guanine nucleotide exchange factor from Legionella pneumophila, reveals the presence of a cap over the active site. J Biol Chem 280: 1392-1400.
Stone, B.J., Brier, A., and Kwaik, Y.A. (1999) The Legionella pneumophila prp locus; required during infection of macrophages and amoebae. Microb Pathog 27: 369-376.
Harb, O.S., Gao, L.-Y., and Abu Kwaik, Y. (2000) From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ Microbiol 2: 251-265.
Hales, L.M., and Shuman, H.A. (1999) The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879-4889.
Muder, R.R., YuV.L., McClure, J.K., Kroboth, F.J., Kominos, S.D., and Lumish, R.M. (1983) Nosocomial Legionnaires' disease uncovered in a prospective pneumonia study. JAMA 249: 3184-3188.
Alli, O.A.T., Gao, L.-Y., Pedersen, L.L., Zink. S., Radulic, M., Doric, M., and Abu Kwaik, Y. (2000) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68: 6431-6440.
Molmeret, M., Horn, M., Wagner, M., Santic, M., and Abu Kwaik, Y. (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71: 20-28.
Mosavi, L.K., Minor, D.L., Jr and Peng, Z.Y. (2002a) Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 99: 16029-16034.
Abu Kwaik, Y. (1998) Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection. Infect Immun 66: 203-212.
Abu-Zant, A., Asare, R., Graham, J.E., and Abu Kwaik, Y. (2006) Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 74: 3021-3026.
Caturegli, P., Asanovich, K.M., Walls, J.J., Bakken, J.S., Madigan, J.E., Popov, V.L., and Dumler, J.S. (2000) ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect Immun 68: 5277-5283.
Wu, M., Sun, L.V., Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J.C., et al. (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. Plos Biol 2: E69.
Firestein, R., Cui, X., Huie, P., and Cleary, M.L. (2000) Set domain-dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3-9. Mol Cell Biol 20: 4900-4909.
Hall, C., Brachat, S., and Dietrich, F.S. (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4: 1102-1115.
Mercer, A.A., Fleming, S.B., and Ueda, N. (2005) F-box-like domains are present in most poxvirus ankyrin repeat proteins. Virus Genes 31: 127-133.
Pedersen, L.L., Radulic, M., Doric, M., and Abu Kwaik, Y. (2001) HtrA homologue of Legionella pneumophila: an indispensable element for intracellular infection of mammalian but not protozoan cells. Infect Immun 69: 2569-2579.
Fields, B.S. (1996) The molecular ecology of legionellae. Trends Microbiol 4: 286-290.
Stone, B.J., and Abu Kwaik, Y. (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells Infect. Immun 66: 1768-1775.
Swanson, M.S., and Hammer, B.K. (2000) Legionella pneumophila pathogenesis: a fateful journey from amoebae to macrophages. Annu Rev Microbiol 54: 567-613.
Bachman, M.A., and Swanson, M.S. (2001) RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol 40: 1201-1214.
Abu-Zant, A., Santic, M., Molmeret, M., Jones, S., Helbig, J., and Abu Kwaik, Y. (2005) Incomplete activation of macrophage apoptosis during intracellular replication of Legionella pneumophila. Infect Immun Infect Immun 73: 5339-5349.
Molmeret, M., Bitar, D., Han, L., and Abu Kwaik, Y. (2004) Disruption of the phagosomal membrane and egress of Legionella pneumophila into the cytoplasm during late stages of the intracellular infection of macrophages and Acanthamoeba polyphaga. Infect Immun 72: 4040-4051.
Hammer, B.K., Tateda, E.S., and Swanson, M.S. (2002) A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44: 107-118.
Laguna, R.K., Creasey, E.A., Li, Z., Valtz, N., and Isberg, R.R. (2006) A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci USA 103: 18745-18750.
Michel, F., Soler-Lopez, M., Petosa, C., Cramer, P., Siebenlist, U., and Muller, C.W. (2001) Crystal structure of the ankyrin repeat domain of Bcl-3: a unique member of the IkappaB protein family. EMBO J 20: 6180-6190.
Abu Kwaik, Y. (1996) The phagosome containing Legionella pneumophila within the protozoan Hartmanella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62: 2022-2028.
Amstutz, P., Binz, H.K., Parizek, P., Stumpp, M.T., Kohl, A., Grutter, M.G., et al. (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem 280: 24715-24722.
Stone, B.J., and Abu Kwaik, Y. (1999) Natural competency for DNA uptake by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181: 1395-1402.
Batchelor, A.H., Piper, D.E., De La Brousse, F.C., McKnight, S.L., and Wolberger, C. (1998) The structure of GABPalpha/beta: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science 279: 1037-1041.
Abu Kwaik, Y., Gao, L.-Y., Stone, B.J., and Harb, O.S. (1998b) Invasion of mammalian and protozoan cells by Legionella pneumophila. Bull Instpasteur 96: 235-245.
Gao, L.-Y., and Abu Kwaik, Y. (1999) Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect Immun 67: 862-870.
Mosavi, L.K., Williams, S., and Peng Zy, Z.Y. (2002b) Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein. J Mol Biol 320: 165-170.
Harb, O.S., and Abu Kwaik, Y. (1999) Probing the microenvironment of intracellular bacterial pathogens. Microb Infect 1: 445-453.
Coers, J., Monahan, C., and Roy, C.R. (1999) Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth. Nature Cell Biol 1: 451-453.
Fraser, D.W., Tsai, T.R., Orenstein, W., Parkin, W.E., Beecham, H.J., Sharrar, R.G., et al. (1977) Legionnaires' disease: description of an epidemic of pneumonia. N Engl J Medical 297: 1189-1197.
Bachman, M.A., and Swanson, M.S. (2004) Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun 72: 2468-2476.
Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17: 363-374.
Hammer, B.K., and Swanson, M.S. (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33: 721-731.
Sikora, S., Strongin, A., and Godzik, A. (2005) Convergent evolution as a mechanism for pathogenic adaptation. Trends Microbiol 13: 522-527.
Gao, L.-Y., Harb, O.S., and Abu Kwaik, Y. (1997) Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant hosts, mammalian and protozoan cells. Infect Immun 65: 4738-4746.
Abu Kwaik, Y., Gao, L.-Y., Stone, B.J., Venkataraman, C., and Harb, O.S. (1998a) Invasion of protozoa by Legionella pneumophila and its role in bacterial ecology and pathogenesis. Appl Environ Microbiol 64: 3127-3133.
Magliery, T.J., and Regan, L. (2005) Sequence variation in ligand binding sites in proteins. BMC Bioinformatics 6: 240.
Cazalet, C., Rusniok, C., Bruggemann, H., Zidane, N., Magnier, A., Ma, L., et al. (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36: 1165-1173.
Elfring, L.K., Axton, J.M., Fenger, D.D., Page, A.W., Carminati, J.L., and Orr-Weaver, T.L. (1997) Drosophila plutonium protein is a specialized cell cycle regulator required at the onset of embryogenesis. Mol Biol Cell 8: 583-593.
Kipreos, E.T., and Pagano, M. (2000) The F-box protein family. Genome Biol 1: REVIEWS3002.
Santic, M., Molmeret, M., and Abu Kwaik, Y. (2005) Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages. Infect Immun 73: 3166-3171.
Howell, M.L., Alsabbagh, E., Ma, J.F., Ochsner, U.A., Klotz, M.G., Beveridge, T.J., et al. (2000) AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 182: 4545-4556.
Budd, A., Blandin, S., Levashina, E.A., and Gibson, T.J. (2004) Bacterial alpha2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol 5: R38.
Kitazawa, M., Yamakuni, T., Song, S.Y., Kato, C., Tsuchiya, R., Ishida, M., et al. (2005) Intracellular cAMP controls a physical association of V-1 with CapZ in cultured mammalian endocrine cells. Biochem Biophys Res Commun 331: 181-186.
Ijdo, J.W., Carlson, A.C., and Kennedy, E.L. (2007) Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell Microbiol 9: 1284-1296.
Mosavi, L.K., Cammett, T.J., Desrosiers, D.C., and Peng, Z.Y. (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13: 1435-1448.
Segal, G., Russo, J.J., and Shuman, H.A. (1999) Relationships between a new type IV secretion syste
2006; 74
2005; 331
2002b; 320
1998b; 96
2004; 6
2004; 5
2000; 2
1998; 279
2000; 1
2004; 2
2001; 40
1997; 8
2004; 72
2005; 187
2005; 102
2004; 36
2000; 54
1999; 181
2002; 44
2005; 73
2007; 9
2005; 31
1996; 62
2005; 71
1996; 4
1998a; 64
2005; 79
1977; 297
2002a; 99
1997; 65
2000; 68
1999; 27
2000; 20
2006; 8
1999; 67
1999; 1
2001; 69
1998; 66
2001; 20
1983; 249
2005; 280
1993; 17
2004; 13
2000; 182
2005; 4
1999; 34
1999; 33
2005; 6
2002; 70
2006; 103
2005; 13
e_1_2_6_51_1
e_1_2_6_53_1
Stone B.J. (e_1_2_6_58_1) 1999; 181
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Stone B.J. (e_1_2_6_57_1) 1998; 66
Abu Kwaik Y. (e_1_2_6_5_1) 1998; 96
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
Abu Kwaik Y. (e_1_2_6_3_1) 1998; 66
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 1
  start-page: 451
  year: 1999
  end-page: 453
  article-title: Modulation of phagosome biogenesis by creates an organelle permissive for intracellular growth
  publication-title: Nature Cell Biol
– volume: 9
  start-page: 1284
  year: 2007
  end-page: 1296
  article-title: AnkA is tyrosine‐phosphorylated at EPIYA motifs and recruits SHP‐1 during early infection
  publication-title: Cell Microbiol
– volume: 44
  start-page: 107
  year: 2002
  end-page: 118
  article-title: A two‐component regulator induces the transmission phenotype of stationary‐phase
  publication-title: Mol Microbiol
– volume: 34
  start-page: 799
  year: 1999
  end-page: 809
  article-title: Relationships between a new type IV secretion system and the icm/dot virulence system of
  publication-title: Mol Microbiol
– volume: 62
  start-page: 2022
  year: 1996
  end-page: 2028
  article-title: The phagosome containing within the protozoan is surrounded by the rough endoplasmic reticulum
  publication-title: Appl Environ Microbiol
– volume: 102
  start-page: 826
  year: 2005
  end-page: 831
  article-title: A C‐terminal translocation signal required for Dot/Icm‐dependent delivery of the Legionella RalF protein to host cells
  publication-title: Proc Natl Acad Sci USA
– volume: 181
  start-page: 1395
  year: 1999
  end-page: 1402
  article-title: Natural competency for DNA uptake by and its association with expression of type IV pili
  publication-title: J Bacteriol
– volume: 279
  start-page: 1037
  year: 1998
  end-page: 1041
  article-title: The structure of GABPalpha/beta: an ETS domain‐ankyrin repeat heterodimer bound to DNA
  publication-title: Science
– volume: 67
  start-page: 2117
  year: 1999
  end-page: 2124
  article-title: utilizes the same genes to multiply within and human macrophages
  publication-title: Infect Immun
– volume: 331
  start-page: 181
  year: 2005
  end-page: 186
  article-title: Intracellular cAMP controls a physical association of V‐1 with CapZ in cultured mammalian endocrine cells
  publication-title: Biochem Biophys Res Commun
– volume: 8
  start-page: 583
  year: 1997
  end-page: 593
  article-title: Drosophila plutonium protein is a specialized cell cycle regulator required at the onset of embryogenesis
  publication-title: Mol Biol Cell
– volume: 1
  start-page: REVIEWS3002
  year: 2000
  article-title: The F‐box protein family
  publication-title: Genome Biol
– volume: 13
  start-page: 522
  year: 2005
  end-page: 527
  article-title: Convergent evolution as a mechanism for pathogenic adaptation
  publication-title: Trends Microbiol
– volume: 4
  start-page: 286
  year: 1996
  end-page: 290
  article-title: The molecular ecology of legionellae
  publication-title: Trends Microbiol
– volume: 280
  start-page: 1392
  year: 2005
  end-page: 1400
  article-title: The structure of RalF, an ADP‐ribosylation factor guanine nucleotide exchange factor from , reveals the presence of a cap over the active site
  publication-title: J Biol Chem
– volume: 70
  start-page: 1657
  year: 2002
  end-page: 1663
  article-title: The Dot/Icm type IV secretion system of is essential for the induction of apoptosis in human macrophages
  publication-title: Infect Immun
– volume: 68
  start-page: 6431
  year: 2000
  end-page: 6440
  article-title: Temporal pore formation‐mediated egress from macrophages and alveolar epithelial cells by
  publication-title: Infect Immun
– volume: 5
  start-page: R38
  year: 2004
  article-title: Bacterial alpha2‐macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?
  publication-title: Genome Biol
– volume: 4
  start-page: 1102
  year: 2005
  end-page: 1115
  article-title: Contribution of horizontal gene transfer to the evolution of
  publication-title: Eukaryot Cell
– volume: 73
  start-page: 3166
  year: 2005
  end-page: 3171
  article-title: Maturation of the ‐containing phagosome into a phagolysosome within gamma interferon‐activated macrophages
  publication-title: Infect Immun
– volume: 6
  start-page: 743
  year: 2004
  end-page: 751
  article-title: AnkA binds to granulocyte DNA and nuclear proteins
  publication-title: Cell Microbiol
– volume: 54
  start-page: 567
  year: 2000
  end-page: 613
  article-title: pathogenesis: a fateful journey from amoebae to macrophages
  publication-title: Annu Rev Microbiol
– volume: 181
  start-page: 4879
  year: 1999
  end-page: 4889
  article-title: The gene is required for growth within
  publication-title: J Bacteriol
– volume: 249
  start-page: 3184
  year: 1983
  end-page: 3188
  article-title: Nosocomial Legionnaires' disease uncovered in a prospective pneumonia study
  publication-title: JAMA
– volume: 36
  start-page: 1165
  year: 2004
  end-page: 1173
  article-title: Evidence in the genome for exploitation of host cell functions and high genome plasticity
  publication-title: Nat Genet
– volume: 31
  start-page: 127
  year: 2005
  end-page: 133
  article-title: F‐box‐like domains are present in most poxvirus ankyrin repeat proteins
  publication-title: Virus Genes
– volume: 72
  start-page: 2468
  year: 2004
  end-page: 2476
  article-title: Genetic evidence that RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase
  publication-title: Infect Immun
– volume: 13
  start-page: 1435
  year: 2004
  end-page: 1448
  article-title: The ankyrin repeat as molecular architecture for protein recognition
  publication-title: Protein Sci
– volume: 40
  start-page: 1201
  year: 2001
  end-page: 1214
  article-title: RpoS co‐operates with other factors to induce virulence in the stationary phase
  publication-title: Mol Microbiol
– volume: 66
  start-page: 203
  year: 1998
  end-page: 212
  article-title: Induced expression of the gene encoding a 20‐kilodalton protein during intracellular infection
  publication-title: Infect Immun
– volume: 65
  start-page: 4738
  year: 1997
  end-page: 4746
  article-title: Utilization of similar mechanisms by to parasitize two evolutionarily distant hosts, mammalian and protozoan cells
  publication-title: Infect Immun
– volume: 33
  start-page: 721
  year: 1999
  end-page: 731
  article-title: Co‐ordination of virulence with entry into stationary phase by ppGpp
  publication-title: Mol Microbiol
– volume: 96
  start-page: 235
  year: 1998b
  end-page: 245
  article-title: Invasion of mammalian and protozoan cells by
  publication-title: Bull Instpasteur
– volume: 70
  start-page: 6273
  year: 2002
  end-page: 6283
  article-title: Intracellular growth of gives rise to a differentiated form dissimilar to stationary‐phase forms
  publication-title: Infect Immun
– volume: 280
  start-page: 24715
  year: 2005
  end-page: 24722
  article-title: Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins
  publication-title: J Biol Chem
– volume: 2
  start-page: 251
  year: 2000
  end-page: 265
  article-title: From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens
  publication-title: Environ Microbiol
– volume: 79
  start-page: 10750
  year: 2005
  end-page: 10763
  article-title: Myxoma virus M‐T5 protects infected cells from the stress of cell cycle arrest through its interaction with host cell cullin‐1
  publication-title: J Virol
– volume: 6
  start-page: 240
  year: 2005
  article-title: Sequence variation in ligand binding sites in proteins
  publication-title: BMC Bioinformatics
– volume: 73
  start-page: 5339
  year: 2005
  end-page: 5349
  article-title: Incomplete activation of macrophage apoptosis during intracellular replication of
  publication-title: Infect Immun Infect Immun
– volume: 69
  start-page: 2569
  year: 2001
  end-page: 2579
  article-title: HtrA homologue of : an indispensable element for intracellular infection of mammalian but not protozoan cells
  publication-title: Infect Immun
– volume: 71
  start-page: 20
  year: 2005
  end-page: 28
  article-title: Amoebae as training grounds for intracellular bacterial pathogens
  publication-title: Appl Environ Microbiol
– volume: 72
  start-page: 4040
  year: 2004
  end-page: 4051
  article-title: Disruption of the phagosomal membrane and egress of into the cytoplasm during late stages of the intracellular infection of macrophages and
  publication-title: Infect Immun
– volume: 64
  start-page: 3127
  year: 1998a
  end-page: 3133
  article-title: Invasion of protozoa by and its role in bacterial ecology and pathogenesis
  publication-title: Appl Environ Microbiol
– volume: 187
  start-page: 7716
  year: 2005
  end-page: 7726
  article-title: Evidence for acquisition of type IV secretion substrates via interdomain horizontal gene transfer
  publication-title: J Bacteriol
– volume: 27
  start-page: 369
  year: 1999
  end-page: 376
  article-title: The prp locus; required during infection of macrophages and amoebae
  publication-title: Microb Pathog
– volume: 17
  start-page: 363
  year: 1993
  end-page: 374
  article-title: Hundreds of ankyrin‐like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally?
  publication-title: Proteins
– volume: 66
  start-page: 1768
  year: 1998
  end-page: 1775
  article-title: Expression of multiple pili by : identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells
  publication-title: Immun
– volume: 2
  start-page: E69
  year: 2004
  article-title: Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements
  publication-title: Plos Biol
– volume: 182
  start-page: 4545
  year: 2000
  end-page: 4556
  article-title: AnkB, a periplasmic ankyrin‐like protein in , is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide
  publication-title: J Bacteriol
– volume: 68
  start-page: 5277
  year: 2000
  end-page: 5283
  article-title: : an group gene encoding a cytoplasmic protein antigen with ankyrin repeats
  publication-title: Infect Immun
– volume: 99
  start-page: 16029
  year: 2002a
  end-page: 16034
  article-title: Consensus‐derived structural determinants of the ankyrin repeat motif
  publication-title: Proc Natl Acad Sci USA
– volume: 103
  start-page: 18745
  year: 2006
  end-page: 18750
  article-title: A ‐translocated substrate that is required for growth within macrophages and protection from host cell death
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 1228
  year: 2006
  end-page: 1240
  article-title: Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of
  publication-title: Cell Microbiol
– volume: 320
  start-page: 165
  year: 2002b
  end-page: 170
  article-title: Equilibrium folding and stability of myotrophin: a model ankyrin repeat protein
  publication-title: J Mol Biol
– volume: 74
  start-page: 3021
  year: 2006
  end-page: 3026
  article-title: Role for RpoS but not RelA of in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment
  publication-title: Infect Immun
– volume: 297
  start-page: 1189
  year: 1977
  end-page: 1197
  article-title: Legionnaires' disease: description of an epidemic of pneumonia
  publication-title: N Engl J Medical
– volume: 20
  start-page: 4900
  year: 2000
  end-page: 4909
  article-title: Set domain‐dependent regulation of transcriptional silencing and growth control by SUV39H1, a mammalian ortholog of Drosophila Su(var)3‐9
  publication-title: Mol Cell Biol
– volume: 66
  start-page: 883
  year: 1998
  end-page: 892
  article-title: Identification of macrophage‐specific infectivity loci ( ) of that are not required for infectivity of protozoa
  publication-title: Infect Immun
– volume: 67
  start-page: 862
  year: 1999
  end-page: 870
  article-title: Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by its role in cytopathogenicity
  publication-title: Infect Immun
– volume: 20
  start-page: 6180
  year: 2001
  end-page: 6190
  article-title: Crystal structure of the ankyrin repeat domain of Bcl‐3: a unique member of the IkappaB protein family
  publication-title: EMBO J
– volume: 1
  start-page: 445
  year: 1999
  end-page: 453
  article-title: Probing the microenvironment of intracellular bacterial pathogens
  publication-title: Microb Infect
– ident: e_1_2_6_54_1
  doi: 10.1046/j.1365-2958.1999.01642.x
– ident: e_1_2_6_59_1
  doi: 10.1006/mpat.1999.0311
– ident: e_1_2_6_8_1
  doi: 10.1128/IAI.68.11.6431-6440.2000
– ident: e_1_2_6_60_1
  doi: 10.1146/annurev.micro.54.1.567
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.0406239101
– ident: e_1_2_6_10_1
  doi: 10.1074/jbc.M501746200
– ident: e_1_2_6_6_1
  doi: 10.1128/IAI.74.5.3021-3026.2006
– ident: e_1_2_6_53_1
  doi: 10.1128/IAI.73.5.3166-3171.2005
– ident: e_1_2_6_37_1
  doi: 10.1128/JVI.79.16.10750-10763.2005
– ident: e_1_2_6_9_1
  doi: 10.1074/jbc.M410820200
– ident: e_1_2_6_45_1
  doi: 10.1128/AEM.71.1.20-28.2005
– ident: e_1_2_6_20_1
  doi: 10.1091/mbc.8.4.583
– ident: e_1_2_6_41_1
  doi: 10.1186/1471-2105-6-240
– volume: 66
  start-page: 203
  year: 1998
  ident: e_1_2_6_3_1
  article-title: Induced expression of the Legionella pneumophila gene encoding a 20‐kilodalton protein during intracellular infection
  publication-title: Infect Immun
  doi: 10.1128/IAI.66.1.203-212.1998
  contributor:
    fullname: Abu Kwaik Y.
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1462-5822.2006.00871.x
– ident: e_1_2_6_24_1
  doi: 10.1056/NEJM197712012972201
– ident: e_1_2_6_12_1
  doi: 10.1128/IAI.72.5.2468-2476.2004
– ident: e_1_2_6_31_1
  doi: 10.1046/j.1365-2958.1999.01519.x
– ident: e_1_2_6_26_1
  doi: 10.1128/IAI.65.11.4738-4746.1997
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.252537899
– ident: e_1_2_6_22_1
  doi: 10.1016/0966-842X(96)10041-X
– ident: e_1_2_6_2_1
  doi: 10.1128/AEM.62.6.2022-2028.1996
– ident: e_1_2_6_27_1
  doi: 10.1128/IAI.66.3.883-892.1998
– ident: e_1_2_6_52_1
  doi: 10.1128/IAI.69.4.2569-2579.2001
– ident: e_1_2_6_4_1
  doi: 10.1128/AEM.64.9.3127-3133.1998
– ident: e_1_2_6_35_1
  doi: 10.1128/JB.182.16.4545-4556.2000
– ident: e_1_2_6_38_1
  doi: 10.1186/gb-2000-1-5-reviews3002
– ident: e_1_2_6_43_1
  doi: 10.1093/emboj/20.22.6180
– ident: e_1_2_6_34_1
  doi: 10.1046/j.1462-2920.2000.00112.x
– ident: e_1_2_6_48_1
  doi: 10.1016/S0022-2836(02)00441-2
– volume: 181
  start-page: 1395
  year: 1999
  ident: e_1_2_6_58_1
  article-title: Natural competency for DNA uptake by Legionella pneumophila and its association with expression of type IV pili
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.5.1395-1402.1999
  contributor:
    fullname: Stone B.J.
– ident: e_1_2_6_17_1
  doi: 10.1128/IAI.68.9.5277-5283.2000
– ident: e_1_2_6_39_1
  doi: 10.1016/j.bbrc.2005.03.127
– ident: e_1_2_6_51_1
  doi: 10.1111/j.1462-5822.2004.00400.x
– ident: e_1_2_6_11_1
  doi: 10.1046/j.1365-2958.2001.02465.x
– ident: e_1_2_6_49_1
  doi: 10.1001/jama.249.23.3184
– ident: e_1_2_6_61_1
  doi: 10.1371/journal.pbio.0020069
– ident: e_1_2_6_40_1
  doi: 10.1073/pnas.0609012103
– ident: e_1_2_6_23_1
  doi: 10.1128/MCB.20.13.4900-4909.2000
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1462-5822.2006.00703.x
– ident: e_1_2_6_29_1
  doi: 10.1128/JB.181.16.4879-4889.1999
– ident: e_1_2_6_62_1
  doi: 10.1128/IAI.70.3.1657-1663.2002
– ident: e_1_2_6_42_1
  doi: 10.1007/s11262-005-1784-z
– ident: e_1_2_6_30_1
  doi: 10.1128/EC.4.6.1102-1115.2005
– ident: e_1_2_6_19_1
  doi: 10.1038/15687
– ident: e_1_2_6_28_1
  doi: 10.1128/IAI.70.11.6273-6283.2002
– ident: e_1_2_6_21_1
  doi: 10.1128/JB.187.22.7716-7726.2005
– ident: e_1_2_6_46_1
  doi: 10.1110/ps.03554604
– ident: e_1_2_6_56_1
  doi: 10.1016/j.tim.2005.08.010
– ident: e_1_2_6_7_1
  doi: 10.1128/IAI.73.9.5339-5349.2005
– ident: e_1_2_6_55_1
  doi: 10.1128/IAI.67.5.2117-2124.1999
– ident: e_1_2_6_32_1
  doi: 10.1046/j.1365-2958.2002.02884.x
– ident: e_1_2_6_13_1
  doi: 10.1126/science.279.5353.1037
– ident: e_1_2_6_16_1
  doi: 10.1186/gb-2004-5-6-r38
– ident: e_1_2_6_25_1
  doi: 10.1128/IAI.67.2.862-870.1999
– ident: e_1_2_6_33_1
  doi: 10.1016/S1286-4579(99)80048-3
– ident: e_1_2_6_14_1
  doi: 10.1002/prot.340170405
– volume: 96
  start-page: 235
  year: 1998
  ident: e_1_2_6_5_1
  article-title: Invasion of mammalian and protozoan cells by Legionella pneumophila
  publication-title: Bull Instpasteur
  contributor:
    fullname: Abu Kwaik Y.
– ident: e_1_2_6_18_1
  doi: 10.1038/ng1447
– ident: e_1_2_6_44_1
  doi: 10.1128/IAI.72.7.4040-4051.2004
– volume: 66
  start-page: 1768
  year: 1998
  ident: e_1_2_6_57_1
  article-title: Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells Infect
  publication-title: Immun
  contributor:
    fullname: Stone B.J.
SSID ssj0017370
Score 2.2769456
Snippet Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various...
Summary Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within...
Legionella pneumophila is a ubiquitous organism in the aquatic environment where it is capable of invasion and intracellular proliferation within various...
SourceID proquest
crossref
pubmed
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1460
SubjectTerms Animals
Ankyrins - genetics
Ankyrins - physiology
Bacterial Proteins - genetics
Bacterial Proteins - physiology
Cell Line
Cells, Cultured
Colony Count, Microbial
Eukaryota - microbiology
Gene Deletion
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Gene Order
Genes, Bacterial
Humans
Legionella pneumophila - genetics
Legionella pneumophila - growth & development
Legionella pneumophila - pathogenicity
Macrophages - microbiology
Repetitive Sequences, Amino Acid
Sigma Factor - physiology
Virulence
Virulence Factors - genetics
Virulence Factors - physiology
Title Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages
URI https://api.istex.fr/ark:/67375/WNG-KQS4L19V-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2007.01560.x
https://www.ncbi.nlm.nih.gov/pubmed/18279343
https://search.proquest.com/docview/69206384
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXyrvh6QPillWcOHFyrIBSQalEy0Jv1jh22lW6yWqzkdpKSPwEfiO_hJkku2hXPSDEzYf4EXtm_Nn-ZoaxV5Zy6mRQ-IGLY1-CAx8Cq3zpssIVhcIjC3kjfzpM9sfyw0l8MvCfyBemjw-xunAjzejsNSk4mGZTyUOfsi0NkQjJKXhEeFJEith9b49WkaSEirq8cUMVsUHqubahtZ3qZgE14lea-ovrwOg6tu02p71tVi5_q-eklKN2YUb51UbEx__z33fZnQHD8t1e6O6xG666z271WS0vH7DvR_W54wiGOYJLvluVl_NJxV1bYp81Vvn14-f5pHT8lMwsrwt-4IgUTTQsPqtcO61nZxMsYyUKTE6ksmZK31FMifqqhoqTa0rDobK8yzHIp0CZyM7QNjYP2Xjv3Zc3-_6Q5cHP8XAW-IWD2FiQNslDFbpUFUaABGOyGEILaR4lkUxEHkthhKVnyCBLIRTGJGmAYCh6xLYqHOQOrmhus9BGaY7SJiHJUxdYExqpAuuwpcBjYrmietYH89Brh6BQ07RSak6lu2nVFx7bwaXXcIo2V4-PQ3rpDRDkSZV57HUnD6u2YF4ST07F-tvhe_3x87E8ENlXjf2-XAqMRu2lJxmoXN02OsHu0AJKjz3u5ejPuNIQTaeMPJZ00vDXA9aov1R68q8Vn7LbPSmGrpqesa3FvHXPEXktzItOp34DS3MfIw
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFLdgCMGF_7CMwXxA3FLFjvPvOMFGYV0lthV2s-zY2aq0SdU20jZpEh-Bz7hPsveStKjVDghx8yHPduz3nn-2n9-PkA8GOXUSlbmeDQJXKKtc5ZnIFTbJbJZFsGXB18iH_bA7EN9Og9OWDgjfwjT5IZYHbmgZtb9GA8cD6XUr5y7SLbWpCPFVcAcA5QOwfobxXZ-PlrmkWOTXzHGtDFsL67mzppW16n6mSkCwOPgXd8HRVXRbL0_7T8lo8WNNVEreqea6k16t5Xz8T3_-jDxpYSzdbfTuOblnixfkYUNsefmSXB-VI0sBD1PAl3S3yC-nw4LaKodGSxC5-fV7NMwtPUNPS8uM9izGRWMkFp0UthqXk_MhlEEIc5NjXNlsjN9hWonyqlQFxdcpM6oKQ2uaQTpWSEZ2Du5x9ooM9vdOPnXdlujBTWF_5rmZVYE2Spgw5RG3cZRppoTSOgkUNypO_dAXIUsDwTQzeBPpJbHiTOsw9gAP-a_JRgGd3IQpTU3CjR-noHBChWlsPaO5FpFnLNTkOYQtplROmnwecmUfxCUOK7JzRrIeVnnhkE2Ye6nOwO3KwTHHy14PcJ6IEod8rBViWZea5hgqFwXyZ_-LPPh-LHos-SGh3Z2FxkgwYLyVUYUtq5kMoTlwgsIhbxpF-tOvmIP3FL5Dwlod_rrDEkwYS1v_KrhDHnVPDnuy97V_8JY8bmJk8ORpm2zMp5V9B0Bsrt_XBnYLU1kjRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BEYgLb6h5dQ-ImyN7vX4dK0ooNETQEuhtNetdt5EbO0piqa2ExE_gN_JLmLGdoEQ9IMRtZXn2OTP77e48GHtlKKdOCrnr2TB0JVhwwTOxK22a2zyP8chC3sgfh9H-SH44Do87-yfyhWnjQ6wu3EgyGn1NAj41-aaQC5eyLXWRCMkpuId48gZ-TymO_t7hKpSUHwdN4riOxt-w6rmyprWt6noOFQJYmvvzq9DoOrhtdqf-XVYsx9UapRS9eqF72eVGyMf_M_B77E4HYvluy3X32TVbPmA327SWFw_Z98PqzHJEwxzRJd8ti4vZuOS2LrDNCkl-_fh5Ni4sPyE9y6ucDyxZRZMdFp-Wtp5U09MxlpGIIpOTVdl8Qv9RUInqsoKSk2_KnENpeJNkkE-AUpGdonKcP2Kj_tsvb_bdLs2Dm-HpzHNzC6E2IE2UiVjYJM61DxK0TkMQBpIsiAIZ-Vkofe0beof00gSEr3WUeIiGgsdsq8RObuOKZiYVJkgyZDcJUZZYz2ihZewZizV5DvOXK6qmbTQPtXYKEoqmlXJzxqqZVnXusG1cegUnqHTV6EjQU6-HKE_GqcNeN_ywqgtmBRnKxaH6NnynDj4fyYGfflXY7s6SYRSKL73JQGmreq4ibA5VoHTYk5aP_vQrEag7ZeCwqOGGv-6wQgGm0tN_Jdxhtz7t9dXg_fDgGbvdGsjQtdNztrWY1fYForCFftmI12-9qiHz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+for+the+Ankyrin+eukaryotic%E2%80%90like+genes+of+Legionella+pneumophila+in+parasitism+of+protozoan+hosts+and+human+macrophages&rft.jtitle=Environmental+microbiology&rft.au=Habyarimana%2C+Fabien&rft.au=Al%E2%80%90khodor%2C+Souhaila&rft.au=Kalia%2C+Awdhesh&rft.au=Graham%2C+James+E.&rft.date=2008-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=10&rft.issue=6&rft.spage=1460&rft.epage=1474&rft_id=info:doi/10.1111%2Fj.1462-2920.2007.01560.x&rft.externalDBID=10.1111%252Fj.1462-2920.2007.01560.x&rft.externalDocID=EMI1560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon