Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene
Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant t...
Saved in:
Published in | Resources, conservation and recycling Vol. 187; p. 106634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts.
[Display omitted] |
---|---|
AbstractList | Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts.
[Display omitted] Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts. |
ArticleNumber | 106634 |
Author | Wickerts, Sanna Chordia, Mudit Arvidsson, Rickard Nordelöf, Anders |
Author_xml | – sequence: 1 givenname: Mudit orcidid: 0000-0002-9228-8579 surname: Chordia fullname: Chordia, Mudit email: mudit@chalmers.se – sequence: 2 givenname: Sanna surname: Wickerts fullname: Wickerts, Sanna – sequence: 3 givenname: Anders surname: Nordelöf fullname: Nordelöf, Anders – sequence: 4 givenname: Rickard surname: Arvidsson fullname: Arvidsson, Rickard |
BackLink | https://research.chalmers.se/publication/531781$$DView record from Swedish Publication Index |
BookMark | eNqFkdtq3DAQhkVJoJs0zxC9gLeSJetwGUJPsNCLpNdCHo2yWmzLSHbKvn2dbsltrwZ-5v9g5rshV1OekJB7zvaccfX5tC9YIU8FYd-ytt1SpYT8QHbcaNsw1ZkrsmO25Y2Q0n4kN7WeGGPCWLEjwyFFpHCGASlOr6nkacRp8QNN4-xhqTRHCmspW0j9FGhcl7Ug7f2yYDk3L8UHpENajmkdaV3neTjTWPJI-5Im_Fupcw7rRsVP5Dr6oeLdv3lLfn398vz4vTn8_Pbj8eHQgLRyaSKCNUEZwaPtotnuMdya1gOPKA3Yvos69F4JZgxXmivRaQmdFxA67EGLW_J04dbfOK-9m0safTm77JPbnoW-wNHB0Q8jluoqOh6lZL2KLmoenPTYOt-aznnstRKegQ7tRtUXKpRca8H4zuXMvalwJ_euwr2pcBcVW_Ph0sTt6NeExVVIOAGGtK0uLuT0X8Yfo3Obpg |
CitedBy_id | crossref_primary_10_1016_j_resconrec_2024_107554 crossref_primary_10_1016_j_exis_2023_101384 crossref_primary_10_1016_j_tree_2022_10_005 crossref_primary_10_1016_j_jclepro_2024_142108 crossref_primary_10_3389_fceng_2022_1008680 crossref_primary_10_3390_pr11020418 crossref_primary_10_1016_j_molliq_2023_123454 crossref_primary_10_1016_j_procir_2023_02_102 crossref_primary_10_1016_j_resconrec_2022_106806 crossref_primary_10_1016_j_mineng_2024_108600 crossref_primary_10_3390_toxics12030176 crossref_primary_10_1016_j_procir_2023_02_122 crossref_primary_10_1021_acssuschemeng_3c00141 crossref_primary_10_1016_j_procir_2024_01_027 crossref_primary_10_1007_s11356_024_32301_5 crossref_primary_10_1016_j_procir_2024_01_139 crossref_primary_10_1016_j_desal_2023_117142 crossref_primary_10_1016_j_hydromet_2023_106217 crossref_primary_10_1016_j_jclepro_2024_141725 crossref_primary_10_1016_j_jclepro_2024_142955 crossref_primary_10_3389_fpace_2022_1058940 crossref_primary_10_1002_aqc_4044 crossref_primary_10_1016_j_memlet_2023_100059 crossref_primary_10_1016_j_rser_2024_114456 crossref_primary_10_1007_s40899_023_00878_3 crossref_primary_10_1016_j_apenergy_2023_122132 crossref_primary_10_1016_j_mineng_2024_108632 crossref_primary_10_1080_12269328_2023_2229351 crossref_primary_10_17586_2687_0568_2022_4_4_39_61 crossref_primary_10_1016_j_resconrec_2024_107583 |
Cites_doi | 10.1016/j.jhydrol.2006.03.036 10.1007/s11367-008-0038-4 10.1007/s11367-016-1246-y 10.1016/j.earscirev.2021.103615 10.1016/j.jclepro.2020.120067 10.1111/jiec.12949 10.3133/70180197 10.1007/s00126-016-0656-x 10.1149/2.0251701jes 10.1016/j.resourpol.2011.11.003 10.1038/s43247-020-00080-9 10.3390/resources5040036 10.1007/s11367-021-01976-0 10.1126/science.1248361 10.1016/j.mineng.2019.105843 10.1016/j.scitotenv.2018.05.223 10.1016/j.desal.2021.115169 10.1007/s11367-014-0788-0 10.1007/s11367-020-01781-1 10.1016/j.resconrec.2021.105762 10.1016/j.mineng.2018.01.010 10.1016/j.jclepro.2019.04.186 10.1016/j.jclepro.2011.10.026 10.1038/d41586-021-02222-1 10.1016/j.jclepro.2018.12.237 10.33063/diva2-1452023 10.1016/j.hydromet.2012.02.008 10.3133/pp412 10.1111/jiec.12942 10.1007/s11367-016-1087-8 10.1016/j.oregeorev.2012.05.006 10.1016/j.resourpol.2009.05.002 10.1007/s11367-017-1333-8 10.1007/s11367-016-1109-6 10.1016/j.jenvman.2020.110253 10.2113/econgeo.106.7.1225 10.1016/j.joule.2017.08.019 10.46873/2300-3960.1060 10.1016/j.chemosphere.2021.131108 10.1007/s11367-019-01595-w |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
DOI | 10.1016/j.resconrec.2022.106634 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1879-0658 |
ExternalDocumentID | oai_research_chalmers_se_1f440b6f_f71d_4ae2_a285_aeb763a0c7d2 10_1016_j_resconrec_2022_106634 S0921344922004670 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFJI AAFTH AAHBH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K WUQ ZY4 ~A~ ~G- AAXKI AAYXX AFJKZ CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
ID | FETCH-LOGICAL-c494t-fec98d6831f95f810681982ac1fe48c9b5f7dba63088167163574c5a3cd5ebc73 |
IEDL.DBID | AIKHN |
ISSN | 0921-3449 1879-0658 |
IngestDate | Tue Oct 01 22:42:19 EDT 2024 Thu Sep 26 21:31:32 EDT 2024 Sat Jun 29 15:30:32 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Life cycle assessment Lithium-ion battery Spodumene Lithium hydroxide monohydrate Brine |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-fec98d6831f95f810681982ac1fe48c9b5f7dba63088167163574c5a3cd5ebc73 |
ORCID | 0000-0002-9228-8579 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0921344922004670 |
ParticipantIDs | swepub_primary_oai_research_chalmers_se_1f440b6f_f71d_4ae2_a285_aeb763a0c7d2 crossref_primary_10_1016_j_resconrec_2022_106634 elsevier_sciencedirect_doi_10_1016_j_resconrec_2022_106634 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Resources, conservation and recycling |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sutter (bib0058) 2007 Burga, Burga, Weber, Sanford, Dworzanowski (bib0009) 2020 Hischier, R., 2007. Life cycle inventories of packaging and graphical paper. Final report ecoinvent data v2. 0 No 11. Hussain, Rahman, Sivasengaran, Hasanuzzaman (bib0027) 2020 Yin, Hu, Yang (bib0069) 2019; 227 Edström, K., Dominko, R., Fichtner, M., Otuszewski, T., Perraud, S., Punckt, C., Tarascon, J.-.M., Vegge, T., Winter, M., 2020. Battery 2030+ Roadmap: inventing the sustainable batteries of the future, in: Edström, K. (Ed.). Calvo, Mudd, Valero, Valero (bib0010) 2016; 5 Arvidsson, Söderman, Sandén, Nordelöf, André, Tillman (bib0004) 2020 López Steinmetz, Salvi (bib0039) 2021; 217 Keliber Oy, 2020a. Keski-Pohjanmaan Litiumprovinssin Laajennuksen Yva-Selostus. SQM, 2010. SQM Annnual Report 2009. Santiago. Yang (bib0068) 2019; 24 Sutter (bib0059) 2021 Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib0062) 2016; 21 Yaksic, Tilton (bib0067) 2009; 34 Sweco, 2016. Pre-feasibility Study - Keliber Lithium Project. Aylmore, Merigot, Rickard, Evans, McDonald, Catovic, Spitalny (bib0006) 2018; 119 Nordelöf, Messagie, Tillman, Söderman, Van Mierlo (bib0043) 2014; 19 SQM, 2007. Informe Consolidado de la Evaluación de Impacto Ambiental de la Declaración de Impacto Ambiental del Proyecto “Ampliación Planta Carbonato de Litio a 48.000 ton/año.”. Steubing, Wernet, Reinhard, Bauer, Moreno-Ruiz (bib0057) 2016; 21 Kushnir, Sandén (bib0035) 2012; 37 Chordia, Nordelöf, Ellingsen (bib0012) 2021; 26 Gendorf, 2000. Umwelterklärung 2000. Langbein, W.B., 1961. Salinity and hydrology of closed lakes, Professional Paper. Washington, D.C., p. 25. Raugei, Winfield (bib0048) 2019; 213 Keliber Oy, 2020b. Litiumkemiantehdas, Kokkola Yva-Selostus. Kallitsis, Korre, Kelsall, Kupfersberger, Nie (bib0029) 2020; 254 Kellenberger, Althaus, Jungbluth, Künniger, Lehmann, Thalmann (bib0032) 2007 Golder Associates, 2013. Results of the water balance and water quality models for the Whabouchi lithium mine. Rosenbaum, Bachmann, Gold, Huijbregts, Jolliet, Juraske, Koehler, Larsen, MacLeod, Margni, McKone, Payet, Schuhmacher, van de Meent, Hauschild (bib0049) 2008; 13 Ambrose, Kendall (bib0001) 2020; 24 Notter (bib0045) 2021 An, Kang, Tran, Kim, Lim, Tran (bib0003) 2012; 117-118 Hischier (bib0023) 2021 Nguyen, Won, Ha, Nguyen, Kang (bib0042) 2021; 282 Hellweg, Milà i Canals (bib0021) 2014; 344 Ejeian, Grant, Shon, Razmjou (bib0016) 2021; 518 Magdalena, Valero, Palacios, Valero (bib0040) 2021; 20 Ciroth, Burhan (bib0013) 2021 Huijbregts, M., Steinmann, Z., Elshout, P., Stam, G., Verones, F., Vieira, M., Hollander, A., Zijp, M., van Zelm, R., 2016. ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level Report I: characterization, ReCiPe 2016: een geharmoniseerde levenscyclus impact assessment methode op 'midpoint' en 'endpoint' niveau Rapport 1: karakterisatie. Rijksinstituut voor Volksgezondheid en Milieu RIVM. Worley Parsons, 2019. NI 43 - 101 Technical Report: Definitive Feasibility Study of MSB Blanco Lithium Carbonate Project. Minera Salar Blanco. Houston (bib0024) 2006; 330 Olivetti, Ceder, Gaustad, Fu (bib0047) 2017; 1 Schomberg, Bringezu, Flörke (bib0050) 2021; 2 Steinmetz (bib0056) 2017; 52 Ambrose, Kendall (bib0002) 2020; 24 Castelvecchi (bib0011) 2021; 596 Notter (bib0044) 2021 Blomgren (bib0007) 2016; 164 Wietelmann, Steinbild (bib0064) 2014 Kelly, Wang, Dai, Winjobi (bib0033) 2021; 174 Kesler, Gruber, Medina, Keoleian, Everson, Wallington (bib0034) 2012; 48 Lemougna, Yliniemi, Ismailov, Levanen, Tanskanen, Kinnunen, Roning, Illikainen (bib0038) 2019; 141 Dry (bib0014) 2018 Houston, Butcher, Ehren, Evans, Godfrey (bib0025) 2011; 106 (bib0005) 2022 Boulay, Bare, Benini, Berger, Lathuillière, Manzardo, Margni, Motoshita, Núñez, Pastor, Ridoutt, Oki, Worbe, Pfister (bib0008) 2018; 23 Stamp, Lang, Wäger (bib0055) 2012; 23 Nemaska Lithium Inc., 2013. Whabouchi Project - Environmental and Social Impact Assessment, Development and Operation of a Spodumene Deposit in the James Bay Territory. Nemaska Lithium. Wietelmann, Bauer (bib0063) 2000 Flexer, Baspineiro, Galli (bib0017) 2018; 639 USGS, 2021. Mineral commodity summaries 2021 - Lithium, mineral commodity summaries. Reston, VA, p. 200. Ober, J.A., 2017. Mineral Commodity Summaries 2017, Mineral Commodity Summaries. Reston, VA, p. 202. SQM, 2006. Informe Consolidado de Evaluación Estudio de Impacto Ambiental del Proyecto “Cambios y Mejoras de la Operación Minera en el Salar de Atacama.”. Jiang, Zhang, Li, Hua, Liu, Yuan, Wu (bib0028) 2020; 262 Giglio (bib0019) 2021; 5 SENES Consultants Ltd., 2013. Provincial air quality effects assessment: Whabouchi project - environmental and social impact assessment (Annexe 6-1). Ontario. Worley Parsons, 2011. NI 43 - 101 Technical Report: Preliminary Assessment and Economic Evaluation of the Cauchari-Olaroz Lithium Project, Jujuy Province, Argentina. Laferriére, A., Dessureault, Y., Skiadas, N., Pearse, G.H.K., Lamontagne, A., Larouche, I., Michaud, A., Bilodeau, M., Charbonneau, C., 2012. NI 43-101 Technical Report Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant. Nemaska Lithium. Houston (10.1016/j.resconrec.2022.106634_bib0025) 2011; 106 Hussain (10.1016/j.resconrec.2022.106634_bib0027) 2020 Notter (10.1016/j.resconrec.2022.106634_bib0044) 2021 Wietelmann (10.1016/j.resconrec.2022.106634_bib0063) 2000 Aylmore (10.1016/j.resconrec.2022.106634_bib0006) 2018; 119 Boulay (10.1016/j.resconrec.2022.106634_bib0008) 2018; 23 10.1016/j.resconrec.2022.106634_bib0015 Ciroth (10.1016/j.resconrec.2022.106634_bib0013) 2021 Kesler (10.1016/j.resconrec.2022.106634_bib0034) 2012; 48 10.1016/j.resconrec.2022.106634_bib0018 Blomgren (10.1016/j.resconrec.2022.106634_bib0007) 2016; 164 10.1016/j.resconrec.2022.106634_bib0051 (10.1016/j.resconrec.2022.106634_bib0005) 2022 10.1016/j.resconrec.2022.106634_bib0052 10.1016/j.resconrec.2022.106634_bib0053 Stamp (10.1016/j.resconrec.2022.106634_bib0055) 2012; 23 10.1016/j.resconrec.2022.106634_bib0054 Steinmetz (10.1016/j.resconrec.2022.106634_bib0056) 2017; 52 Lemougna (10.1016/j.resconrec.2022.106634_bib0038) 2019; 141 Kelly (10.1016/j.resconrec.2022.106634_bib0033) 2021; 174 Magdalena (10.1016/j.resconrec.2022.106634_bib0040) 2021; 20 Yang (10.1016/j.resconrec.2022.106634_bib0068) 2019; 24 Ambrose (10.1016/j.resconrec.2022.106634_bib0001) 2020; 24 Yaksic (10.1016/j.resconrec.2022.106634_bib0067) 2009; 34 Schomberg (10.1016/j.resconrec.2022.106634_bib0050) 2021; 2 Castelvecchi (10.1016/j.resconrec.2022.106634_bib0011) 2021; 596 Flexer (10.1016/j.resconrec.2022.106634_bib0017) 2018; 639 Ejeian (10.1016/j.resconrec.2022.106634_bib0016) 2021; 518 Houston (10.1016/j.resconrec.2022.106634_bib0024) 2006; 330 10.1016/j.resconrec.2022.106634_bib0041 Hischier (10.1016/j.resconrec.2022.106634_bib0023) 2021 Hellweg (10.1016/j.resconrec.2022.106634_bib0021) 2014; 344 Sutter (10.1016/j.resconrec.2022.106634_bib0058) 2007 10.1016/j.resconrec.2022.106634_bib0046 Wietelmann (10.1016/j.resconrec.2022.106634_bib0064) 2014 Notter (10.1016/j.resconrec.2022.106634_bib0045) 2021 Nguyen (10.1016/j.resconrec.2022.106634_bib0042) 2021; 282 Sutter (10.1016/j.resconrec.2022.106634_bib0059) 2021 10.1016/j.resconrec.2022.106634_bib0037 Steubing (10.1016/j.resconrec.2022.106634_bib0057) 2016; 21 Kallitsis (10.1016/j.resconrec.2022.106634_bib0029) 2020; 254 Rosenbaum (10.1016/j.resconrec.2022.106634_bib0049) 2008; 13 Ambrose (10.1016/j.resconrec.2022.106634_bib0002) 2020; 24 Jiang (10.1016/j.resconrec.2022.106634_bib0028) 2020; 262 10.1016/j.resconrec.2022.106634_bib0030 10.1016/j.resconrec.2022.106634_bib0031 Olivetti (10.1016/j.resconrec.2022.106634_bib0047) 2017; 1 López Steinmetz (10.1016/j.resconrec.2022.106634_bib0039) 2021; 217 10.1016/j.resconrec.2022.106634_bib0036 Chordia (10.1016/j.resconrec.2022.106634_bib0012) 2021; 26 Kushnir (10.1016/j.resconrec.2022.106634_bib0035) 2012; 37 Nordelöf (10.1016/j.resconrec.2022.106634_bib0043) 2014; 19 10.1016/j.resconrec.2022.106634_bib0026 Raugei (10.1016/j.resconrec.2022.106634_bib0048) 2019; 213 Calvo (10.1016/j.resconrec.2022.106634_bib0010) 2016; 5 Burga (10.1016/j.resconrec.2022.106634_bib0009) 2020 Arvidsson (10.1016/j.resconrec.2022.106634_bib0004) 2020 Giglio (10.1016/j.resconrec.2022.106634_bib0019) 2021; 5 An (10.1016/j.resconrec.2022.106634_bib0003) 2012; 117-118 Wernet (10.1016/j.resconrec.2022.106634_bib0062) 2016; 21 10.1016/j.resconrec.2022.106634_bib0020 10.1016/j.resconrec.2022.106634_bib0065 Dry (10.1016/j.resconrec.2022.106634_bib0014) 2018 10.1016/j.resconrec.2022.106634_bib0022 10.1016/j.resconrec.2022.106634_bib0066 Yin (10.1016/j.resconrec.2022.106634_bib0069) 2019; 227 Kellenberger (10.1016/j.resconrec.2022.106634_bib0032) 2007 10.1016/j.resconrec.2022.106634_bib0060 10.1016/j.resconrec.2022.106634_bib0061 |
References_xml | – volume: 227 start-page: 960 year: 2019 end-page: 971 ident: bib0069 article-title: Life cycle inventories of the commonly used materials for lithium-ion batteries in China publication-title: J. Clean. Prod. contributor: fullname: Yang – volume: 282 year: 2021 ident: bib0042 article-title: Bioleaching for environmental remediation of toxic metals and metalloids: a review on soils, sediments, and mine tailings publication-title: Chemosphere contributor: fullname: Kang – volume: 639 start-page: 1188 year: 2018 end-page: 1204 ident: bib0017 article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing publication-title: Sci. Total Environ. contributor: fullname: Galli – year: 2007 ident: bib0032 article-title: Life cycle inventories of building products. final report ecoinvent Data v2.0 No. 7 publication-title: Ecoinvent contributor: fullname: Thalmann – volume: 23 start-page: 368 year: 2018 end-page: 378 ident: bib0008 article-title: The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE) publication-title: Int. J. Life Cycle Assess. contributor: fullname: Pfister – volume: 1 start-page: 229 year: 2017 end-page: 243 ident: bib0047 article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals publication-title: Joule contributor: fullname: Fu – volume: 2 start-page: 11 year: 2021 ident: bib0050 article-title: Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage publication-title: Commun. Earth Environ. contributor: fullname: Flörke – volume: 24 start-page: 620 year: 2019 end-page: 626 ident: bib0068 article-title: A unified framework of life cycle assessment publication-title: Int. J. Life Cycle Assess. contributor: fullname: Yang – year: 2021 ident: bib0044 article-title: ecoinvent 3.8 Dataset Documentation: “lithium brine inspissation - GLO - lithium brine, 6.7% Li publication-title: Ecoinvent contributor: fullname: Notter – volume: 106 start-page: 1225 year: 2011 end-page: 1239 ident: bib0025 article-title: The evaluation of brine prospects and the requirement for modifications to filing standards publication-title: Econ. Geol. contributor: fullname: Godfrey – volume: 330 start-page: 402 year: 2006 end-page: 412 ident: bib0024 article-title: Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes publication-title: J. Hydrol. (Amst) contributor: fullname: Houston – volume: 262 year: 2020 ident: bib0028 article-title: Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment publication-title: J. Environ. Manage. contributor: fullname: Wu – volume: 344 start-page: 1109 year: 2014 end-page: 1113 ident: bib0021 article-title: Emerging approaches, challenges and opportunities in life cycle assessment publication-title: Science contributor: fullname: Milà i Canals – volume: 52 start-page: 35 year: 2017 end-page: 50 ident: bib0056 article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S publication-title: Mineralium Deposita contributor: fullname: Steinmetz – start-page: 2225 year: 2018 end-page: 2234 ident: bib0014 article-title: Extraction of lithium from brine—old and new chemistry publication-title: Extraction 2018 contributor: fullname: Dry – volume: 141 year: 2019 ident: bib0038 article-title: Spodumene tailings for porcelain and structural materials: effect of temperature (1050–1200 °C) on the sintering and properties publication-title: Miner. Eng. contributor: fullname: Illikainen – volume: 24 start-page: 90 year: 2020 end-page: 100 ident: bib0002 article-title: Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling publication-title: J. Ind. Ecol. contributor: fullname: Kendall – volume: 213 start-page: 926 year: 2019 end-page: 932 ident: bib0048 article-title: Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles publication-title: J. Clean. Prod. contributor: fullname: Winfield – volume: 24 start-page: 80 year: 2020 end-page: 89 ident: bib0001 article-title: Understanding the future of lithium: part 1, resource model publication-title: J. Ind. Ecol. contributor: fullname: Kendall – year: 2020 ident: bib0004 article-title: A crustal scarcity indicator for long-term global elemental resource assessment in LCA publication-title: Int. J. Life Cycle Assess. contributor: fullname: Tillman – year: 2021 ident: bib0023 article-title: ecoinvent 3.8 Dataset Documentation: “spodumene production - AU - spodumene publication-title: Ecoinvent contributor: fullname: Hischier – start-page: 123 year: 2021 end-page: 147 ident: bib0013 article-title: Life cycle inventory data and databases publication-title: Life Cycle Inventory Analysis: Methods and Data contributor: fullname: Burhan – volume: 596 start-page: 336 year: 2021 end-page: 339 ident: bib0011 article-title: Electric cars and batteries: how will the world produce enough? publication-title: Nature contributor: fullname: Castelvecchi – volume: 19 start-page: 1866 year: 2014 end-page: 1890 ident: bib0043 article-title: Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? publication-title: Int. J. Life Cycle Assess. contributor: fullname: Van Mierlo – volume: 37 start-page: 93 year: 2012 end-page: 103 ident: bib0035 article-title: The time dimension and lithium resource constraints for electric vehicles publication-title: Resources Policy contributor: fullname: Sandén – year: 2007 ident: bib0058 article-title: Life Cycle Inventories of Highly Pure Chemicals. Ecoinvent Report No. 19 contributor: fullname: Sutter – year: 2021 ident: bib0045 article-title: ecoinvent 3.8 Dataset Documentation: “lithium carbonate production, from concentrated brine - GLO - lithium carbonate publication-title: Ecoinvent contributor: fullname: Notter – year: 2000 ident: bib0063 article-title: Lithium and lithium compounds publication-title: Ullmann's Encyclopedia of Industrial Chemistry contributor: fullname: Bauer – year: 2020 ident: bib0009 article-title: NI 43 –101 technical report publication-title: Updated Feasibility Study and Mineral Reserve Estimation to Support 40,000 Tpa Lithium Carbonate Production at the Cauchari-Olaroz Salars contributor: fullname: Dworzanowski – volume: 21 start-page: 1218 year: 2016 end-page: 1230 ident: bib0062 article-title: The ecoinvent database version 3 (part I): overview and methodology publication-title: Int. J. Life Cycle Assess. contributor: fullname: Weidema – volume: 34 start-page: 185 year: 2009 end-page: 194 ident: bib0067 article-title: Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium publication-title: Resourc. Policy contributor: fullname: Tilton – volume: 119 start-page: 137 year: 2018 end-page: 148 ident: bib0006 article-title: Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium publication-title: Miner. Eng. contributor: fullname: Spitalny – volume: 518 year: 2021 ident: bib0016 article-title: Is lithium brine water? publication-title: Desalination contributor: fullname: Razmjou – volume: 5 year: 2016 ident: bib0010 article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? publication-title: Resources contributor: fullname: Valero – volume: 217 year: 2021 ident: bib0039 article-title: Brine grades in Andean salars: when basin size matters a review of the lithium triangle publication-title: Earth-Sci. Rev. contributor: fullname: Salvi – year: 2021 ident: bib0059 article-title: ecoinvent 3.8 Dataset Documentation: “lithium hydroxide production - GLO - lithium hydroxide publication-title: Ecoinvent contributor: fullname: Sutter – volume: 174 year: 2021 ident: bib0033 article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries publication-title: Resour. Conserv. Recycl. contributor: fullname: Winjobi – volume: 26 start-page: 2024 year: 2021 end-page: 2039 ident: bib0012 article-title: Environmental life cycle implications of upscaling lithium-ion battery production publication-title: Int. J. Life Cycle Assess. contributor: fullname: Ellingsen – start-page: 125 year: 2020 end-page: 165 ident: bib0027 article-title: Chapter 6 - Energy storage technologies publication-title: Energy For Sustainable Development contributor: fullname: Hasanuzzaman – volume: 48 start-page: 55 year: 2012 end-page: 69 ident: bib0034 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. contributor: fullname: Wallington – volume: 5 start-page: 47 year: 2021 end-page: 53 ident: bib0019 article-title: Extractivism and its socio-environmental impact in South America. Overview of the “lithium triangle publication-title: América Crítica contributor: fullname: Giglio – volume: 117-118 start-page: 64 year: 2012 end-page: 70 ident: bib0003 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy contributor: fullname: Tran – volume: 164 start-page: A5019 year: 2016 end-page: A5025 ident: bib0007 article-title: The development and future of lithium ion batteries publication-title: J. Electrochem. Soc. contributor: fullname: Blomgren – volume: 21 start-page: 1269 year: 2016 end-page: 1281 ident: bib0057 article-title: The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2 publication-title: Int. J. Life Cycle Assess. contributor: fullname: Moreno-Ruiz – volume: 13 start-page: 532 year: 2008 ident: bib0049 article-title: USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment publication-title: Int. J. Life Cycle Assess. contributor: fullname: Hauschild – volume: 20 start-page: 109 year: 2021 end-page: 121 ident: bib0040 article-title: Mining energy consumption as a function of ore grade decline: the case of lead and zinc publication-title: J. Sustain. Mining contributor: fullname: Valero – volume: 254 year: 2020 ident: bib0029 article-title: Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries publication-title: J. Clean. Prod. contributor: fullname: Nie – year: 2022 ident: bib0005 article-title: NI 43-101 Technical Report: Definitive Feasibility Study Update – start-page: 1 year: 2014 end-page: 38 ident: bib0064 article-title: Lithium and lithium compounds publication-title: Ullmann's Encyclopedia of Industrial Chemistry contributor: fullname: Steinbild – volume: 23 start-page: 104 year: 2012 end-page: 112 ident: bib0055 article-title: Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production publication-title: J. Clean. Prod. contributor: fullname: Wäger – year: 2000 ident: 10.1016/j.resconrec.2022.106634_bib0063 article-title: Lithium and lithium compounds contributor: fullname: Wietelmann – volume: 330 start-page: 402 issue: 3 year: 2006 ident: 10.1016/j.resconrec.2022.106634_bib0024 article-title: Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes publication-title: J. Hydrol. (Amst) doi: 10.1016/j.jhydrol.2006.03.036 contributor: fullname: Houston – year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0045 article-title: ecoinvent 3.8 Dataset Documentation: “lithium carbonate production, from concentrated brine - GLO - lithium carbonate publication-title: Ecoinvent contributor: fullname: Notter – volume: 13 start-page: 532 issue: 7 year: 2008 ident: 10.1016/j.resconrec.2022.106634_bib0049 article-title: USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-008-0038-4 contributor: fullname: Rosenbaum – ident: 10.1016/j.resconrec.2022.106634_bib0026 doi: 10.1007/s11367-016-1246-y – volume: 217 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0039 article-title: Brine grades in Andean salars: when basin size matters a review of the lithium triangle publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2021.103615 contributor: fullname: López Steinmetz – ident: 10.1016/j.resconrec.2022.106634_bib0018 – ident: 10.1016/j.resconrec.2022.106634_bib0052 – year: 2007 ident: 10.1016/j.resconrec.2022.106634_bib0058 contributor: fullname: Sutter – volume: 254 year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0029 article-title: Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120067 contributor: fullname: Kallitsis – volume: 24 start-page: 80 issue: 1 year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0001 article-title: Understanding the future of lithium: part 1, resource model publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12949 contributor: fullname: Ambrose – year: 2022 ident: 10.1016/j.resconrec.2022.106634_bib0005 – year: 2007 ident: 10.1016/j.resconrec.2022.106634_bib0032 article-title: Life cycle inventories of building products. final report ecoinvent Data v2.0 No. 7 publication-title: Ecoinvent contributor: fullname: Kellenberger – ident: 10.1016/j.resconrec.2022.106634_bib0066 – ident: 10.1016/j.resconrec.2022.106634_bib0020 – start-page: 125 year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0027 article-title: Chapter 6 - Energy storage technologies contributor: fullname: Hussain – year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0044 article-title: ecoinvent 3.8 Dataset Documentation: “lithium brine inspissation - GLO - lithium brine, 6.7% Li publication-title: Ecoinvent contributor: fullname: Notter – ident: 10.1016/j.resconrec.2022.106634_bib0046 doi: 10.3133/70180197 – volume: 52 start-page: 35 issue: 1 year: 2017 ident: 10.1016/j.resconrec.2022.106634_bib0056 article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S publication-title: Mineralium Deposita doi: 10.1007/s00126-016-0656-x contributor: fullname: Steinmetz – ident: 10.1016/j.resconrec.2022.106634_bib0053 – ident: 10.1016/j.resconrec.2022.106634_bib0036 – volume: 164 start-page: A5019 issue: 1 year: 2016 ident: 10.1016/j.resconrec.2022.106634_bib0007 article-title: The development and future of lithium ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0251701jes contributor: fullname: Blomgren – start-page: 2225 year: 2018 ident: 10.1016/j.resconrec.2022.106634_bib0014 article-title: Extraction of lithium from brine—old and new chemistry contributor: fullname: Dry – year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0009 article-title: NI 43 –101 technical report contributor: fullname: Burga – volume: 37 start-page: 93 issue: 1 year: 2012 ident: 10.1016/j.resconrec.2022.106634_bib0035 article-title: The time dimension and lithium resource constraints for electric vehicles publication-title: Resources Policy doi: 10.1016/j.resourpol.2011.11.003 contributor: fullname: Kushnir – ident: 10.1016/j.resconrec.2022.106634_bib0060 – volume: 2 start-page: 11 issue: 1 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0050 article-title: Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage publication-title: Commun. Earth Environ. doi: 10.1038/s43247-020-00080-9 contributor: fullname: Schomberg – volume: 5 issue: 4 year: 2016 ident: 10.1016/j.resconrec.2022.106634_bib0010 article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? publication-title: Resources doi: 10.3390/resources5040036 contributor: fullname: Calvo – volume: 26 start-page: 2024 issue: 10 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0012 article-title: Environmental life cycle implications of upscaling lithium-ion battery production publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-021-01976-0 contributor: fullname: Chordia – volume: 344 start-page: 1109 issue: 6188 year: 2014 ident: 10.1016/j.resconrec.2022.106634_bib0021 article-title: Emerging approaches, challenges and opportunities in life cycle assessment publication-title: Science doi: 10.1126/science.1248361 contributor: fullname: Hellweg – volume: 141 year: 2019 ident: 10.1016/j.resconrec.2022.106634_bib0038 article-title: Spodumene tailings for porcelain and structural materials: effect of temperature (1050–1200 °C) on the sintering and properties publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.105843 contributor: fullname: Lemougna – volume: 639 start-page: 1188 year: 2018 ident: 10.1016/j.resconrec.2022.106634_bib0017 article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.223 contributor: fullname: Flexer – volume: 5 start-page: 47 issue: 1 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0019 article-title: Extractivism and its socio-environmental impact in South America. Overview of the “lithium triangle publication-title: América Crítica contributor: fullname: Giglio – volume: 518 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0016 article-title: Is lithium brine water? publication-title: Desalination doi: 10.1016/j.desal.2021.115169 contributor: fullname: Ejeian – volume: 19 start-page: 1866 issue: 11 year: 2014 ident: 10.1016/j.resconrec.2022.106634_bib0043 article-title: Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment? publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-014-0788-0 contributor: fullname: Nordelöf – year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0059 article-title: ecoinvent 3.8 Dataset Documentation: “lithium hydroxide production - GLO - lithium hydroxide publication-title: Ecoinvent contributor: fullname: Sutter – ident: 10.1016/j.resconrec.2022.106634_bib0054 – year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0004 article-title: A crustal scarcity indicator for long-term global elemental resource assessment in LCA publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-020-01781-1 contributor: fullname: Arvidsson – volume: 174 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0033 article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2021.105762 contributor: fullname: Kelly – volume: 119 start-page: 137 year: 2018 ident: 10.1016/j.resconrec.2022.106634_bib0006 article-title: Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.01.010 contributor: fullname: Aylmore – ident: 10.1016/j.resconrec.2022.106634_bib0031 – start-page: 1 year: 2014 ident: 10.1016/j.resconrec.2022.106634_bib0064 article-title: Lithium and lithium compounds publication-title: Ullmann's Encyclopedia of Industrial Chemistry contributor: fullname: Wietelmann – ident: 10.1016/j.resconrec.2022.106634_bib0022 – volume: 227 start-page: 960 year: 2019 ident: 10.1016/j.resconrec.2022.106634_bib0069 article-title: Life cycle inventories of the commonly used materials for lithium-ion batteries in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.186 contributor: fullname: Yin – volume: 23 start-page: 104 issue: 1 year: 2012 ident: 10.1016/j.resconrec.2022.106634_bib0055 article-title: Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2011.10.026 contributor: fullname: Stamp – volume: 596 start-page: 336 issue: 7872 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0011 article-title: Electric cars and batteries: how will the world produce enough? publication-title: Nature doi: 10.1038/d41586-021-02222-1 contributor: fullname: Castelvecchi – ident: 10.1016/j.resconrec.2022.106634_bib0041 – volume: 213 start-page: 926 year: 2019 ident: 10.1016/j.resconrec.2022.106634_bib0048 article-title: Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.237 contributor: fullname: Raugei – ident: 10.1016/j.resconrec.2022.106634_bib0015 doi: 10.33063/diva2-1452023 – volume: 117-118 start-page: 64 year: 2012 ident: 10.1016/j.resconrec.2022.106634_bib0003 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.008 contributor: fullname: An – ident: 10.1016/j.resconrec.2022.106634_bib0037 doi: 10.3133/pp412 – volume: 24 start-page: 90 issue: 1 year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0002 article-title: Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12942 contributor: fullname: Ambrose – volume: 21 start-page: 1218 issue: 9 year: 2016 ident: 10.1016/j.resconrec.2022.106634_bib0062 article-title: The ecoinvent database version 3 (part I): overview and methodology publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1087-8 contributor: fullname: Wernet – ident: 10.1016/j.resconrec.2022.106634_bib0030 – volume: 48 start-page: 55 year: 2012 ident: 10.1016/j.resconrec.2022.106634_bib0034 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2012.05.006 contributor: fullname: Kesler – volume: 34 start-page: 185 issue: 4 year: 2009 ident: 10.1016/j.resconrec.2022.106634_bib0067 article-title: Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium publication-title: Resourc. Policy doi: 10.1016/j.resourpol.2009.05.002 contributor: fullname: Yaksic – ident: 10.1016/j.resconrec.2022.106634_bib0051 – volume: 23 start-page: 368 issue: 2 year: 2018 ident: 10.1016/j.resconrec.2022.106634_bib0008 article-title: The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE) publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-017-1333-8 contributor: fullname: Boulay – year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0023 article-title: ecoinvent 3.8 Dataset Documentation: “spodumene production - AU - spodumene publication-title: Ecoinvent contributor: fullname: Hischier – volume: 21 start-page: 1269 issue: 9 year: 2016 ident: 10.1016/j.resconrec.2022.106634_bib0057 article-title: The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2 publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1109-6 contributor: fullname: Steubing – volume: 262 year: 2020 ident: 10.1016/j.resconrec.2022.106634_bib0028 article-title: Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.110253 contributor: fullname: Jiang – volume: 106 start-page: 1225 issue: 7 year: 2011 ident: 10.1016/j.resconrec.2022.106634_bib0025 article-title: The evaluation of brine prospects and the requirement for modifications to filing standards publication-title: Econ. Geol. doi: 10.2113/econgeo.106.7.1225 contributor: fullname: Houston – volume: 1 start-page: 229 issue: 2 year: 2017 ident: 10.1016/j.resconrec.2022.106634_bib0047 article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals publication-title: Joule doi: 10.1016/j.joule.2017.08.019 contributor: fullname: Olivetti – start-page: 123 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0013 article-title: Life cycle inventory data and databases contributor: fullname: Ciroth – volume: 20 start-page: 109 issue: 2 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0040 article-title: Mining energy consumption as a function of ore grade decline: the case of lead and zinc publication-title: J. Sustain. Mining doi: 10.46873/2300-3960.1060 contributor: fullname: Magdalena – ident: 10.1016/j.resconrec.2022.106634_bib0065 – volume: 282 year: 2021 ident: 10.1016/j.resconrec.2022.106634_bib0042 article-title: Bioleaching for environmental remediation of toxic metals and metalloids: a review on soils, sediments, and mine tailings publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131108 contributor: fullname: Nguyen – ident: 10.1016/j.resconrec.2022.106634_bib0061 – volume: 24 start-page: 620 issue: 4 year: 2019 ident: 10.1016/j.resconrec.2022.106634_bib0068 article-title: A unified framework of life cycle assessment publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-019-01595-w contributor: fullname: Yang |
SSID | ssj0003893 |
Score | 2.5647824 |
SecondaryResourceType | review_article |
Snippet | Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 106634 |
SubjectTerms | Brine Life Cycle Assessment Lithium hydroxide monohydrate Lithium-ion battery Spodumene |
Title | Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene |
URI | https://dx.doi.org/10.1016/j.resconrec.2022.106634 https://research.chalmers.se/publication/531781 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkhwQLBQUR6VD1zDxo4T29yqaquFLT0AFb1ZfozZRZBWzfawF3474zi7dA-IA1KkJFYmtmaSb2akmc-EvCmFq5yKsag8qzBBwSsNlhVMR-DKu6ZUqTn543kzuxAfLuvLPXKy6YVJZZUD9mdM79F6GJkM2pxcL5eTz6VObGRC8z7Jk5i376M74mpE9o_fz2fnW0BOPrmn3OOsSAI7ZV6Y1GLiiTNhrsg5jqILFn91UnfZRHsPdPqYPBpCR3qcV_eE7EE7JvenPe30ekwe3qEWHJOD6Z8ONhQafuHuKflxtoxA_RpfQWHnmdww2dGrSH1mbaK2DTSzjlDXE3Gui283NgDF4H2xvP1Ju7Qp6JqmJhXqUiNhL4KpckDMa-EZuTidfjmZFcOWC4UXWqyKCF6r0KiKRV1HhdrAiEFx61kEobx2dZTB2aZCcGIN5lpVLYWvbeVDDc7L6oCM2qsWnhOK2gY8PLrGIDxILbXyiKwyCOZq4Iek3OjYXGdmDbMpOftutmYxySwmm-WQvNvYwux8JAbx_9_CZ9l629kSs_ZAqbQwftHvV9OZDgyLQpSuiSZKFoywwI3lqjYWHMKxLb0M_MX_rOUleZDuclnMKzJa3dzCawxuVu6I3Hv7ix0Nn3A6zz99nf8GOiX-fw |
link.rule.ids | 230,315,783,787,888,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCBEXboWjdBk2fHLoKFilKJLsFgQOncbw0AbIRfBxrB60SRM7gf9-jKLvxUHQooEGQdCJxR353B9x9JORLKVzlVIxF5VmFCQreabCsYDoCV941pUrNyRfzZnolvl3X13vkZNMLk8oqB-zPmN6j9fBkPGhzfLdcjr-XOrGRCc37JE9i3n6A0YDG3XlwfHY-nW8BOfnknnKPsyIJ7JR5YVKLiSeOhLki5_gUXbD4q5N6zCbae6DTl-TFEDrS4zy7V2QP2hF5Mulpp9cj8vwRteCIHE7-dLCh0LCFu9fk52wZgfo1_oLCzje5YbKjt5H6zNpEbRtoZh2hrifiXBc_7m0AisH7Yvnwi3bpUNA1TU0q1KVGwl4EU-WAmNfCG3J1Ork8mRbDkQuFF1qsigheq9CoikVdR4XawIhBcetZBKG8dnWUwdmmQnBiDeZaVS2Fr23lQw3Oy-qQ7Le3LbwlFLUNeHl0jUF4kFpq5RFZZRDM1cCPSLnRsbnLzBpmU3J2Y7ZmMcksJpvliHzd2MLsLBKD-P9v4Vm23na0xKw9UCotjF_059V0pgPDohCla6KJkgUjLHBjuaqNBYdwbEsvA3_3P3P5TJ5OLy9mZnY2P39PnqU3uUTmA9lf3T_ARwx0Vu7TsJB_A2qo_tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+environmental+impacts+of+current+and+future+battery-grade+lithium+supply+from+brine+and+spodumene&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Chordia%2C+Mudit&rft.au=Wickerts%2C+Sanna&rft.au=Nordel%C3%B6f%2C+Anders&rft.au=Arvidsson%2C+Rickard&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0921-3449&rft.eissn=1879-0658&rft.volume=187&rft_id=info:doi/10.1016%2Fj.resconrec.2022.106634&rft.externalDocID=S0921344922004670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon |