Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene

Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant t...

Full description

Saved in:
Bibliographic Details
Published inResources, conservation and recycling Vol. 187; p. 106634
Main Authors Chordia, Mudit, Wickerts, Sanna, Nordelöf, Anders, Arvidsson, Rickard
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts. [Display omitted]
AbstractList Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts. [Display omitted]
Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it is important to understand how environmental impacts differ based on the source and grade of extracted metals. As lithium is highly relevant to several current and next-generation cell chemistries, we reviewed the effect of varying grades in different sources of lithium (brine and spodumene) worldwide. The review covered the Ecoinvent database, scientific literature, and technical reports of several upcoming production facilities. The results showed that lower-grade lithium brines have higher environmental impacts compared to higher-grade brines. However, spodumene-based production did not show such a trend, due to different technical process designs of the facilities reviewed. Water use impacts are higher in lower-grade sources and are expected to increase with decreasing lithium concentration. This could specifically be an issue in brine-based production, where brine is extracted from already water scarce regions and evaporated, thus increasing the risk of freshwater availability. However, these aspects of water use are not addressed in existing life cycle impact assessment methods. In the context of large-scale LIB cell production, the reviewed lithium hydroxide production routes account for 5–15% of the climate change impacts.
ArticleNumber 106634
Author Wickerts, Sanna
Chordia, Mudit
Arvidsson, Rickard
Nordelöf, Anders
Author_xml – sequence: 1
  givenname: Mudit
  orcidid: 0000-0002-9228-8579
  surname: Chordia
  fullname: Chordia, Mudit
  email: mudit@chalmers.se
– sequence: 2
  givenname: Sanna
  surname: Wickerts
  fullname: Wickerts, Sanna
– sequence: 3
  givenname: Anders
  surname: Nordelöf
  fullname: Nordelöf, Anders
– sequence: 4
  givenname: Rickard
  surname: Arvidsson
  fullname: Arvidsson, Rickard
BackLink https://research.chalmers.se/publication/531781$$DView record from Swedish Publication Index
BookMark eNqFkdtq3DAQhkVJoJs0zxC9gLeSJetwGUJPsNCLpNdCHo2yWmzLSHbKvn2dbsltrwZ-5v9g5rshV1OekJB7zvaccfX5tC9YIU8FYd-ytt1SpYT8QHbcaNsw1ZkrsmO25Y2Q0n4kN7WeGGPCWLEjwyFFpHCGASlOr6nkacRp8QNN4-xhqTRHCmspW0j9FGhcl7Ug7f2yYDk3L8UHpENajmkdaV3neTjTWPJI-5Im_Fupcw7rRsVP5Dr6oeLdv3lLfn398vz4vTn8_Pbj8eHQgLRyaSKCNUEZwaPtotnuMdya1gOPKA3Yvos69F4JZgxXmivRaQmdFxA67EGLW_J04dbfOK-9m0safTm77JPbnoW-wNHB0Q8jluoqOh6lZL2KLmoenPTYOt-aznnstRKegQ7tRtUXKpRca8H4zuXMvalwJ_euwr2pcBcVW_Ph0sTt6NeExVVIOAGGtK0uLuT0X8Yfo3Obpg
CitedBy_id crossref_primary_10_1016_j_resconrec_2024_107554
crossref_primary_10_1016_j_exis_2023_101384
crossref_primary_10_1016_j_tree_2022_10_005
crossref_primary_10_1016_j_jclepro_2024_142108
crossref_primary_10_3389_fceng_2022_1008680
crossref_primary_10_3390_pr11020418
crossref_primary_10_1016_j_molliq_2023_123454
crossref_primary_10_1016_j_procir_2023_02_102
crossref_primary_10_1016_j_resconrec_2022_106806
crossref_primary_10_1016_j_mineng_2024_108600
crossref_primary_10_3390_toxics12030176
crossref_primary_10_1016_j_procir_2023_02_122
crossref_primary_10_1021_acssuschemeng_3c00141
crossref_primary_10_1016_j_procir_2024_01_027
crossref_primary_10_1007_s11356_024_32301_5
crossref_primary_10_1016_j_procir_2024_01_139
crossref_primary_10_1016_j_desal_2023_117142
crossref_primary_10_1016_j_hydromet_2023_106217
crossref_primary_10_1016_j_jclepro_2024_141725
crossref_primary_10_1016_j_jclepro_2024_142955
crossref_primary_10_3389_fpace_2022_1058940
crossref_primary_10_1002_aqc_4044
crossref_primary_10_1016_j_memlet_2023_100059
crossref_primary_10_1016_j_rser_2024_114456
crossref_primary_10_1007_s40899_023_00878_3
crossref_primary_10_1016_j_apenergy_2023_122132
crossref_primary_10_1016_j_mineng_2024_108632
crossref_primary_10_1080_12269328_2023_2229351
crossref_primary_10_17586_2687_0568_2022_4_4_39_61
crossref_primary_10_1016_j_resconrec_2024_107583
Cites_doi 10.1016/j.jhydrol.2006.03.036
10.1007/s11367-008-0038-4
10.1007/s11367-016-1246-y
10.1016/j.earscirev.2021.103615
10.1016/j.jclepro.2020.120067
10.1111/jiec.12949
10.3133/70180197
10.1007/s00126-016-0656-x
10.1149/2.0251701jes
10.1016/j.resourpol.2011.11.003
10.1038/s43247-020-00080-9
10.3390/resources5040036
10.1007/s11367-021-01976-0
10.1126/science.1248361
10.1016/j.mineng.2019.105843
10.1016/j.scitotenv.2018.05.223
10.1016/j.desal.2021.115169
10.1007/s11367-014-0788-0
10.1007/s11367-020-01781-1
10.1016/j.resconrec.2021.105762
10.1016/j.mineng.2018.01.010
10.1016/j.jclepro.2019.04.186
10.1016/j.jclepro.2011.10.026
10.1038/d41586-021-02222-1
10.1016/j.jclepro.2018.12.237
10.33063/diva2-1452023
10.1016/j.hydromet.2012.02.008
10.3133/pp412
10.1111/jiec.12942
10.1007/s11367-016-1087-8
10.1016/j.oregeorev.2012.05.006
10.1016/j.resourpol.2009.05.002
10.1007/s11367-017-1333-8
10.1007/s11367-016-1109-6
10.1016/j.jenvman.2020.110253
10.2113/econgeo.106.7.1225
10.1016/j.joule.2017.08.019
10.46873/2300-3960.1060
10.1016/j.chemosphere.2021.131108
10.1007/s11367-019-01595-w
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1016/j.resconrec.2022.106634
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1879-0658
ExternalDocumentID oai_research_chalmers_se_1f440b6f_f71d_4ae2_a285_aeb763a0c7d2
10_1016_j_resconrec_2022_106634
S0921344922004670
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAHBH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
WUQ
ZY4
~A~
~G-
AAXKI
AAYXX
AFJKZ
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c494t-fec98d6831f95f810681982ac1fe48c9b5f7dba63088167163574c5a3cd5ebc73
IEDL.DBID AIKHN
ISSN 0921-3449
1879-0658
IngestDate Tue Oct 01 22:42:19 EDT 2024
Thu Sep 26 21:31:32 EDT 2024
Sat Jun 29 15:30:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Life cycle assessment
Lithium-ion battery
Spodumene
Lithium hydroxide monohydrate
Brine
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-fec98d6831f95f810681982ac1fe48c9b5f7dba63088167163574c5a3cd5ebc73
ORCID 0000-0002-9228-8579
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0921344922004670
ParticipantIDs swepub_primary_oai_research_chalmers_se_1f440b6f_f71d_4ae2_a285_aeb763a0c7d2
crossref_primary_10_1016_j_resconrec_2022_106634
elsevier_sciencedirect_doi_10_1016_j_resconrec_2022_106634
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Resources, conservation and recycling
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sutter (bib0058) 2007
Burga, Burga, Weber, Sanford, Dworzanowski (bib0009) 2020
Hischier, R., 2007. Life cycle inventories of packaging and graphical paper. Final report ecoinvent data v2. 0 No 11.
Hussain, Rahman, Sivasengaran, Hasanuzzaman (bib0027) 2020
Yin, Hu, Yang (bib0069) 2019; 227
Edström, K., Dominko, R., Fichtner, M., Otuszewski, T., Perraud, S., Punckt, C., Tarascon, J.-.M., Vegge, T., Winter, M., 2020. Battery 2030+ Roadmap: inventing the sustainable batteries of the future, in: Edström, K. (Ed.).
Calvo, Mudd, Valero, Valero (bib0010) 2016; 5
Arvidsson, Söderman, Sandén, Nordelöf, André, Tillman (bib0004) 2020
López Steinmetz, Salvi (bib0039) 2021; 217
Keliber Oy, 2020a. Keski-Pohjanmaan Litiumprovinssin Laajennuksen Yva-Selostus.
SQM, 2010. SQM Annnual Report 2009. Santiago.
Yang (bib0068) 2019; 24
Sutter (bib0059) 2021
Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib0062) 2016; 21
Yaksic, Tilton (bib0067) 2009; 34
Sweco, 2016. Pre-feasibility Study - Keliber Lithium Project.
Aylmore, Merigot, Rickard, Evans, McDonald, Catovic, Spitalny (bib0006) 2018; 119
Nordelöf, Messagie, Tillman, Söderman, Van Mierlo (bib0043) 2014; 19
SQM, 2007. Informe Consolidado de la Evaluación de Impacto Ambiental de la Declaración de Impacto Ambiental del Proyecto “Ampliación Planta Carbonato de Litio a 48.000 ton/año.”.
Steubing, Wernet, Reinhard, Bauer, Moreno-Ruiz (bib0057) 2016; 21
Kushnir, Sandén (bib0035) 2012; 37
Chordia, Nordelöf, Ellingsen (bib0012) 2021; 26
Gendorf, 2000. Umwelterklärung 2000.
Langbein, W.B., 1961. Salinity and hydrology of closed lakes, Professional Paper. Washington, D.C., p. 25.
Raugei, Winfield (bib0048) 2019; 213
Keliber Oy, 2020b. Litiumkemiantehdas, Kokkola Yva-Selostus.
Kallitsis, Korre, Kelsall, Kupfersberger, Nie (bib0029) 2020; 254
Kellenberger, Althaus, Jungbluth, Künniger, Lehmann, Thalmann (bib0032) 2007
Golder Associates, 2013. Results of the water balance and water quality models for the Whabouchi lithium mine.
Rosenbaum, Bachmann, Gold, Huijbregts, Jolliet, Juraske, Koehler, Larsen, MacLeod, Margni, McKone, Payet, Schuhmacher, van de Meent, Hauschild (bib0049) 2008; 13
Ambrose, Kendall (bib0001) 2020; 24
Notter (bib0045) 2021
An, Kang, Tran, Kim, Lim, Tran (bib0003) 2012; 117-118
Hischier (bib0023) 2021
Nguyen, Won, Ha, Nguyen, Kang (bib0042) 2021; 282
Hellweg, Milà i Canals (bib0021) 2014; 344
Ejeian, Grant, Shon, Razmjou (bib0016) 2021; 518
Magdalena, Valero, Palacios, Valero (bib0040) 2021; 20
Ciroth, Burhan (bib0013) 2021
Huijbregts, M., Steinmann, Z., Elshout, P., Stam, G., Verones, F., Vieira, M., Hollander, A., Zijp, M., van Zelm, R., 2016. ReCiPe 2016: a harmonized life cycle impact assessment method at midpoint and endpoint level Report I: characterization, ReCiPe 2016: een geharmoniseerde levenscyclus impact assessment methode op 'midpoint' en 'endpoint' niveau Rapport 1: karakterisatie. Rijksinstituut voor Volksgezondheid en Milieu RIVM.
Worley Parsons, 2019. NI 43 - 101 Technical Report: Definitive Feasibility Study of MSB Blanco Lithium Carbonate Project. Minera Salar Blanco.
Houston (bib0024) 2006; 330
Olivetti, Ceder, Gaustad, Fu (bib0047) 2017; 1
Schomberg, Bringezu, Flörke (bib0050) 2021; 2
Steinmetz (bib0056) 2017; 52
Ambrose, Kendall (bib0002) 2020; 24
Castelvecchi (bib0011) 2021; 596
Notter (bib0044) 2021
Blomgren (bib0007) 2016; 164
Wietelmann, Steinbild (bib0064) 2014
Kelly, Wang, Dai, Winjobi (bib0033) 2021; 174
Kesler, Gruber, Medina, Keoleian, Everson, Wallington (bib0034) 2012; 48
Lemougna, Yliniemi, Ismailov, Levanen, Tanskanen, Kinnunen, Roning, Illikainen (bib0038) 2019; 141
Dry (bib0014) 2018
Houston, Butcher, Ehren, Evans, Godfrey (bib0025) 2011; 106
(bib0005) 2022
Boulay, Bare, Benini, Berger, Lathuillière, Manzardo, Margni, Motoshita, Núñez, Pastor, Ridoutt, Oki, Worbe, Pfister (bib0008) 2018; 23
Stamp, Lang, Wäger (bib0055) 2012; 23
Nemaska Lithium Inc., 2013. Whabouchi Project - Environmental and Social Impact Assessment, Development and Operation of a Spodumene Deposit in the James Bay Territory. Nemaska Lithium.
Wietelmann, Bauer (bib0063) 2000
Flexer, Baspineiro, Galli (bib0017) 2018; 639
USGS, 2021. Mineral commodity summaries 2021 - Lithium, mineral commodity summaries. Reston, VA, p. 200.
Ober, J.A., 2017. Mineral Commodity Summaries 2017, Mineral Commodity Summaries. Reston, VA, p. 202.
SQM, 2006. Informe Consolidado de Evaluación Estudio de Impacto Ambiental del Proyecto “Cambios y Mejoras de la Operación Minera en el Salar de Atacama.”.
Jiang, Zhang, Li, Hua, Liu, Yuan, Wu (bib0028) 2020; 262
Giglio (bib0019) 2021; 5
SENES Consultants Ltd., 2013. Provincial air quality effects assessment: Whabouchi project - environmental and social impact assessment (Annexe 6-1). Ontario.
Worley Parsons, 2011. NI 43 - 101 Technical Report: Preliminary Assessment and Economic Evaluation of the Cauchari-Olaroz Lithium Project, Jujuy Province, Argentina.
Laferriére, A., Dessureault, Y., Skiadas, N., Pearse, G.H.K., Lamontagne, A., Larouche, I., Michaud, A., Bilodeau, M., Charbonneau, C., 2012. NI 43-101 Technical Report Preliminary Economic Assessment of the Whabouchi Lithium Deposit and Hydromet Plant. Nemaska Lithium.
Houston (10.1016/j.resconrec.2022.106634_bib0025) 2011; 106
Hussain (10.1016/j.resconrec.2022.106634_bib0027) 2020
Notter (10.1016/j.resconrec.2022.106634_bib0044) 2021
Wietelmann (10.1016/j.resconrec.2022.106634_bib0063) 2000
Aylmore (10.1016/j.resconrec.2022.106634_bib0006) 2018; 119
Boulay (10.1016/j.resconrec.2022.106634_bib0008) 2018; 23
10.1016/j.resconrec.2022.106634_bib0015
Ciroth (10.1016/j.resconrec.2022.106634_bib0013) 2021
Kesler (10.1016/j.resconrec.2022.106634_bib0034) 2012; 48
10.1016/j.resconrec.2022.106634_bib0018
Blomgren (10.1016/j.resconrec.2022.106634_bib0007) 2016; 164
10.1016/j.resconrec.2022.106634_bib0051
(10.1016/j.resconrec.2022.106634_bib0005) 2022
10.1016/j.resconrec.2022.106634_bib0052
10.1016/j.resconrec.2022.106634_bib0053
Stamp (10.1016/j.resconrec.2022.106634_bib0055) 2012; 23
10.1016/j.resconrec.2022.106634_bib0054
Steinmetz (10.1016/j.resconrec.2022.106634_bib0056) 2017; 52
Lemougna (10.1016/j.resconrec.2022.106634_bib0038) 2019; 141
Kelly (10.1016/j.resconrec.2022.106634_bib0033) 2021; 174
Magdalena (10.1016/j.resconrec.2022.106634_bib0040) 2021; 20
Yang (10.1016/j.resconrec.2022.106634_bib0068) 2019; 24
Ambrose (10.1016/j.resconrec.2022.106634_bib0001) 2020; 24
Yaksic (10.1016/j.resconrec.2022.106634_bib0067) 2009; 34
Schomberg (10.1016/j.resconrec.2022.106634_bib0050) 2021; 2
Castelvecchi (10.1016/j.resconrec.2022.106634_bib0011) 2021; 596
Flexer (10.1016/j.resconrec.2022.106634_bib0017) 2018; 639
Ejeian (10.1016/j.resconrec.2022.106634_bib0016) 2021; 518
Houston (10.1016/j.resconrec.2022.106634_bib0024) 2006; 330
10.1016/j.resconrec.2022.106634_bib0041
Hischier (10.1016/j.resconrec.2022.106634_bib0023) 2021
Hellweg (10.1016/j.resconrec.2022.106634_bib0021) 2014; 344
Sutter (10.1016/j.resconrec.2022.106634_bib0058) 2007
10.1016/j.resconrec.2022.106634_bib0046
Wietelmann (10.1016/j.resconrec.2022.106634_bib0064) 2014
Notter (10.1016/j.resconrec.2022.106634_bib0045) 2021
Nguyen (10.1016/j.resconrec.2022.106634_bib0042) 2021; 282
Sutter (10.1016/j.resconrec.2022.106634_bib0059) 2021
10.1016/j.resconrec.2022.106634_bib0037
Steubing (10.1016/j.resconrec.2022.106634_bib0057) 2016; 21
Kallitsis (10.1016/j.resconrec.2022.106634_bib0029) 2020; 254
Rosenbaum (10.1016/j.resconrec.2022.106634_bib0049) 2008; 13
Ambrose (10.1016/j.resconrec.2022.106634_bib0002) 2020; 24
Jiang (10.1016/j.resconrec.2022.106634_bib0028) 2020; 262
10.1016/j.resconrec.2022.106634_bib0030
10.1016/j.resconrec.2022.106634_bib0031
Olivetti (10.1016/j.resconrec.2022.106634_bib0047) 2017; 1
López Steinmetz (10.1016/j.resconrec.2022.106634_bib0039) 2021; 217
10.1016/j.resconrec.2022.106634_bib0036
Chordia (10.1016/j.resconrec.2022.106634_bib0012) 2021; 26
Kushnir (10.1016/j.resconrec.2022.106634_bib0035) 2012; 37
Nordelöf (10.1016/j.resconrec.2022.106634_bib0043) 2014; 19
10.1016/j.resconrec.2022.106634_bib0026
Raugei (10.1016/j.resconrec.2022.106634_bib0048) 2019; 213
Calvo (10.1016/j.resconrec.2022.106634_bib0010) 2016; 5
Burga (10.1016/j.resconrec.2022.106634_bib0009) 2020
Arvidsson (10.1016/j.resconrec.2022.106634_bib0004) 2020
Giglio (10.1016/j.resconrec.2022.106634_bib0019) 2021; 5
An (10.1016/j.resconrec.2022.106634_bib0003) 2012; 117-118
Wernet (10.1016/j.resconrec.2022.106634_bib0062) 2016; 21
10.1016/j.resconrec.2022.106634_bib0020
10.1016/j.resconrec.2022.106634_bib0065
Dry (10.1016/j.resconrec.2022.106634_bib0014) 2018
10.1016/j.resconrec.2022.106634_bib0022
10.1016/j.resconrec.2022.106634_bib0066
Yin (10.1016/j.resconrec.2022.106634_bib0069) 2019; 227
Kellenberger (10.1016/j.resconrec.2022.106634_bib0032) 2007
10.1016/j.resconrec.2022.106634_bib0060
10.1016/j.resconrec.2022.106634_bib0061
References_xml – volume: 227
  start-page: 960
  year: 2019
  end-page: 971
  ident: bib0069
  article-title: Life cycle inventories of the commonly used materials for lithium-ion batteries in China
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Yang
– volume: 282
  year: 2021
  ident: bib0042
  article-title: Bioleaching for environmental remediation of toxic metals and metalloids: a review on soils, sediments, and mine tailings
  publication-title: Chemosphere
  contributor:
    fullname: Kang
– volume: 639
  start-page: 1188
  year: 2018
  end-page: 1204
  ident: bib0017
  article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Galli
– year: 2007
  ident: bib0032
  article-title: Life cycle inventories of building products. final report ecoinvent Data v2.0 No. 7
  publication-title: Ecoinvent
  contributor:
    fullname: Thalmann
– volume: 23
  start-page: 368
  year: 2018
  end-page: 378
  ident: bib0008
  article-title: The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Pfister
– volume: 1
  start-page: 229
  year: 2017
  end-page: 243
  ident: bib0047
  article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals
  publication-title: Joule
  contributor:
    fullname: Fu
– volume: 2
  start-page: 11
  year: 2021
  ident: bib0050
  article-title: Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage
  publication-title: Commun. Earth Environ.
  contributor:
    fullname: Flörke
– volume: 24
  start-page: 620
  year: 2019
  end-page: 626
  ident: bib0068
  article-title: A unified framework of life cycle assessment
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Yang
– year: 2021
  ident: bib0044
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium brine inspissation - GLO - lithium brine, 6.7% Li
  publication-title: Ecoinvent
  contributor:
    fullname: Notter
– volume: 106
  start-page: 1225
  year: 2011
  end-page: 1239
  ident: bib0025
  article-title: The evaluation of brine prospects and the requirement for modifications to filing standards
  publication-title: Econ. Geol.
  contributor:
    fullname: Godfrey
– volume: 330
  start-page: 402
  year: 2006
  end-page: 412
  ident: bib0024
  article-title: Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes
  publication-title: J. Hydrol. (Amst)
  contributor:
    fullname: Houston
– volume: 262
  year: 2020
  ident: bib0028
  article-title: Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment
  publication-title: J. Environ. Manage.
  contributor:
    fullname: Wu
– volume: 344
  start-page: 1109
  year: 2014
  end-page: 1113
  ident: bib0021
  article-title: Emerging approaches, challenges and opportunities in life cycle assessment
  publication-title: Science
  contributor:
    fullname: Milà i Canals
– volume: 52
  start-page: 35
  year: 2017
  end-page: 50
  ident: bib0056
  article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S
  publication-title: Mineralium Deposita
  contributor:
    fullname: Steinmetz
– start-page: 2225
  year: 2018
  end-page: 2234
  ident: bib0014
  article-title: Extraction of lithium from brine—old and new chemistry
  publication-title: Extraction 2018
  contributor:
    fullname: Dry
– volume: 141
  year: 2019
  ident: bib0038
  article-title: Spodumene tailings for porcelain and structural materials: effect of temperature (1050–1200  °C) on the sintering and properties
  publication-title: Miner. Eng.
  contributor:
    fullname: Illikainen
– volume: 24
  start-page: 90
  year: 2020
  end-page: 100
  ident: bib0002
  article-title: Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling
  publication-title: J. Ind. Ecol.
  contributor:
    fullname: Kendall
– volume: 213
  start-page: 926
  year: 2019
  end-page: 932
  ident: bib0048
  article-title: Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Winfield
– volume: 24
  start-page: 80
  year: 2020
  end-page: 89
  ident: bib0001
  article-title: Understanding the future of lithium: part 1, resource model
  publication-title: J. Ind. Ecol.
  contributor:
    fullname: Kendall
– year: 2020
  ident: bib0004
  article-title: A crustal scarcity indicator for long-term global elemental resource assessment in LCA
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Tillman
– year: 2021
  ident: bib0023
  article-title: ecoinvent 3.8 Dataset Documentation: “spodumene production - AU - spodumene
  publication-title: Ecoinvent
  contributor:
    fullname: Hischier
– start-page: 123
  year: 2021
  end-page: 147
  ident: bib0013
  article-title: Life cycle inventory data and databases
  publication-title: Life Cycle Inventory Analysis: Methods and Data
  contributor:
    fullname: Burhan
– volume: 596
  start-page: 336
  year: 2021
  end-page: 339
  ident: bib0011
  article-title: Electric cars and batteries: how will the world produce enough?
  publication-title: Nature
  contributor:
    fullname: Castelvecchi
– volume: 19
  start-page: 1866
  year: 2014
  end-page: 1890
  ident: bib0043
  article-title: Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment?
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Van Mierlo
– volume: 37
  start-page: 93
  year: 2012
  end-page: 103
  ident: bib0035
  article-title: The time dimension and lithium resource constraints for electric vehicles
  publication-title: Resources Policy
  contributor:
    fullname: Sandén
– year: 2007
  ident: bib0058
  article-title: Life Cycle Inventories of Highly Pure Chemicals. Ecoinvent Report No. 19
  contributor:
    fullname: Sutter
– year: 2021
  ident: bib0045
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium carbonate production, from concentrated brine - GLO - lithium carbonate
  publication-title: Ecoinvent
  contributor:
    fullname: Notter
– year: 2000
  ident: bib0063
  article-title: Lithium and lithium compounds
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
  contributor:
    fullname: Bauer
– year: 2020
  ident: bib0009
  article-title: NI 43 –101 technical report
  publication-title: Updated Feasibility Study and Mineral Reserve Estimation to Support 40,000 Tpa Lithium Carbonate Production at the Cauchari-Olaroz Salars
  contributor:
    fullname: Dworzanowski
– volume: 21
  start-page: 1218
  year: 2016
  end-page: 1230
  ident: bib0062
  article-title: The ecoinvent database version 3 (part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Weidema
– volume: 34
  start-page: 185
  year: 2009
  end-page: 194
  ident: bib0067
  article-title: Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium
  publication-title: Resourc. Policy
  contributor:
    fullname: Tilton
– volume: 119
  start-page: 137
  year: 2018
  end-page: 148
  ident: bib0006
  article-title: Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium
  publication-title: Miner. Eng.
  contributor:
    fullname: Spitalny
– volume: 518
  year: 2021
  ident: bib0016
  article-title: Is lithium brine water?
  publication-title: Desalination
  contributor:
    fullname: Razmjou
– volume: 5
  year: 2016
  ident: bib0010
  article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?
  publication-title: Resources
  contributor:
    fullname: Valero
– volume: 217
  year: 2021
  ident: bib0039
  article-title: Brine grades in Andean salars: when basin size matters a review of the lithium triangle
  publication-title: Earth-Sci. Rev.
  contributor:
    fullname: Salvi
– year: 2021
  ident: bib0059
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium hydroxide production - GLO - lithium hydroxide
  publication-title: Ecoinvent
  contributor:
    fullname: Sutter
– volume: 174
  year: 2021
  ident: bib0033
  article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries
  publication-title: Resour. Conserv. Recycl.
  contributor:
    fullname: Winjobi
– volume: 26
  start-page: 2024
  year: 2021
  end-page: 2039
  ident: bib0012
  article-title: Environmental life cycle implications of upscaling lithium-ion battery production
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Ellingsen
– start-page: 125
  year: 2020
  end-page: 165
  ident: bib0027
  article-title: Chapter 6 - Energy storage technologies
  publication-title: Energy For Sustainable Development
  contributor:
    fullname: Hasanuzzaman
– volume: 48
  start-page: 55
  year: 2012
  end-page: 69
  ident: bib0034
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
  contributor:
    fullname: Wallington
– volume: 5
  start-page: 47
  year: 2021
  end-page: 53
  ident: bib0019
  article-title: Extractivism and its socio-environmental impact in South America. Overview of the “lithium triangle
  publication-title: América Crítica
  contributor:
    fullname: Giglio
– volume: 117-118
  start-page: 64
  year: 2012
  end-page: 70
  ident: bib0003
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
  contributor:
    fullname: Tran
– volume: 164
  start-page: A5019
  year: 2016
  end-page: A5025
  ident: bib0007
  article-title: The development and future of lithium ion batteries
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Blomgren
– volume: 21
  start-page: 1269
  year: 2016
  end-page: 1281
  ident: bib0057
  article-title: The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Moreno-Ruiz
– volume: 13
  start-page: 532
  year: 2008
  ident: bib0049
  article-title: USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment
  publication-title: Int. J. Life Cycle Assess.
  contributor:
    fullname: Hauschild
– volume: 20
  start-page: 109
  year: 2021
  end-page: 121
  ident: bib0040
  article-title: Mining energy consumption as a function of ore grade decline: the case of lead and zinc
  publication-title: J. Sustain. Mining
  contributor:
    fullname: Valero
– volume: 254
  year: 2020
  ident: bib0029
  article-title: Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Nie
– year: 2022
  ident: bib0005
  article-title: NI 43-101 Technical Report: Definitive Feasibility Study Update
– start-page: 1
  year: 2014
  end-page: 38
  ident: bib0064
  article-title: Lithium and lithium compounds
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
  contributor:
    fullname: Steinbild
– volume: 23
  start-page: 104
  year: 2012
  end-page: 112
  ident: bib0055
  article-title: Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production
  publication-title: J. Clean. Prod.
  contributor:
    fullname: Wäger
– year: 2000
  ident: 10.1016/j.resconrec.2022.106634_bib0063
  article-title: Lithium and lithium compounds
  contributor:
    fullname: Wietelmann
– volume: 330
  start-page: 402
  issue: 3
  year: 2006
  ident: 10.1016/j.resconrec.2022.106634_bib0024
  article-title: Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes
  publication-title: J. Hydrol. (Amst)
  doi: 10.1016/j.jhydrol.2006.03.036
  contributor:
    fullname: Houston
– year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0045
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium carbonate production, from concentrated brine - GLO - lithium carbonate
  publication-title: Ecoinvent
  contributor:
    fullname: Notter
– volume: 13
  start-page: 532
  issue: 7
  year: 2008
  ident: 10.1016/j.resconrec.2022.106634_bib0049
  article-title: USEtox—The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-008-0038-4
  contributor:
    fullname: Rosenbaum
– ident: 10.1016/j.resconrec.2022.106634_bib0026
  doi: 10.1007/s11367-016-1246-y
– volume: 217
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0039
  article-title: Brine grades in Andean salars: when basin size matters a review of the lithium triangle
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2021.103615
  contributor:
    fullname: López Steinmetz
– ident: 10.1016/j.resconrec.2022.106634_bib0018
– ident: 10.1016/j.resconrec.2022.106634_bib0052
– year: 2007
  ident: 10.1016/j.resconrec.2022.106634_bib0058
  contributor:
    fullname: Sutter
– volume: 254
  year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0029
  article-title: Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120067
  contributor:
    fullname: Kallitsis
– volume: 24
  start-page: 80
  issue: 1
  year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0001
  article-title: Understanding the future of lithium: part 1, resource model
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12949
  contributor:
    fullname: Ambrose
– year: 2022
  ident: 10.1016/j.resconrec.2022.106634_bib0005
– year: 2007
  ident: 10.1016/j.resconrec.2022.106634_bib0032
  article-title: Life cycle inventories of building products. final report ecoinvent Data v2.0 No. 7
  publication-title: Ecoinvent
  contributor:
    fullname: Kellenberger
– ident: 10.1016/j.resconrec.2022.106634_bib0066
– ident: 10.1016/j.resconrec.2022.106634_bib0020
– start-page: 125
  year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0027
  article-title: Chapter 6 - Energy storage technologies
  contributor:
    fullname: Hussain
– year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0044
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium brine inspissation - GLO - lithium brine, 6.7% Li
  publication-title: Ecoinvent
  contributor:
    fullname: Notter
– ident: 10.1016/j.resconrec.2022.106634_bib0046
  doi: 10.3133/70180197
– volume: 52
  start-page: 35
  issue: 1
  year: 2017
  ident: 10.1016/j.resconrec.2022.106634_bib0056
  article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S
  publication-title: Mineralium Deposita
  doi: 10.1007/s00126-016-0656-x
  contributor:
    fullname: Steinmetz
– ident: 10.1016/j.resconrec.2022.106634_bib0053
– ident: 10.1016/j.resconrec.2022.106634_bib0036
– volume: 164
  start-page: A5019
  issue: 1
  year: 2016
  ident: 10.1016/j.resconrec.2022.106634_bib0007
  article-title: The development and future of lithium ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0251701jes
  contributor:
    fullname: Blomgren
– start-page: 2225
  year: 2018
  ident: 10.1016/j.resconrec.2022.106634_bib0014
  article-title: Extraction of lithium from brine—old and new chemistry
  contributor:
    fullname: Dry
– year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0009
  article-title: NI 43 –101 technical report
  contributor:
    fullname: Burga
– volume: 37
  start-page: 93
  issue: 1
  year: 2012
  ident: 10.1016/j.resconrec.2022.106634_bib0035
  article-title: The time dimension and lithium resource constraints for electric vehicles
  publication-title: Resources Policy
  doi: 10.1016/j.resourpol.2011.11.003
  contributor:
    fullname: Kushnir
– ident: 10.1016/j.resconrec.2022.106634_bib0060
– volume: 2
  start-page: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0050
  article-title: Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-020-00080-9
  contributor:
    fullname: Schomberg
– volume: 5
  issue: 4
  year: 2016
  ident: 10.1016/j.resconrec.2022.106634_bib0010
  article-title: Decreasing ore grades in global metallic mining: a theoretical issue or a global reality?
  publication-title: Resources
  doi: 10.3390/resources5040036
  contributor:
    fullname: Calvo
– volume: 26
  start-page: 2024
  issue: 10
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0012
  article-title: Environmental life cycle implications of upscaling lithium-ion battery production
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-021-01976-0
  contributor:
    fullname: Chordia
– volume: 344
  start-page: 1109
  issue: 6188
  year: 2014
  ident: 10.1016/j.resconrec.2022.106634_bib0021
  article-title: Emerging approaches, challenges and opportunities in life cycle assessment
  publication-title: Science
  doi: 10.1126/science.1248361
  contributor:
    fullname: Hellweg
– volume: 141
  year: 2019
  ident: 10.1016/j.resconrec.2022.106634_bib0038
  article-title: Spodumene tailings for porcelain and structural materials: effect of temperature (1050–1200  °C) on the sintering and properties
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.105843
  contributor:
    fullname: Lemougna
– volume: 639
  start-page: 1188
  year: 2018
  ident: 10.1016/j.resconrec.2022.106634_bib0017
  article-title: Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.223
  contributor:
    fullname: Flexer
– volume: 5
  start-page: 47
  issue: 1
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0019
  article-title: Extractivism and its socio-environmental impact in South America. Overview of the “lithium triangle
  publication-title: América Crítica
  contributor:
    fullname: Giglio
– volume: 518
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0016
  article-title: Is lithium brine water?
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115169
  contributor:
    fullname: Ejeian
– volume: 19
  start-page: 1866
  issue: 11
  year: 2014
  ident: 10.1016/j.resconrec.2022.106634_bib0043
  article-title: Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—What can we learn from life cycle assessment?
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-014-0788-0
  contributor:
    fullname: Nordelöf
– year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0059
  article-title: ecoinvent 3.8 Dataset Documentation: “lithium hydroxide production - GLO - lithium hydroxide
  publication-title: Ecoinvent
  contributor:
    fullname: Sutter
– ident: 10.1016/j.resconrec.2022.106634_bib0054
– year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0004
  article-title: A crustal scarcity indicator for long-term global elemental resource assessment in LCA
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-020-01781-1
  contributor:
    fullname: Arvidsson
– volume: 174
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0033
  article-title: Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2021.105762
  contributor:
    fullname: Kelly
– volume: 119
  start-page: 137
  year: 2018
  ident: 10.1016/j.resconrec.2022.106634_bib0006
  article-title: Assessment of a spodumene ore by advanced analytical and mass spectrometry techniques to determine its amenability to processing for the extraction of lithium
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.01.010
  contributor:
    fullname: Aylmore
– ident: 10.1016/j.resconrec.2022.106634_bib0031
– start-page: 1
  year: 2014
  ident: 10.1016/j.resconrec.2022.106634_bib0064
  article-title: Lithium and lithium compounds
  publication-title: Ullmann's Encyclopedia of Industrial Chemistry
  contributor:
    fullname: Wietelmann
– ident: 10.1016/j.resconrec.2022.106634_bib0022
– volume: 227
  start-page: 960
  year: 2019
  ident: 10.1016/j.resconrec.2022.106634_bib0069
  article-title: Life cycle inventories of the commonly used materials for lithium-ion batteries in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.186
  contributor:
    fullname: Yin
– volume: 23
  start-page: 104
  issue: 1
  year: 2012
  ident: 10.1016/j.resconrec.2022.106634_bib0055
  article-title: Environmental impacts of a transition toward e-mobility: the present and future role of lithium carbonate production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2011.10.026
  contributor:
    fullname: Stamp
– volume: 596
  start-page: 336
  issue: 7872
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0011
  article-title: Electric cars and batteries: how will the world produce enough?
  publication-title: Nature
  doi: 10.1038/d41586-021-02222-1
  contributor:
    fullname: Castelvecchi
– ident: 10.1016/j.resconrec.2022.106634_bib0041
– volume: 213
  start-page: 926
  year: 2019
  ident: 10.1016/j.resconrec.2022.106634_bib0048
  article-title: Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.237
  contributor:
    fullname: Raugei
– ident: 10.1016/j.resconrec.2022.106634_bib0015
  doi: 10.33063/diva2-1452023
– volume: 117-118
  start-page: 64
  year: 2012
  ident: 10.1016/j.resconrec.2022.106634_bib0003
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.008
  contributor:
    fullname: An
– ident: 10.1016/j.resconrec.2022.106634_bib0037
  doi: 10.3133/pp412
– volume: 24
  start-page: 90
  issue: 1
  year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0002
  article-title: Understanding the future of lithium: part 2, temporally and spatially resolved life-cycle assessment modeling
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12942
  contributor:
    fullname: Ambrose
– volume: 21
  start-page: 1218
  issue: 9
  year: 2016
  ident: 10.1016/j.resconrec.2022.106634_bib0062
  article-title: The ecoinvent database version 3 (part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1087-8
  contributor:
    fullname: Wernet
– ident: 10.1016/j.resconrec.2022.106634_bib0030
– volume: 48
  start-page: 55
  year: 2012
  ident: 10.1016/j.resconrec.2022.106634_bib0034
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.05.006
  contributor:
    fullname: Kesler
– volume: 34
  start-page: 185
  issue: 4
  year: 2009
  ident: 10.1016/j.resconrec.2022.106634_bib0067
  article-title: Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium
  publication-title: Resourc. Policy
  doi: 10.1016/j.resourpol.2009.05.002
  contributor:
    fullname: Yaksic
– ident: 10.1016/j.resconrec.2022.106634_bib0051
– volume: 23
  start-page: 368
  issue: 2
  year: 2018
  ident: 10.1016/j.resconrec.2022.106634_bib0008
  article-title: The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE)
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-017-1333-8
  contributor:
    fullname: Boulay
– year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0023
  article-title: ecoinvent 3.8 Dataset Documentation: “spodumene production - AU - spodumene
  publication-title: Ecoinvent
  contributor:
    fullname: Hischier
– volume: 21
  start-page: 1269
  issue: 9
  year: 2016
  ident: 10.1016/j.resconrec.2022.106634_bib0057
  article-title: The ecoinvent database version 3 (part II): analyzing LCA results and comparison to version 2
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1109-6
  contributor:
    fullname: Steubing
– volume: 262
  year: 2020
  ident: 10.1016/j.resconrec.2022.106634_bib0028
  article-title: Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.110253
  contributor:
    fullname: Jiang
– volume: 106
  start-page: 1225
  issue: 7
  year: 2011
  ident: 10.1016/j.resconrec.2022.106634_bib0025
  article-title: The evaluation of brine prospects and the requirement for modifications to filing standards
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.106.7.1225
  contributor:
    fullname: Houston
– volume: 1
  start-page: 229
  issue: 2
  year: 2017
  ident: 10.1016/j.resconrec.2022.106634_bib0047
  article-title: Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.019
  contributor:
    fullname: Olivetti
– start-page: 123
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0013
  article-title: Life cycle inventory data and databases
  contributor:
    fullname: Ciroth
– volume: 20
  start-page: 109
  issue: 2
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0040
  article-title: Mining energy consumption as a function of ore grade decline: the case of lead and zinc
  publication-title: J. Sustain. Mining
  doi: 10.46873/2300-3960.1060
  contributor:
    fullname: Magdalena
– ident: 10.1016/j.resconrec.2022.106634_bib0065
– volume: 282
  year: 2021
  ident: 10.1016/j.resconrec.2022.106634_bib0042
  article-title: Bioleaching for environmental remediation of toxic metals and metalloids: a review on soils, sediments, and mine tailings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131108
  contributor:
    fullname: Nguyen
– ident: 10.1016/j.resconrec.2022.106634_bib0061
– volume: 24
  start-page: 620
  issue: 4
  year: 2019
  ident: 10.1016/j.resconrec.2022.106634_bib0068
  article-title: A unified framework of life cycle assessment
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-019-01595-w
  contributor:
    fullname: Yang
SSID ssj0003893
Score 2.5647824
SecondaryResourceType review_article
Snippet Life cycle assessment studies of large-scale lithium-ion battery (LIB) production reveal a shift-of-burden to the upstream phase of cell production. Thus, it...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 106634
SubjectTerms Brine
Life Cycle Assessment
Lithium hydroxide monohydrate
Lithium-ion battery
Spodumene
Title Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene
URI https://dx.doi.org/10.1016/j.resconrec.2022.106634
https://research.chalmers.se/publication/531781
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVkhwQLBQUR6VD1zDxo4T29yqaquFLT0AFb1ZfozZRZBWzfawF3474zi7dA-IA1KkJFYmtmaSb2akmc-EvCmFq5yKsag8qzBBwSsNlhVMR-DKu6ZUqTn543kzuxAfLuvLPXKy6YVJZZUD9mdM79F6GJkM2pxcL5eTz6VObGRC8z7Jk5i376M74mpE9o_fz2fnW0BOPrmn3OOsSAI7ZV6Y1GLiiTNhrsg5jqILFn91UnfZRHsPdPqYPBpCR3qcV_eE7EE7JvenPe30ekwe3qEWHJOD6Z8ONhQafuHuKflxtoxA_RpfQWHnmdww2dGrSH1mbaK2DTSzjlDXE3Gui283NgDF4H2xvP1Ju7Qp6JqmJhXqUiNhL4KpckDMa-EZuTidfjmZFcOWC4UXWqyKCF6r0KiKRV1HhdrAiEFx61kEobx2dZTB2aZCcGIN5lpVLYWvbeVDDc7L6oCM2qsWnhOK2gY8PLrGIDxILbXyiKwyCOZq4Iek3OjYXGdmDbMpOftutmYxySwmm-WQvNvYwux8JAbx_9_CZ9l629kSs_ZAqbQwftHvV9OZDgyLQpSuiSZKFoywwI3lqjYWHMKxLb0M_MX_rOUleZDuclnMKzJa3dzCawxuVu6I3Hv7ix0Nn3A6zz99nf8GOiX-fw
link.rule.ids 230,315,783,787,888,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaCBEXboWjdBk2fHLoKFilKJLsFgQOncbw0AbIRfBxrB60SRM7gf9-jKLvxUHQooEGQdCJxR353B9x9JORLKVzlVIxF5VmFCQreabCsYDoCV941pUrNyRfzZnolvl3X13vkZNMLk8oqB-zPmN6j9fBkPGhzfLdcjr-XOrGRCc37JE9i3n6A0YDG3XlwfHY-nW8BOfnknnKPsyIJ7JR5YVKLiSeOhLki5_gUXbD4q5N6zCbae6DTl-TFEDrS4zy7V2QP2hF5Mulpp9cj8vwRteCIHE7-dLCh0LCFu9fk52wZgfo1_oLCzje5YbKjt5H6zNpEbRtoZh2hrifiXBc_7m0AisH7Yvnwi3bpUNA1TU0q1KVGwl4EU-WAmNfCG3J1Ork8mRbDkQuFF1qsigheq9CoikVdR4XawIhBcetZBKG8dnWUwdmmQnBiDeZaVS2Fr23lQw3Oy-qQ7Le3LbwlFLUNeHl0jUF4kFpq5RFZZRDM1cCPSLnRsbnLzBpmU3J2Y7ZmMcksJpvliHzd2MLsLBKD-P9v4Vm23na0xKw9UCotjF_059V0pgPDohCla6KJkgUjLHBjuaqNBYdwbEsvA3_3P3P5TJ5OLy9mZnY2P39PnqU3uUTmA9lf3T_ARwx0Vu7TsJB_A2qo_tA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Life+cycle+environmental+impacts+of+current+and+future+battery-grade+lithium+supply+from+brine+and+spodumene&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Chordia%2C+Mudit&rft.au=Wickerts%2C+Sanna&rft.au=Nordel%C3%B6f%2C+Anders&rft.au=Arvidsson%2C+Rickard&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=0921-3449&rft.eissn=1879-0658&rft.volume=187&rft_id=info:doi/10.1016%2Fj.resconrec.2022.106634&rft.externalDocID=S0921344922004670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon