Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging

Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are...

Full description

Saved in:
Bibliographic Details
Published inACTA BIOMATERIALIA Vol. 110; pp. 15 - 36
Main Authors Yang, Chang-Tong, Hattiholi, Aishwarya, Selvan, Subramanian Tamil, Yan, Sean Xuexian, Fang, Wei-Wei, Chandrasekharan, Prashant, Koteswaraiah, Podili, Herold, Christian J., Gulyás, Balázs, Aw, Swee Eng, He, Tao, Ng, David Chee Eng, Padmanabhan, Parasuraman
Format Journal Article Publication
LanguageEnglish
Published England Elsevier Ltd 01.07.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work. [Display omitted]
AbstractList Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work. [Display omitted]
Gd -based contrast agents have been extensively used for signal enhancement of T -weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd ion. The key requisites for the development of Gd -based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Author Selvan, Subramanian Tamil
He, Tao
Yang, Chang-Tong
Herold, Christian J.
Hattiholi, Aishwarya
Ng, David Chee Eng
Padmanabhan, Parasuraman
Gulyás, Balázs
Fang, Wei-Wei
Chandrasekharan, Prashant
Koteswaraiah, Podili
Aw, Swee Eng
Yan, Sean Xuexian
Author_xml – sequence: 1
  givenname: Chang-Tong
  orcidid: 0000-0003-3475-7944
  surname: Yang
  fullname: Yang, Chang-Tong
  email: yang.changtong@sgh.com.sg
  organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
– sequence: 2
  givenname: Aishwarya
  surname: Hattiholi
  fullname: Hattiholi, Aishwarya
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
– sequence: 3
  givenname: Subramanian Tamil
  orcidid: 0000-0002-1524-2374
  surname: Selvan
  fullname: Selvan, Subramanian Tamil
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
– sequence: 4
  givenname: Sean Xuexian
  surname: Yan
  fullname: Yan, Sean Xuexian
  organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
– sequence: 5
  givenname: Wei-Wei
  surname: Fang
  fullname: Fang, Wei-Wei
  organization: School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
– sequence: 6
  givenname: Prashant
  surname: Chandrasekharan
  fullname: Chandrasekharan, Prashant
  organization: Department of Bioengineering, University of California, Berkeley, CA-94720, USA
– sequence: 7
  givenname: Podili
  surname: Koteswaraiah
  fullname: Koteswaraiah, Podili
  organization: School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
– sequence: 8
  givenname: Christian J.
  surname: Herold
  fullname: Herold, Christian J.
  organization: Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
– sequence: 9
  givenname: Balázs
  surname: Gulyás
  fullname: Gulyás, Balázs
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
– sequence: 10
  givenname: Swee Eng
  surname: Aw
  fullname: Aw, Swee Eng
  organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
– sequence: 11
  givenname: Tao
  surname: He
  fullname: He, Tao
  organization: School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
– sequence: 12
  givenname: David Chee Eng
  surname: Ng
  fullname: Ng, David Chee Eng
  organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
– sequence: 13
  givenname: Parasuraman
  surname: Padmanabhan
  fullname: Padmanabhan, Parasuraman
  organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32335310$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index
BookMark eNqFkcuL1TAUxoOMOA_9D0QKbty0k1fT1IUgg47CgJsL4irkcXon1za5Jq3if29K77iYha7yOL_vS875LtFZiAEQeklwQzAR14dG29n42FBMcYNZg3n3BF0Q2cm6a4U8K_uO07rDgpyjy5wPGDNJqHyGzhllrGUEX6Bvt9rF0Qe_TLXRGVxl_BSdHqtjigZyNccKwr0OFqodqb-C39_PhZr0PsDsbZUgx7CWr-OxnIvQl5oP--fo6aDHDC9O6xXaffywu_lU3325_Xzz_q62vOdzPQDDYFrZCYpBiMF1g5UOqBhaMM4JY7Ckru-0BWwsDBxrboXVBru-5ZJdoXqzzb_guBh1TOX99FtF7dXp6nvZgRK8LWMp_JuNL_39WCDPavLZwjjqAHHJirK-pa3k_Wr9-hF6iEsKpRlFOcc9E5Ks1KsTtZgJ3N8PPMy4AG83wKaYc4JBWT_r2ccwJ-1HRbBaA1UHtQWq1kAVZqoEWsT8kfjB_z-yd5sMyuR_ekgqWw8lJecT2Fm56P9t8AfklL1L
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00401
crossref_primary_10_1186_s12951_023_01820_7
crossref_primary_10_3390_molecules27010174
crossref_primary_10_3390_nano12040582
crossref_primary_10_2147_IJN_S339257
crossref_primary_10_1039_D0TB02740E
crossref_primary_10_1186_s12951_025_03107_5
crossref_primary_10_1002_adhm_202102060
crossref_primary_10_1016_j_heliyon_2024_e24792
crossref_primary_10_1016_j_cej_2022_135801
crossref_primary_10_1021_acs_biomac_3c01413
crossref_primary_10_1016_j_ccr_2020_213659
crossref_primary_10_1016_j_cej_2022_137889
crossref_primary_10_1007_s00723_020_01254_6
crossref_primary_10_3390_bios12080558
crossref_primary_10_1016_j_procbio_2021_08_027
crossref_primary_10_1016_j_jddst_2024_106322
crossref_primary_10_1016_j_jconrel_2024_07_072
crossref_primary_10_1016_j_sna_2024_115828
crossref_primary_10_1016_j_mtla_2022_101494
crossref_primary_10_1002_smtd_202200718
crossref_primary_10_1016_j_bioorg_2022_106161
crossref_primary_10_1021_acs_molpharmaceut_3c00582
crossref_primary_10_1002_smll_202310876
crossref_primary_10_1088_1748_605X_ad3f61
crossref_primary_10_3389_fonc_2021_812472
crossref_primary_10_1021_acs_molpharmaceut_3c01250
crossref_primary_10_3390_molecules28093798
crossref_primary_10_1016_j_ultrasmedbio_2025_02_015
crossref_primary_10_3390_ijms25158097
crossref_primary_10_3390_ijms22126229
crossref_primary_10_1016_j_mtcomm_2024_109751
crossref_primary_10_1021_acsanm_0c02521
crossref_primary_10_1038_s42003_024_06043_6
crossref_primary_10_1021_acs_biomac_4c00548
crossref_primary_10_1002_tcr_202200253
crossref_primary_10_1002_adtp_202400054
Cites_doi 10.1039/C6RA07782J
10.1002/jbm.a.32650
10.1021/nn4030898
10.1002/adma.201202433
10.1016/j.biomaterials.2017.10.031
10.1002/cmmi.373
10.1021/ja905793q
10.3390/s120302414
10.1002/smll.201201216
10.7150/thno.5284
10.1016/j.apsb.2018.03.010
10.1021/acsami.5b05194
10.1021/ja068356j
10.1016/j.cbpa.2003.08.007
10.1021/bc0701085
10.1039/C2PY20837G
10.3390/nano4010129
10.1021/ja312225b
10.1038/s41598-019-38772-8
10.1016/j.biomaterials.2011.03.069
10.1021/la903113u
10.1021/nl060765q
10.1038/nmat3908
10.1126/science.1104274
10.1021/bc0600463
10.1016/j.jallcom.2016.10.202
10.1002/ijch.201700024
10.1016/j.jcis.2009.01.062
10.1016/j.biomaterials.2010.09.071
10.1039/c1cs15246g
10.1039/C7NR08068A
10.1039/C4CS00201F
10.1002/adma.201402296
10.1021/ic3016996
10.1016/j.biomaterials.2017.12.002
10.1021/bc980086+
10.1002/adtp.201900068
10.1039/c0an00144a
10.1021/cr400425h
10.1002/ejic.201402690
10.1039/C4TB00695J
10.1186/s12929-017-0323-2
10.1002/adfm.201101663
10.1039/b510982p
10.1021/acs.jpcc.8b02807
10.1021/am302030a
10.1002/cbic.201800450
10.1039/C7CC05537D
10.1002/chem.201102599
10.1039/b902685a
10.1021/cr980440x
10.1021/bc7001715
10.1016/j.talanta.2016.12.048
10.1158/1078-0432.CCR-12-3598
10.1016/S0009-9260(96)80339-4
10.1039/C4CP04380D
10.1002/jmri.20852
10.1021/cm8006183
10.1021/acs.chemmater.7b00087
10.1039/c2cs15229k
10.1021/bc049949r
10.1097/01.rli.0000067487.84243.91
10.1016/j.biomaterials.2012.04.025
10.1038/s41467-019-09342-3
10.1021/acsami.6b03344
10.1088/0957-4484/21/12/125602
10.1039/C6NR00267F
10.1016/j.biomaterials.2016.11.024
10.1039/C7BM00608J
10.1194/jlr.M800405-JLR200
10.1073/pnas.1414499111
10.1016/j.colsurfb.2018.08.043
10.1021/cm2003066
10.1021/la503228v
10.1002/adhm.201300135
10.1039/c0nr01018a
10.1039/C5CS00070J
10.1021/bc050085z
10.1007/s12274-014-0420-4
10.1021/nl051935m
10.1021/acsami.6b13831
10.1016/j.nec.2010.11.001
10.1117/12.2306915
10.1039/B915149B
10.1155/2019/1845637
10.1002/ange.200604738
10.1021/acsami.7b15796
10.1172/JCI200319010
10.1039/C7NR01064H
10.1002/adma.201704307
10.1364/OE.19.010131
10.1016/j.biomaterials.2011.10.039
10.1021/cm2036844
10.1038/nm.2721
10.3389/fchem.2018.00253
10.1021/nl062226r
10.1097/MNM.0b013e32834ec8a5
10.1021/jp2064529
10.7150/ntno.18619
10.1021/cm201297x
10.1016/j.biomaterials.2010.01.040
10.1073/pnas.0910283107
10.1021/la4001076
10.1002/cmmi.257
10.1021/am401428n
10.1021/cm034495d
10.1002/mrm.20995
10.1002/chem.201301687
10.1039/b821903f
10.1039/c2md00279e
10.1021/acsami.7b05867
10.1021/bc015555d
10.1007/s12274-014-0518-8
10.1021/acsanm.8b00535
10.2310/7290.2009.00013
10.1021/ac503026d
10.1039/C4AN00816B
10.1021/ac500644x
10.1016/j.ceramint.2018.12.065
10.1021/bc7002742
10.1016/j.biomaterials.2012.04.059
10.1021/nl801596a
10.1016/j.actbio.2016.06.003
10.1039/b904890a
10.1021/jacs.8b13376
10.1021/acsbiomaterials.7b00498
10.1016/j.addr.2018.10.015
10.1039/c2jm31196h
10.1002/ejic.201201481
10.1021/cr9003538
10.7150/thno.16589
10.1021/cr900232t
10.1002/adfm.200800765
10.1210/en.2009-1012
10.1016/j.crad.2010.04.006
10.1002/anie.201208218
10.1021/la904751q
10.1002/adfm.201401612
10.1021/acs.chemrev.8b00363
10.1002/adfm.201201469
10.1002/marc.201200613
10.1002/advs.201600029
10.1101/gad.1047403
10.1021/acsami.5b05372
10.1016/S0898-8838(05)57004-1
10.1002/adma.200901356
10.1039/C5NJ00537J
10.1002/anie.201106686
10.1039/b605394g
10.4155/fmc.10.25
10.1039/b812302k
10.1007/s11051-010-9848-y
10.1002/lpor.201200052
10.1155/2013/752973
10.1166/jbn.2016.2258
10.7150/thno.26610
10.1016/j.ijpharm.2006.01.002
10.1002/mrm.21315
10.1002/adma.201000260
10.1021/acssuschemeng.8b01828
10.1088/1361-6528/aad347
10.1038/s41427-018-0065-y
10.1002/jmri.23945
10.1021/bc800368x
10.1021/ic200867a
ContentType Journal Article
Publication
Copyright 2020 Acta Materialia Inc.
Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Acta Materialia Inc.
– notice: Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTPV
BZJLE
DOI 10.1016/j.actbio.2020.03.047
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
SwePub
SwePub Other
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 36
ExternalDocumentID oai_swepub_ki_se_645756
32335310
10_1016_j_actbio_2020_03_047
S1742706120301884
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
RIG
SEW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTPV
BZJLE
ID FETCH-LOGICAL-c494t-fe30eb587620e66fd7fc8de26f5ebdd6bb082d97ace0bcef40a4c6cab0d95483
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Mon Aug 25 03:40:46 EDT 2025
Fri Jul 11 07:02:50 EDT 2025
Wed Aug 13 04:27:10 EDT 2025
Wed Feb 19 02:29:40 EST 2025
Thu Apr 24 22:59:14 EDT 2025
Tue Jul 01 01:17:27 EDT 2025
Fri Feb 23 02:40:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optical imaging
Nanomaterials
Bimodality imaging probe
MRI
Contrast agent
Language English
License Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-fe30eb587620e66fd7fc8de26f5ebdd6bb082d97ace0bcef40a4c6cab0d95483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3475-7944
0000-0002-1524-2374
PMID 32335310
PQID 2440936818
PQPubID 2045286
PageCount 22
ParticipantIDs swepub_primary_oai_swepub_ki_se_645756
proquest_miscellaneous_2395258498
proquest_journals_2440936818
pubmed_primary_32335310
crossref_citationtrail_10_1016_j_actbio_2020_03_047
crossref_primary_10_1016_j_actbio_2020_03_047
elsevier_sciencedirect_doi_10_1016_j_actbio_2020_03_047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle ACTA BIOMATERIALIA
PublicationTitleAlternate Acta Biomater
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References McAdams, Lewis, McNaughter, Lewis, Haigh, O'Brien, Tuna (bib0084) 2017; 53
Prinzen, Miserus, Dirksen, Hackeng, Deckers, Bitsch, Megens, Douma, Heemskerk, Kooi, Frederik, Slaaf, van Zandvoot, Reutelingsperger (bib0087) 2007; 7
Chen, Li, Shi (bib0047) 2016; 3
Schima, Mukerjee, Saini (bib0006) 1996; 51
Johnson, Oakden, Stanisz, Prosser, van Veggel (bib0059) 2011; 23
Tsotsalas, Busby, Gianolio, Aime, Cola (bib0141) 2008; 20
Penet, Mikhaylova, Li, Krishnamachary, Glunde, Pathak, Bhujwalla (bib0043) 2010; 2
Shu, Ma, Zhang, Corwin, Sim, Zhang, Dorn, Gibson, Fatouros, Wang, Fang (bib0134) 2008; 19
Mankoff (bib0001) 2007; 48
Jennings, Long (bib0035) 2009; 24
Tei, Baranyai (bib0005) 2018; 6
Markus (bib0002) 2013
Zeng, Xiao, Yang, Hao (bib0065) 2012; 22
Stefanakis, Ghanotakis (bib0093) 2010; 12
Liu, Tian, Luo, Yang, Xiao, Shao, Chen, Yang, Chen, Li (bib0107) 2014; 30
Li, Ding (bib0161) 2013; 2
Ladd, Hollister, Peng, Wei, Wu, Delecki, Snow, Toner, Kellar, Eck, Desai, Raymond, Kinter, Desser, Rubin (bib0135) 1999; 10
Guo, Li, Qian, Hu, Muhammad (bib0078) 2010; 21
Wang, Wang, Zhao, Li, Huang, Sumer, Gao (bib0017) 2017; 157
Mughabghab (bib0171) 2003
Wang, Banerjee, Liu, Chen, Liu (bib0045) 2010; 135
Louie (bib0019) 2010; 110
Rieter, Kim, Taylor, An, Lin, Tarrant, Lin (bib0131) 2007; 119
Zou, Gong, Shi, Jiao, Wong, Zhang, Wang, Su (bib0120) 2017; 29
Xia, Chen, Gao, Wu, Feng, Li (bib0068) 2012; 33
Chen, Chen, Yang, Liu, Luo, Yang, Chen, Li (bib0106) 2015; 17
Min, Li, Liu, Padmanabhan, Yeow, Xing (bib0049) 2014; 4
Ethirajan, Chen, Joshi, Pandey (bib0165) 2011; 40
Zhang, Lan, Chan, Law, Wong, Wong (bib0166) 2014; 111
Cheng, Ou, Huang, Chen, Chang, Yang (bib0091) 2013; 5
Lee, Lee, Kim, Kim, Choi, Kim, Kim, Song, Park, Moon, Hyeon (bib0021) 2009; 132
Xu, Zhan, Liu, Somesfalean, Qian (bib0051) 2013; 7
Das, Zhang, D'Silva, Padmanabhan, Heng, Loo, Selvan, Bhakoo, Yang Tan (bib0099) 2011; 23
Michalet, Pinaud, Bentolia, Tsay, Doose, Li, Sundaresan, Wu, Gambhir, Weiss (bib0081) 2005; 307
Liu, Gao, Zeng, Hou, Fang, Li, Qiao, Shen, Lei, Yang, Gao (bib0060) 2013; 7
Fan, Shen, Bu, Chen, Zhao, Zhang, Zhou, Peng, Xiao, Xing, Liu, Ni, He, Shi (bib0080) 2013; 135
Li, Barnes, Bosoy, Stoddart, Zink (bib0173) 2012; 41
Luo, Yang, Tian, Xiao, Liu, Chen, Zhang, Xu, Zhang, Yang, Chen, Li (bib0096) 2014; 2
Su, Agarwal, Pan, Qiao, Zhang, Shi, Kong, Day, Chen, Meldrum, Kodibagkar, Tian (bib0142) 2018; 10
Chen, Ohulchanskyy, Law, Hans, Prasad (bib0079) 2011; 3
Rodriguez-Liviano, Becerro, Alcántara, Grazú, de la Fuente, Ocaña (bib0121) 2013; 52
Zhang, Yin, You, Yang, Song, Huang (bib0122) 2011; 50
Kuo, Lai, Li, Wun, Chang, Chen, Yang, Chen (bib0109) 2014; 7
Chen, Bu, Zhang, Liu, Liu, Xing, Xiao, Zhou, Peng, Wang, Shi (bib0053) 2011; 21
Zhou, Yu, Sun, Zhang, Zhu, Wu, Wu, Li (bib0057) 2011; 32
Maldiney, Bessière, Seguin, Teston, Sharma, Viana, Bos, Dorenbos, Bessodes, Gourier, Scherman, Richard (bib0116) 2014; 13
Jung, Kim, Cho, Lee, Yang, Cho, Kim, Lee, Park (bib0126) 2012; 33
Park, Park, Yang, Moon, Oh (bib0103) 2018; 172
Olszewski, Kielbik, Kaszewski, Witkowski, Gajewski, Godlewski, Godlewski (bib0097) 2018; VI
Liu, Lécuyer, Seguin, Mignet, Scherman, Viana, Richard (bib0117) 2019; 138
Lipinski, Amirbekian, Frias, Aguinaldo, Mani, Briley-Saebo, Fuster, Fallon, Fisher, Fayad (bib0149) 2006; 56
Yang, Chuang (bib0007) 2012; 3
Lee, Heo, Park, Chang, E. Bae, Chae, Kim, Park, Lee (bib0095) 2013; 16
Jin, Yoshioka, Fujii, Komai, Seki, Seiyama (bib0088) 2008; 44
Talanov, Regino, Kobayashi, Bernardo, Choyke, Brechbiel (bib0152) 2006; 6
Xia, Matham, Su, Padmanabhan, Gulyás (bib0004) 2016; 12
Glover (bib0014) 2011; 22
Yang, Guo, Gong, Zhang, Wang, Chen, Yang, Tu, Fang, Chang (bib0092) 2015; 7
Na, Hyeon (bib0024) 2009; 19
Debroyea, Parac-Vogt (bib0041) 2014; 43
Posse, Otazo, Dager, Alger (bib0013) 2013; 37
Koyama, Talanov, Bernardo, Hama, Regino, Brechbiel, Choyke, Kobayashi (bib0153) 2007; 25
Frangioni (bib0016) 2003; 7
Xu, Regino, Koyama, Hama, Gunn, Bernardo, Kobayashi, Choyke, Brechbiel (bib0154) 2007; 18
Stouwdam, Hebbink, Huskens, van Veggel (bib0123) 2003; 15
Zhang, Gao, Xu, Yin, He, Zhang (bib0132) 2014; 139
Gallagher (bib0023) 2010; 65
Le, Cui (bib0136) 2006; 312
Lyu, Cheong, Ai, Zhang, Li, Yang, Lin, Xing (bib0167) 2018; 10
Kircher, Zerda, Jokerst, Zavaleta, Kempen, Mittra, Pitter, Huang, Campos, Habte, Sinclair, Brennan, Mellinghoff, Holland, Gambhir (bib0144) 2012; 18
Mamiya (bib0031) 2013
Shi, Neoh, Kang, Shuter, Wang (bib0108) 2010; 5
Mulder, Strijkers, Griffioen, van Bloois, Molema, Storm, Koning, Nicolayet (bib0147) 2004; 15
Maldiney, Doan, Alloyeau, Bessodes, Scherman, Richard (bib0119) 2015; 25
Vivero-Escoto, Huxford-Phillips, Lin (bib0128) 2012; 41
Hu, Ahrén, Selegård, Skoglund, Söderlind, Engström, Zhang, Uvdal (bib0102) 2013; 19
Vuu, Xie, Mcdonald, Bernardo, Hunter, Zhang, Li, Bednarski, Guccione (bib0143) 2005; 16
Sun, Wang, Zhao, Jiang, Zhao, Wang, Sun, Yang, Lin (bib0125) 2016; 8
Merbach, Helm, Toth (bib0029) 2013
Sitharaman, Van Der Zande, Ananta, Shi, Veltien, Walboomers, Wilson, Mikos, Heerschap, Jansen (bib0028) 2010; 93
Deng, Xu, Yu, Fu, Liang (bib0039) 2019; 20
Zhao, Chen, Ma, Liu, Huang, Chen, Lou, Wang (bib0036) 2018; 8
Al-iedani, Lechner-Scott, Ribbons, Ramadan (bib0012) 2017; 33
Zhang, Liu, Peng, Li, Xu, Whittaker (bib0040) 2016; 8
Li, Harriss, Phinikaridou, Lacerda, Ramniceanu, Doan, Ho, Chan, Lo, Botnar, Lan, Richard, Law, Long, Wong (bib0155) 2017; 1
Liang, Xiao (bib0139) 2017; 5
Mishra, Kannan (bib0127) 2017; 3
Koole, van Schooneveld, Hilhorst, Castermans, Cormode, Strijkers, de Mello Donegá, Vanmaekelbergh, Griffioen, Nicolay, Fayad, Meijerink, Mulder (bib0130) 2008; 19
Kircher, Mahmood, King, Weissleder, Josephson (bib0022) 2003; 63
Aime, Botta, Terreno (bib0027) 2005
Guo, Yang, Wang, Sun, Liu, Zhang, Chang, Chen (bib0089) 2014; 7
Estelrich, Sánchez-Martín, Busquets (bib0042) 2015; 10
Kim, Bhuniya, Lee, Kim, Shin, Kim, Hong (bib0033) 2016; 8
Mimun, Ajithkumar, Rightsell, Langloss, Therien, Sardar (bib0055) 2017; 695
Hao, Xing, Xu, Hou, Gao, Sun (bib0030) 2010; 22
Xing, Bu, Zhang, Zheng, Li, Chen, He, Zhou, Peng, Hua, Shi (bib0072) 2012; 33
Chen, Qiu, Prsad, Chen (bib0046) 2014; 114
Park, Jang, Park, Chung, Yang, Moon (bib0098) 2019; 45
Park, Kim, Lee, Jeon, Na, Yu, Kim, Lee, Choi, Baik, Kim, Park, Park, Kim, Lee, Yoon, Song, Moon, Suh, Hyeon (bib0073) 2009; 21
Ren, Zeng, Hao (bib0064) 2011; 115
Zairov, Mustafina, Shamsutdinova, Nizameev, Moreira, Sudakova, Podyachev, Fattakhova, Safina, Lundstrom, Gubaidullin, Vomiero (bib0138) 2017; 7
Rodriguez-Liviano, Nuñez, Rivera-Fernández, de la Fuente, Ocaña (bib0124) 2013; 29
Yang, Padmanabhan, Gulyás (bib0008) 2016; 6
Gore (bib0015) 2003; 112
Nuñez, García, García-Sevillano, Rivera-Fernández, de la Fuente, Ocaña (bib0061) 2014; 35
Pereira, Pereira, Monteiro, Geraldes, Cabral Filho, Cesar, de Thomaz, Santos, Pereira, Fontes (bib0083) 2019; 9
Maiseyeu, Mihai, Kampfrath, Simonetti, Sen, Roy, Rajagopalan, Parthasarathy (bib0148) 2009; 50
Kumar, Nyk, Ohulchanskyy, Flask, Prasad (bib0056) 2009; 19
L.Villaraza, Bumb, Brechbiel, Macromolecules (bib0158) 2010; 110
Liu, Li, Geng, Zhou, Prashant, Yang, Liu (bib0159) 2013; 4
McDonald, Watkin (bib0094) 2003; 38
Bessière, Jacquart, Priolkar, Lecointre, Viana, Gourier (bib0114) 2011; 19
Li, Parigi, Luchinat, Meade (bib0163) 2019; 141
Ou, Mutelet, Martini, Bazzi, Roux, Ledoux, Tillement, Perriat (bib0110) 2009; 333
Pellico, Elis, Davis (bib0009) 2019
Lee, Chen (bib0044) 2009; 8
Yim, Yang, Jeon, Park, Kim, Lee, Bae, Na (bib0137) 2011; 32
Zhou, Sun, Du, Xiong, Hua, Li (bib0058) 2010; 31
Ding, Wang, Liu, Li, Pu, Hu, Ng, Tang, Liu (bib0160) 2012; 8
Padmanabhan, Kumar, Kumar, Chaudhary, Gulyás (bib0037) 2016; 41
Massoud, Gambhir (bib0003) 2003; 17
Zhou, Wang, Yao, Li, Wang, Zhang, Xu, Zeng, Zhao, Zhang (bib0052) 2015; 6
Park, Kim, Kim, Moon, Yoo, Lee, Lee, Choi, Park, Ling, Na, Moon, Choi, Park, Yoon, Suh, Lee, Hyeon (bib0076) 2012; 24
Chen, Vucic, Leupold, Mulder, Cormode, Briley-Saebo, Barazza, Fisher, Dathe, Fayad (bib0140) 2008; 3
Feng, Li, Claser, Balachander, Tan, Goh, Kwok, Rénia, Tang, Ng, Liu (bib0162) 2018; 152
Chen, Bu, Zhang, Liu, Fan, Zhou, Peng, Shi (bib0054) 2013; 23
Ma, Meng, Chen, Hu, Chen, Huang, Shang, Wang, Guo, Yang (bib0077) 2015; 7
Lécuyer, Teston, Ramirez-Garcia, Maldiney, Viana, Seguin, Mignet, Scherman, Richard (bib0115) 2016; 6
Keereweer, Van Driel, Snoeks, Kerrebijn, Baatenburg de Jong, Vahrmeijer, Sterenborg, Löwik (bib0018) 2013; 19
Huang, Chen, Xu (bib0062) 2017; 165
Liu, Bu, Zhang, Chen, Xing, Pan, Zhou, Peng, Shi (bib0071) 2012; 18
Minchin, Martin (bib0172) 2010; 151
Chen, Zhao (bib0050) 2012; 12
Hu, Liu, Zhang, Jin, Liu (bib0151) 2013; 34
Li, You, Dai, Shi, Han, Xu (bib0113) 2014; 86
Liu, Ai, Liu, Yuan, He, Lu (bib0069) 2012; 51
Histed, Lindenberg, Mena, Turkbey, Choyke, Kurdziel (bib0011) 2012; 33
Wang, Cheng, Liu (bib0048) 2013; 3
Wang, Hu, Lin, Roy, Yong (bib0170) 2013; 5
Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (bib0169) 2018; 30
Caravan, Ellison, McMurry, Lauffer (bib0025) 1999; 99
Bridot, Faure, Laurent, Rivière, Billotey, Hiba, Janier, Josserand, Coll, Elst, Muller, Roux, Perriat, Tillement (bib0100) 2007; 129
van Schooneveld, Vucic, Koole, Zhou, Stocks, Cormode, Tang, Gordon, Nicolay, Meijerink, Fayad, Mulder (bib0129) 2008; 8
Jing, Ding, Kershaw, Kempson, Rogach, Gao (bib0082) 2014; 26
Mulder, Strijkers, Briley-Saboe, Frias, Aguinaldo, Vucic, Amirbekian, Tang, Chin, Nicolay, Fayad (bib0150) 2007; 58
Saha, Devi (bib0101) 2018; 1
Das, Heng, Ng, White, Loo, D'Silva, Padmanabhan, Bhakoo, Selvan, Tan (bib0104) 2010; 26
Hu, Liu, Shao (bib0133) 2015; 39
Josephson, Kircher, Mahmood, Tang, Weissleder (bib0020) 2002; 13
Dong, Korinek, Blasiak, Tomanek, van Veggel (bib0074) 2012; 24
Yang, Lin, Jing, Yue, Dai (bib0090) 2017; 9
Tu, Liu, Zhu, Li, Liu, Chen (bib0067) 2013; 52
van Tilborg, Mulder, Chin, Storm, Reutelingsperger, Nicolay, Strijkers (bib0086) 2006; 17
Li, Zhang, Shuter, Muhammad Idris (bib0063) 2009; 25
Chilla, Henoumont, Elst, Muller, Laurent (bib0038) 2017; 57
Chen, Yang, Liu, Zhang, Rong, Liang, Ma (bib0070) 2018; 6
Dash, Blasiak, To
Zhang (10.1016/j.actbio.2020.03.047_bib0132) 2014; 139
Abdukayum (10.1016/j.actbio.2020.03.047_bib0118) 2014; 86
Histed (10.1016/j.actbio.2020.03.047_bib0011) 2012; 33
Keereweer (10.1016/j.actbio.2020.03.047_bib0018) 2013; 19
Stouwdam (10.1016/j.actbio.2020.03.047_bib0123) 2003; 15
Chen (10.1016/j.actbio.2020.03.047_bib0053) 2011; 21
Min (10.1016/j.actbio.2020.03.047_bib0049) 2014; 4
Stefanakis (10.1016/j.actbio.2020.03.047_bib0093) 2010; 12
Rodriguez-Liviano (10.1016/j.actbio.2020.03.047_bib0124) 2013; 29
Zhang (10.1016/j.actbio.2020.03.047_bib0122) 2011; 50
Kim (10.1016/j.actbio.2020.03.047_bib0033) 2016; 8
Lipinski (10.1016/j.actbio.2020.03.047_bib0149) 2006; 56
McDonald (10.1016/j.actbio.2020.03.047_bib0094) 2003; 38
Liang (10.1016/j.actbio.2020.03.047_bib0139) 2017; 5
Minchin (10.1016/j.actbio.2020.03.047_bib0172) 2010; 151
Caravan (10.1016/j.actbio.2020.03.047_bib0026) 2006; 35
Yang (10.1016/j.actbio.2020.03.047_bib0007) 2012; 3
Chilla (10.1016/j.actbio.2020.03.047_bib0038) 2017; 57
Thomas (10.1016/j.actbio.2020.03.047_bib0032) 2015; 44
Maldiney (10.1016/j.actbio.2020.03.047_bib0119) 2015; 25
Lee (10.1016/j.actbio.2020.03.047_bib0095) 2013; 16
Zeng (10.1016/j.actbio.2020.03.047_bib0065) 2012; 22
Deng (10.1016/j.actbio.2020.03.047_bib0039) 2019; 20
Jin (10.1016/j.actbio.2020.03.047_bib0088) 2008; 44
Ding (10.1016/j.actbio.2020.03.047_bib0160) 2012; 8
Estelrich (10.1016/j.actbio.2020.03.047_bib0042) 2015; 10
Zhou (10.1016/j.actbio.2020.03.047_bib0058) 2010; 31
Xing (10.1016/j.actbio.2020.03.047_bib0072) 2012; 33
Rodriguez-Liviano (10.1016/j.actbio.2020.03.047_bib0121) 2013; 52
Kuo (10.1016/j.actbio.2020.03.047_bib0109) 2014; 7
Sitharaman (10.1016/j.actbio.2020.03.047_bib0028) 2010; 93
Xu (10.1016/j.actbio.2020.03.047_bib0051) 2013; 7
Sun (10.1016/j.actbio.2020.03.047_bib0125) 2016; 8
Olson (10.1016/j.actbio.2020.03.047_bib0156) 2009; 1
Jing (10.1016/j.actbio.2020.03.047_bib0082) 2014; 26
Kumar (10.1016/j.actbio.2020.03.047_bib0056) 2009; 19
Liu (10.1016/j.actbio.2020.03.047_bib0060) 2013; 7
Liu (10.1016/j.actbio.2020.03.047_bib0071) 2012; 18
L.Villaraza (10.1016/j.actbio.2020.03.047_bib0158) 2010; 110
Chen (10.1016/j.actbio.2020.03.047_bib0070) 2018; 6
Mulder (10.1016/j.actbio.2020.03.047_bib0085) 2006; 6
Kircher (10.1016/j.actbio.2020.03.047_bib0022) 2003; 63
Xia (10.1016/j.actbio.2020.03.047_bib0068) 2012; 33
Saha (10.1016/j.actbio.2020.03.047_bib0101) 2018; 1
Olszewski (10.1016/j.actbio.2020.03.047_bib0097) 2018; VI
Chen (10.1016/j.actbio.2020.03.047_bib0054) 2013; 23
Park (10.1016/j.actbio.2020.03.047_bib0098) 2019; 45
Mulder (10.1016/j.actbio.2020.03.047_bib0147) 2004; 15
Xia (10.1016/j.actbio.2020.03.047_bib0004) 2016; 12
Chen (10.1016/j.actbio.2020.03.047_bib0050) 2012; 12
Koole (10.1016/j.actbio.2020.03.047_bib0130) 2008; 19
Yang (10.1016/j.actbio.2020.03.047_bib0034) 2018; 8
Deng (10.1016/j.actbio.2020.03.047_bib0105) 2018; 29
Chen (10.1016/j.actbio.2020.03.047_bib0106) 2015; 17
Zairov (10.1016/j.actbio.2020.03.047_bib0138) 2017; 7
Wang (10.1016/j.actbio.2020.03.047_bib0017) 2017; 157
Jennings (10.1016/j.actbio.2020.03.047_bib0035) 2009; 24
Bessière (10.1016/j.actbio.2020.03.047_bib0114) 2011; 19
Lécuyer (10.1016/j.actbio.2020.03.047_bib0115) 2016; 6
Hao (10.1016/j.actbio.2020.03.047_bib0030) 2010; 22
Cheng (10.1016/j.actbio.2020.03.047_bib0091) 2013; 5
Yang (10.1016/j.actbio.2020.03.047_bib0008) 2016; 6
Pellico (10.1016/j.actbio.2020.03.047_bib0009) 2019
Chen (10.1016/j.actbio.2020.03.047_bib0079) 2011; 3
Zhou (10.1016/j.actbio.2020.03.047_bib0052) 2015; 6
Maiseyeu (10.1016/j.actbio.2020.03.047_bib0148) 2009; 50
Xu (10.1016/j.actbio.2020.03.047_bib0154) 2007; 18
Olson (10.1016/j.actbio.2020.03.047_bib0157) 2010; 107
Dash (10.1016/j.actbio.2020.03.047_bib0075) 2018; 122
Mughabghab (10.1016/j.actbio.2020.03.047_bib0171) 2003
van Schooneveld (10.1016/j.actbio.2020.03.047_bib0129) 2008; 8
Lee (10.1016/j.actbio.2020.03.047_bib0021) 2009; 132
Posse (10.1016/j.actbio.2020.03.047_bib0013) 2013; 37
Park (10.1016/j.actbio.2020.03.047_bib0073) 2009; 21
Zhao (10.1016/j.actbio.2020.03.047_bib0036) 2018; 8
Wang (10.1016/j.actbio.2020.03.047_bib0048) 2013; 3
Hu (10.1016/j.actbio.2020.03.047_bib0151) 2013; 34
Li (10.1016/j.actbio.2020.03.047_bib0155) 2017; 1
Yang (10.1016/j.actbio.2020.03.047_bib0090) 2017; 9
Guo (10.1016/j.actbio.2020.03.047_bib0078) 2010; 21
Mamiya (10.1016/j.actbio.2020.03.047_bib0031) 2013
Hu (10.1016/j.actbio.2020.03.047_bib0102) 2013; 19
Vivero-Escoto (10.1016/j.actbio.2020.03.047_bib0128) 2012; 41
Al-iedani (10.1016/j.actbio.2020.03.047_bib0012) 2017; 33
Oliver (10.1016/j.actbio.2020.03.047_bib0145) 2006; 4
Johnson (10.1016/j.actbio.2020.03.047_bib0059) 2011; 23
Michalet (10.1016/j.actbio.2020.03.047_bib0081) 2005; 307
Xie (10.1016/j.actbio.2020.03.047_bib0164) 2019; 2
Schima (10.1016/j.actbio.2020.03.047_bib0006) 1996; 51
Ren (10.1016/j.actbio.2020.03.047_bib0064) 2011; 115
Caravan (10.1016/j.actbio.2020.03.047_bib0025) 1999; 99
Kamaly (10.1016/j.actbio.2020.03.047_bib0146) 2008; 19
Prinzen (10.1016/j.actbio.2020.03.047_bib0087) 2007; 7
Tsotsalas (10.1016/j.actbio.2020.03.047_bib0141) 2008; 20
Chen (10.1016/j.actbio.2020.03.047_bib0047) 2016; 3
Rieter (10.1016/j.actbio.2020.03.047_bib0131) 2007; 119
Chen (10.1016/j.actbio.2020.03.047_bib0046) 2014; 114
Liu (10.1016/j.actbio.2020.03.047_bib0107) 2014; 30
Talanov (10.1016/j.actbio.2020.03.047_bib0152) 2006; 6
Mishra (10.1016/j.actbio.2020.03.047_bib0127) 2017; 3
Li (10.1016/j.actbio.2020.03.047_bib0113) 2014; 86
Dong (10.1016/j.actbio.2020.03.047_bib0074) 2012; 24
Das (10.1016/j.actbio.2020.03.047_bib0099) 2011; 23
Padmanabhan (10.1016/j.actbio.2020.03.047_bib0037) 2016; 41
Debroyea (10.1016/j.actbio.2020.03.047_bib0041) 2014; 43
Li (10.1016/j.actbio.2020.03.047_bib0063) 2009; 25
Frangioni (10.1016/j.actbio.2020.03.047_bib0016) 2003; 7
van Tilborg (10.1016/j.actbio.2020.03.047_bib0086) 2006; 17
Fan (10.1016/j.actbio.2020.03.047_bib0080) 2013; 135
Ladd (10.1016/j.actbio.2020.03.047_bib0135) 1999; 10
Zhang (10.1016/j.actbio.2020.03.047_bib0166) 2014; 111
Yang (10.1016/j.actbio.2020.03.047_bib0092) 2015; 7
Xue (10.1016/j.actbio.2020.03.047_bib0066) 2017; 115
Liu (10.1016/j.actbio.2020.03.047_bib0117) 2019; 138
Liu (10.1016/j.actbio.2020.03.047_bib0069) 2012; 51
Shu (10.1016/j.actbio.2020.03.047_bib0134) 2008; 19
Huang (10.1016/j.actbio.2020.03.047_bib0062) 2017; 165
Massoud (10.1016/j.actbio.2020.03.047_bib0003) 2003; 17
Le (10.1016/j.actbio.2020.03.047_bib0136) 2006; 312
Feng (10.1016/j.actbio.2020.03.047_bib0162) 2018; 152
McAdams (10.1016/j.actbio.2020.03.047_bib0084) 2017; 53
Park (10.1016/j.actbio.2020.03.047_bib0103) 2018; 172
Wang (10.1016/j.actbio.2020.03.047_bib0111) 2018; 10
Clough (10.1016/j.actbio.2020.03.047_bib0168) 2019; 10
Su (10.1016/j.actbio.2020.03.047_bib0142) 2018; 10
Zhou (10.1016/j.actbio.2020.03.047_bib0057) 2011; 32
Hu (10.1016/j.actbio.2020.03.047_bib0133) 2015; 39
Markus (10.1016/j.actbio.2020.03.047_bib0002) 2013
Guo (10.1016/j.actbio.2020.03.047_bib0089) 2014; 7
Wang (10.1016/j.actbio.2020.03.047_bib0045) 2010; 135
Wang (10.1016/j.actbio.2020.03.047_bib0170) 2013; 5
Penet (10.1016/j.actbio.2020.03.047_bib0043) 2010; 2
Bridot (10.1016/j.actbio.2020.03.047_bib0100) 2007; 129
Nuñez (10.1016/j.actbio.2020.03.047_bib0061) 2014; 35
Li (10.1016/j.actbio.2020.03.047_bib0163) 2019; 141
Park (10.1016/j.actbio.2020.03.047_bib0076) 2012; 24
Mulder (10.1016/j.actbio.2020.03.047_bib0150) 2007; 58
Lee (10.1016/j.actbio.2020.03.047_bib0044) 2009; 8
Maldiney (10.1016/j.actbio.2020.03.047_bib0116) 2014; 13
Tu (10.1016/j.actbio.2020.03.047_bib0067) 2013; 52
Aime (10.1016/j.actbio.2020.03.047_bib0027) 2005
Gore (10.1016/j.actbio.2020.03.047_bib0015) 2003; 112
Merbach (10.1016/j.actbio.2020.03.047_bib0029) 2013
Zou (10.1016/j.actbio.2020.03.047_bib0120) 2017; 29
Bourquin (10.1016/j.actbio.2020.03.047_bib0169) 2018; 30
Tei (10.1016/j.actbio.2020.03.047_bib0005) 2018; 6
Na (10.1016/j.actbio.2020.03.047_bib0024) 2009; 19
Yim (10.1016/j.actbio.2020.03.047_bib0137) 2011; 32
Liu (10.1016/j.actbio.2020.03.047_bib0159) 2013; 4
Vuu (10.1016/j.actbio.2020.03.047_bib0143) 2005; 16
Louie (10.1016/j.actbio.2020.03.047_bib0019) 2010; 110
Gallagher (10.1016/j.actbio.2020.03.047_bib0023) 2010; 65
Kircher (10.1016/j.actbio.2020.03.047_bib0144) 2012; 18
Josephson (10.1016/j.actbio.2020.03.047_bib0020) 2002; 13
Xu (10.1016/j.actbio.2020.03.047_bib0112) 2017; 9
Koyama (10.1016/j.actbio.2020.03.047_bib0153) 2007; 25
Shi (10.1016/j.actbio.2020.03.047_bib0108) 2010; 5
Chen (10.1016/j.actbio.2020.03.047_bib0140) 2008; 3
Li (10.1016/j.actbio.2020.03.047_bib0173) 2012; 41
Zhang (10.1016/j.actbio.2020.03.047_bib0040) 2016; 8
Glover (10.1016/j.actbio.2020.03.047_bib0014) 2011; 22
Wahsner (10.1016/j.actbio.2020.03.047_bib0010) 2019; 119
Ethirajan (10.1016/j.actbio.2020.03.047_bib0165) 2011; 40
Li (10.1016/j.actbio.2020.03.047_bib0161) 2013; 2
Lyu (10.1016/j.actbio.2020.03.047_bib0167) 2018; 10
Mimun (10.1016/j.actbio.2020.03.047_bib0055) 2017; 695
Luo (10.1016/j.actbio.2020.03.047_bib0096) 2014; 2
Mankoff (10.1016/j.actbio.2020.03.047_bib0001) 2007; 48
Ma (10.1016/j.actbio.2020.03.047_bib0077) 2015; 7
Das (10.1016/j.actbio.2020.03.047_bib0104) 2010; 26
Ou (10.1016/j.actbio.2020.03.047_bib0110) 2009; 333
Pereira (10.1016/j.actbio.2020.03.047_bib0083) 2019; 9
Jung (10.1016/j.actbio.2020.03.047_bib0126) 2012; 33
References_xml – volume: 19
  start-page: 3745
  year: 2013
  end-page: 3754
  ident: bib0018
  article-title: Optical image-guided cancer surgery: challenges and limitations
  publication-title: Clin. Cancer Res.
– volume: 8
  start-page: 6210
  year: 2018
  end-page: 6232
  ident: bib0034
  article-title: PET-MR and SPECT-MR multimodality probes: development and challenges
  publication-title: Theranostics
– volume: 29
  year: 2018
  ident: bib0105
  article-title: Effect of EU doping concentration on fluorescence and magnetic resonance imaging properties of Gd
  publication-title: Nanotechnology
– volume: 31
  start-page: 3287
  year: 2010
  end-page: 3295
  ident: bib0058
  article-title: Dual-modality
  publication-title: Biomaterials
– volume: 1
  start-page: 382
  year: 2009
  end-page: 393
  ident: bib0156
  article-title: characterization of activatable cell penetrating peptides for targeting protease activity in cancer
  publication-title: Integr. Biol.
– volume: 129
  start-page: 5076
  year: 2007
  end-page: 5084
  ident: bib0100
  article-title: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 186
  year: 2017
  end-page: 195
  ident: bib0155
  article-title: Gadolinium and platinum in tandem: real-time multi-modal monitoring of drug delivery by MRI and fluorescence imaging
  publication-title: Nanotheranostics
– volume: 3
  start-page: 318
  year: 2013
  end-page: 330
  ident: bib0048
  article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
  publication-title: Theranostics
– volume: 312
  start-page: 105
  year: 2006
  end-page: 112
  ident: bib0136
  article-title: Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy
  publication-title: Int. J. Pharm.
– volume: 41
  start-page: 2673
  year: 2012
  end-page: 2685
  ident: bib0128
  article-title: Silica-based nanoprobes for biomedical imaging and theranostic applications
  publication-title: Chem. Soc. Rev.
– year: 2003
  ident: bib0171
  article-title: Thermal Neutron Capture Cross sections: Resonance Integrals and G-Factors
– volume: 8
  start-page: 10491
  year: 2016
  end-page: 10510
  ident: bib0040
  article-title: The evolution of gadolinium based contrast agents: from single-modality to multi-modality
  publication-title: Nanoscale
– volume: 15
  start-page: 799
  year: 2004
  end-page: 806
  ident: bib0147
  article-title: A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets
  publication-title: Bioconjugate Chem
– volume: 6
  start-page: 1459
  year: 2006
  end-page: 1463
  ident: bib0152
  article-title: Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging
  publication-title: Nano Lett
– start-page: 173
  year: 2005
  end-page: 237
  ident: bib0027
  article-title: Gd(III)-based contrast agents for MRI
  publication-title: Adv. Inorg. Chem.
– volume: 695
  start-page: 280
  year: 2017
  end-page: 285
  ident: bib0055
  article-title: Synthesis and characterization of Na(Gd
  publication-title: J. Alloys. Compd.
– volume: 4
  start-page: 129
  year: 2014
  end-page: 154
  ident: bib0049
  article-title: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials
  publication-title: Nanomaterials
– volume: 33
  start-page: 349
  year: 2012
  end-page: 361
  ident: bib0011
  article-title: Review of functional/ anatomic imaging in oncology
  publication-title: Nucl. Med. Commun.
– volume: 13
  start-page: 554
  year: 2002
  end-page: 560
  ident: bib0020
  article-title: Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes
  publication-title: Bioconjugate Chem
– volume: 3
  start-page: 3607
  year: 2017
  end-page: 3619
  ident: bib0127
  article-title: Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release
  publication-title: ACS Biomater. Sci. Eng.
– volume: 7
  start-page: 93
  year: 2007
  end-page: 100
  ident: bib0087
  article-title: Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots
  publication-title: Nano Lett.
– volume: 7
  start-page: 40486
  year: 2017
  ident: bib0138
  article-title: High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones
  publication-title: Sci Reports
– volume: 132
  start-page: 552
  year: 2009
  end-page: 557
  ident: bib0021
  article-title: Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1727
  year: 2015
  end-page: 1741
  ident: bib0042
  article-title: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents
  publication-title: Int. J. Nanomed.
– volume: 12
  start-page: 2414
  year: 2012
  end-page: 2435
  ident: bib0050
  article-title: Upconversion nanomaterials: synthesis, mechanism, and applications in sensing
  publication-title: Sensors
– volume: 3
  start-page: 233
  year: 2008
  end-page: 242
  ident: bib0140
  article-title: Incorporation of an apoE-derived lipopeptide in high-density lipoprotein mri contrast agents for enhanced imaging of macrophages in atherosclerosis
  publication-title: Contrast Media Mol. Imaging
– volume: 65
  start-page: 557
  year: 2010
  end-page: 566
  ident: bib0023
  article-title: An introduction to functional and molecular imaging with MRI
  publication-title: Clin. Radiol.
– volume: 19
  start-page: 6267
  year: 2009
  end-page: 6273
  ident: bib0024
  article-title: Nanostructured T1 MRI contrast agents
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 361
  year: 1999
  end-page: 370
  ident: bib0135
  article-title: Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties
  publication-title: Bioconjugate Chem
– year: 2013
  ident: bib0002
  article-title: Molecular imaging: Basic Principles and Applications in Biomedical Research
– volume: 51
  start-page: 235
  year: 1996
  end-page: 244
  ident: bib0006
  article-title: Contrast-enhanced MR imaging
  publication-title: Clin. Radiol.
– volume: 10
  start-page: 5642
  year: 2018
  end-page: 5649
  ident: bib0111
  article-title: Two-photon graphene quantum dot modified Gd
  publication-title: Nanoscale
– volume: 119
  start-page: 3754
  year: 2007
  end-page: 3756
  ident: bib0131
  article-title: Hybrid silica nanoparticles for multimodal imaging
  publication-title: Angew. Chem., Int. Ed.
– volume: 39
  start-page: 7363
  year: 2015
  end-page: 7371
  ident: bib0133
  article-title: Fluorescein isothiocyanate embedded silica spheres in gadolinium carbonate shells as novel magnetic resonance imaging and fluorescence bi-modal contrast agents
  publication-title: New J. Chem.
– volume: 19
  start-page: 2471
  year: 2008
  end-page: 2479
  ident: bib0130
  article-title: Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging
  publication-title: Bioconjuge Chem
– volume: 7
  start-page: 626
  year: 2003
  end-page: 634
  ident: bib0016
  article-title: near-infrared fluorescence imaging
  publication-title: Curr. Opin. Chem .Biol.
– volume: 6
  start-page: 10463
  year: 2018
  end-page: 10471
  ident: bib0070
  article-title: Controllable fabrication of rare-earth-doped Gd
  publication-title: ACS Sustainable Chem. Eng.
– volume: 139
  start-page: 4613
  year: 2014
  end-page: 4619
  ident: bib0132
  article-title: Gd-Al co-doped mesoporous silica nanoparticles loaded with Ru(BPY)
  publication-title: Analyst
– volume: 12
  start-page: 1285
  year: 2010
  end-page: 1297
  ident: bib0093
  article-title: Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery
  publication-title: J. Nanopart. Res.
– volume: 3
  start-page: 552
  year: 2012
  end-page: 565
  ident: bib0007
  article-title: Gd(III) chelates for MRI contrast agents: from high relaxivity to “ smart ”
  publication-title: Med. Chem. Commun.
– volume: 19
  start-page: 853
  year: 2009
  end-page: 859
  ident: bib0056
  article-title: Combined optical and MR bioimaging using rare earth ion doped NayF
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 10500
  year: 2017
  end-page: 10503
  ident: bib0084
  article-title: High magnetic relaxivity in a fluorescent CDSE/CDS/ZNS quantum dot functionalized with MRI contrast molecules
  publication-title: Chem. Commun.
– volume: 50
  start-page: 10608
  year: 2011
  end-page: 10613
  ident: bib0122
  article-title: Mutifuntional GDPO:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties
  publication-title: Inorg Chem.
– volume: 165
  start-page: 161
  year: 2017
  end-page: 166
  ident: bib0062
  article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging
  publication-title: Talanta
– volume: 29
  start-page: 3938
  year: 2017
  end-page: 3946
  ident: bib0120
  article-title: Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1556
  year: 2018
  end-page: 1565
  ident: bib0142
  article-title: Multifunctional PHPMA-derived polymer for ratiometric pH sensing, fluorescence imaging, and magnetic resonance imaging
  publication-title: ACS Appl. Mater. Interfaces
– volume: 99
  start-page: 2293
  year: 1999
  end-page: 2352
  ident: bib0025
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
– volume: 19
  start-page: 10131
  year: 2011
  end-page: 10137
  ident: bib0114
  article-title: ZnGaO:Cr3+: a new red long-lasting phosphor with high brightness
  publication-title: Opt. Exp.
– volume: 1
  start-page: 2898
  year: 2018
  end-page: 2911
  ident: bib0101
  article-title: Surface functionalized multifunctional Gd
  publication-title: ACS Appl. Nano Mater.
– volume: 10
  start-page: 685
  year: 2018
  end-page: 702
  ident: bib0167
  article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect
  publication-title: NPG Asia Materials
– volume: 4
  start-page: 3489
  year: 2006
  end-page: 3497
  ident: bib0145
  article-title: MAGfect: a novel liposome formulation for mri labelling and visualization of cells
  publication-title: Org. Biomol. Chem.
– volume: 23
  start-page: 3714
  year: 2011
  end-page: 3722
  ident: bib0059
  article-title: Size-tunable, ultrasmall NAGDF nanoparticles: insights into their T1 MRI contrast enhancement
  publication-title: Chem. Mater.
– volume: 5
  start-page: 2122
  year: 2017
  end-page: 2130
  ident: bib0139
  article-title: Gd
  publication-title: Biomater. Sci.
– volume: 24
  start-page: 3511
  year: 2009
  end-page: 3524
  ident: bib0035
  article-title: ‘Two is better than one’ probes for dual-modality molecular imaging
  publication-title: Chem. Commun.
– volume: 21
  start-page: 4467
  year: 2009
  end-page: 4471
  ident: bib0073
  article-title: Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent
  publication-title: Adv. Mater.
– volume: 7
  start-page: 18759
  year: 2015
  end-page: 18768
  ident: bib0092
  article-title: Facile synthesis of GD-CU-IN-S/ZNS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 658
  year: 2014
  end-page: 669
  ident: bib0109
  article-title: AS1411 aptamer-conjugated GDO:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging
  publication-title: Nano Res.
– volume: 110
  start-page: 2921
  year: 2010
  end-page: 2959
  ident: bib0158
  article-title: and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics
  publication-title: Chem. Rev.
– volume: 35
  start-page: 6075
  year: 2014
  end-page: 6084
  ident: bib0061
  article-title: One-step synthesis and polyacrylic acid functionalization of multifunctional europium-doped nagdf
  publication-title: Eur. J. Inorg. Chem.
– volume: 17
  start-page: 1189
  year: 2015
  end-page: 1196
  ident: bib0106
  article-title: Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent
  publication-title: Phys. Chem. Chem. Phys.
– volume: 151
  start-page: 474
  year: 2010
  end-page: 481
  ident: bib0172
  article-title: Nanoparticles for molecular imaging–an overview
  publication-title: Endocrinology
– volume: 93
  start-page: 1454
  year: 2010
  end-page: 1462
  ident: bib0028
  article-title: Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites
  publication-title: J. Biomed. Mater. Res. A
– year: 2013
  ident: bib0029
  article-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
– volume: 33
  start-page: 1079
  year: 2012
  end-page: 1089
  ident: bib0072
  article-title: Multifunctional nanoprobes for upconversion fluorescence, mr and ct trimodal imaging
  publication-title: Biomaterials
– volume: 40
  start-page: 340
  year: 2011
  end-page: 362
  ident: bib0165
  article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 23450
  year: 2017
  end-page: 23457
  ident: bib0090
  article-title: CuInS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 86
  start-page: 4096
  year: 2014
  end-page: 4101
  ident: bib0118
  article-title: Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging
  publication-title: Anal. Chem.
– volume: 33
  start-page: 17
  year: 2017
  ident: bib0012
  article-title: Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis
  publication-title: J. Biomed. Sci.
– volume: 52
  start-page: 1128
  year: 2013
  end-page: 1133
  ident: bib0067
  article-title: Breakdown of crystallographic site symmetry in lanthanide‐doped NayF
  publication-title: Angew Chem Int Ed Engl
– volume: 3
  year: 2016
  ident: bib0047
  article-title: Current advance in lanthanide-doped upconversion nanostructures for detection and bioapplication
  publication-title: Adv. Sci.
– volume: 25
  start-page: 12015
  year: 2009
  end-page: 12018
  ident: bib0063
  article-title: Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals
  publication-title: Langmuir
– volume: 8
  start-page: 3523
  year: 2012
  end-page: 3530
  ident: bib0160
  article-title: Hyperbranched conjugated polyelectrolyte for dual‐modality fluorescence and magnetic resonance cancer imaging
  publication-title: Small
– volume: 2
  year: 2019
  ident: bib0164
  article-title: Bladder cancer photodynamic therapeutic agent with off-on magnetic resonance imaging enhancement
  publication-title: Adv. Therap.
– volume: 23
  start-page: 298
  year: 2013
  end-page: 307
  ident: bib0054
  article-title: Gd
  publication-title: Adv. Funct. Mater.
– volume: 41
  start-page: 2590
  year: 2012
  end-page: 2605
  ident: bib0173
  article-title: Mesoporous silica nanoparticles in biomedical applications
  publication-title: Chem. Soc. Rev.
– volume: 37
  start-page: 1301
  year: 2013
  end-page: 1325
  ident: bib0013
  article-title: MR spectroscopic imaging: principles and recent advances
  publication-title: J. Magn. Reson. Imaging
– volume: 41
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib0037
  article-title: Nanoparticles in practice for molecular-imaging applications: an overview
  publication-title: Acta Biomat
– volume: 45
  start-page: 5958
  year: 2019
  end-page: 5964
  ident: bib0098
  article-title: GdO:Pr3+ nanospheres as bi-functional contrast agents for optical and magnetic resonance imaging properties
  publication-title: Ceram. Int.
– volume: 157
  start-page: 62
  year: 2017
  end-page: 75
  ident: bib0017
  article-title: Optical molecular imaging for tumor detection and image-guided surgery
  publication-title: Biomaterials
– volume: 20
  start-page: 499
  year: 2019
  end-page: 510
  ident: bib0039
  article-title: Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probe
  publication-title: ChemBioChem
– volume: 30
  year: 2018
  ident: bib0169
  article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials
  publication-title: Adv Mater
– volume: 152
  start-page: 77
  year: 2018
  end-page: 85
  ident: bib0162
  article-title: Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection
  publication-title: Biomaterials
– volume: 110
  start-page: 3146
  year: 2010
  end-page: 3195
  ident: bib0019
  article-title: Multimodality imaging probes: design and challenges
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4389
  year: 2013
  end-page: 4400
  ident: bib0091
  article-title: Gadolinium-based cuins
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 33539
  year: 2016
  end-page: 33545
  ident: bib0125
  article-title: Fluorescence-magnetism functional eus nanocrystals with controllable morphologies for dual bioimaging
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 90
  year: 2017
  end-page: 103
  ident: bib0066
  article-title: Upconversion optical/magnetic resonance imaging-guided small tumor detection and
  publication-title: Biomaterials
– volume: 141
  start-page: 6224
  year: 2019
  end-page: 6233
  ident: bib0163
  article-title: Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2003
  year: 2011
  end-page: 2008
  ident: bib0079
  article-title: Monodisperse NaYbF: TM
  publication-title: Nanoscale
– volume: 51
  start-page: 1437
  year: 2012
  end-page: 1442
  ident: bib0069
  article-title: A high-performance ytterbium based nanoparticulate contrast agent for
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1
  year: 2006
  end-page: 6
  ident: bib0085
  article-title: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe
  publication-title: Nano Lett.
– volume: 24
  start-page: 1297
  year: 2012
  end-page: 1305
  ident: bib0074
  article-title: Cation exchange: a facile method to make nayf
  publication-title: Chem. Mater.
– volume: 16
  start-page: 2858
  year: 2013
  end-page: 2866
  ident: bib0095
  article-title: -glucuronic acid coated GD(IO
  publication-title: Eur. J. Inorg. Chem.
– volume: 12
  start-page: 1553
  year: 2016
  end-page: 1584
  ident: bib0004
  article-title: Nanoparticulate contrast agents for multimodality molecular imaging
  publication-title: J. Biomed. Nanotechnol.
– volume: 18
  start-page: 1474
  year: 2007
  end-page: 1482
  ident: bib0154
  article-title: Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging
  publication-title: Bioconjugate Chem.
– year: 2013
  ident: bib0031
  article-title: Recent advances in understanding magnetic nanoparticles in ac magnetic fields and optimal design for targeted hyperthermia
  publication-title: J. Nanomater.
– volume: 15
  start-page: 4604
  year: 2003
  end-page: 4616
  ident: bib0123
  article-title: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media
  publication-title: Chem. Mater
– volume: 19
  start-page: 118
  year: 2008
  end-page: 129
  ident: bib0146
  article-title: Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging
  publication-title: Bioconjugate Chem
– volume: 112
  start-page: 4
  year: 2003
  end-page: 9
  ident: bib0015
  article-title: Principles and practice of functional mri of the human brain
  publication-title: J. Clin. Invest.
– volume: 122
  start-page: 11557
  year: 2018
  end-page: 11569
  ident: bib0075
  article-title: Validation of inner, second, and outer sphere contributions to T1 and T2 relaxation in Gd
  publication-title: J. Phys. Chem C
– volume: 44
  start-page: 5764
  year: 2008
  end-page: 5766
  ident: bib0088
  article-title: Gd
  publication-title: Chem. Commun.
– volume: 135
  start-page: 6494
  year: 2013
  end-page: 6503
  ident: bib0080
  article-title: Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 647
  year: 2013
  end-page: 654
  ident: bib0121
  article-title: Synthesis and properties of multifunctional tetragonal eu:gdpo
  publication-title: Inorg. Chem.
– volume: 32
  start-page: 5187
  year: 2011
  end-page: 5194
  ident: bib0137
  article-title: The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI
  publication-title: Biomaterials
– volume: 58
  start-page: 1164
  year: 2007
  end-page: 1170
  ident: bib0150
  article-title: Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles
  publication-title: Magn. Reason. Med.
– volume: 7
  start-page: 663
  year: 2013
  end-page: 697
  ident: bib0051
  article-title: Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future
  publication-title: Laser Photonics Rev.
– volume: 2
  start-page: 5891
  year: 2014
  end-page: 5897
  ident: bib0096
  article-title: A general top-down approach to synthesize rare earth doped-Gd
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 8959
  year: 2010
  end-page: 8965
  ident: bib0104
  article-title: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging
  publication-title: Langmuir
– volume: 5
  start-page: 2786
  year: 2013
  end-page: 2799
  ident: bib0170
  article-title: Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  year: 2010
  ident: bib0078
  article-title: Seed-mediated synthesis of NayF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity
  publication-title: Nanotechnology
– volume: 25
  start-page: 331
  year: 2015
  end-page: 338
  ident: bib0119
  article-title: Gadolinium-doped persistent nanophosphors as versatile tool for multimodal
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 5755
  year: 2012
  end-page: 5761
  ident: bib0076
  article-title: Theranostic probe based on lanthanide-doped nanoparticles for simultaneous
  publication-title: Adv. Mater.
– volume: 30
  start-page: 13005
  year: 2014
  end-page: 13013
  ident: bib0107
  article-title: Sub-10nm monoclinic gdo:Eu
  publication-title: Langmuir
– volume: 114
  start-page: 5161
  year: 2014
  end-page: 5214
  ident: bib0046
  article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics
  publication-title: Chem. Rev.
– volume: 21
  start-page: 4285
  year: 2011
  end-page: 4294
  ident: bib0053
  article-title: Positive and negative lattice shielding effects co-existing in gd (III) ion doped bifunctional upconversion nanoprobes
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1420
  year: 2019
  ident: bib0168
  article-title: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents
  publication-title: Nat Commun
– volume: 34
  start-page: 749
  year: 2013
  end-page: 758
  ident: bib0151
  article-title: Synergistically enhance magnetic resonance/fluorescence imaging performance of responsive polymeric nanoparticles under mildly acidic biological milieu
  publication-title: Macromol. Rapid Commun.
– volume: 7
  start-page: 16257
  year: 2015
  end-page: 16265
  ident: bib0077
  article-title: NaGdF:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 12658
  year: 2013
  end-page: 12667
  ident: bib0102
  article-title: Highly water-dispersible surface-modified Gd
  publication-title: Chem. Eur. J.
– volume: 5
  start-page: 105
  year: 2010
  end-page: 111
  ident: bib0108
  article-title: Bifunctional Eu
  publication-title: Contrast Media Mol. Imaging
– volume: 44
  start-page: 4494
  year: 2015
  end-page: 4500
  ident: bib0032
  article-title: Optical imaging probes for biomolecules: an introductory perspective
  publication-title: Chem. Soc. Rev.
– volume: 63
  start-page: 8122
  year: 2003
  end-page: 8125
  ident: bib0022
  article-title: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation
  publication-title: Cancer Res.
– volume: 57
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0038
  article-title: Importance of DOTA derivatives in bimodal imaging
  publication-title: Isr. J. Chem.
– volume: 138
  start-page: 193
  year: 2019
  end-page: 210
  ident: bib0117
  article-title: Imaging and therapeutic applications of persistent luminescence nanomaterials
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  start-page: 995
  year: 2005
  end-page: 999
  ident: bib0143
  article-title: Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging
  publication-title: Bioconjugate Chem
– volume: 4
  start-page: 1517
  year: 2013
  end-page: 1524
  ident: bib0159
  article-title: Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging
  publication-title: Polym. Chem.
– volume: 43
  start-page: 8178
  year: 2014
  end-page: 8192
  ident: bib0041
  article-title: Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 7227
  year: 2013
  end-page: 7240
  ident: bib0060
  article-title: Magnetic/upconversion fluorescent nagdf
  publication-title: ACS Nano
– volume: 33
  start-page: 5394
  year: 2012
  end-page: 5405
  ident: bib0068
  article-title: Gd
  publication-title: Biomaterials
– volume: 107
  start-page: 4311
  year: 2010
  end-page: 4316
  ident: bib0157
  article-title: Activatable cell penetrating peptides linked to nanoparticles as dual probes for
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 56
  start-page: 601
  year: 2006
  end-page: 610
  ident: bib0149
  article-title: MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor
  publication-title: Magn. Reason. Med.
– volume: 38
  start-page: 305
  year: 2003
  end-page: 310
  ident: bib0094
  article-title: Small particulate gadolinium oxide and gadolinium albumin microspheres as multimodal contrast and therapeutic agents
  publication-title: Invest. Radiol.
– volume: 6
  start-page: 60945
  year: 2016
  end-page: 60966
  ident: bib0008
  article-title: Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes
  publication-title: RSC Adv
– volume: 6
  start-page: 253
  year: 2018
  ident: bib0005
  article-title: Editorial: the chemistry of imaging probes
  publication-title: Front. Chem.
– volume: 18
  start-page: 2335
  year: 2012
  end-page: 2341
  ident: bib0071
  article-title: Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging
  publication-title: Chem. Eur. J.
– volume: 333
  start-page: 684
  year: 2009
  end-page: 689
  ident: bib0110
  article-title: Optimization of the synthesis of nanostructured Tb
  publication-title: J. Colloid Interface Sci.
– volume: 35
  start-page: 512
  year: 2006
  end-page: 523
  ident: bib0026
  article-title: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 18N
  year: 2007
  end-page: 21N
  ident: bib0001
  article-title: A definition of molecular imaging
  publication-title: J. Nucl. Med.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0052
  article-title: Single-band upconversion nanoprobes for multiplexed simultaneous
  publication-title: Nat. Commun.
– volume: 26
  start-page: 6367
  year: 2014
  end-page: 6386
  ident: bib0082
  article-title: Magnetically engineered semiconductor quantum dots as multimodal imaging probes
  publication-title: Adv. Mater.
– volume: 25
  start-page: 866
  year: 2007
  end-page: 871
  ident: bib0153
  article-title: A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice
  publication-title: J. Magn. Reson. Imaging
– volume: 22
  start-page: 133
  year: 2011
  end-page: 139
  ident: bib0014
  article-title: Overview of functional magnetic resonance imaging
  publication-title: Neurosurg. Clin. N. Am.
– volume: 135
  start-page: 1839
  year: 2010
  end-page: 1854
  ident: bib0045
  article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy
  publication-title: Analyst
– volume: 8
  start-page: 320
  year: 2018
  end-page: 338
  ident: bib0036
  article-title: Recent developments in multimodality fluorescence imaging probes
  publication-title: Acta Pharmaceutica Sinica B
– volume: 6
  start-page: 2488
  year: 2016
  end-page: 2524
  ident: bib0115
  article-title: Chemically engineered persistent luminescence nanoprobes for bioimaging
  publication-title: Theranostics
– volume: 17
  start-page: 545
  year: 2003
  end-page: 580
  ident: bib0003
  article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light
  publication-title: Genes. Dev.
– volume: 9
  start-page: 2341
  year: 2019
  ident: bib0083
  article-title: Hydrophilic quantum dots functionalized with GD(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes
  publication-title: Sci. Rep.
– volume: 307
  start-page: 538
  year: 2005
  end-page: 544
  ident: bib0081
  article-title: Quantum dots for live cells,
  publication-title: Science
– volume: 13
  start-page: 418
  year: 2014
  end-page: 426
  ident: bib0116
  article-title: The
  publication-title: Nat Mater
– volume: 50
  start-page: 2157
  year: 2009
  end-page: 2163
  ident: bib0148
  article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis
  publication-title: J. Lipid Res
– volume: 119
  start-page: 957
  year: 2019
  end-page: 1057
  ident: bib0010
  article-title: Chemistry of mri contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
– volume: 86
  start-page: 11306
  year: 2014
  end-page: 11311
  ident: bib0113
  article-title: Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging
  publication-title: Anal. Chem.
– volume: 33
  start-page: 5865
  year: 2012
  end-page: 5874
  ident: bib0126
  article-title: Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging
  publication-title: Biomaterials
– volume: 8
  start-page: 2517
  year: 2008
  end-page: 2525
  ident: bib0129
  article-title: Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation
  publication-title: Nano Lett.
– volume: 2
  start-page: 1600
  year: 2013
  end-page: 1605
  ident: bib0161
  article-title: Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study
  publication-title: Adv. Healthcare Mater.
– volume: 19
  start-page: 651
  year: 2008
  end-page: 655
  ident: bib0134
  article-title: Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent
  publication-title: Bioconjugate Chem
– volume: 8
  start-page: 87
  year: 2009
  end-page: 100
  ident: bib0044
  article-title: Dual-modality probes for
  publication-title: Mol. Imaging
– volume: 22
  start-page: 2729
  year: 2010
  end-page: 2742
  ident: bib0030
  article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
  publication-title: Adv Mater
– year: 2019
  ident: bib0009
  article-title: Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging
  publication-title: Contrast Med. Mole Imaging
– volume: 18
  start-page: 829
  year: 2012
  end-page: 834
  ident: bib0144
  article-title: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle
  publication-title: Nat. Med.
– volume: 29
  start-page: 3411
  year: 2013
  end-page: 3418
  ident: bib0124
  article-title: Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous eu:gdf
  publication-title: Langmuir
– volume: 7
  start-page: 1581
  year: 2014
  end-page: 1591
  ident: bib0089
  article-title: Color-tunable Gd-Zn-Cu-In-S/ZNS quantum dots for dual modality magnetic resonance and fluorescence imaging
  publication-title: Nano Res
– volume: VI
  year: 2018
  ident: bib0097
  article-title: Multimodal non-gadolinium oxide nanoparticles for mri and fluorescence labelling
  publication-title: Biophoton. Photon. Solut. Better Health Care
– volume: 2
  start-page: 975
  year: 2010
  end-page: 988
  ident: bib0043
  article-title: Applications of molecular mri and optical imaging in cancer
  publication-title: Future Med. Chem.
– volume: 32
  start-page: 1148
  year: 2011
  end-page: 1156
  ident: bib0057
  article-title: Fluorine-18-labeled Gd
  publication-title: Biomaterials
– volume: 111
  start-page: E5492
  year: 2014
  end-page: E5497
  ident: bib0166
  article-title: selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 5888
  year: 2008
  end-page: 5893
  ident: bib0141
  article-title: Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications
  publication-title: Chem. Mater.
– volume: 9
  start-page: 4620
  year: 2017
  end-page: 4628
  ident: bib0112
  article-title: AuGd integrated nanoprobes for optical/MRI/CT triple-modal
  publication-title: Nanoscale
– volume: 172
  start-page: 224
  year: 2018
  end-page: 232
  ident: bib0103
  article-title: Biocompatible sphere, square prism and hexagonal rod Gd
  publication-title: Colloids Surf., B
– volume: 23
  start-page: 2439
  year: 2011
  end-page: 2446
  ident: bib0099
  article-title: Single-phase DYO:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging
  publication-title: Chem. Mater.
– volume: 17
  start-page: 865
  year: 2006
  end-page: 868
  ident: bib0086
  article-title: Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells
  publication-title: Bioconjugate Chem.
– volume: 8
  start-page: 10266
  year: 2016
  end-page: 10273
  ident: bib0033
  article-title: tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced mri and near-infrared fluorescence
  publication-title: ACS Appl. Mater. Interfaces
– volume: 115
  start-page: 20141
  year: 2011
  end-page: 20147
  ident: bib0064
  article-title: Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF
  publication-title: J. Phys. Chem. C
– volume: 22
  start-page: 9870
  year: 2012
  end-page: 9874
  ident: bib0065
  article-title: Bi-functional naluf:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 60945
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0008
  article-title: Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes
  publication-title: RSC Adv
  doi: 10.1039/C6RA07782J
– volume: 93
  start-page: 1454
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0028
  article-title: Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32650
– volume: 7
  start-page: 7227
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0060
  article-title: Magnetic/upconversion fluorescent nagdf4:yb,er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn4030898
– volume: 24
  start-page: 5755
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0076
  article-title: Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202433
– volume: 152
  start-page: 77
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0162
  article-title: Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.10.031
– volume: 5
  start-page: 105
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0108
  article-title: Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1002/cmmi.373
– volume: 132
  start-page: 552
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0021
  article-title: Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905793q
– volume: 12
  start-page: 2414
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0050
  article-title: Upconversion nanomaterials: synthesis, mechanism, and applications in sensing
  publication-title: Sensors
  doi: 10.3390/s120302414
– volume: 8
  start-page: 3523
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0160
  article-title: Hyperbranched conjugated polyelectrolyte for dual‐modality fluorescence and magnetic resonance cancer imaging
  publication-title: Small
  doi: 10.1002/smll.201201216
– volume: 3
  start-page: 318
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0048
  article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics
  publication-title: Theranostics
  doi: 10.7150/thno.5284
– volume: 8
  start-page: 320
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0036
  article-title: Recent developments in multimodality fluorescence imaging probes
  publication-title: Acta Pharmaceutica Sinica B
  doi: 10.1016/j.apsb.2018.03.010
– volume: 7
  start-page: 16257
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0077
  article-title: NaGdF:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05194
– volume: 129
  start-page: 5076
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0100
  article-title: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja068356j
– volume: 7
  start-page: 626
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0016
  article-title: In vivo near-infrared fluorescence imaging
  publication-title: Curr. Opin. Chem .Biol.
  doi: 10.1016/j.cbpa.2003.08.007
– volume: 18
  start-page: 1474
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0154
  article-title: Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc0701085
– volume: 4
  start-page: 1517
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0159
  article-title: Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging
  publication-title: Polym. Chem.
  doi: 10.1039/C2PY20837G
– volume: 4
  start-page: 129
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0049
  article-title: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials
  publication-title: Nanomaterials
  doi: 10.3390/nano4010129
– volume: 135
  start-page: 6494
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0080
  article-title: Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312225b
– volume: 9
  start-page: 2341
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0083
  article-title: Hydrophilic quantum dots functionalized with GD(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38772-8
– volume: 32
  start-page: 5187
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0137
  article-title: The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.069
– volume: 25
  start-page: 12015
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0063
  article-title: Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals
  publication-title: Langmuir
  doi: 10.1021/la903113u
– volume: 6
  start-page: 1459
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0152
  article-title: Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging
  publication-title: Nano Lett
  doi: 10.1021/nl060765q
– volume: 13
  start-page: 418
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0116
  article-title: The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells
  publication-title: Nat Mater
  doi: 10.1038/nmat3908
– year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0171
– volume: 307
  start-page: 538
  year: 2005
  ident: 10.1016/j.actbio.2020.03.047_bib0081
  article-title: Quantum dots for live cells, in vivo imaging, and diagnostics
  publication-title: Science
  doi: 10.1126/science.1104274
– volume: 17
  start-page: 865
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0086
  article-title: Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc0600463
– volume: 695
  start-page: 280
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0055
  article-title: Synthesis and characterization of Na(Gd0.5Lu0.5)F4Nd3+, a core-shell free multifunctional contrast agent
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2016.10.202
– volume: 57
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0038
  article-title: Importance of DOTA derivatives in bimodal imaging
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201700024
– volume: 333
  start-page: 684
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0110
  article-title: Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.01.062
– volume: 32
  start-page: 1148
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0057
  article-title: Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NayF4 nanophosphors for multimodality PET/MR/UCL imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.09.071
– volume: 41
  start-page: 2590
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0173
  article-title: Mesoporous silica nanoparticles in biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15246g
– volume: 10
  start-page: 5642
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0111
  article-title: Two-photon graphene quantum dot modified Gd2O3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent
  publication-title: Nanoscale
  doi: 10.1039/C7NR08068A
– year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0029
– volume: 43
  start-page: 8178
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0041
  article-title: Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00201F
– volume: 26
  start-page: 6367
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0082
  article-title: Magnetically engineered semiconductor quantum dots as multimodal imaging probes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402296
– volume: 52
  start-page: 647
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0121
  article-title: Synthesis and properties of multifunctional tetragonal eu:gdpo4 nanocubes for optical and magnetic resonance imaging applications
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3016996
– volume: 157
  start-page: 62
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0017
  article-title: Optical molecular imaging for tumor detection and image-guided surgery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.12.002
– volume: 10
  start-page: 361
  year: 1999
  ident: 10.1016/j.actbio.2020.03.047_bib0135
  article-title: Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc980086+
– volume: 2
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0164
  article-title: Bladder cancer photodynamic therapeutic agent with off-on magnetic resonance imaging enhancement
  publication-title: Adv. Therap.
  doi: 10.1002/adtp.201900068
– volume: 135
  start-page: 1839
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0045
  article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy
  publication-title: Analyst
  doi: 10.1039/c0an00144a
– volume: 114
  start-page: 5161
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0046
  article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics
  publication-title: Chem. Rev.
  doi: 10.1021/cr400425h
– volume: 35
  start-page: 6075
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0061
  article-title: One-step synthesis and polyacrylic acid functionalization of multifunctional europium-doped nagdf4 nanoparticles with selected size for optical and MRI imaging
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201402690
– volume: 2
  start-page: 5891
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0096
  article-title: A general top-down approach to synthesize rare earth doped-Gd2O3 nanocrystals as dual modal contrast agents
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00695J
– volume: 33
  start-page: 17
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0012
  article-title: Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis
  publication-title: J. Biomed. Sci.
  doi: 10.1186/s12929-017-0323-2
– volume: 21
  start-page: 4285
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0053
  article-title: Positive and negative lattice shielding effects co-existing in gd (III) ion doped bifunctional upconversion nanoprobes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101663
– volume: 35
  start-page: 512
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0026
  article-title: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b510982p
– volume: 122
  start-page: 11557
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0075
  article-title: Validation of inner, second, and outer sphere contributions to T1 and T2 relaxation in Gd3+-based nanoparticles using Eu3+ lifetime decay as a probe
  publication-title: J. Phys. Chem C
  doi: 10.1021/acs.jpcc.8b02807
– volume: 5
  start-page: 2786
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0170
  article-title: Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302030a
– volume: 20
  start-page: 499
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0039
  article-title: Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probe
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201800450
– volume: 53
  start-page: 10500
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0084
  article-title: High magnetic relaxivity in a fluorescent CDSE/CDS/ZNS quantum dot functionalized with MRI contrast molecules
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05537D
– volume: 18
  start-page: 2335
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0071
  article-title: Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201102599
– volume: 19
  start-page: 6267
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0024
  article-title: Nanostructured T1 MRI contrast agents
  publication-title: J. Mater. Chem.
  doi: 10.1039/b902685a
– volume: 99
  start-page: 2293
  year: 1999
  ident: 10.1016/j.actbio.2020.03.047_bib0025
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr980440x
– volume: 19
  start-page: 118
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0146
  article-title: Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc7001715
– volume: 165
  start-page: 161
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0062
  article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.12.048
– volume: 19
  start-page: 3745
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0018
  article-title: Optical image-guided cancer surgery: challenges and limitations
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-3598
– volume: 51
  start-page: 235
  year: 1996
  ident: 10.1016/j.actbio.2020.03.047_bib0006
  article-title: Contrast-enhanced MR imaging
  publication-title: Clin. Radiol.
  doi: 10.1016/S0009-9260(96)80339-4
– volume: 17
  start-page: 1189
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0106
  article-title: Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04380D
– volume: 25
  start-page: 866
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0153
  article-title: A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20852
– volume: 20
  start-page: 5888
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0141
  article-title: Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications
  publication-title: Chem. Mater.
  doi: 10.1021/cm8006183
– volume: 29
  start-page: 3938
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0120
  article-title: Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core-shell nanoprobes for in vivo imaging
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00087
– volume: 41
  start-page: 2673
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0128
  article-title: Silica-based nanoprobes for biomedical imaging and theranostic applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15229k
– volume: 15
  start-page: 799
  year: 2004
  ident: 10.1016/j.actbio.2020.03.047_bib0147
  article-title: A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc049949r
– volume: 63
  start-page: 8122
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0022
  article-title: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation
  publication-title: Cancer Res.
– volume: 38
  start-page: 305
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0094
  article-title: Small particulate gadolinium oxide and gadolinium albumin microspheres as multimodal contrast and therapeutic agents
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000067487.84243.91
– volume: 33
  start-page: 5394
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0068
  article-title: Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-TO-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.025
– volume: 10
  start-page: 1420
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0168
  article-title: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09342-3
– volume: 8
  start-page: 10266
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0033
  article-title: In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced mri and near-infrared fluorescence
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03344
– volume: 21
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0078
  article-title: Seed-mediated synthesis of NayF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/12/125602
– volume: 8
  start-page: 10491
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0040
  article-title: The evolution of gadolinium based contrast agents: from single-modality to multi-modality
  publication-title: Nanoscale
  doi: 10.1039/C6NR00267F
– volume: 115
  start-page: 90
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0066
  article-title: Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.11.024
– volume: 5
  start-page: 2122
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0139
  article-title: Gd3+-functionalized gold nanoclusters for fluorescence-magnetic resonance bimodal imaging
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00608J
– volume: 50
  start-page: 2157
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0148
  article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis
  publication-title: J. Lipid Res
  doi: 10.1194/jlr.M800405-JLR200
– volume: 111
  start-page: E5492
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0166
  article-title: In vivo selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1414499111
– volume: 172
  start-page: 224
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0103
  article-title: Biocompatible sphere, square prism and hexagonal rod Gd2O3:Eu3+@SiO2 nanoparticles: the effect of morphology on multi-modal imaging
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2018.08.043
– volume: 23
  start-page: 2439
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0099
  article-title: Single-phase DYO:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging
  publication-title: Chem. Mater.
  doi: 10.1021/cm2003066
– volume: 30
  start-page: 13005
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0107
  article-title: Sub-10nm monoclinic gdo:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging
  publication-title: Langmuir
  doi: 10.1021/la503228v
– volume: 2
  start-page: 1600
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0161
  article-title: Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201300135
– volume: 3
  start-page: 2003
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0079
  article-title: Monodisperse NaYbF: TM3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties
  publication-title: Nanoscale
  doi: 10.1039/c0nr01018a
– volume: 44
  start-page: 4494
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0032
  article-title: Optical imaging probes for biomolecules: an introductory perspective
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00070J
– volume: 16
  start-page: 995
  year: 2005
  ident: 10.1016/j.actbio.2020.03.047_bib0143
  article-title: Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc050085z
– volume: 48
  start-page: 18N
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0001
  article-title: A definition of molecular imaging
  publication-title: J. Nucl. Med.
– volume: 7
  start-page: 658
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0109
  article-title: AS1411 aptamer-conjugated GDO:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0420-4
– volume: 6
  start-page: 1
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0085
  article-title: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe
  publication-title: Nano Lett.
  doi: 10.1021/nl051935m
– volume: 8
  start-page: 33539
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0125
  article-title: Fluorescence-magnetism functional eus nanocrystals with controllable morphologies for dual bioimaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13831
– volume: 22
  start-page: 133
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0014
  article-title: Overview of functional magnetic resonance imaging
  publication-title: Neurosurg. Clin. N. Am.
  doi: 10.1016/j.nec.2010.11.001
– volume: VI
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0097
  article-title: Multimodal non-gadolinium oxide nanoparticles for mri and fluorescence labelling
  publication-title: Biophoton. Photon. Solut. Better Health Care
  doi: 10.1117/12.2306915
– volume: 40
  start-page: 340
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0165
  article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B915149B
– year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0009
  article-title: Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging
  publication-title: Contrast Med. Mole Imaging
  doi: 10.1155/2019/1845637
– volume: 119
  start-page: 3754
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0131
  article-title: Hybrid silica nanoparticles for multimodal imaging
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.200604738
– volume: 10
  start-page: 1556
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0142
  article-title: Multifunctional PHPMA-derived polymer for ratiometric pH sensing, fluorescence imaging, and magnetic resonance imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15796
– volume: 112
  start-page: 4
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0015
  article-title: Principles and practice of functional mri of the human brain
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200319010
– volume: 10
  start-page: 1727
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0042
  article-title: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents
  publication-title: Int. J. Nanomed.
– volume: 9
  start-page: 4620
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0112
  article-title: AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging
  publication-title: Nanoscale
  doi: 10.1039/C7NR01064H
– volume: 30
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0169
  article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials
  publication-title: Adv Mater
  doi: 10.1002/adma.201704307
– volume: 19
  start-page: 10131
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0114
  article-title: ZnGaO:Cr3+: a new red long-lasting phosphor with high brightness
  publication-title: Opt. Exp.
  doi: 10.1364/OE.19.010131
– volume: 33
  start-page: 1079
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0072
  article-title: Multifunctional nanoprobes for upconversion fluorescence, mr and ct trimodal imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.039
– volume: 24
  start-page: 1297
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0074
  article-title: Cation exchange: a facile method to make nayf4:yb,tm-nagdf4 core–shell nanoparticles with a thin, tunable, and uniform shell
  publication-title: Chem. Mater.
  doi: 10.1021/cm2036844
– volume: 18
  start-page: 829
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0144
  article-title: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle
  publication-title: Nat. Med.
  doi: 10.1038/nm.2721
– volume: 6
  start-page: 253
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0005
  article-title: Editorial: the chemistry of imaging probes
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00253
– volume: 7
  start-page: 93
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0087
  article-title: Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots
  publication-title: Nano Lett.
  doi: 10.1021/nl062226r
– volume: 33
  start-page: 349
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0011
  article-title: Review of functional/ anatomic imaging in oncology
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/MNM.0b013e32834ec8a5
– volume: 115
  start-page: 20141
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0064
  article-title: Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2064529
– volume: 1
  start-page: 186
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0155
  article-title: Gadolinium and platinum in tandem: real-time multi-modal monitoring of drug delivery by MRI and fluorescence imaging
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.18619
– volume: 23
  start-page: 3714
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0059
  article-title: Size-tunable, ultrasmall NAGDF nanoparticles: insights into their T1 MRI contrast enhancement
  publication-title: Chem. Mater.
  doi: 10.1021/cm201297x
– volume: 31
  start-page: 3287
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0058
  article-title: Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.01.040
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0052
  article-title: Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers
  publication-title: Nat. Commun.
– volume: 107
  start-page: 4311
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0157
  article-title: Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0910283107
– volume: 29
  start-page: 3411
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0124
  article-title: Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous eu:gdf3 nanoparticles for biomedical applications
  publication-title: Langmuir
  doi: 10.1021/la4001076
– volume: 3
  start-page: 233
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0140
  article-title: Incorporation of an apoE-derived lipopeptide in high-density lipoprotein mri contrast agents for enhanced imaging of macrophages in atherosclerosis
  publication-title: Contrast Media Mol. Imaging
  doi: 10.1002/cmmi.257
– volume: 5
  start-page: 4389
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0091
  article-title: Gadolinium-based cuins2/zns nanoprobe for dual-modality magnetic resonance/optical imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401428n
– volume: 15
  start-page: 4604
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0123
  article-title: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media
  publication-title: Chem. Mater
  doi: 10.1021/cm034495d
– volume: 56
  start-page: 601
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0149
  article-title: MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor
  publication-title: Magn. Reason. Med.
  doi: 10.1002/mrm.20995
– volume: 19
  start-page: 12658
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0102
  article-title: Highly water-dispersible surface-modified Gd2O3 nanoparticles for potential dual-modal bioimaging
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201301687
– volume: 24
  start-page: 3511
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0035
  article-title: ‘Two is better than one’ probes for dual-modality molecular imaging
  publication-title: Chem. Commun.
  doi: 10.1039/b821903f
– volume: 3
  start-page: 552
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0007
  article-title: Gd(III) chelates for MRI contrast agents: from high relaxivity to “ smart ”
  publication-title: Med. Chem. Commun.
  doi: 10.1039/c2md00279e
– volume: 9
  start-page: 23450
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0090
  article-title: CuInS2/ZnS quantum dots conjugating GD(iii) chelates for near-infrared fluorescence and magnetic resonance bimodal imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05867
– volume: 13
  start-page: 554
  year: 2002
  ident: 10.1016/j.actbio.2020.03.047_bib0020
  article-title: Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc015555d
– volume: 7
  start-page: 1581
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0089
  article-title: Color-tunable Gd-Zn-Cu-In-S/ZNS quantum dots for dual modality magnetic resonance and fluorescence imaging
  publication-title: Nano Res
  doi: 10.1007/s12274-014-0518-8
– volume: 1
  start-page: 2898
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0101
  article-title: Surface functionalized multifunctional Gd2O3-fluorescein composite nanorods for redox responsive drug delivery and imaging applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b00535
– volume: 8
  start-page: 87
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0044
  article-title: Dual-modality probes for in vivo molecular imaging
  publication-title: Mol. Imaging
  doi: 10.2310/7290.2009.00013
– volume: 86
  start-page: 11306
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0113
  article-title: Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging
  publication-title: Anal. Chem.
  doi: 10.1021/ac503026d
– volume: 139
  start-page: 4613
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0132
  article-title: Gd-Al co-doped mesoporous silica nanoparticles loaded with Ru(BPY)32+ as a dual-modality probe for fluorescence and magnetic resonance imaging
  publication-title: Analyst
  doi: 10.1039/C4AN00816B
– volume: 86
  start-page: 4096
  year: 2014
  ident: 10.1016/j.actbio.2020.03.047_bib0118
  article-title: Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo
  publication-title: Anal. Chem.
  doi: 10.1021/ac500644x
– volume: 45
  start-page: 5958
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0098
  article-title: GdO:Pr3+ nanospheres as bi-functional contrast agents for optical and magnetic resonance imaging properties
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.12.065
– volume: 7
  start-page: 40486
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0138
  article-title: High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones
  publication-title: Sci Reports
– volume: 19
  start-page: 651
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0134
  article-title: Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent
  publication-title: Bioconjugate Chem
  doi: 10.1021/bc7002742
– volume: 33
  start-page: 5865
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0126
  article-title: Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.04.059
– volume: 8
  start-page: 2517
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0129
  article-title: Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation
  publication-title: Nano Lett.
  doi: 10.1021/nl801596a
– volume: 41
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0037
  article-title: Nanoparticles in practice for molecular-imaging applications: an overview
  publication-title: Acta Biomat
  doi: 10.1016/j.actbio.2016.06.003
– volume: 1
  start-page: 382
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0156
  article-title: In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer
  publication-title: Integr. Biol.
  doi: 10.1039/b904890a
– volume: 141
  start-page: 6224
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0163
  article-title: Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13376
– volume: 3
  start-page: 3607
  year: 2017
  ident: 10.1016/j.actbio.2020.03.047_bib0127
  article-title: Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00498
– volume: 138
  start-page: 193
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0117
  article-title: Imaging and therapeutic applications of persistent luminescence nanomaterials
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.10.015
– year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0002
– volume: 22
  start-page: 9870
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0065
  article-title: Bi-functional naluf:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31196h
– volume: 16
  start-page: 2858
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0095
  article-title: d-glucuronic acid coated GD(IO3)3•2H2O nanomaterial as a potential T1 MRI-CT dual contrast agent
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201201481
– volume: 110
  start-page: 3146
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0019
  article-title: Multimodality imaging probes: design and challenges
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003538
– volume: 6
  start-page: 2488
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0115
  article-title: Chemically engineered persistent luminescence nanoprobes for bioimaging
  publication-title: Theranostics
  doi: 10.7150/thno.16589
– volume: 110
  start-page: 2921
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0158
  article-title: and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics
  publication-title: Chem. Rev.
  doi: 10.1021/cr900232t
– volume: 19
  start-page: 853
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0056
  article-title: Combined optical and MR bioimaging using rare earth ion doped NayF4 nanocrystals
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200800765
– volume: 151
  start-page: 474
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0172
  article-title: Nanoparticles for molecular imaging–an overview
  publication-title: Endocrinology
  doi: 10.1210/en.2009-1012
– volume: 65
  start-page: 557
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0023
  article-title: An introduction to functional and molecular imaging with MRI
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2010.04.006
– volume: 52
  start-page: 1128
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0067
  article-title: Breakdown of crystallographic site symmetry in lanthanide‐doped NayF4 crystals
  publication-title: Angew Chem Int Ed Engl
  doi: 10.1002/anie.201208218
– volume: 26
  start-page: 8959
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0104
  article-title: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging
  publication-title: Langmuir
  doi: 10.1021/la904751q
– volume: 25
  start-page: 331
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0119
  article-title: Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401612
– volume: 119
  start-page: 957
  year: 2019
  ident: 10.1016/j.actbio.2020.03.047_bib0010
  article-title: Chemistry of mri contrast agents: current challenges and new frontiers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00363
– volume: 23
  start-page: 298
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0054
  article-title: Gd3+-ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201469
– volume: 34
  start-page: 749
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0151
  article-title: Synergistically enhance magnetic resonance/fluorescence imaging performance of responsive polymeric nanoparticles under mildly acidic biological milieu
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201200613
– volume: 3
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0047
  article-title: Current advance in lanthanide-doped upconversion nanostructures for detection and bioapplication
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600029
– volume: 17
  start-page: 545
  year: 2003
  ident: 10.1016/j.actbio.2020.03.047_bib0003
  article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light
  publication-title: Genes. Dev.
  doi: 10.1101/gad.1047403
– volume: 7
  start-page: 18759
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0092
  article-title: Facile synthesis of GD-CU-IN-S/ZNS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05372
– start-page: 173
  issue: 57
  year: 2005
  ident: 10.1016/j.actbio.2020.03.047_bib0027
  article-title: Gd(III)-based contrast agents for MRI
  publication-title: Adv. Inorg. Chem.
  doi: 10.1016/S0898-8838(05)57004-1
– volume: 21
  start-page: 4467
  year: 2009
  ident: 10.1016/j.actbio.2020.03.047_bib0073
  article-title: Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901356
– volume: 39
  start-page: 7363
  year: 2015
  ident: 10.1016/j.actbio.2020.03.047_bib0133
  article-title: Fluorescein isothiocyanate embedded silica spheres in gadolinium carbonate shells as novel magnetic resonance imaging and fluorescence bi-modal contrast agents
  publication-title: New J. Chem.
  doi: 10.1039/C5NJ00537J
– volume: 51
  start-page: 1437
  year: 2012
  ident: 10.1016/j.actbio.2020.03.047_bib0069
  article-title: A high-performance ytterbium based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201106686
– volume: 4
  start-page: 3489
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0145
  article-title: MAGfect: a novel liposome formulation for mri labelling and visualization of cells
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b605394g
– volume: 2
  start-page: 975
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0043
  article-title: Applications of molecular mri and optical imaging in cancer
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.10.25
– volume: 44
  start-page: 5764
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0088
  article-title: Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging
  publication-title: Chem. Commun.
  doi: 10.1039/b812302k
– volume: 12
  start-page: 1285
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0093
  article-title: Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-010-9848-y
– volume: 7
  start-page: 663
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0051
  article-title: Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200052
– year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0031
  article-title: Recent advances in understanding magnetic nanoparticles in ac magnetic fields and optimal design for targeted hyperthermia
  publication-title: J. Nanomater.
  doi: 10.1155/2013/752973
– volume: 12
  start-page: 1553
  year: 2016
  ident: 10.1016/j.actbio.2020.03.047_bib0004
  article-title: Nanoparticulate contrast agents for multimodality molecular imaging
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2016.2258
– volume: 8
  start-page: 6210
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0034
  article-title: PET-MR and SPECT-MR multimodality probes: development and challenges
  publication-title: Theranostics
  doi: 10.7150/thno.26610
– volume: 312
  start-page: 105
  year: 2006
  ident: 10.1016/j.actbio.2020.03.047_bib0136
  article-title: Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2006.01.002
– volume: 58
  start-page: 1164
  year: 2007
  ident: 10.1016/j.actbio.2020.03.047_bib0150
  article-title: Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles
  publication-title: Magn. Reason. Med.
  doi: 10.1002/mrm.21315
– volume: 22
  start-page: 2729
  year: 2010
  ident: 10.1016/j.actbio.2020.03.047_bib0030
  article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
  publication-title: Adv Mater
  doi: 10.1002/adma.201000260
– volume: 6
  start-page: 10463
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0070
  article-title: Controllable fabrication of rare-earth-doped Gd2O2SO4@SiO2 double-shell hollow spheres for efficient upconversion luminescence and magnetic resonance imaging
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01828
– volume: 29
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0105
  article-title: Effect of EU doping concentration on fluorescence and magnetic resonance imaging properties of Gd2O3:Eu3+ nanoparticles used as dual-modal contrast agent
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aad347
– volume: 10
  start-page: 685
  year: 2018
  ident: 10.1016/j.actbio.2020.03.047_bib0167
  article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect
  publication-title: NPG Asia Materials
  doi: 10.1038/s41427-018-0065-y
– volume: 37
  start-page: 1301
  year: 2013
  ident: 10.1016/j.actbio.2020.03.047_bib0013
  article-title: MR spectroscopic imaging: principles and recent advances
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23945
– volume: 19
  start-page: 2471
  year: 2008
  ident: 10.1016/j.actbio.2020.03.047_bib0130
  article-title: Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging
  publication-title: Bioconjuge Chem
  doi: 10.1021/bc800368x
– volume: 50
  start-page: 10608
  year: 2011
  ident: 10.1016/j.actbio.2020.03.047_bib0122
  article-title: Mutifuntional GDPO:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties
  publication-title: Inorg Chem.
  doi: 10.1021/ic200867a
SSID ssj0038128
Score 2.490053
SecondaryResourceType review_article
Snippet Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment...
Gd -based contrast agents have been extensively used for signal enhancement of T -weighted magnetic resonance imaging (MRI) due to the large magnetic moment...
SourceID swepub
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Bimodality imaging probe
Biocompatibility
Conjugation
Contrast agent
Contrast agents
Contrast Media
Diagnostic systems
Diethylenetriamine pentaacetic acid
Electron spin
Gadolinium
Liposomes
Magnetic moments
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Medical imaging
Micelles
MRI
Nanomaterials
Nanoparticles
Optical Imaging
Plasma proteins
Polymers
Probes
Relaxation time
Sensitivity
Spatial discrimination
Spatial resolution
Title Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging
URI https://dx.doi.org/10.1016/j.actbio.2020.03.047
https://www.ncbi.nlm.nih.gov/pubmed/32335310
https://www.proquest.com/docview/2440936818
https://www.proquest.com/docview/2395258498
http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHRHkutFWQEDez3thxkmNVURYQvbCIcrJie0IDbLai2Su_vTPOQxSQKnHLYyx5x5OZz96ZbwBeyIX3qBcoFsFzSQ5WonJBiqzWhQ91pk08h_xwapaf9Luz7GwHjsdaGE6rHHx_79Ojtx6ezAdtzi-aZv6RsHSac4RmVF8UzAmqdc5W_urXlOZBASn2V2VhwdJj-VzM8ap85xouAUxlpDrlJiv_Dk9_w88_uEVjPDq5B3cHIJkc9XPdgx1s78Od3-gFH8CXN8zX1LTNdi04WoXE0coEGsVtZPAy6TYJtue87slqIT7HU1KSWldfW65tTGgrvmFCDqStdTzzTpp17Gr0EFYnr1fHSzG0UhBel7oTNSqJLmPXJ9GYOuS1LwKmps7QhWCcIygQyrzyKJ3HWstKe-MrJwMzwqlHsNtuWnwCic90SrAszUOgvaGrS505I3OHBZYGvZqBGhVo_UAzzt0uftgxn-yb7dVuWe1WKktqn4GYRl30NBs3yOfj2thr5mIpEtwwcn9cSjt8rpeWMI4slSHwMoPn02v60Pjfk6rFzZZkFP1qgmslyTzuTWCaqkqVImcmZ_Cyt4npDbN3D4--0xVaowkgm6f_Pf9ncJvv-ozhfdjtfm7xgHBR5w6j4R_CraO375enVyEmDrI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFe9uKRAk4GbWGztOcuCAgLKljwuLKCcrtic0hc1WbFaICz-KX8iM8xAvqRJSb1FsR97xeOazd-Ybxh6JiXOgJsAn3lFKDhS8sF7wpFSZ82WidLiHPDzS03fqzXFyvMZ-9LkwFFbZ2f7Wpgdr3b0Zd9Icn1XV-C1i6TglD02oPstUF1m5D9--4rlt-WzvJS7y4zjefTV7MeVdaQHuVK4aXoIUYBMyBQK0Ln1ausxDrMsErPfaWnSNPk8LB8I6KJUolNOusMITQ5rEz15ilxVaC6qa8PT7EFaCDjDUc6XJcZpdn64XYsoK19iKUg5jEahVqajLv93h33D3Dy7T4P92r7HNDrhGz1vZXGdrUN9gG7_QGd5kH14TP1RVV6s5J-_oI4ua4HEUla2BZdQsIqhPSM-i2YS_D7ey2GtefKwplzLCo_-CCEAAj_Lhjj2q5qGK0i02uwj53mbr9aKGLRa5RMUIA-PUezyL2jJXidUitZBBrsHJEZO9AI3raM2pusZn08evnZpW7IbEboQ0KPYR48Oos5bW45z-ab825jf1NOh5zhm50y-l6czD0iCmErnUCJZG7OHQjBub_q0palissI_EX43wMMc-d1oVGKYqYynReIoRe9LqxNBCbOHdq0_4BEYrBOR6-7_n_4Bdmc4OD8zB3tH-XXaVWtpo5R223nxZwT3EZI29HzZBxMwFb7qfCQtMwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gadolinium-based+bimodal+probes+to+enhance+T1-Weighted+magnetic+resonance%2Foptical+imaging&rft.jtitle=Acta+biomaterialia&rft.au=Yang%2C+Chang-Tong&rft.au=Hattiholi%2C+Aishwarya&rft.au=Selvan%2C+Subramanian+Tamil&rft.au=Yan%2C+Sean+Xuexian&rft.date=2020-07-01&rft.issn=1742-7061&rft.volume=110&rft.spage=15&rft.epage=36&rft_id=info:doi/10.1016%2Fj.actbio.2020.03.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2020_03_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon