Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are...
Saved in:
Published in | ACTA BIOMATERIALIA Vol. 110; pp. 15 - 36 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article Publication |
Language | English |
Published |
England
Elsevier Ltd
01.07.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review.
The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
[Display omitted] |
---|---|
AbstractList | Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work. [Display omitted] Gd -based contrast agents have been extensively used for signal enhancement of T -weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd ion. The key requisites for the development of Gd -based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work. Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work. |
Author | Selvan, Subramanian Tamil He, Tao Yang, Chang-Tong Herold, Christian J. Hattiholi, Aishwarya Ng, David Chee Eng Padmanabhan, Parasuraman Gulyás, Balázs Fang, Wei-Wei Chandrasekharan, Prashant Koteswaraiah, Podili Aw, Swee Eng Yan, Sean Xuexian |
Author_xml | – sequence: 1 givenname: Chang-Tong orcidid: 0000-0003-3475-7944 surname: Yang fullname: Yang, Chang-Tong email: yang.changtong@sgh.com.sg organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore – sequence: 2 givenname: Aishwarya surname: Hattiholi fullname: Hattiholi, Aishwarya organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore – sequence: 3 givenname: Subramanian Tamil orcidid: 0000-0002-1524-2374 surname: Selvan fullname: Selvan, Subramanian Tamil organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore – sequence: 4 givenname: Sean Xuexian surname: Yan fullname: Yan, Sean Xuexian organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore – sequence: 5 givenname: Wei-Wei surname: Fang fullname: Fang, Wei-Wei organization: School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China – sequence: 6 givenname: Prashant surname: Chandrasekharan fullname: Chandrasekharan, Prashant organization: Department of Bioengineering, University of California, Berkeley, CA-94720, USA – sequence: 7 givenname: Podili surname: Koteswaraiah fullname: Koteswaraiah, Podili organization: School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India – sequence: 8 givenname: Christian J. surname: Herold fullname: Herold, Christian J. organization: Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria – sequence: 9 givenname: Balázs surname: Gulyás fullname: Gulyás, Balázs organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore – sequence: 10 givenname: Swee Eng surname: Aw fullname: Aw, Swee Eng organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore – sequence: 11 givenname: Tao surname: He fullname: He, Tao organization: School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China – sequence: 12 givenname: David Chee Eng surname: Ng fullname: Ng, David Chee Eng organization: Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore – sequence: 13 givenname: Parasuraman surname: Padmanabhan fullname: Padmanabhan, Parasuraman organization: Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32335310$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
BookMark | eNqFkcuL1TAUxoOMOA_9D0QKbty0k1fT1IUgg47CgJsL4irkcXon1za5Jq3if29K77iYha7yOL_vS875LtFZiAEQeklwQzAR14dG29n42FBMcYNZg3n3BF0Q2cm6a4U8K_uO07rDgpyjy5wPGDNJqHyGzhllrGUEX6Bvt9rF0Qe_TLXRGVxl_BSdHqtjigZyNccKwr0OFqodqb-C39_PhZr0PsDsbZUgx7CWr-OxnIvQl5oP--fo6aDHDC9O6xXaffywu_lU3325_Xzz_q62vOdzPQDDYFrZCYpBiMF1g5UOqBhaMM4JY7Ckru-0BWwsDBxrboXVBru-5ZJdoXqzzb_guBh1TOX99FtF7dXp6nvZgRK8LWMp_JuNL_39WCDPavLZwjjqAHHJirK-pa3k_Wr9-hF6iEsKpRlFOcc9E5Ks1KsTtZgJ3N8PPMy4AG83wKaYc4JBWT_r2ccwJ-1HRbBaA1UHtQWq1kAVZqoEWsT8kfjB_z-yd5sMyuR_ekgqWw8lJecT2Fm56P9t8AfklL1L |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00401 crossref_primary_10_1186_s12951_023_01820_7 crossref_primary_10_3390_molecules27010174 crossref_primary_10_3390_nano12040582 crossref_primary_10_2147_IJN_S339257 crossref_primary_10_1039_D0TB02740E crossref_primary_10_1186_s12951_025_03107_5 crossref_primary_10_1002_adhm_202102060 crossref_primary_10_1016_j_heliyon_2024_e24792 crossref_primary_10_1016_j_cej_2022_135801 crossref_primary_10_1021_acs_biomac_3c01413 crossref_primary_10_1016_j_ccr_2020_213659 crossref_primary_10_1016_j_cej_2022_137889 crossref_primary_10_1007_s00723_020_01254_6 crossref_primary_10_3390_bios12080558 crossref_primary_10_1016_j_procbio_2021_08_027 crossref_primary_10_1016_j_jddst_2024_106322 crossref_primary_10_1016_j_jconrel_2024_07_072 crossref_primary_10_1016_j_sna_2024_115828 crossref_primary_10_1016_j_mtla_2022_101494 crossref_primary_10_1002_smtd_202200718 crossref_primary_10_1016_j_bioorg_2022_106161 crossref_primary_10_1021_acs_molpharmaceut_3c00582 crossref_primary_10_1002_smll_202310876 crossref_primary_10_1088_1748_605X_ad3f61 crossref_primary_10_3389_fonc_2021_812472 crossref_primary_10_1021_acs_molpharmaceut_3c01250 crossref_primary_10_3390_molecules28093798 crossref_primary_10_1016_j_ultrasmedbio_2025_02_015 crossref_primary_10_3390_ijms25158097 crossref_primary_10_3390_ijms22126229 crossref_primary_10_1016_j_mtcomm_2024_109751 crossref_primary_10_1021_acsanm_0c02521 crossref_primary_10_1038_s42003_024_06043_6 crossref_primary_10_1021_acs_biomac_4c00548 crossref_primary_10_1002_tcr_202200253 crossref_primary_10_1002_adtp_202400054 |
Cites_doi | 10.1039/C6RA07782J 10.1002/jbm.a.32650 10.1021/nn4030898 10.1002/adma.201202433 10.1016/j.biomaterials.2017.10.031 10.1002/cmmi.373 10.1021/ja905793q 10.3390/s120302414 10.1002/smll.201201216 10.7150/thno.5284 10.1016/j.apsb.2018.03.010 10.1021/acsami.5b05194 10.1021/ja068356j 10.1016/j.cbpa.2003.08.007 10.1021/bc0701085 10.1039/C2PY20837G 10.3390/nano4010129 10.1021/ja312225b 10.1038/s41598-019-38772-8 10.1016/j.biomaterials.2011.03.069 10.1021/la903113u 10.1021/nl060765q 10.1038/nmat3908 10.1126/science.1104274 10.1021/bc0600463 10.1016/j.jallcom.2016.10.202 10.1002/ijch.201700024 10.1016/j.jcis.2009.01.062 10.1016/j.biomaterials.2010.09.071 10.1039/c1cs15246g 10.1039/C7NR08068A 10.1039/C4CS00201F 10.1002/adma.201402296 10.1021/ic3016996 10.1016/j.biomaterials.2017.12.002 10.1021/bc980086+ 10.1002/adtp.201900068 10.1039/c0an00144a 10.1021/cr400425h 10.1002/ejic.201402690 10.1039/C4TB00695J 10.1186/s12929-017-0323-2 10.1002/adfm.201101663 10.1039/b510982p 10.1021/acs.jpcc.8b02807 10.1021/am302030a 10.1002/cbic.201800450 10.1039/C7CC05537D 10.1002/chem.201102599 10.1039/b902685a 10.1021/cr980440x 10.1021/bc7001715 10.1016/j.talanta.2016.12.048 10.1158/1078-0432.CCR-12-3598 10.1016/S0009-9260(96)80339-4 10.1039/C4CP04380D 10.1002/jmri.20852 10.1021/cm8006183 10.1021/acs.chemmater.7b00087 10.1039/c2cs15229k 10.1021/bc049949r 10.1097/01.rli.0000067487.84243.91 10.1016/j.biomaterials.2012.04.025 10.1038/s41467-019-09342-3 10.1021/acsami.6b03344 10.1088/0957-4484/21/12/125602 10.1039/C6NR00267F 10.1016/j.biomaterials.2016.11.024 10.1039/C7BM00608J 10.1194/jlr.M800405-JLR200 10.1073/pnas.1414499111 10.1016/j.colsurfb.2018.08.043 10.1021/cm2003066 10.1021/la503228v 10.1002/adhm.201300135 10.1039/c0nr01018a 10.1039/C5CS00070J 10.1021/bc050085z 10.1007/s12274-014-0420-4 10.1021/nl051935m 10.1021/acsami.6b13831 10.1016/j.nec.2010.11.001 10.1117/12.2306915 10.1039/B915149B 10.1155/2019/1845637 10.1002/ange.200604738 10.1021/acsami.7b15796 10.1172/JCI200319010 10.1039/C7NR01064H 10.1002/adma.201704307 10.1364/OE.19.010131 10.1016/j.biomaterials.2011.10.039 10.1021/cm2036844 10.1038/nm.2721 10.3389/fchem.2018.00253 10.1021/nl062226r 10.1097/MNM.0b013e32834ec8a5 10.1021/jp2064529 10.7150/ntno.18619 10.1021/cm201297x 10.1016/j.biomaterials.2010.01.040 10.1073/pnas.0910283107 10.1021/la4001076 10.1002/cmmi.257 10.1021/am401428n 10.1021/cm034495d 10.1002/mrm.20995 10.1002/chem.201301687 10.1039/b821903f 10.1039/c2md00279e 10.1021/acsami.7b05867 10.1021/bc015555d 10.1007/s12274-014-0518-8 10.1021/acsanm.8b00535 10.2310/7290.2009.00013 10.1021/ac503026d 10.1039/C4AN00816B 10.1021/ac500644x 10.1016/j.ceramint.2018.12.065 10.1021/bc7002742 10.1016/j.biomaterials.2012.04.059 10.1021/nl801596a 10.1016/j.actbio.2016.06.003 10.1039/b904890a 10.1021/jacs.8b13376 10.1021/acsbiomaterials.7b00498 10.1016/j.addr.2018.10.015 10.1039/c2jm31196h 10.1002/ejic.201201481 10.1021/cr9003538 10.7150/thno.16589 10.1021/cr900232t 10.1002/adfm.200800765 10.1210/en.2009-1012 10.1016/j.crad.2010.04.006 10.1002/anie.201208218 10.1021/la904751q 10.1002/adfm.201401612 10.1021/acs.chemrev.8b00363 10.1002/adfm.201201469 10.1002/marc.201200613 10.1002/advs.201600029 10.1101/gad.1047403 10.1021/acsami.5b05372 10.1016/S0898-8838(05)57004-1 10.1002/adma.200901356 10.1039/C5NJ00537J 10.1002/anie.201106686 10.1039/b605394g 10.4155/fmc.10.25 10.1039/b812302k 10.1007/s11051-010-9848-y 10.1002/lpor.201200052 10.1155/2013/752973 10.1166/jbn.2016.2258 10.7150/thno.26610 10.1016/j.ijpharm.2006.01.002 10.1002/mrm.21315 10.1002/adma.201000260 10.1021/acssuschemeng.8b01828 10.1088/1361-6528/aad347 10.1038/s41427-018-0065-y 10.1002/jmri.23945 10.1021/bc800368x 10.1021/ic200867a |
ContentType | Journal Article Publication |
Copyright | 2020 Acta Materialia Inc. Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jul 2020 |
Copyright_xml | – notice: 2020 Acta Materialia Inc. – notice: Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jul 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTPV BZJLE |
DOI | 10.1016/j.actbio.2020.03.047 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic SwePub SwePub Other |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 36 |
ExternalDocumentID | oai_swepub_ki_se_645756 32335310 10_1016_j_actbio_2020_03_047 S1742706120301884 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD RIG SEW SSH CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTPV BZJLE |
ID | FETCH-LOGICAL-c494t-fe30eb587620e66fd7fc8de26f5ebdd6bb082d97ace0bcef40a4c6cab0d95483 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Mon Aug 25 03:40:46 EDT 2025 Fri Jul 11 07:02:50 EDT 2025 Wed Aug 13 04:27:10 EDT 2025 Wed Feb 19 02:29:40 EST 2025 Thu Apr 24 22:59:14 EDT 2025 Tue Jul 01 01:17:27 EDT 2025 Fri Feb 23 02:40:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optical imaging Nanomaterials Bimodality imaging probe MRI Contrast agent |
Language | English |
License | Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-fe30eb587620e66fd7fc8de26f5ebdd6bb082d97ace0bcef40a4c6cab0d95483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3475-7944 0000-0002-1524-2374 |
PMID | 32335310 |
PQID | 2440936818 |
PQPubID | 2045286 |
PageCount | 22 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_645756 proquest_miscellaneous_2395258498 proquest_journals_2440936818 pubmed_primary_32335310 crossref_citationtrail_10_1016_j_actbio_2020_03_047 crossref_primary_10_1016_j_actbio_2020_03_047 elsevier_sciencedirect_doi_10_1016_j_actbio_2020_03_047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | ACTA BIOMATERIALIA |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | McAdams, Lewis, McNaughter, Lewis, Haigh, O'Brien, Tuna (bib0084) 2017; 53 Prinzen, Miserus, Dirksen, Hackeng, Deckers, Bitsch, Megens, Douma, Heemskerk, Kooi, Frederik, Slaaf, van Zandvoot, Reutelingsperger (bib0087) 2007; 7 Chen, Li, Shi (bib0047) 2016; 3 Schima, Mukerjee, Saini (bib0006) 1996; 51 Johnson, Oakden, Stanisz, Prosser, van Veggel (bib0059) 2011; 23 Tsotsalas, Busby, Gianolio, Aime, Cola (bib0141) 2008; 20 Penet, Mikhaylova, Li, Krishnamachary, Glunde, Pathak, Bhujwalla (bib0043) 2010; 2 Shu, Ma, Zhang, Corwin, Sim, Zhang, Dorn, Gibson, Fatouros, Wang, Fang (bib0134) 2008; 19 Mankoff (bib0001) 2007; 48 Jennings, Long (bib0035) 2009; 24 Tei, Baranyai (bib0005) 2018; 6 Markus (bib0002) 2013 Zeng, Xiao, Yang, Hao (bib0065) 2012; 22 Stefanakis, Ghanotakis (bib0093) 2010; 12 Liu, Tian, Luo, Yang, Xiao, Shao, Chen, Yang, Chen, Li (bib0107) 2014; 30 Li, Ding (bib0161) 2013; 2 Ladd, Hollister, Peng, Wei, Wu, Delecki, Snow, Toner, Kellar, Eck, Desai, Raymond, Kinter, Desser, Rubin (bib0135) 1999; 10 Guo, Li, Qian, Hu, Muhammad (bib0078) 2010; 21 Wang, Wang, Zhao, Li, Huang, Sumer, Gao (bib0017) 2017; 157 Mughabghab (bib0171) 2003 Wang, Banerjee, Liu, Chen, Liu (bib0045) 2010; 135 Louie (bib0019) 2010; 110 Rieter, Kim, Taylor, An, Lin, Tarrant, Lin (bib0131) 2007; 119 Zou, Gong, Shi, Jiao, Wong, Zhang, Wang, Su (bib0120) 2017; 29 Xia, Chen, Gao, Wu, Feng, Li (bib0068) 2012; 33 Chen, Chen, Yang, Liu, Luo, Yang, Chen, Li (bib0106) 2015; 17 Min, Li, Liu, Padmanabhan, Yeow, Xing (bib0049) 2014; 4 Ethirajan, Chen, Joshi, Pandey (bib0165) 2011; 40 Zhang, Lan, Chan, Law, Wong, Wong (bib0166) 2014; 111 Cheng, Ou, Huang, Chen, Chang, Yang (bib0091) 2013; 5 Lee, Lee, Kim, Kim, Choi, Kim, Kim, Song, Park, Moon, Hyeon (bib0021) 2009; 132 Xu, Zhan, Liu, Somesfalean, Qian (bib0051) 2013; 7 Das, Zhang, D'Silva, Padmanabhan, Heng, Loo, Selvan, Bhakoo, Yang Tan (bib0099) 2011; 23 Michalet, Pinaud, Bentolia, Tsay, Doose, Li, Sundaresan, Wu, Gambhir, Weiss (bib0081) 2005; 307 Liu, Gao, Zeng, Hou, Fang, Li, Qiao, Shen, Lei, Yang, Gao (bib0060) 2013; 7 Fan, Shen, Bu, Chen, Zhao, Zhang, Zhou, Peng, Xiao, Xing, Liu, Ni, He, Shi (bib0080) 2013; 135 Li, Barnes, Bosoy, Stoddart, Zink (bib0173) 2012; 41 Luo, Yang, Tian, Xiao, Liu, Chen, Zhang, Xu, Zhang, Yang, Chen, Li (bib0096) 2014; 2 Su, Agarwal, Pan, Qiao, Zhang, Shi, Kong, Day, Chen, Meldrum, Kodibagkar, Tian (bib0142) 2018; 10 Chen, Ohulchanskyy, Law, Hans, Prasad (bib0079) 2011; 3 Rodriguez-Liviano, Becerro, Alcántara, Grazú, de la Fuente, Ocaña (bib0121) 2013; 52 Zhang, Yin, You, Yang, Song, Huang (bib0122) 2011; 50 Kuo, Lai, Li, Wun, Chang, Chen, Yang, Chen (bib0109) 2014; 7 Chen, Bu, Zhang, Liu, Liu, Xing, Xiao, Zhou, Peng, Wang, Shi (bib0053) 2011; 21 Zhou, Yu, Sun, Zhang, Zhu, Wu, Wu, Li (bib0057) 2011; 32 Maldiney, Bessière, Seguin, Teston, Sharma, Viana, Bos, Dorenbos, Bessodes, Gourier, Scherman, Richard (bib0116) 2014; 13 Jung, Kim, Cho, Lee, Yang, Cho, Kim, Lee, Park (bib0126) 2012; 33 Park, Park, Yang, Moon, Oh (bib0103) 2018; 172 Olszewski, Kielbik, Kaszewski, Witkowski, Gajewski, Godlewski, Godlewski (bib0097) 2018; VI Liu, Lécuyer, Seguin, Mignet, Scherman, Viana, Richard (bib0117) 2019; 138 Lipinski, Amirbekian, Frias, Aguinaldo, Mani, Briley-Saebo, Fuster, Fallon, Fisher, Fayad (bib0149) 2006; 56 Yang, Chuang (bib0007) 2012; 3 Lee, Heo, Park, Chang, E. Bae, Chae, Kim, Park, Lee (bib0095) 2013; 16 Jin, Yoshioka, Fujii, Komai, Seki, Seiyama (bib0088) 2008; 44 Talanov, Regino, Kobayashi, Bernardo, Choyke, Brechbiel (bib0152) 2006; 6 Xia, Matham, Su, Padmanabhan, Gulyás (bib0004) 2016; 12 Glover (bib0014) 2011; 22 Yang, Guo, Gong, Zhang, Wang, Chen, Yang, Tu, Fang, Chang (bib0092) 2015; 7 Na, Hyeon (bib0024) 2009; 19 Debroyea, Parac-Vogt (bib0041) 2014; 43 Posse, Otazo, Dager, Alger (bib0013) 2013; 37 Koyama, Talanov, Bernardo, Hama, Regino, Brechbiel, Choyke, Kobayashi (bib0153) 2007; 25 Frangioni (bib0016) 2003; 7 Xu, Regino, Koyama, Hama, Gunn, Bernardo, Kobayashi, Choyke, Brechbiel (bib0154) 2007; 18 Stouwdam, Hebbink, Huskens, van Veggel (bib0123) 2003; 15 Zhang, Gao, Xu, Yin, He, Zhang (bib0132) 2014; 139 Gallagher (bib0023) 2010; 65 Le, Cui (bib0136) 2006; 312 Lyu, Cheong, Ai, Zhang, Li, Yang, Lin, Xing (bib0167) 2018; 10 Kircher, Zerda, Jokerst, Zavaleta, Kempen, Mittra, Pitter, Huang, Campos, Habte, Sinclair, Brennan, Mellinghoff, Holland, Gambhir (bib0144) 2012; 18 Mamiya (bib0031) 2013 Shi, Neoh, Kang, Shuter, Wang (bib0108) 2010; 5 Mulder, Strijkers, Griffioen, van Bloois, Molema, Storm, Koning, Nicolayet (bib0147) 2004; 15 Maldiney, Doan, Alloyeau, Bessodes, Scherman, Richard (bib0119) 2015; 25 Vivero-Escoto, Huxford-Phillips, Lin (bib0128) 2012; 41 Hu, Ahrén, Selegård, Skoglund, Söderlind, Engström, Zhang, Uvdal (bib0102) 2013; 19 Vuu, Xie, Mcdonald, Bernardo, Hunter, Zhang, Li, Bednarski, Guccione (bib0143) 2005; 16 Sun, Wang, Zhao, Jiang, Zhao, Wang, Sun, Yang, Lin (bib0125) 2016; 8 Merbach, Helm, Toth (bib0029) 2013 Sitharaman, Van Der Zande, Ananta, Shi, Veltien, Walboomers, Wilson, Mikos, Heerschap, Jansen (bib0028) 2010; 93 Deng, Xu, Yu, Fu, Liang (bib0039) 2019; 20 Zhao, Chen, Ma, Liu, Huang, Chen, Lou, Wang (bib0036) 2018; 8 Al-iedani, Lechner-Scott, Ribbons, Ramadan (bib0012) 2017; 33 Zhang, Liu, Peng, Li, Xu, Whittaker (bib0040) 2016; 8 Li, Harriss, Phinikaridou, Lacerda, Ramniceanu, Doan, Ho, Chan, Lo, Botnar, Lan, Richard, Law, Long, Wong (bib0155) 2017; 1 Liang, Xiao (bib0139) 2017; 5 Mishra, Kannan (bib0127) 2017; 3 Koole, van Schooneveld, Hilhorst, Castermans, Cormode, Strijkers, de Mello Donegá, Vanmaekelbergh, Griffioen, Nicolay, Fayad, Meijerink, Mulder (bib0130) 2008; 19 Kircher, Mahmood, King, Weissleder, Josephson (bib0022) 2003; 63 Aime, Botta, Terreno (bib0027) 2005 Guo, Yang, Wang, Sun, Liu, Zhang, Chang, Chen (bib0089) 2014; 7 Estelrich, Sánchez-Martín, Busquets (bib0042) 2015; 10 Kim, Bhuniya, Lee, Kim, Shin, Kim, Hong (bib0033) 2016; 8 Mimun, Ajithkumar, Rightsell, Langloss, Therien, Sardar (bib0055) 2017; 695 Hao, Xing, Xu, Hou, Gao, Sun (bib0030) 2010; 22 Xing, Bu, Zhang, Zheng, Li, Chen, He, Zhou, Peng, Hua, Shi (bib0072) 2012; 33 Chen, Qiu, Prsad, Chen (bib0046) 2014; 114 Park, Jang, Park, Chung, Yang, Moon (bib0098) 2019; 45 Park, Kim, Lee, Jeon, Na, Yu, Kim, Lee, Choi, Baik, Kim, Park, Park, Kim, Lee, Yoon, Song, Moon, Suh, Hyeon (bib0073) 2009; 21 Ren, Zeng, Hao (bib0064) 2011; 115 Zairov, Mustafina, Shamsutdinova, Nizameev, Moreira, Sudakova, Podyachev, Fattakhova, Safina, Lundstrom, Gubaidullin, Vomiero (bib0138) 2017; 7 Rodriguez-Liviano, Nuñez, Rivera-Fernández, de la Fuente, Ocaña (bib0124) 2013; 29 Yang, Padmanabhan, Gulyás (bib0008) 2016; 6 Gore (bib0015) 2003; 112 Nuñez, García, García-Sevillano, Rivera-Fernández, de la Fuente, Ocaña (bib0061) 2014; 35 Pereira, Pereira, Monteiro, Geraldes, Cabral Filho, Cesar, de Thomaz, Santos, Pereira, Fontes (bib0083) 2019; 9 Maiseyeu, Mihai, Kampfrath, Simonetti, Sen, Roy, Rajagopalan, Parthasarathy (bib0148) 2009; 50 Kumar, Nyk, Ohulchanskyy, Flask, Prasad (bib0056) 2009; 19 L.Villaraza, Bumb, Brechbiel, Macromolecules (bib0158) 2010; 110 Liu, Li, Geng, Zhou, Prashant, Yang, Liu (bib0159) 2013; 4 McDonald, Watkin (bib0094) 2003; 38 Bessière, Jacquart, Priolkar, Lecointre, Viana, Gourier (bib0114) 2011; 19 Li, Parigi, Luchinat, Meade (bib0163) 2019; 141 Ou, Mutelet, Martini, Bazzi, Roux, Ledoux, Tillement, Perriat (bib0110) 2009; 333 Pellico, Elis, Davis (bib0009) 2019 Lee, Chen (bib0044) 2009; 8 Yim, Yang, Jeon, Park, Kim, Lee, Bae, Na (bib0137) 2011; 32 Zhou, Sun, Du, Xiong, Hua, Li (bib0058) 2010; 31 Ding, Wang, Liu, Li, Pu, Hu, Ng, Tang, Liu (bib0160) 2012; 8 Padmanabhan, Kumar, Kumar, Chaudhary, Gulyás (bib0037) 2016; 41 Massoud, Gambhir (bib0003) 2003; 17 Zhou, Wang, Yao, Li, Wang, Zhang, Xu, Zeng, Zhao, Zhang (bib0052) 2015; 6 Park, Kim, Kim, Moon, Yoo, Lee, Lee, Choi, Park, Ling, Na, Moon, Choi, Park, Yoon, Suh, Lee, Hyeon (bib0076) 2012; 24 Chen, Vucic, Leupold, Mulder, Cormode, Briley-Saebo, Barazza, Fisher, Dathe, Fayad (bib0140) 2008; 3 Feng, Li, Claser, Balachander, Tan, Goh, Kwok, Rénia, Tang, Ng, Liu (bib0162) 2018; 152 Chen, Bu, Zhang, Liu, Fan, Zhou, Peng, Shi (bib0054) 2013; 23 Ma, Meng, Chen, Hu, Chen, Huang, Shang, Wang, Guo, Yang (bib0077) 2015; 7 Lécuyer, Teston, Ramirez-Garcia, Maldiney, Viana, Seguin, Mignet, Scherman, Richard (bib0115) 2016; 6 Keereweer, Van Driel, Snoeks, Kerrebijn, Baatenburg de Jong, Vahrmeijer, Sterenborg, Löwik (bib0018) 2013; 19 Huang, Chen, Xu (bib0062) 2017; 165 Liu, Bu, Zhang, Chen, Xing, Pan, Zhou, Peng, Shi (bib0071) 2012; 18 Minchin, Martin (bib0172) 2010; 151 Chen, Zhao (bib0050) 2012; 12 Hu, Liu, Zhang, Jin, Liu (bib0151) 2013; 34 Li, You, Dai, Shi, Han, Xu (bib0113) 2014; 86 Liu, Ai, Liu, Yuan, He, Lu (bib0069) 2012; 51 Histed, Lindenberg, Mena, Turkbey, Choyke, Kurdziel (bib0011) 2012; 33 Wang, Cheng, Liu (bib0048) 2013; 3 Wang, Hu, Lin, Roy, Yong (bib0170) 2013; 5 Bourquin, Milosevic, Hauser, Lehner, Blank, Petri-Fink, Rothen-Rutishauser (bib0169) 2018; 30 Caravan, Ellison, McMurry, Lauffer (bib0025) 1999; 99 Bridot, Faure, Laurent, Rivière, Billotey, Hiba, Janier, Josserand, Coll, Elst, Muller, Roux, Perriat, Tillement (bib0100) 2007; 129 van Schooneveld, Vucic, Koole, Zhou, Stocks, Cormode, Tang, Gordon, Nicolay, Meijerink, Fayad, Mulder (bib0129) 2008; 8 Jing, Ding, Kershaw, Kempson, Rogach, Gao (bib0082) 2014; 26 Mulder, Strijkers, Briley-Saboe, Frias, Aguinaldo, Vucic, Amirbekian, Tang, Chin, Nicolay, Fayad (bib0150) 2007; 58 Saha, Devi (bib0101) 2018; 1 Das, Heng, Ng, White, Loo, D'Silva, Padmanabhan, Bhakoo, Selvan, Tan (bib0104) 2010; 26 Hu, Liu, Shao (bib0133) 2015; 39 Josephson, Kircher, Mahmood, Tang, Weissleder (bib0020) 2002; 13 Dong, Korinek, Blasiak, Tomanek, van Veggel (bib0074) 2012; 24 Yang, Lin, Jing, Yue, Dai (bib0090) 2017; 9 Tu, Liu, Zhu, Li, Liu, Chen (bib0067) 2013; 52 van Tilborg, Mulder, Chin, Storm, Reutelingsperger, Nicolay, Strijkers (bib0086) 2006; 17 Li, Zhang, Shuter, Muhammad Idris (bib0063) 2009; 25 Chilla, Henoumont, Elst, Muller, Laurent (bib0038) 2017; 57 Chen, Yang, Liu, Zhang, Rong, Liang, Ma (bib0070) 2018; 6 Dash, Blasiak, To Zhang (10.1016/j.actbio.2020.03.047_bib0132) 2014; 139 Abdukayum (10.1016/j.actbio.2020.03.047_bib0118) 2014; 86 Histed (10.1016/j.actbio.2020.03.047_bib0011) 2012; 33 Keereweer (10.1016/j.actbio.2020.03.047_bib0018) 2013; 19 Stouwdam (10.1016/j.actbio.2020.03.047_bib0123) 2003; 15 Chen (10.1016/j.actbio.2020.03.047_bib0053) 2011; 21 Min (10.1016/j.actbio.2020.03.047_bib0049) 2014; 4 Stefanakis (10.1016/j.actbio.2020.03.047_bib0093) 2010; 12 Rodriguez-Liviano (10.1016/j.actbio.2020.03.047_bib0124) 2013; 29 Zhang (10.1016/j.actbio.2020.03.047_bib0122) 2011; 50 Kim (10.1016/j.actbio.2020.03.047_bib0033) 2016; 8 Lipinski (10.1016/j.actbio.2020.03.047_bib0149) 2006; 56 McDonald (10.1016/j.actbio.2020.03.047_bib0094) 2003; 38 Liang (10.1016/j.actbio.2020.03.047_bib0139) 2017; 5 Minchin (10.1016/j.actbio.2020.03.047_bib0172) 2010; 151 Caravan (10.1016/j.actbio.2020.03.047_bib0026) 2006; 35 Yang (10.1016/j.actbio.2020.03.047_bib0007) 2012; 3 Chilla (10.1016/j.actbio.2020.03.047_bib0038) 2017; 57 Thomas (10.1016/j.actbio.2020.03.047_bib0032) 2015; 44 Maldiney (10.1016/j.actbio.2020.03.047_bib0119) 2015; 25 Lee (10.1016/j.actbio.2020.03.047_bib0095) 2013; 16 Zeng (10.1016/j.actbio.2020.03.047_bib0065) 2012; 22 Deng (10.1016/j.actbio.2020.03.047_bib0039) 2019; 20 Jin (10.1016/j.actbio.2020.03.047_bib0088) 2008; 44 Ding (10.1016/j.actbio.2020.03.047_bib0160) 2012; 8 Estelrich (10.1016/j.actbio.2020.03.047_bib0042) 2015; 10 Zhou (10.1016/j.actbio.2020.03.047_bib0058) 2010; 31 Xing (10.1016/j.actbio.2020.03.047_bib0072) 2012; 33 Rodriguez-Liviano (10.1016/j.actbio.2020.03.047_bib0121) 2013; 52 Kuo (10.1016/j.actbio.2020.03.047_bib0109) 2014; 7 Sitharaman (10.1016/j.actbio.2020.03.047_bib0028) 2010; 93 Xu (10.1016/j.actbio.2020.03.047_bib0051) 2013; 7 Sun (10.1016/j.actbio.2020.03.047_bib0125) 2016; 8 Olson (10.1016/j.actbio.2020.03.047_bib0156) 2009; 1 Jing (10.1016/j.actbio.2020.03.047_bib0082) 2014; 26 Kumar (10.1016/j.actbio.2020.03.047_bib0056) 2009; 19 Liu (10.1016/j.actbio.2020.03.047_bib0060) 2013; 7 Liu (10.1016/j.actbio.2020.03.047_bib0071) 2012; 18 L.Villaraza (10.1016/j.actbio.2020.03.047_bib0158) 2010; 110 Chen (10.1016/j.actbio.2020.03.047_bib0070) 2018; 6 Mulder (10.1016/j.actbio.2020.03.047_bib0085) 2006; 6 Kircher (10.1016/j.actbio.2020.03.047_bib0022) 2003; 63 Xia (10.1016/j.actbio.2020.03.047_bib0068) 2012; 33 Saha (10.1016/j.actbio.2020.03.047_bib0101) 2018; 1 Olszewski (10.1016/j.actbio.2020.03.047_bib0097) 2018; VI Chen (10.1016/j.actbio.2020.03.047_bib0054) 2013; 23 Park (10.1016/j.actbio.2020.03.047_bib0098) 2019; 45 Mulder (10.1016/j.actbio.2020.03.047_bib0147) 2004; 15 Xia (10.1016/j.actbio.2020.03.047_bib0004) 2016; 12 Chen (10.1016/j.actbio.2020.03.047_bib0050) 2012; 12 Koole (10.1016/j.actbio.2020.03.047_bib0130) 2008; 19 Yang (10.1016/j.actbio.2020.03.047_bib0034) 2018; 8 Deng (10.1016/j.actbio.2020.03.047_bib0105) 2018; 29 Chen (10.1016/j.actbio.2020.03.047_bib0106) 2015; 17 Zairov (10.1016/j.actbio.2020.03.047_bib0138) 2017; 7 Wang (10.1016/j.actbio.2020.03.047_bib0017) 2017; 157 Jennings (10.1016/j.actbio.2020.03.047_bib0035) 2009; 24 Bessière (10.1016/j.actbio.2020.03.047_bib0114) 2011; 19 Lécuyer (10.1016/j.actbio.2020.03.047_bib0115) 2016; 6 Hao (10.1016/j.actbio.2020.03.047_bib0030) 2010; 22 Cheng (10.1016/j.actbio.2020.03.047_bib0091) 2013; 5 Yang (10.1016/j.actbio.2020.03.047_bib0008) 2016; 6 Pellico (10.1016/j.actbio.2020.03.047_bib0009) 2019 Chen (10.1016/j.actbio.2020.03.047_bib0079) 2011; 3 Zhou (10.1016/j.actbio.2020.03.047_bib0052) 2015; 6 Maiseyeu (10.1016/j.actbio.2020.03.047_bib0148) 2009; 50 Xu (10.1016/j.actbio.2020.03.047_bib0154) 2007; 18 Olson (10.1016/j.actbio.2020.03.047_bib0157) 2010; 107 Dash (10.1016/j.actbio.2020.03.047_bib0075) 2018; 122 Mughabghab (10.1016/j.actbio.2020.03.047_bib0171) 2003 van Schooneveld (10.1016/j.actbio.2020.03.047_bib0129) 2008; 8 Lee (10.1016/j.actbio.2020.03.047_bib0021) 2009; 132 Posse (10.1016/j.actbio.2020.03.047_bib0013) 2013; 37 Park (10.1016/j.actbio.2020.03.047_bib0073) 2009; 21 Zhao (10.1016/j.actbio.2020.03.047_bib0036) 2018; 8 Wang (10.1016/j.actbio.2020.03.047_bib0048) 2013; 3 Hu (10.1016/j.actbio.2020.03.047_bib0151) 2013; 34 Li (10.1016/j.actbio.2020.03.047_bib0155) 2017; 1 Yang (10.1016/j.actbio.2020.03.047_bib0090) 2017; 9 Guo (10.1016/j.actbio.2020.03.047_bib0078) 2010; 21 Mamiya (10.1016/j.actbio.2020.03.047_bib0031) 2013 Hu (10.1016/j.actbio.2020.03.047_bib0102) 2013; 19 Vivero-Escoto (10.1016/j.actbio.2020.03.047_bib0128) 2012; 41 Al-iedani (10.1016/j.actbio.2020.03.047_bib0012) 2017; 33 Oliver (10.1016/j.actbio.2020.03.047_bib0145) 2006; 4 Johnson (10.1016/j.actbio.2020.03.047_bib0059) 2011; 23 Michalet (10.1016/j.actbio.2020.03.047_bib0081) 2005; 307 Xie (10.1016/j.actbio.2020.03.047_bib0164) 2019; 2 Schima (10.1016/j.actbio.2020.03.047_bib0006) 1996; 51 Ren (10.1016/j.actbio.2020.03.047_bib0064) 2011; 115 Caravan (10.1016/j.actbio.2020.03.047_bib0025) 1999; 99 Kamaly (10.1016/j.actbio.2020.03.047_bib0146) 2008; 19 Prinzen (10.1016/j.actbio.2020.03.047_bib0087) 2007; 7 Tsotsalas (10.1016/j.actbio.2020.03.047_bib0141) 2008; 20 Chen (10.1016/j.actbio.2020.03.047_bib0047) 2016; 3 Rieter (10.1016/j.actbio.2020.03.047_bib0131) 2007; 119 Chen (10.1016/j.actbio.2020.03.047_bib0046) 2014; 114 Liu (10.1016/j.actbio.2020.03.047_bib0107) 2014; 30 Talanov (10.1016/j.actbio.2020.03.047_bib0152) 2006; 6 Mishra (10.1016/j.actbio.2020.03.047_bib0127) 2017; 3 Li (10.1016/j.actbio.2020.03.047_bib0113) 2014; 86 Dong (10.1016/j.actbio.2020.03.047_bib0074) 2012; 24 Das (10.1016/j.actbio.2020.03.047_bib0099) 2011; 23 Padmanabhan (10.1016/j.actbio.2020.03.047_bib0037) 2016; 41 Debroyea (10.1016/j.actbio.2020.03.047_bib0041) 2014; 43 Li (10.1016/j.actbio.2020.03.047_bib0063) 2009; 25 Frangioni (10.1016/j.actbio.2020.03.047_bib0016) 2003; 7 van Tilborg (10.1016/j.actbio.2020.03.047_bib0086) 2006; 17 Fan (10.1016/j.actbio.2020.03.047_bib0080) 2013; 135 Ladd (10.1016/j.actbio.2020.03.047_bib0135) 1999; 10 Zhang (10.1016/j.actbio.2020.03.047_bib0166) 2014; 111 Yang (10.1016/j.actbio.2020.03.047_bib0092) 2015; 7 Xue (10.1016/j.actbio.2020.03.047_bib0066) 2017; 115 Liu (10.1016/j.actbio.2020.03.047_bib0117) 2019; 138 Liu (10.1016/j.actbio.2020.03.047_bib0069) 2012; 51 Shu (10.1016/j.actbio.2020.03.047_bib0134) 2008; 19 Huang (10.1016/j.actbio.2020.03.047_bib0062) 2017; 165 Massoud (10.1016/j.actbio.2020.03.047_bib0003) 2003; 17 Le (10.1016/j.actbio.2020.03.047_bib0136) 2006; 312 Feng (10.1016/j.actbio.2020.03.047_bib0162) 2018; 152 McAdams (10.1016/j.actbio.2020.03.047_bib0084) 2017; 53 Park (10.1016/j.actbio.2020.03.047_bib0103) 2018; 172 Wang (10.1016/j.actbio.2020.03.047_bib0111) 2018; 10 Clough (10.1016/j.actbio.2020.03.047_bib0168) 2019; 10 Su (10.1016/j.actbio.2020.03.047_bib0142) 2018; 10 Zhou (10.1016/j.actbio.2020.03.047_bib0057) 2011; 32 Hu (10.1016/j.actbio.2020.03.047_bib0133) 2015; 39 Markus (10.1016/j.actbio.2020.03.047_bib0002) 2013 Guo (10.1016/j.actbio.2020.03.047_bib0089) 2014; 7 Wang (10.1016/j.actbio.2020.03.047_bib0045) 2010; 135 Wang (10.1016/j.actbio.2020.03.047_bib0170) 2013; 5 Penet (10.1016/j.actbio.2020.03.047_bib0043) 2010; 2 Bridot (10.1016/j.actbio.2020.03.047_bib0100) 2007; 129 Nuñez (10.1016/j.actbio.2020.03.047_bib0061) 2014; 35 Li (10.1016/j.actbio.2020.03.047_bib0163) 2019; 141 Park (10.1016/j.actbio.2020.03.047_bib0076) 2012; 24 Mulder (10.1016/j.actbio.2020.03.047_bib0150) 2007; 58 Lee (10.1016/j.actbio.2020.03.047_bib0044) 2009; 8 Maldiney (10.1016/j.actbio.2020.03.047_bib0116) 2014; 13 Tu (10.1016/j.actbio.2020.03.047_bib0067) 2013; 52 Aime (10.1016/j.actbio.2020.03.047_bib0027) 2005 Gore (10.1016/j.actbio.2020.03.047_bib0015) 2003; 112 Merbach (10.1016/j.actbio.2020.03.047_bib0029) 2013 Zou (10.1016/j.actbio.2020.03.047_bib0120) 2017; 29 Bourquin (10.1016/j.actbio.2020.03.047_bib0169) 2018; 30 Tei (10.1016/j.actbio.2020.03.047_bib0005) 2018; 6 Na (10.1016/j.actbio.2020.03.047_bib0024) 2009; 19 Yim (10.1016/j.actbio.2020.03.047_bib0137) 2011; 32 Liu (10.1016/j.actbio.2020.03.047_bib0159) 2013; 4 Vuu (10.1016/j.actbio.2020.03.047_bib0143) 2005; 16 Louie (10.1016/j.actbio.2020.03.047_bib0019) 2010; 110 Gallagher (10.1016/j.actbio.2020.03.047_bib0023) 2010; 65 Kircher (10.1016/j.actbio.2020.03.047_bib0144) 2012; 18 Josephson (10.1016/j.actbio.2020.03.047_bib0020) 2002; 13 Xu (10.1016/j.actbio.2020.03.047_bib0112) 2017; 9 Koyama (10.1016/j.actbio.2020.03.047_bib0153) 2007; 25 Shi (10.1016/j.actbio.2020.03.047_bib0108) 2010; 5 Chen (10.1016/j.actbio.2020.03.047_bib0140) 2008; 3 Li (10.1016/j.actbio.2020.03.047_bib0173) 2012; 41 Zhang (10.1016/j.actbio.2020.03.047_bib0040) 2016; 8 Glover (10.1016/j.actbio.2020.03.047_bib0014) 2011; 22 Wahsner (10.1016/j.actbio.2020.03.047_bib0010) 2019; 119 Ethirajan (10.1016/j.actbio.2020.03.047_bib0165) 2011; 40 Li (10.1016/j.actbio.2020.03.047_bib0161) 2013; 2 Lyu (10.1016/j.actbio.2020.03.047_bib0167) 2018; 10 Mimun (10.1016/j.actbio.2020.03.047_bib0055) 2017; 695 Luo (10.1016/j.actbio.2020.03.047_bib0096) 2014; 2 Mankoff (10.1016/j.actbio.2020.03.047_bib0001) 2007; 48 Ma (10.1016/j.actbio.2020.03.047_bib0077) 2015; 7 Das (10.1016/j.actbio.2020.03.047_bib0104) 2010; 26 Ou (10.1016/j.actbio.2020.03.047_bib0110) 2009; 333 Pereira (10.1016/j.actbio.2020.03.047_bib0083) 2019; 9 Jung (10.1016/j.actbio.2020.03.047_bib0126) 2012; 33 |
References_xml | – volume: 19 start-page: 3745 year: 2013 end-page: 3754 ident: bib0018 article-title: Optical image-guided cancer surgery: challenges and limitations publication-title: Clin. Cancer Res. – volume: 8 start-page: 6210 year: 2018 end-page: 6232 ident: bib0034 article-title: PET-MR and SPECT-MR multimodality probes: development and challenges publication-title: Theranostics – volume: 29 year: 2018 ident: bib0105 article-title: Effect of EU doping concentration on fluorescence and magnetic resonance imaging properties of Gd publication-title: Nanotechnology – volume: 31 start-page: 3287 year: 2010 end-page: 3295 ident: bib0058 article-title: Dual-modality publication-title: Biomaterials – volume: 1 start-page: 382 year: 2009 end-page: 393 ident: bib0156 article-title: characterization of activatable cell penetrating peptides for targeting protease activity in cancer publication-title: Integr. Biol. – volume: 129 start-page: 5076 year: 2007 end-page: 5084 ident: bib0100 article-title: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 186 year: 2017 end-page: 195 ident: bib0155 article-title: Gadolinium and platinum in tandem: real-time multi-modal monitoring of drug delivery by MRI and fluorescence imaging publication-title: Nanotheranostics – volume: 3 start-page: 318 year: 2013 end-page: 330 ident: bib0048 article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics publication-title: Theranostics – volume: 312 start-page: 105 year: 2006 end-page: 112 ident: bib0136 article-title: Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy publication-title: Int. J. Pharm. – volume: 41 start-page: 2673 year: 2012 end-page: 2685 ident: bib0128 article-title: Silica-based nanoprobes for biomedical imaging and theranostic applications publication-title: Chem. Soc. Rev. – year: 2003 ident: bib0171 article-title: Thermal Neutron Capture Cross sections: Resonance Integrals and G-Factors – volume: 8 start-page: 10491 year: 2016 end-page: 10510 ident: bib0040 article-title: The evolution of gadolinium based contrast agents: from single-modality to multi-modality publication-title: Nanoscale – volume: 15 start-page: 799 year: 2004 end-page: 806 ident: bib0147 article-title: A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets publication-title: Bioconjugate Chem – volume: 6 start-page: 1459 year: 2006 end-page: 1463 ident: bib0152 article-title: Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging publication-title: Nano Lett – start-page: 173 year: 2005 end-page: 237 ident: bib0027 article-title: Gd(III)-based contrast agents for MRI publication-title: Adv. Inorg. Chem. – volume: 695 start-page: 280 year: 2017 end-page: 285 ident: bib0055 article-title: Synthesis and characterization of Na(Gd publication-title: J. Alloys. Compd. – volume: 4 start-page: 129 year: 2014 end-page: 154 ident: bib0049 article-title: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials publication-title: Nanomaterials – volume: 33 start-page: 349 year: 2012 end-page: 361 ident: bib0011 article-title: Review of functional/ anatomic imaging in oncology publication-title: Nucl. Med. Commun. – volume: 13 start-page: 554 year: 2002 end-page: 560 ident: bib0020 article-title: Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes publication-title: Bioconjugate Chem – volume: 3 start-page: 3607 year: 2017 end-page: 3619 ident: bib0127 article-title: Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release publication-title: ACS Biomater. Sci. Eng. – volume: 7 start-page: 93 year: 2007 end-page: 100 ident: bib0087 article-title: Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots publication-title: Nano Lett. – volume: 7 start-page: 40486 year: 2017 ident: bib0138 article-title: High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones publication-title: Sci Reports – volume: 132 start-page: 552 year: 2009 end-page: 557 ident: bib0021 article-title: Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1727 year: 2015 end-page: 1741 ident: bib0042 article-title: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents publication-title: Int. J. Nanomed. – volume: 12 start-page: 2414 year: 2012 end-page: 2435 ident: bib0050 article-title: Upconversion nanomaterials: synthesis, mechanism, and applications in sensing publication-title: Sensors – volume: 3 start-page: 233 year: 2008 end-page: 242 ident: bib0140 article-title: Incorporation of an apoE-derived lipopeptide in high-density lipoprotein mri contrast agents for enhanced imaging of macrophages in atherosclerosis publication-title: Contrast Media Mol. Imaging – volume: 65 start-page: 557 year: 2010 end-page: 566 ident: bib0023 article-title: An introduction to functional and molecular imaging with MRI publication-title: Clin. Radiol. – volume: 19 start-page: 6267 year: 2009 end-page: 6273 ident: bib0024 article-title: Nanostructured T1 MRI contrast agents publication-title: J. Mater. Chem. – volume: 10 start-page: 361 year: 1999 end-page: 370 ident: bib0135 article-title: Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties publication-title: Bioconjugate Chem – year: 2013 ident: bib0002 article-title: Molecular imaging: Basic Principles and Applications in Biomedical Research – volume: 51 start-page: 235 year: 1996 end-page: 244 ident: bib0006 article-title: Contrast-enhanced MR imaging publication-title: Clin. Radiol. – volume: 10 start-page: 5642 year: 2018 end-page: 5649 ident: bib0111 article-title: Two-photon graphene quantum dot modified Gd publication-title: Nanoscale – volume: 119 start-page: 3754 year: 2007 end-page: 3756 ident: bib0131 article-title: Hybrid silica nanoparticles for multimodal imaging publication-title: Angew. Chem., Int. Ed. – volume: 39 start-page: 7363 year: 2015 end-page: 7371 ident: bib0133 article-title: Fluorescein isothiocyanate embedded silica spheres in gadolinium carbonate shells as novel magnetic resonance imaging and fluorescence bi-modal contrast agents publication-title: New J. Chem. – volume: 19 start-page: 2471 year: 2008 end-page: 2479 ident: bib0130 article-title: Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging publication-title: Bioconjuge Chem – volume: 7 start-page: 626 year: 2003 end-page: 634 ident: bib0016 article-title: near-infrared fluorescence imaging publication-title: Curr. Opin. Chem .Biol. – volume: 6 start-page: 10463 year: 2018 end-page: 10471 ident: bib0070 article-title: Controllable fabrication of rare-earth-doped Gd publication-title: ACS Sustainable Chem. Eng. – volume: 139 start-page: 4613 year: 2014 end-page: 4619 ident: bib0132 article-title: Gd-Al co-doped mesoporous silica nanoparticles loaded with Ru(BPY) publication-title: Analyst – volume: 12 start-page: 1285 year: 2010 end-page: 1297 ident: bib0093 article-title: Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery publication-title: J. Nanopart. Res. – volume: 3 start-page: 552 year: 2012 end-page: 565 ident: bib0007 article-title: Gd(III) chelates for MRI contrast agents: from high relaxivity to “ smart ” publication-title: Med. Chem. Commun. – volume: 19 start-page: 853 year: 2009 end-page: 859 ident: bib0056 article-title: Combined optical and MR bioimaging using rare earth ion doped NayF publication-title: Adv. Funct. Mater. – volume: 53 start-page: 10500 year: 2017 end-page: 10503 ident: bib0084 article-title: High magnetic relaxivity in a fluorescent CDSE/CDS/ZNS quantum dot functionalized with MRI contrast molecules publication-title: Chem. Commun. – volume: 50 start-page: 10608 year: 2011 end-page: 10613 ident: bib0122 article-title: Mutifuntional GDPO:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties publication-title: Inorg Chem. – volume: 165 start-page: 161 year: 2017 end-page: 166 ident: bib0062 article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging publication-title: Talanta – volume: 29 start-page: 3938 year: 2017 end-page: 3946 ident: bib0120 article-title: Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd publication-title: Chem. Mater. – volume: 10 start-page: 1556 year: 2018 end-page: 1565 ident: bib0142 article-title: Multifunctional PHPMA-derived polymer for ratiometric pH sensing, fluorescence imaging, and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 2293 year: 1999 end-page: 2352 ident: bib0025 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. – volume: 19 start-page: 10131 year: 2011 end-page: 10137 ident: bib0114 article-title: ZnGaO:Cr3+: a new red long-lasting phosphor with high brightness publication-title: Opt. Exp. – volume: 1 start-page: 2898 year: 2018 end-page: 2911 ident: bib0101 article-title: Surface functionalized multifunctional Gd publication-title: ACS Appl. Nano Mater. – volume: 10 start-page: 685 year: 2018 end-page: 702 ident: bib0167 article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect publication-title: NPG Asia Materials – volume: 4 start-page: 3489 year: 2006 end-page: 3497 ident: bib0145 article-title: MAGfect: a novel liposome formulation for mri labelling and visualization of cells publication-title: Org. Biomol. Chem. – volume: 23 start-page: 3714 year: 2011 end-page: 3722 ident: bib0059 article-title: Size-tunable, ultrasmall NAGDF nanoparticles: insights into their T1 MRI contrast enhancement publication-title: Chem. Mater. – volume: 5 start-page: 2122 year: 2017 end-page: 2130 ident: bib0139 article-title: Gd publication-title: Biomater. Sci. – volume: 24 start-page: 3511 year: 2009 end-page: 3524 ident: bib0035 article-title: ‘Two is better than one’ probes for dual-modality molecular imaging publication-title: Chem. Commun. – volume: 21 start-page: 4467 year: 2009 end-page: 4471 ident: bib0073 article-title: Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent publication-title: Adv. Mater. – volume: 7 start-page: 18759 year: 2015 end-page: 18768 ident: bib0092 article-title: Facile synthesis of GD-CU-IN-S/ZNS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 658 year: 2014 end-page: 669 ident: bib0109 article-title: AS1411 aptamer-conjugated GDO:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging publication-title: Nano Res. – volume: 110 start-page: 2921 year: 2010 end-page: 2959 ident: bib0158 article-title: and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics publication-title: Chem. Rev. – volume: 35 start-page: 6075 year: 2014 end-page: 6084 ident: bib0061 article-title: One-step synthesis and polyacrylic acid functionalization of multifunctional europium-doped nagdf publication-title: Eur. J. Inorg. Chem. – volume: 17 start-page: 1189 year: 2015 end-page: 1196 ident: bib0106 article-title: Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent publication-title: Phys. Chem. Chem. Phys. – volume: 151 start-page: 474 year: 2010 end-page: 481 ident: bib0172 article-title: Nanoparticles for molecular imaging–an overview publication-title: Endocrinology – volume: 93 start-page: 1454 year: 2010 end-page: 1462 ident: bib0028 article-title: Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites publication-title: J. Biomed. Mater. Res. A – year: 2013 ident: bib0029 article-title: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging – volume: 33 start-page: 1079 year: 2012 end-page: 1089 ident: bib0072 article-title: Multifunctional nanoprobes for upconversion fluorescence, mr and ct trimodal imaging publication-title: Biomaterials – volume: 40 start-page: 340 year: 2011 end-page: 362 ident: bib0165 article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy publication-title: Chem. Soc. Rev. – volume: 9 start-page: 23450 year: 2017 end-page: 23457 ident: bib0090 article-title: CuInS publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 4096 year: 2014 end-page: 4101 ident: bib0118 article-title: Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging publication-title: Anal. Chem. – volume: 33 start-page: 17 year: 2017 ident: bib0012 article-title: Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis publication-title: J. Biomed. Sci. – volume: 52 start-page: 1128 year: 2013 end-page: 1133 ident: bib0067 article-title: Breakdown of crystallographic site symmetry in lanthanide‐doped NayF publication-title: Angew Chem Int Ed Engl – volume: 3 year: 2016 ident: bib0047 article-title: Current advance in lanthanide-doped upconversion nanostructures for detection and bioapplication publication-title: Adv. Sci. – volume: 25 start-page: 12015 year: 2009 end-page: 12018 ident: bib0063 article-title: Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals publication-title: Langmuir – volume: 8 start-page: 3523 year: 2012 end-page: 3530 ident: bib0160 article-title: Hyperbranched conjugated polyelectrolyte for dual‐modality fluorescence and magnetic resonance cancer imaging publication-title: Small – volume: 2 year: 2019 ident: bib0164 article-title: Bladder cancer photodynamic therapeutic agent with off-on magnetic resonance imaging enhancement publication-title: Adv. Therap. – volume: 23 start-page: 298 year: 2013 end-page: 307 ident: bib0054 article-title: Gd publication-title: Adv. Funct. Mater. – volume: 41 start-page: 2590 year: 2012 end-page: 2605 ident: bib0173 article-title: Mesoporous silica nanoparticles in biomedical applications publication-title: Chem. Soc. Rev. – volume: 37 start-page: 1301 year: 2013 end-page: 1325 ident: bib0013 article-title: MR spectroscopic imaging: principles and recent advances publication-title: J. Magn. Reson. Imaging – volume: 41 start-page: 1 year: 2016 end-page: 16 ident: bib0037 article-title: Nanoparticles in practice for molecular-imaging applications: an overview publication-title: Acta Biomat – volume: 45 start-page: 5958 year: 2019 end-page: 5964 ident: bib0098 article-title: GdO:Pr3+ nanospheres as bi-functional contrast agents for optical and magnetic resonance imaging properties publication-title: Ceram. Int. – volume: 157 start-page: 62 year: 2017 end-page: 75 ident: bib0017 article-title: Optical molecular imaging for tumor detection and image-guided surgery publication-title: Biomaterials – volume: 20 start-page: 499 year: 2019 end-page: 510 ident: bib0039 article-title: Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probe publication-title: ChemBioChem – volume: 30 year: 2018 ident: bib0169 article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials publication-title: Adv Mater – volume: 152 start-page: 77 year: 2018 end-page: 85 ident: bib0162 article-title: Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection publication-title: Biomaterials – volume: 110 start-page: 3146 year: 2010 end-page: 3195 ident: bib0019 article-title: Multimodality imaging probes: design and challenges publication-title: Chem. Rev. – volume: 5 start-page: 4389 year: 2013 end-page: 4400 ident: bib0091 article-title: Gadolinium-based cuins publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 33539 year: 2016 end-page: 33545 ident: bib0125 article-title: Fluorescence-magnetism functional eus nanocrystals with controllable morphologies for dual bioimaging publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 90 year: 2017 end-page: 103 ident: bib0066 article-title: Upconversion optical/magnetic resonance imaging-guided small tumor detection and publication-title: Biomaterials – volume: 141 start-page: 6224 year: 2019 end-page: 6233 ident: bib0163 article-title: Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 2003 year: 2011 end-page: 2008 ident: bib0079 article-title: Monodisperse NaYbF: TM publication-title: Nanoscale – volume: 51 start-page: 1437 year: 2012 end-page: 1442 ident: bib0069 article-title: A high-performance ytterbium based nanoparticulate contrast agent for publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1 year: 2006 end-page: 6 ident: bib0085 article-title: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe publication-title: Nano Lett. – volume: 24 start-page: 1297 year: 2012 end-page: 1305 ident: bib0074 article-title: Cation exchange: a facile method to make nayf publication-title: Chem. Mater. – volume: 16 start-page: 2858 year: 2013 end-page: 2866 ident: bib0095 article-title: -glucuronic acid coated GD(IO publication-title: Eur. J. Inorg. Chem. – volume: 12 start-page: 1553 year: 2016 end-page: 1584 ident: bib0004 article-title: Nanoparticulate contrast agents for multimodality molecular imaging publication-title: J. Biomed. Nanotechnol. – volume: 18 start-page: 1474 year: 2007 end-page: 1482 ident: bib0154 article-title: Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging publication-title: Bioconjugate Chem. – year: 2013 ident: bib0031 article-title: Recent advances in understanding magnetic nanoparticles in ac magnetic fields and optimal design for targeted hyperthermia publication-title: J. Nanomater. – volume: 15 start-page: 4604 year: 2003 end-page: 4616 ident: bib0123 article-title: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media publication-title: Chem. Mater – volume: 19 start-page: 118 year: 2008 end-page: 129 ident: bib0146 article-title: Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging publication-title: Bioconjugate Chem – volume: 112 start-page: 4 year: 2003 end-page: 9 ident: bib0015 article-title: Principles and practice of functional mri of the human brain publication-title: J. Clin. Invest. – volume: 122 start-page: 11557 year: 2018 end-page: 11569 ident: bib0075 article-title: Validation of inner, second, and outer sphere contributions to T1 and T2 relaxation in Gd publication-title: J. Phys. Chem C – volume: 44 start-page: 5764 year: 2008 end-page: 5766 ident: bib0088 article-title: Gd publication-title: Chem. Commun. – volume: 135 start-page: 6494 year: 2013 end-page: 6503 ident: bib0080 article-title: Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 647 year: 2013 end-page: 654 ident: bib0121 article-title: Synthesis and properties of multifunctional tetragonal eu:gdpo publication-title: Inorg. Chem. – volume: 32 start-page: 5187 year: 2011 end-page: 5194 ident: bib0137 article-title: The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI publication-title: Biomaterials – volume: 58 start-page: 1164 year: 2007 end-page: 1170 ident: bib0150 article-title: Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles publication-title: Magn. Reason. Med. – volume: 7 start-page: 663 year: 2013 end-page: 697 ident: bib0051 article-title: Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future publication-title: Laser Photonics Rev. – volume: 2 start-page: 5891 year: 2014 end-page: 5897 ident: bib0096 article-title: A general top-down approach to synthesize rare earth doped-Gd publication-title: J. Mater. Chem. B – volume: 26 start-page: 8959 year: 2010 end-page: 8965 ident: bib0104 article-title: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging publication-title: Langmuir – volume: 5 start-page: 2786 year: 2013 end-page: 2799 ident: bib0170 article-title: Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity publication-title: ACS Appl. Mater. Interfaces – volume: 21 year: 2010 ident: bib0078 article-title: Seed-mediated synthesis of NayF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity publication-title: Nanotechnology – volume: 25 start-page: 331 year: 2015 end-page: 338 ident: bib0119 article-title: Gadolinium-doped persistent nanophosphors as versatile tool for multimodal publication-title: Adv. Funct. Mater. – volume: 24 start-page: 5755 year: 2012 end-page: 5761 ident: bib0076 article-title: Theranostic probe based on lanthanide-doped nanoparticles for simultaneous publication-title: Adv. Mater. – volume: 30 start-page: 13005 year: 2014 end-page: 13013 ident: bib0107 article-title: Sub-10nm monoclinic gdo:Eu publication-title: Langmuir – volume: 114 start-page: 5161 year: 2014 end-page: 5214 ident: bib0046 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem. Rev. – volume: 21 start-page: 4285 year: 2011 end-page: 4294 ident: bib0053 article-title: Positive and negative lattice shielding effects co-existing in gd (III) ion doped bifunctional upconversion nanoprobes publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1420 year: 2019 ident: bib0168 article-title: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents publication-title: Nat Commun – volume: 34 start-page: 749 year: 2013 end-page: 758 ident: bib0151 article-title: Synergistically enhance magnetic resonance/fluorescence imaging performance of responsive polymeric nanoparticles under mildly acidic biological milieu publication-title: Macromol. Rapid Commun. – volume: 7 start-page: 16257 year: 2015 end-page: 16265 ident: bib0077 article-title: NaGdF:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 12658 year: 2013 end-page: 12667 ident: bib0102 article-title: Highly water-dispersible surface-modified Gd publication-title: Chem. Eur. J. – volume: 5 start-page: 105 year: 2010 end-page: 111 ident: bib0108 article-title: Bifunctional Eu publication-title: Contrast Media Mol. Imaging – volume: 44 start-page: 4494 year: 2015 end-page: 4500 ident: bib0032 article-title: Optical imaging probes for biomolecules: an introductory perspective publication-title: Chem. Soc. Rev. – volume: 63 start-page: 8122 year: 2003 end-page: 8125 ident: bib0022 article-title: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation publication-title: Cancer Res. – volume: 57 start-page: 1 year: 2017 end-page: 10 ident: bib0038 article-title: Importance of DOTA derivatives in bimodal imaging publication-title: Isr. J. Chem. – volume: 138 start-page: 193 year: 2019 end-page: 210 ident: bib0117 article-title: Imaging and therapeutic applications of persistent luminescence nanomaterials publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 995 year: 2005 end-page: 999 ident: bib0143 article-title: Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging publication-title: Bioconjugate Chem – volume: 4 start-page: 1517 year: 2013 end-page: 1524 ident: bib0159 article-title: Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging publication-title: Polym. Chem. – volume: 43 start-page: 8178 year: 2014 end-page: 8192 ident: bib0041 article-title: Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging publication-title: Chem. Soc. Rev. – volume: 7 start-page: 7227 year: 2013 end-page: 7240 ident: bib0060 article-title: Magnetic/upconversion fluorescent nagdf publication-title: ACS Nano – volume: 33 start-page: 5394 year: 2012 end-page: 5405 ident: bib0068 article-title: Gd publication-title: Biomaterials – volume: 107 start-page: 4311 year: 2010 end-page: 4316 ident: bib0157 article-title: Activatable cell penetrating peptides linked to nanoparticles as dual probes for publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 56 start-page: 601 year: 2006 end-page: 610 ident: bib0149 article-title: MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor publication-title: Magn. Reason. Med. – volume: 38 start-page: 305 year: 2003 end-page: 310 ident: bib0094 article-title: Small particulate gadolinium oxide and gadolinium albumin microspheres as multimodal contrast and therapeutic agents publication-title: Invest. Radiol. – volume: 6 start-page: 60945 year: 2016 end-page: 60966 ident: bib0008 article-title: Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes publication-title: RSC Adv – volume: 6 start-page: 253 year: 2018 ident: bib0005 article-title: Editorial: the chemistry of imaging probes publication-title: Front. Chem. – volume: 18 start-page: 2335 year: 2012 end-page: 2341 ident: bib0071 article-title: Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging publication-title: Chem. Eur. J. – volume: 333 start-page: 684 year: 2009 end-page: 689 ident: bib0110 article-title: Optimization of the synthesis of nanostructured Tb publication-title: J. Colloid Interface Sci. – volume: 35 start-page: 512 year: 2006 end-page: 523 ident: bib0026 article-title: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents publication-title: Chem. Soc. Rev. – volume: 48 start-page: 18N year: 2007 end-page: 21N ident: bib0001 article-title: A definition of molecular imaging publication-title: J. Nucl. Med. – volume: 6 start-page: 1 year: 2015 end-page: 10 ident: bib0052 article-title: Single-band upconversion nanoprobes for multiplexed simultaneous publication-title: Nat. Commun. – volume: 26 start-page: 6367 year: 2014 end-page: 6386 ident: bib0082 article-title: Magnetically engineered semiconductor quantum dots as multimodal imaging probes publication-title: Adv. Mater. – volume: 25 start-page: 866 year: 2007 end-page: 871 ident: bib0153 article-title: A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice publication-title: J. Magn. Reson. Imaging – volume: 22 start-page: 133 year: 2011 end-page: 139 ident: bib0014 article-title: Overview of functional magnetic resonance imaging publication-title: Neurosurg. Clin. N. Am. – volume: 135 start-page: 1839 year: 2010 end-page: 1854 ident: bib0045 article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy publication-title: Analyst – volume: 8 start-page: 320 year: 2018 end-page: 338 ident: bib0036 article-title: Recent developments in multimodality fluorescence imaging probes publication-title: Acta Pharmaceutica Sinica B – volume: 6 start-page: 2488 year: 2016 end-page: 2524 ident: bib0115 article-title: Chemically engineered persistent luminescence nanoprobes for bioimaging publication-title: Theranostics – volume: 17 start-page: 545 year: 2003 end-page: 580 ident: bib0003 article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light publication-title: Genes. Dev. – volume: 9 start-page: 2341 year: 2019 ident: bib0083 article-title: Hydrophilic quantum dots functionalized with GD(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes publication-title: Sci. Rep. – volume: 307 start-page: 538 year: 2005 end-page: 544 ident: bib0081 article-title: Quantum dots for live cells, publication-title: Science – volume: 13 start-page: 418 year: 2014 end-page: 426 ident: bib0116 article-title: The publication-title: Nat Mater – volume: 50 start-page: 2157 year: 2009 end-page: 2163 ident: bib0148 article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis publication-title: J. Lipid Res – volume: 119 start-page: 957 year: 2019 end-page: 1057 ident: bib0010 article-title: Chemistry of mri contrast agents: current challenges and new frontiers publication-title: Chem. Rev. – volume: 86 start-page: 11306 year: 2014 end-page: 11311 ident: bib0113 article-title: Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging publication-title: Anal. Chem. – volume: 33 start-page: 5865 year: 2012 end-page: 5874 ident: bib0126 article-title: Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging publication-title: Biomaterials – volume: 8 start-page: 2517 year: 2008 end-page: 2525 ident: bib0129 article-title: Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation publication-title: Nano Lett. – volume: 2 start-page: 1600 year: 2013 end-page: 1605 ident: bib0161 article-title: Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study publication-title: Adv. Healthcare Mater. – volume: 19 start-page: 651 year: 2008 end-page: 655 ident: bib0134 article-title: Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent publication-title: Bioconjugate Chem – volume: 8 start-page: 87 year: 2009 end-page: 100 ident: bib0044 article-title: Dual-modality probes for publication-title: Mol. Imaging – volume: 22 start-page: 2729 year: 2010 end-page: 2742 ident: bib0030 article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles publication-title: Adv Mater – year: 2019 ident: bib0009 article-title: Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging publication-title: Contrast Med. Mole Imaging – volume: 18 start-page: 829 year: 2012 end-page: 834 ident: bib0144 article-title: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle publication-title: Nat. Med. – volume: 29 start-page: 3411 year: 2013 end-page: 3418 ident: bib0124 article-title: Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous eu:gdf publication-title: Langmuir – volume: 7 start-page: 1581 year: 2014 end-page: 1591 ident: bib0089 article-title: Color-tunable Gd-Zn-Cu-In-S/ZNS quantum dots for dual modality magnetic resonance and fluorescence imaging publication-title: Nano Res – volume: VI year: 2018 ident: bib0097 article-title: Multimodal non-gadolinium oxide nanoparticles for mri and fluorescence labelling publication-title: Biophoton. Photon. Solut. Better Health Care – volume: 2 start-page: 975 year: 2010 end-page: 988 ident: bib0043 article-title: Applications of molecular mri and optical imaging in cancer publication-title: Future Med. Chem. – volume: 32 start-page: 1148 year: 2011 end-page: 1156 ident: bib0057 article-title: Fluorine-18-labeled Gd publication-title: Biomaterials – volume: 111 start-page: E5492 year: 2014 end-page: E5497 ident: bib0166 article-title: selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 5888 year: 2008 end-page: 5893 ident: bib0141 article-title: Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications publication-title: Chem. Mater. – volume: 9 start-page: 4620 year: 2017 end-page: 4628 ident: bib0112 article-title: AuGd integrated nanoprobes for optical/MRI/CT triple-modal publication-title: Nanoscale – volume: 172 start-page: 224 year: 2018 end-page: 232 ident: bib0103 article-title: Biocompatible sphere, square prism and hexagonal rod Gd publication-title: Colloids Surf., B – volume: 23 start-page: 2439 year: 2011 end-page: 2446 ident: bib0099 article-title: Single-phase DYO:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging publication-title: Chem. Mater. – volume: 17 start-page: 865 year: 2006 end-page: 868 ident: bib0086 article-title: Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells publication-title: Bioconjugate Chem. – volume: 8 start-page: 10266 year: 2016 end-page: 10273 ident: bib0033 article-title: tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced mri and near-infrared fluorescence publication-title: ACS Appl. Mater. Interfaces – volume: 115 start-page: 20141 year: 2011 end-page: 20147 ident: bib0064 article-title: Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF publication-title: J. Phys. Chem. C – volume: 22 start-page: 9870 year: 2012 end-page: 9874 ident: bib0065 article-title: Bi-functional naluf:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties publication-title: J. Mater. Chem. – volume: 6 start-page: 60945 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0008 article-title: Gadolinium(III) based nanoparticles for T1-weighted magnetic resonance imaging probes publication-title: RSC Adv doi: 10.1039/C6RA07782J – volume: 93 start-page: 1454 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0028 article-title: Magnetic resonance imaging studies on gadonanotube-reinforced biodegradable polymer nanocomposites publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32650 – volume: 7 start-page: 7227 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0060 article-title: Magnetic/upconversion fluorescent nagdf4:yb,er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo publication-title: ACS Nano doi: 10.1021/nn4030898 – volume: 24 start-page: 5755 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0076 article-title: Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201202433 – volume: 152 start-page: 77 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0162 article-title: Dual modal ultra-bright nanodots with aggregation-induced emission and gadolinium-chelation for vascular integrity and leakage detection publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.031 – volume: 5 start-page: 105 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0108 article-title: Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling publication-title: Contrast Media Mol. Imaging doi: 10.1002/cmmi.373 – volume: 132 start-page: 552 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0021 article-title: Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905793q – volume: 12 start-page: 2414 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0050 article-title: Upconversion nanomaterials: synthesis, mechanism, and applications in sensing publication-title: Sensors doi: 10.3390/s120302414 – volume: 8 start-page: 3523 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0160 article-title: Hyperbranched conjugated polyelectrolyte for dual‐modality fluorescence and magnetic resonance cancer imaging publication-title: Small doi: 10.1002/smll.201201216 – volume: 3 start-page: 318 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0048 article-title: Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics publication-title: Theranostics doi: 10.7150/thno.5284 – volume: 8 start-page: 320 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0036 article-title: Recent developments in multimodality fluorescence imaging probes publication-title: Acta Pharmaceutica Sinica B doi: 10.1016/j.apsb.2018.03.010 – volume: 7 start-page: 16257 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0077 article-title: NaGdF:Yb3+/Er3+@NaGdF4:Nd3+@sodium-gluconate: multifunctional and biocompatible ultrasmall core-shell nanohybrids for UCL/MR/CT multimodal imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05194 – volume: 129 start-page: 5076 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0100 article-title: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja068356j – volume: 7 start-page: 626 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0016 article-title: In vivo near-infrared fluorescence imaging publication-title: Curr. Opin. Chem .Biol. doi: 10.1016/j.cbpa.2003.08.007 – volume: 18 start-page: 1474 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0154 article-title: Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging publication-title: Bioconjugate Chem. doi: 10.1021/bc0701085 – volume: 4 start-page: 1517 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0159 article-title: Single molecular hyperbranched nanoprobes for fluorescence and magnetic resonance dual modal imaging publication-title: Polym. Chem. doi: 10.1039/C2PY20837G – volume: 4 start-page: 129 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0049 article-title: Recent advance of biological molecular imaging based on lanthanide-doped upconversion-luminescent nanomaterials publication-title: Nanomaterials doi: 10.3390/nano4010129 – volume: 135 start-page: 6494 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0080 article-title: Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312225b – volume: 9 start-page: 2341 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0083 article-title: Hydrophilic quantum dots functionalized with GD(III)-DO3A monoamide chelates as bright and effective T1-weighted bimodal nanoprobes publication-title: Sci. Rep. doi: 10.1038/s41598-019-38772-8 – volume: 32 start-page: 5187 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0137 article-title: The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.069 – volume: 25 start-page: 12015 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0063 article-title: Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals publication-title: Langmuir doi: 10.1021/la903113u – volume: 6 start-page: 1459 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0152 article-title: Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging publication-title: Nano Lett doi: 10.1021/nl060765q – volume: 13 start-page: 418 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0116 article-title: The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells publication-title: Nat Mater doi: 10.1038/nmat3908 – year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0171 – volume: 307 start-page: 538 year: 2005 ident: 10.1016/j.actbio.2020.03.047_bib0081 article-title: Quantum dots for live cells, in vivo imaging, and diagnostics publication-title: Science doi: 10.1126/science.1104274 – volume: 17 start-page: 865 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0086 article-title: Annexin A5-conjugated quantum dots with a paramagnetic lipidic coating for the multimodal detection of apoptotic cells publication-title: Bioconjugate Chem. doi: 10.1021/bc0600463 – volume: 695 start-page: 280 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0055 article-title: Synthesis and characterization of Na(Gd0.5Lu0.5)F4Nd3+, a core-shell free multifunctional contrast agent publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2016.10.202 – volume: 57 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0038 article-title: Importance of DOTA derivatives in bimodal imaging publication-title: Isr. J. Chem. doi: 10.1002/ijch.201700024 – volume: 333 start-page: 684 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0110 article-title: Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.01.062 – volume: 32 start-page: 1148 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0057 article-title: Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NayF4 nanophosphors for multimodality PET/MR/UCL imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.09.071 – volume: 41 start-page: 2590 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0173 article-title: Mesoporous silica nanoparticles in biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15246g – volume: 10 start-page: 5642 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0111 article-title: Two-photon graphene quantum dot modified Gd2O3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent publication-title: Nanoscale doi: 10.1039/C7NR08068A – year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0029 – volume: 43 start-page: 8178 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0041 article-title: Towards polymetallic lanthanide complexes as dual contrast agents for magnetic resonance and optical imaging publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00201F – volume: 26 start-page: 6367 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0082 article-title: Magnetically engineered semiconductor quantum dots as multimodal imaging probes publication-title: Adv. Mater. doi: 10.1002/adma.201402296 – volume: 52 start-page: 647 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0121 article-title: Synthesis and properties of multifunctional tetragonal eu:gdpo4 nanocubes for optical and magnetic resonance imaging applications publication-title: Inorg. Chem. doi: 10.1021/ic3016996 – volume: 157 start-page: 62 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0017 article-title: Optical molecular imaging for tumor detection and image-guided surgery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.12.002 – volume: 10 start-page: 361 year: 1999 ident: 10.1016/j.actbio.2020.03.047_bib0135 article-title: Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties publication-title: Bioconjugate Chem doi: 10.1021/bc980086+ – volume: 2 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0164 article-title: Bladder cancer photodynamic therapeutic agent with off-on magnetic resonance imaging enhancement publication-title: Adv. Therap. doi: 10.1002/adtp.201900068 – volume: 135 start-page: 1839 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0045 article-title: Upconversion nanoparticles in biological labeling, imaging, and therapy publication-title: Analyst doi: 10.1039/c0an00144a – volume: 114 start-page: 5161 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0046 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem. Rev. doi: 10.1021/cr400425h – volume: 35 start-page: 6075 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0061 article-title: One-step synthesis and polyacrylic acid functionalization of multifunctional europium-doped nagdf4 nanoparticles with selected size for optical and MRI imaging publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201402690 – volume: 2 start-page: 5891 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0096 article-title: A general top-down approach to synthesize rare earth doped-Gd2O3 nanocrystals as dual modal contrast agents publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00695J – volume: 33 start-page: 17 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0012 article-title: Fast magnetic resonance spectroscopic imaging techniques in human brain- applications in multiple sclerosis publication-title: J. Biomed. Sci. doi: 10.1186/s12929-017-0323-2 – volume: 21 start-page: 4285 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0053 article-title: Positive and negative lattice shielding effects co-existing in gd (III) ion doped bifunctional upconversion nanoprobes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101663 – volume: 35 start-page: 512 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0026 article-title: Strategies for increasing the sensitivity of gadolinium based MRI contrast agents publication-title: Chem. Soc. Rev. doi: 10.1039/b510982p – volume: 122 start-page: 11557 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0075 article-title: Validation of inner, second, and outer sphere contributions to T1 and T2 relaxation in Gd3+-based nanoparticles using Eu3+ lifetime decay as a probe publication-title: J. Phys. Chem C doi: 10.1021/acs.jpcc.8b02807 – volume: 5 start-page: 2786 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0170 article-title: Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302030a – volume: 20 start-page: 499 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0039 article-title: Biomedical applications of fluorescent and magnetic resonance imaging dual-modality probe publication-title: ChemBioChem doi: 10.1002/cbic.201800450 – volume: 53 start-page: 10500 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0084 article-title: High magnetic relaxivity in a fluorescent CDSE/CDS/ZNS quantum dot functionalized with MRI contrast molecules publication-title: Chem. Commun. doi: 10.1039/C7CC05537D – volume: 18 start-page: 2335 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0071 article-title: Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging publication-title: Chem. Eur. J. doi: 10.1002/chem.201102599 – volume: 19 start-page: 6267 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0024 article-title: Nanostructured T1 MRI contrast agents publication-title: J. Mater. Chem. doi: 10.1039/b902685a – volume: 99 start-page: 2293 year: 1999 ident: 10.1016/j.actbio.2020.03.047_bib0025 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. doi: 10.1021/cr980440x – volume: 19 start-page: 118 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0146 article-title: Bimodal paramagnetic and fluorescent liposomes for cellular and tumor magnetic resonance imaging publication-title: Bioconjugate Chem doi: 10.1021/bc7001715 – volume: 165 start-page: 161 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0062 article-title: Facile preparation of rare-earth based fluorescence/MRI dual-modal nanoprobe for targeted cancer cell imaging publication-title: Talanta doi: 10.1016/j.talanta.2016.12.048 – volume: 19 start-page: 3745 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0018 article-title: Optical image-guided cancer surgery: challenges and limitations publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-3598 – volume: 51 start-page: 235 year: 1996 ident: 10.1016/j.actbio.2020.03.047_bib0006 article-title: Contrast-enhanced MR imaging publication-title: Clin. Radiol. doi: 10.1016/S0009-9260(96)80339-4 – volume: 17 start-page: 1189 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0106 article-title: Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04380D – volume: 25 start-page: 866 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0153 article-title: A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20852 – volume: 20 start-page: 5888 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0141 article-title: Functionalized nanocontainers as dual magnetic and optical probes for molecular imaging applications publication-title: Chem. Mater. doi: 10.1021/cm8006183 – volume: 29 start-page: 3938 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0120 article-title: Magnetic-NIR persistent luminescent dual-modal ZGOCS@MSNs@Gd2O3 core-shell nanoprobes for in vivo imaging publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00087 – volume: 41 start-page: 2673 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0128 article-title: Silica-based nanoprobes for biomedical imaging and theranostic applications publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15229k – volume: 15 start-page: 799 year: 2004 ident: 10.1016/j.actbio.2020.03.047_bib0147 article-title: A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets publication-title: Bioconjugate Chem doi: 10.1021/bc049949r – volume: 63 start-page: 8122 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0022 article-title: A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation publication-title: Cancer Res. – volume: 38 start-page: 305 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0094 article-title: Small particulate gadolinium oxide and gadolinium albumin microspheres as multimodal contrast and therapeutic agents publication-title: Invest. Radiol. doi: 10.1097/01.rli.0000067487.84243.91 – volume: 33 start-page: 5394 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0068 article-title: Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-TO-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.025 – volume: 10 start-page: 1420 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0168 article-title: Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents publication-title: Nat Commun doi: 10.1038/s41467-019-09342-3 – volume: 8 start-page: 10266 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0033 article-title: In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced mri and near-infrared fluorescence publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03344 – volume: 21 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0078 article-title: Seed-mediated synthesis of NayF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity publication-title: Nanotechnology doi: 10.1088/0957-4484/21/12/125602 – volume: 8 start-page: 10491 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0040 article-title: The evolution of gadolinium based contrast agents: from single-modality to multi-modality publication-title: Nanoscale doi: 10.1039/C6NR00267F – volume: 115 start-page: 90 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0066 article-title: Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.11.024 – volume: 5 start-page: 2122 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0139 article-title: Gd3+-functionalized gold nanoclusters for fluorescence-magnetic resonance bimodal imaging publication-title: Biomater. Sci. doi: 10.1039/C7BM00608J – volume: 50 start-page: 2157 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0148 article-title: Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis publication-title: J. Lipid Res doi: 10.1194/jlr.M800405-JLR200 – volume: 111 start-page: E5492 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0166 article-title: In vivo selective cancer-tracking gadolinium eradicator as new-generation photodynamic therapy agent publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1414499111 – volume: 172 start-page: 224 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0103 article-title: Biocompatible sphere, square prism and hexagonal rod Gd2O3:Eu3+@SiO2 nanoparticles: the effect of morphology on multi-modal imaging publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2018.08.043 – volume: 23 start-page: 2439 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0099 article-title: Single-phase DYO:Tb3+ nanocrystals as dual-modal contrast agent for high field magnetic resonance and optical imaging publication-title: Chem. Mater. doi: 10.1021/cm2003066 – volume: 30 start-page: 13005 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0107 article-title: Sub-10nm monoclinic gdo:Eu3+ nanoparticles as dual-modal nanoprobes for magnetic resonance and fluorescence imaging publication-title: Langmuir doi: 10.1021/la503228v – volume: 2 start-page: 1600 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0161 article-title: Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201300135 – volume: 3 start-page: 2003 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0079 article-title: Monodisperse NaYbF: TM3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties publication-title: Nanoscale doi: 10.1039/c0nr01018a – volume: 44 start-page: 4494 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0032 article-title: Optical imaging probes for biomolecules: an introductory perspective publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00070J – volume: 16 start-page: 995 year: 2005 ident: 10.1016/j.actbio.2020.03.047_bib0143 article-title: Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging publication-title: Bioconjugate Chem doi: 10.1021/bc050085z – volume: 48 start-page: 18N year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0001 article-title: A definition of molecular imaging publication-title: J. Nucl. Med. – volume: 7 start-page: 658 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0109 article-title: AS1411 aptamer-conjugated GDO:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging publication-title: Nano Res. doi: 10.1007/s12274-014-0420-4 – volume: 6 start-page: 1 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0085 article-title: Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe publication-title: Nano Lett. doi: 10.1021/nl051935m – volume: 8 start-page: 33539 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0125 article-title: Fluorescence-magnetism functional eus nanocrystals with controllable morphologies for dual bioimaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13831 – volume: 22 start-page: 133 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0014 article-title: Overview of functional magnetic resonance imaging publication-title: Neurosurg. Clin. N. Am. doi: 10.1016/j.nec.2010.11.001 – volume: VI year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0097 article-title: Multimodal non-gadolinium oxide nanoparticles for mri and fluorescence labelling publication-title: Biophoton. Photon. Solut. Better Health Care doi: 10.1117/12.2306915 – volume: 40 start-page: 340 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0165 article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy publication-title: Chem. Soc. Rev. doi: 10.1039/B915149B – year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0009 article-title: Nanoparticle-based paramagnetic contrast agents for magnetic resonance imaging publication-title: Contrast Med. Mole Imaging doi: 10.1155/2019/1845637 – volume: 119 start-page: 3754 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0131 article-title: Hybrid silica nanoparticles for multimodal imaging publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.200604738 – volume: 10 start-page: 1556 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0142 article-title: Multifunctional PHPMA-derived polymer for ratiometric pH sensing, fluorescence imaging, and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15796 – volume: 112 start-page: 4 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0015 article-title: Principles and practice of functional mri of the human brain publication-title: J. Clin. Invest. doi: 10.1172/JCI200319010 – volume: 10 start-page: 1727 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0042 article-title: Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents publication-title: Int. J. Nanomed. – volume: 9 start-page: 4620 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0112 article-title: AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging publication-title: Nanoscale doi: 10.1039/C7NR01064H – volume: 30 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0169 article-title: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials publication-title: Adv Mater doi: 10.1002/adma.201704307 – volume: 19 start-page: 10131 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0114 article-title: ZnGaO:Cr3+: a new red long-lasting phosphor with high brightness publication-title: Opt. Exp. doi: 10.1364/OE.19.010131 – volume: 33 start-page: 1079 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0072 article-title: Multifunctional nanoprobes for upconversion fluorescence, mr and ct trimodal imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.039 – volume: 24 start-page: 1297 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0074 article-title: Cation exchange: a facile method to make nayf4:yb,tm-nagdf4 core–shell nanoparticles with a thin, tunable, and uniform shell publication-title: Chem. Mater. doi: 10.1021/cm2036844 – volume: 18 start-page: 829 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0144 article-title: A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle publication-title: Nat. Med. doi: 10.1038/nm.2721 – volume: 6 start-page: 253 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0005 article-title: Editorial: the chemistry of imaging probes publication-title: Front. Chem. doi: 10.3389/fchem.2018.00253 – volume: 7 start-page: 93 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0087 article-title: Optical and magnetic resonance imaging of cell death and platelet activation using annexin A5-functionalized quantum dots publication-title: Nano Lett. doi: 10.1021/nl062226r – volume: 33 start-page: 349 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0011 article-title: Review of functional/ anatomic imaging in oncology publication-title: Nucl. Med. Commun. doi: 10.1097/MNM.0b013e32834ec8a5 – volume: 115 start-page: 20141 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0064 article-title: Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods publication-title: J. Phys. Chem. C doi: 10.1021/jp2064529 – volume: 1 start-page: 186 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0155 article-title: Gadolinium and platinum in tandem: real-time multi-modal monitoring of drug delivery by MRI and fluorescence imaging publication-title: Nanotheranostics doi: 10.7150/ntno.18619 – volume: 23 start-page: 3714 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0059 article-title: Size-tunable, ultrasmall NAGDF nanoparticles: insights into their T1 MRI contrast enhancement publication-title: Chem. Mater. doi: 10.1021/cm201297x – volume: 31 start-page: 3287 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0058 article-title: Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.01.040 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0052 article-title: Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers publication-title: Nat. Commun. – volume: 107 start-page: 4311 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0157 article-title: Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0910283107 – volume: 29 start-page: 3411 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0124 article-title: Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous eu:gdf3 nanoparticles for biomedical applications publication-title: Langmuir doi: 10.1021/la4001076 – volume: 3 start-page: 233 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0140 article-title: Incorporation of an apoE-derived lipopeptide in high-density lipoprotein mri contrast agents for enhanced imaging of macrophages in atherosclerosis publication-title: Contrast Media Mol. Imaging doi: 10.1002/cmmi.257 – volume: 5 start-page: 4389 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0091 article-title: Gadolinium-based cuins2/zns nanoprobe for dual-modality magnetic resonance/optical imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401428n – volume: 15 start-page: 4604 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0123 article-title: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media publication-title: Chem. Mater doi: 10.1021/cm034495d – volume: 56 start-page: 601 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0149 article-title: MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor publication-title: Magn. Reason. Med. doi: 10.1002/mrm.20995 – volume: 19 start-page: 12658 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0102 article-title: Highly water-dispersible surface-modified Gd2O3 nanoparticles for potential dual-modal bioimaging publication-title: Chem. Eur. J. doi: 10.1002/chem.201301687 – volume: 24 start-page: 3511 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0035 article-title: ‘Two is better than one’ probes for dual-modality molecular imaging publication-title: Chem. Commun. doi: 10.1039/b821903f – volume: 3 start-page: 552 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0007 article-title: Gd(III) chelates for MRI contrast agents: from high relaxivity to “ smart ” publication-title: Med. Chem. Commun. doi: 10.1039/c2md00279e – volume: 9 start-page: 23450 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0090 article-title: CuInS2/ZnS quantum dots conjugating GD(iii) chelates for near-infrared fluorescence and magnetic resonance bimodal imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05867 – volume: 13 start-page: 554 year: 2002 ident: 10.1016/j.actbio.2020.03.047_bib0020 article-title: Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes publication-title: Bioconjugate Chem doi: 10.1021/bc015555d – volume: 7 start-page: 1581 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0089 article-title: Color-tunable Gd-Zn-Cu-In-S/ZNS quantum dots for dual modality magnetic resonance and fluorescence imaging publication-title: Nano Res doi: 10.1007/s12274-014-0518-8 – volume: 1 start-page: 2898 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0101 article-title: Surface functionalized multifunctional Gd2O3-fluorescein composite nanorods for redox responsive drug delivery and imaging applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b00535 – volume: 8 start-page: 87 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0044 article-title: Dual-modality probes for in vivo molecular imaging publication-title: Mol. Imaging doi: 10.2310/7290.2009.00013 – volume: 86 start-page: 11306 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0113 article-title: Gadolinium oxide nanoparticles and aptamer-functionalized silver nanoclusters-based multimodal molecular imaging nanoprobe for optical/magnetic resonance cancer cell imaging publication-title: Anal. Chem. doi: 10.1021/ac503026d – volume: 139 start-page: 4613 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0132 article-title: Gd-Al co-doped mesoporous silica nanoparticles loaded with Ru(BPY)32+ as a dual-modality probe for fluorescence and magnetic resonance imaging publication-title: Analyst doi: 10.1039/C4AN00816B – volume: 86 start-page: 4096 year: 2014 ident: 10.1016/j.actbio.2020.03.047_bib0118 article-title: Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo publication-title: Anal. Chem. doi: 10.1021/ac500644x – volume: 45 start-page: 5958 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0098 article-title: GdO:Pr3+ nanospheres as bi-functional contrast agents for optical and magnetic resonance imaging properties publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.12.065 – volume: 7 start-page: 40486 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0138 article-title: High performance magneto-fluorescent nanoparticles assembled from terbium and gadolinium 1,3-diketones publication-title: Sci Reports – volume: 19 start-page: 651 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0134 article-title: Conjugation of a water-soluble gadolinium endohedral fulleride with an antibody as a magnetic resonance imaging contrast agent publication-title: Bioconjugate Chem doi: 10.1021/bc7002742 – volume: 33 start-page: 5865 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0126 article-title: Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.04.059 – volume: 8 start-page: 2517 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0129 article-title: Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation publication-title: Nano Lett. doi: 10.1021/nl801596a – volume: 41 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0037 article-title: Nanoparticles in practice for molecular-imaging applications: an overview publication-title: Acta Biomat doi: 10.1016/j.actbio.2016.06.003 – volume: 1 start-page: 382 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0156 article-title: In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer publication-title: Integr. Biol. doi: 10.1039/b904890a – volume: 141 start-page: 6224 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0163 article-title: Bimodal fluorescence-magnetic resonance contrast agent for apoptosis imaging publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13376 – volume: 3 start-page: 3607 year: 2017 ident: 10.1016/j.actbio.2020.03.047_bib0127 article-title: Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00498 – volume: 138 start-page: 193 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0117 article-title: Imaging and therapeutic applications of persistent luminescence nanomaterials publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.10.015 – year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0002 – volume: 22 start-page: 9870 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0065 article-title: Bi-functional naluf:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties publication-title: J. Mater. Chem. doi: 10.1039/c2jm31196h – volume: 16 start-page: 2858 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0095 article-title: d-glucuronic acid coated GD(IO3)3•2H2O nanomaterial as a potential T1 MRI-CT dual contrast agent publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201201481 – volume: 110 start-page: 3146 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0019 article-title: Multimodality imaging probes: design and challenges publication-title: Chem. Rev. doi: 10.1021/cr9003538 – volume: 6 start-page: 2488 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0115 article-title: Chemically engineered persistent luminescence nanoprobes for bioimaging publication-title: Theranostics doi: 10.7150/thno.16589 – volume: 110 start-page: 2921 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0158 article-title: and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics publication-title: Chem. Rev. doi: 10.1021/cr900232t – volume: 19 start-page: 853 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0056 article-title: Combined optical and MR bioimaging using rare earth ion doped NayF4 nanocrystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200800765 – volume: 151 start-page: 474 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0172 article-title: Nanoparticles for molecular imaging–an overview publication-title: Endocrinology doi: 10.1210/en.2009-1012 – volume: 65 start-page: 557 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0023 article-title: An introduction to functional and molecular imaging with MRI publication-title: Clin. Radiol. doi: 10.1016/j.crad.2010.04.006 – volume: 52 start-page: 1128 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0067 article-title: Breakdown of crystallographic site symmetry in lanthanide‐doped NayF4 crystals publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201208218 – volume: 26 start-page: 8959 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0104 article-title: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging publication-title: Langmuir doi: 10.1021/la904751q – volume: 25 start-page: 331 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0119 article-title: Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401612 – volume: 119 start-page: 957 year: 2019 ident: 10.1016/j.actbio.2020.03.047_bib0010 article-title: Chemistry of mri contrast agents: current challenges and new frontiers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00363 – volume: 23 start-page: 298 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0054 article-title: Gd3+-ion-doped upconversion nanoprobes: relaxivity mechanism probing and sensitivity optimization publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201469 – volume: 34 start-page: 749 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0151 article-title: Synergistically enhance magnetic resonance/fluorescence imaging performance of responsive polymeric nanoparticles under mildly acidic biological milieu publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201200613 – volume: 3 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0047 article-title: Current advance in lanthanide-doped upconversion nanostructures for detection and bioapplication publication-title: Adv. Sci. doi: 10.1002/advs.201600029 – volume: 17 start-page: 545 year: 2003 ident: 10.1016/j.actbio.2020.03.047_bib0003 article-title: Molecular imaging in living subjects: seeing fundamental biological processes in a new light publication-title: Genes. Dev. doi: 10.1101/gad.1047403 – volume: 7 start-page: 18759 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0092 article-title: Facile synthesis of GD-CU-IN-S/ZNS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05372 – start-page: 173 issue: 57 year: 2005 ident: 10.1016/j.actbio.2020.03.047_bib0027 article-title: Gd(III)-based contrast agents for MRI publication-title: Adv. Inorg. Chem. doi: 10.1016/S0898-8838(05)57004-1 – volume: 21 start-page: 4467 year: 2009 ident: 10.1016/j.actbio.2020.03.047_bib0073 article-title: Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent publication-title: Adv. Mater. doi: 10.1002/adma.200901356 – volume: 39 start-page: 7363 year: 2015 ident: 10.1016/j.actbio.2020.03.047_bib0133 article-title: Fluorescein isothiocyanate embedded silica spheres in gadolinium carbonate shells as novel magnetic resonance imaging and fluorescence bi-modal contrast agents publication-title: New J. Chem. doi: 10.1039/C5NJ00537J – volume: 51 start-page: 1437 year: 2012 ident: 10.1016/j.actbio.2020.03.047_bib0069 article-title: A high-performance ytterbium based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201106686 – volume: 4 start-page: 3489 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0145 article-title: MAGfect: a novel liposome formulation for mri labelling and visualization of cells publication-title: Org. Biomol. Chem. doi: 10.1039/b605394g – volume: 2 start-page: 975 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0043 article-title: Applications of molecular mri and optical imaging in cancer publication-title: Future Med. Chem. doi: 10.4155/fmc.10.25 – volume: 44 start-page: 5764 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0088 article-title: Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging publication-title: Chem. Commun. doi: 10.1039/b812302k – volume: 12 start-page: 1285 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0093 article-title: Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery publication-title: J. Nanopart. Res. doi: 10.1007/s11051-010-9848-y – volume: 7 start-page: 663 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0051 article-title: Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201200052 – year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0031 article-title: Recent advances in understanding magnetic nanoparticles in ac magnetic fields and optimal design for targeted hyperthermia publication-title: J. Nanomater. doi: 10.1155/2013/752973 – volume: 12 start-page: 1553 year: 2016 ident: 10.1016/j.actbio.2020.03.047_bib0004 article-title: Nanoparticulate contrast agents for multimodality molecular imaging publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2016.2258 – volume: 8 start-page: 6210 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0034 article-title: PET-MR and SPECT-MR multimodality probes: development and challenges publication-title: Theranostics doi: 10.7150/thno.26610 – volume: 312 start-page: 105 year: 2006 ident: 10.1016/j.actbio.2020.03.047_bib0136 article-title: Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2006.01.002 – volume: 58 start-page: 1164 year: 2007 ident: 10.1016/j.actbio.2020.03.047_bib0150 article-title: Molecular imaging of macrophages in atherosclerotic plaques using bimodal PEG-micelles publication-title: Magn. Reason. Med. doi: 10.1002/mrm.21315 – volume: 22 start-page: 2729 year: 2010 ident: 10.1016/j.actbio.2020.03.047_bib0030 article-title: Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles publication-title: Adv Mater doi: 10.1002/adma.201000260 – volume: 6 start-page: 10463 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0070 article-title: Controllable fabrication of rare-earth-doped Gd2O2SO4@SiO2 double-shell hollow spheres for efficient upconversion luminescence and magnetic resonance imaging publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b01828 – volume: 29 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0105 article-title: Effect of EU doping concentration on fluorescence and magnetic resonance imaging properties of Gd2O3:Eu3+ nanoparticles used as dual-modal contrast agent publication-title: Nanotechnology doi: 10.1088/1361-6528/aad347 – volume: 10 start-page: 685 year: 2018 ident: 10.1016/j.actbio.2020.03.047_bib0167 article-title: Near-infrared light-mediated rare-earth nanocrystals: recent advances in improving photon conversion and alleviating the thermal effect publication-title: NPG Asia Materials doi: 10.1038/s41427-018-0065-y – volume: 37 start-page: 1301 year: 2013 ident: 10.1016/j.actbio.2020.03.047_bib0013 article-title: MR spectroscopic imaging: principles and recent advances publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.23945 – volume: 19 start-page: 2471 year: 2008 ident: 10.1016/j.actbio.2020.03.047_bib0130 article-title: Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging publication-title: Bioconjuge Chem doi: 10.1021/bc800368x – volume: 50 start-page: 10608 year: 2011 ident: 10.1016/j.actbio.2020.03.047_bib0122 article-title: Mutifuntional GDPO:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties publication-title: Inorg Chem. doi: 10.1021/ic200867a |
SSID | ssj0038128 |
Score | 2.490053 |
SecondaryResourceType | review_article |
Snippet | Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment... Gd -based contrast agents have been extensively used for signal enhancement of T -weighted magnetic resonance imaging (MRI) due to the large magnetic moment... |
SourceID | swepub proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15 |
SubjectTerms | Bimodality imaging probe Biocompatibility Conjugation Contrast agent Contrast agents Contrast Media Diagnostic systems Diethylenetriamine pentaacetic acid Electron spin Gadolinium Liposomes Magnetic moments Magnetic Resonance Imaging Magnetic Resonance Spectroscopy Medical imaging Micelles MRI Nanomaterials Nanoparticles Optical Imaging Plasma proteins Polymers Probes Relaxation time Sensitivity Spatial discrimination Spatial resolution |
Title | Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging |
URI | https://dx.doi.org/10.1016/j.actbio.2020.03.047 https://www.ncbi.nlm.nih.gov/pubmed/32335310 https://www.proquest.com/docview/2440936818 https://www.proquest.com/docview/2395258498 http://kipublications.ki.se/Default.aspx?queryparsed=id |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QIHRHkutFWQEDez3thxkmNVURYQvbCIcrJie0IDbLai2Su_vTPOQxSQKnHLYyx5x5OZz96ZbwBeyIX3qBcoFsFzSQ5WonJBiqzWhQ91pk08h_xwapaf9Luz7GwHjsdaGE6rHHx_79Ojtx6ezAdtzi-aZv6RsHSac4RmVF8UzAmqdc5W_urXlOZBASn2V2VhwdJj-VzM8ap85xouAUxlpDrlJiv_Dk9_w88_uEVjPDq5B3cHIJkc9XPdgx1s78Od3-gFH8CXN8zX1LTNdi04WoXE0coEGsVtZPAy6TYJtue87slqIT7HU1KSWldfW65tTGgrvmFCDqStdTzzTpp17Gr0EFYnr1fHSzG0UhBel7oTNSqJLmPXJ9GYOuS1LwKmps7QhWCcIygQyrzyKJ3HWstKe-MrJwMzwqlHsNtuWnwCic90SrAszUOgvaGrS505I3OHBZYGvZqBGhVo_UAzzt0uftgxn-yb7dVuWe1WKktqn4GYRl30NBs3yOfj2thr5mIpEtwwcn9cSjt8rpeWMI4slSHwMoPn02v60Pjfk6rFzZZkFP1qgmslyTzuTWCaqkqVImcmZ_Cyt4npDbN3D4--0xVaowkgm6f_Pf9ncJvv-ozhfdjtfm7xgHBR5w6j4R_CraO375enVyEmDrI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPFe9uKRAk4GbWGztOcuCAgLKljwuLKCcrtic0hc1WbFaICz-KX8iM8xAvqRJSb1FsR97xeOazd-Ybxh6JiXOgJsAn3lFKDhS8sF7wpFSZ82WidLiHPDzS03fqzXFyvMZ-9LkwFFbZ2f7Wpgdr3b0Zd9Icn1XV-C1i6TglD02oPstUF1m5D9--4rlt-WzvJS7y4zjefTV7MeVdaQHuVK4aXoIUYBMyBQK0Ln1ausxDrMsErPfaWnSNPk8LB8I6KJUolNOusMITQ5rEz15ilxVaC6qa8PT7EFaCDjDUc6XJcZpdn64XYsoK19iKUg5jEahVqajLv93h33D3Dy7T4P92r7HNDrhGz1vZXGdrUN9gG7_QGd5kH14TP1RVV6s5J-_oI4ua4HEUla2BZdQsIqhPSM-i2YS_D7ey2GtefKwplzLCo_-CCEAAj_Lhjj2q5qGK0i02uwj53mbr9aKGLRa5RMUIA-PUezyL2jJXidUitZBBrsHJEZO9AI3raM2pusZn08evnZpW7IbEboQ0KPYR48Oos5bW45z-ab825jf1NOh5zhm50y-l6czD0iCmErnUCJZG7OHQjBub_q0palissI_EX43wMMc-d1oVGKYqYynReIoRe9LqxNBCbOHdq0_4BEYrBOR6-7_n_4Bdmc4OD8zB3tH-XXaVWtpo5R223nxZwT3EZI29HzZBxMwFb7qfCQtMwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gadolinium-based+bimodal+probes+to+enhance+T1-Weighted+magnetic+resonance%2Foptical+imaging&rft.jtitle=Acta+biomaterialia&rft.au=Yang%2C+Chang-Tong&rft.au=Hattiholi%2C+Aishwarya&rft.au=Selvan%2C+Subramanian+Tamil&rft.au=Yan%2C+Sean+Xuexian&rft.date=2020-07-01&rft.issn=1742-7061&rft.volume=110&rft.spage=15&rft.epage=36&rft_id=info:doi/10.1016%2Fj.actbio.2020.03.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2020_03_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |