Value of Virtual Touch Quantification Elastography for Assessing Liver Congestion in Patients With Heart Failure

Background:Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to de...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 80; no. 5; pp. 1187 - 1195
Main Authors Yoshitani, Takashi, Asakawa, Naoya, Sakakibara, Mamoru, Noguchi, Keiji, Tokuda, Yusuke, Kamiya, Kiwamu, Iwano, Hiroyuki, Yamada, Satoshi, Kudou, Yusuke, Nishida, Mutsumi, Shimizu, Chikara, Amano, Toraji, Tsutsui, Hiroyuki
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 25.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background:Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to determine its value for assessing organ congestion in patients with HF.Methods and Results:This study included 10 normal subjects and 38 HF patients (age 52.3±16.7 years, left ventricular ejection fraction 27.0±9.4%, plasma B-type natriuretic peptide [BNP] 1,297.3±1,155.1 pg/ml). We investigated the relationships between clinical characteristics and hemodynamics and liver and kidney stiffness, and assessed the effects of medical treatment on these measurements. Liver stiffness was significantly higher in HF patients (1.17±0.13 m/s vs. 2.03±0.91 m/s, P=0.004) compared with normal subjects, but kidney stiffness was similar in both groups. Central venous pressure (CVP) (P=0.021) and BNP (P=0.025) were independent predictive factors for increased liver stiffness in HF patients. Liver stiffness decreased significantly from 2.37±1.09 to 1.27±0.33 m/s (P<0.001) after treatment. Changes in liver stiffness in HF patients significantly correlated with changes in CVP (R=0.636, P=0.014) and cardiac index (R=−0.557, P=0.039) according to univariate analysis, and with changes in CVP in multivariate analysis.Conclusions:Liver stiffness measured by noninvasive VTQ methods can be used to assess liver congestion and therapeutic effects in patients with HF. (Circ J 2016; 80: 1187–1195)
AbstractList Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to determine its value for assessing organ congestion in patients with HF. This study included 10 normal subjects and 38 HF patients (age 52.3±16.7 years, left ventricular ejection fraction 27.0±9.4%, plasma B-type natriuretic peptide [BNP] 1,297.3±1,155.1 pg/ml). We investigated the relationships between clinical characteristics and hemodynamics and liver and kidney stiffness, and assessed the effects of medical treatment on these measurements. Liver stiffness was significantly higher in HF patients (1.17±0.13 m/s vs. 2.03±0.91 m/s, P=0.004) compared with normal subjects, but kidney stiffness was similar in both groups. Central venous pressure (CVP) (P=0.021) and BNP (P=0.025) were independent predictive factors for increased liver stiffness in HF patients. Liver stiffness decreased significantly from 2.37±1.09 to 1.27±0.33 m/s (P<0.001) after treatment. Changes in liver stiffness in HF patients significantly correlated with changes in CVP (R=0.636, P=0.014) and cardiac index (R=-0.557, P=0.039) according to univariate analysis, and with changes in CVP in multivariate analysis. Liver stiffness measured by noninvasive VTQ methods can be used to assess liver congestion and therapeutic effects in patients with HF. (Circ J 2016; 80: 1187-1195).
Background:Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to determine its value for assessing organ congestion in patients with HF.Methods and Results:This study included 10 normal subjects and 38 HF patients (age 52.3±16.7 years, left ventricular ejection fraction 27.0±9.4%, plasma B-type natriuretic peptide [BNP] 1,297.3±1,155.1 pg/ml). We investigated the relationships between clinical characteristics and hemodynamics and liver and kidney stiffness, and assessed the effects of medical treatment on these measurements. Liver stiffness was significantly higher in HF patients (1.17±0.13 m/s vs. 2.03±0.91 m/s, P=0.004) compared with normal subjects, but kidney stiffness was similar in both groups. Central venous pressure (CVP) (P=0.021) and BNP (P=0.025) were independent predictive factors for increased liver stiffness in HF patients. Liver stiffness decreased significantly from 2.37±1.09 to 1.27±0.33 m/s (P<0.001) after treatment. Changes in liver stiffness in HF patients significantly correlated with changes in CVP (R=0.636, P=0.014) and cardiac index (R=−0.557, P=0.039) according to univariate analysis, and with changes in CVP in multivariate analysis.Conclusions:Liver stiffness measured by noninvasive VTQ methods can be used to assess liver congestion and therapeutic effects in patients with HF. (Circ J 2016; 80: 1187–1195)
Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to determine its value for assessing organ congestion in patients with HF.BACKGROUNDHeart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess liver stiffness in patients with chronic liver diseases. This study aimed to measure liver and kidney stiffness using VTQ and to determine its value for assessing organ congestion in patients with HF.This study included 10 normal subjects and 38 HF patients (age 52.3±16.7 years, left ventricular ejection fraction 27.0±9.4%, plasma B-type natriuretic peptide [BNP] 1,297.3±1,155.1 pg/ml). We investigated the relationships between clinical characteristics and hemodynamics and liver and kidney stiffness, and assessed the effects of medical treatment on these measurements. Liver stiffness was significantly higher in HF patients (1.17±0.13 m/s vs. 2.03±0.91 m/s, P=0.004) compared with normal subjects, but kidney stiffness was similar in both groups. Central venous pressure (CVP) (P=0.021) and BNP (P=0.025) were independent predictive factors for increased liver stiffness in HF patients. Liver stiffness decreased significantly from 2.37±1.09 to 1.27±0.33 m/s (P<0.001) after treatment. Changes in liver stiffness in HF patients significantly correlated with changes in CVP (R=0.636, P=0.014) and cardiac index (R=-0.557, P=0.039) according to univariate analysis, and with changes in CVP in multivariate analysis.METHODS AND RESULTSThis study included 10 normal subjects and 38 HF patients (age 52.3±16.7 years, left ventricular ejection fraction 27.0±9.4%, plasma B-type natriuretic peptide [BNP] 1,297.3±1,155.1 pg/ml). We investigated the relationships between clinical characteristics and hemodynamics and liver and kidney stiffness, and assessed the effects of medical treatment on these measurements. Liver stiffness was significantly higher in HF patients (1.17±0.13 m/s vs. 2.03±0.91 m/s, P=0.004) compared with normal subjects, but kidney stiffness was similar in both groups. Central venous pressure (CVP) (P=0.021) and BNP (P=0.025) were independent predictive factors for increased liver stiffness in HF patients. Liver stiffness decreased significantly from 2.37±1.09 to 1.27±0.33 m/s (P<0.001) after treatment. Changes in liver stiffness in HF patients significantly correlated with changes in CVP (R=0.636, P=0.014) and cardiac index (R=-0.557, P=0.039) according to univariate analysis, and with changes in CVP in multivariate analysis.Liver stiffness measured by noninvasive VTQ methods can be used to assess liver congestion and therapeutic effects in patients with HF. (Circ J 2016; 80: 1187-1195).CONCLUSIONSLiver stiffness measured by noninvasive VTQ methods can be used to assess liver congestion and therapeutic effects in patients with HF. (Circ J 2016; 80: 1187-1195).
Author Yamada, Satoshi
Tsutsui, Hiroyuki
Kudou, Yusuke
Yoshitani, Takashi
Noguchi, Keiji
Asakawa, Naoya
Kamiya, Kiwamu
Tokuda, Yusuke
Sakakibara, Mamoru
Iwano, Hiroyuki
Nishida, Mutsumi
Shimizu, Chikara
Amano, Toraji
Author_xml – sequence: 1
  fullname: Yoshitani, Takashi
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 2
  fullname: Asakawa, Naoya
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 3
  fullname: Sakakibara, Mamoru
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 4
  fullname: Noguchi, Keiji
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 5
  fullname: Tokuda, Yusuke
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 6
  fullname: Kamiya, Kiwamu
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 7
  fullname: Iwano, Hiroyuki
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 8
  fullname: Yamada, Satoshi
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
– sequence: 9
  fullname: Kudou, Yusuke
  organization: Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
– sequence: 10
  fullname: Nishida, Mutsumi
  organization: Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
– sequence: 11
  fullname: Shimizu, Chikara
  organization: Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital
– sequence: 12
  fullname: Amano, Toraji
  organization: Clinical Research and Medical Innovation Center, Hokkaido University Hospital
– sequence: 13
  fullname: Tsutsui, Hiroyuki
  organization: Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27026257$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vFCEYh4mpsR9692Q4epnKN8yxmXStzSZqUuuRMAzsspmFFRiT_vfOftQmHrwAh-d5w_v7XYKzmKID4D1G15hw-smGbDfX3X2DeYMJQq_ABaZMNkwRdHZ4i6ZVjJ6Dy1I2CJEW8fYNOCcSEUG4vAC7RzNODiYPH0OukxnhQ5rsGn6fTKzBB2tqSBHejqbUtMpmt36CPmV4U4orJcQVXIbfLsMuxZUrBzZE-G22XKwF_gx1De-cyRUuTBin7N6C196Mxb073Vfgx-L2obtrll8_f-lulo1lLauNF044iyUTnHiFuES9kqz3ZKBUGTlgasWgpFWmp9gzRCVTvG8FlcgQ1g_0Cnw8zt3l9Guav6a3oVg3jia6NBWNpWJMUIb4jH44oVO_dYPe5bA1-Uk_pzQD4gjYnErJzmsb6iGYmuetNEZ6X4c-1KG7e4253tcxi-gf8Xn2f5TFUdmUalburzBHGOzoToJCmu-PF_EFWJusXaR_APpIqDc
CitedBy_id crossref_primary_10_1016_j_jacbts_2021_07_010
crossref_primary_10_1007_s00330_022_09209_0
crossref_primary_10_1161_JAHA_120_016689
crossref_primary_10_1515_jbcpp_2022_0211
crossref_primary_10_1007_s00392_024_02513_3
crossref_primary_10_1007_s40477_024_00873_0
crossref_primary_10_1007_s12574_021_00541_w
crossref_primary_10_1002_ehf2_14038
crossref_primary_10_1253_circj_CJ_18_1313
crossref_primary_10_1007_s00261_019_02083_3
crossref_primary_10_1136_openhrt_2017_000598
crossref_primary_10_1111_jvim_16705
crossref_primary_10_1536_ihj_21_606
crossref_primary_10_1016_j_diii_2016_08_011
crossref_primary_10_1371_journal_pone_0186720
crossref_primary_10_1007_s00380_018_1318_y
crossref_primary_10_3390_ijms242115665
crossref_primary_10_3390_medicina60121943
crossref_primary_10_1007_s10620_018_5085_5
crossref_primary_10_1007_s10147_022_02235_4
crossref_primary_10_1007_s10396_019_00953_3
crossref_primary_10_1016_j_jcmg_2020_03_015
crossref_primary_10_13105_wjma_v11_i7_340
crossref_primary_10_3748_wjg_v26_i24_3413
crossref_primary_10_1007_s00380_019_01477_z
Cites_doi 10.1016/j.jacc.2013.04.070
10.1253/circj.CJ-15-1133
10.1093/eurheartj/ehs104
10.1016/j.jacc.2008.05.068
10.1016/S0002-9149(02)02886-2
10.1253/circj.CJ-09-0062
10.1016/j.jhep.2009.11.018
10.1253/circj.70.1617
10.1002/hep.23425
10.1007/s00535-010-0365-7
10.1093/eurheartj/ehp507
10.1253/circj.CJ-15-0852
10.1016/j.amjcard.2013.10.018
10.1136/heartjnl-2014-307385
10.1253/circj.CJ-14-0929
10.1016/j.ultrasmedbio.2003.07.001
10.1097/MEG.0b013e328339e0a1
10.1007/s11897-014-0238-0
10.1007/s11547-010-0504-5
10.1016/j.amjcard.2005.03.003
10.1093/eurjhf/hfs044
10.1161/CIR.0b013e31829e8807
10.1161/CIRCULATIONAHA.106.632208
10.1111/liv.12240
10.1038/nrneph.2009.156
10.1111/j.1440-1746.2010.06437.x
10.1007/s11897-014-0206-8
10.1016/j.echo.2007.01.005
10.1253/circj.CJ-15-0723
10.1148/radiol.10100013
ContentType Journal Article
Copyright 2016 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2016 THE JAPANESE CIRCULATION SOCIETY
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1253/circj.CJ-15-1200
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 1195
ExternalDocumentID 27026257
10_1253_circj_CJ_15_1200
article_circj_80_5_80_CJ_15_1200_article_char_en
Genre Journal Article
GroupedDBID ---
.55
29B
2WC
53G
5GY
5RE
6J9
AAUGY
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
M~E
OK1
P2P
RJT
RNS
RZJ
TR2
W2D
X7M
XSB
ZXP
.GJ
3O-
AAYXX
CITATION
OVT
TKC
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c494t-f6e6ec174652f80570b874bf2d338a7d13c6d87c8ab31f4037485b96370a24bd3
ISSN 1346-9843
1347-4820
IngestDate Thu Jul 10 23:59:32 EDT 2025
Mon Jul 21 06:02:52 EDT 2025
Tue Jul 01 02:01:17 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Thu Aug 17 20:27:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-f6e6ec174652f80570b874bf2d338a7d13c6d87c8ab31f4037485b96370a24bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/80/5/80_CJ-15-1200/_article/-char/en
PMID 27026257
PQID 1784463405
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1784463405
pubmed_primary_27026257
crossref_citationtrail_10_1253_circj_CJ_15_1200
crossref_primary_10_1253_circj_CJ_15_1200
jstage_primary_article_circj_80_5_80_CJ_15_1200_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Apr-25
PublicationDateYYYYMMDD 2016-04-25
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-Apr-25
  day: 25
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2016
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 9. Poelzl G, Auer J. Cardiohepatic syndrome. Curr Heart Fail Rep 2015; 12: 68–78.
4. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology: Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012; 33: 1787–1847.
5. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31: 703–711.
7. Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, et al. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan: Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 2009; 73: 1442–1447.
8. Laribi S, Mebazaa A. Cardiohepatic syndrome: Liver injury in decompensated heart failure. Curr Heart Fail Rep 2014; 11: 236–240.
10. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006; 114: 1883–1891.
12. Nakagawa Y, Yasuno S, Kuwahara K. Differential relationships between anemia and outcome in subgroups of patients with chronic heart failure. Circ J 2015; 79: 1893–1894.
19. Gallotti A, D’Onofrio M, Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol Med 2010; 115: 889–897.
1. Goto Y. Exercise capacity: Just a powerful prognostic predictor, or a potential therapeutic target in patients with chronic heart failure? Circ J 2015; 79: 2547–2548.
16. Wong VW, Chan HL. Transient elastography. J Gastroenterol Hepatol 2010; 25: 1726–1731.
3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American College ofCardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128: 1810–1852.
31. Hopper I, Kemp W, Porapakkham P, Sata Y, Condon E, Skiba M, et al. Impact of heart failure and changes to volume status on liver stiffness: Non-invasive assessment using transient elastography. Eur J Heart Fail 2012; 14: 621–627.
21. Alegre F, Herrero JI, Inarrairaegui M, Gavira JJ, Pujol C, Montero A, et al. Increased liver stiffness values in patients with heart failure. Acta Gastroenterol Belg 2013; 76: 246–250.
29. Taniguchi T, Sakata Y, Ohtani T, Mizote I, Takeda Y, Asano Y, et al. Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure. Am J Cardiol 2014; 113: 552–558.
2. Tsutsui H, Tsuchihashi-Makaya M, Kinugawa S, Goto D, Takeshita A. Clinical characteristics and outcome of hospitalized patients with heart failure in Japan. Circ J 2006; 70: 1617–1623.
6. Shamseddin MK, Parfrey PS. Mechanisms of the cardiorenal syndromes. Nat Rev Nephrol 2009; 5: 641–649.
13. Lau GT, Tan HC, Kritharides L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am J Cardiol 2002; 90: 1405–1409.
11. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 2005; 95: 8b–13b.
26. Sakaguchi T, Yasumura K, Nishida H, Inoue H, Furukawa T, Shinouchi K, et al. Quantitative assessment of fluid accumulation using bioelectrical impedance analysis in patients with acute decompensated heart failure. Circ J 2015; 79: 2616–2622.
14. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589–596.
22. Millonig G, Friedrich S, Adolf S, Fonouni H, Golriz M, Mehrabi A, et al. Liver stiffness is directly influenced by central venous pressure. J Hepatol 2010; 52: 206–210.
28. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007; 20: 857–861.
15. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 2013; 62: 485–495.
17. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705–1713.
18. Boursier J, Isselin G, Fouchard-Hubert I, Oberti F, Dib N, Lebigot J, et al. Acoustic radiation force impulse: A new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur J Gastroenterol Hepatol 2010; 22: 1074–1084.
25. Castera L, Foucher J, Bernard PH, Carvalho F, Allaix D, Merrouche W, et al. Pitfalls of liver stiffness measurement: A 5-year prospective study of 13,369 examinations. Hepatology 2010; 51: 828–835.
30. Jalal Z, Iriart X, De Ledinghen V, Barnetche T, Hiriart JB, Vergniol J, et al. Liver stiffness measurements for evaluation of central venous pressure in congenital heart diseases. Heart 2015; 101: 1499–1504.
23. Nishi H, Toda K, Miyagawa S, Yoshikawa Y, Fukushima S, Kawamura M, et al. Novel method of evaluating liver stiffness using transient elastography to evaluate perioperative status in severe heart failure. Circ J 2015; 79: 391–397.
24. Bota S, Herkner H, Sporea I, Salzl P, Sirli R, Neghina AM, et al. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int 2013; 33: 1138–1147.
27. Toshima T, Shirabe K, Takeishi K, Motomura T, Mano Y, Uchiyama H, et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: A special reference to the difference between right and left liver. J Gastroenterol 2011; 46: 705–711.
20. Colli A, Pozzoni P, Berzuini A, Gerosa A, Canovi C, Molteni EE, et al. Decompensated chronic heart failure: Increased liver stiffness measured by means of transient elastography. Radiology 2010; 257: 872–878.
22
23
24
25
26
27
28
29
30
31
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 11. Chatterjee K. Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 2005; 95: 8b–13b.
– reference: 29. Taniguchi T, Sakata Y, Ohtani T, Mizote I, Takeda Y, Asano Y, et al. Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure. Am J Cardiol 2014; 113: 552–558.
– reference: 2. Tsutsui H, Tsuchihashi-Makaya M, Kinugawa S, Goto D, Takeshita A. Clinical characteristics and outcome of hospitalized patients with heart failure in Japan. Circ J 2006; 70: 1617–1623.
– reference: 31. Hopper I, Kemp W, Porapakkham P, Sata Y, Condon E, Skiba M, et al. Impact of heart failure and changes to volume status on liver stiffness: Non-invasive assessment using transient elastography. Eur J Heart Fail 2012; 14: 621–627.
– reference: 25. Castera L, Foucher J, Bernard PH, Carvalho F, Allaix D, Merrouche W, et al. Pitfalls of liver stiffness measurement: A 5-year prospective study of 13,369 examinations. Hepatology 2010; 51: 828–835.
– reference: 30. Jalal Z, Iriart X, De Ledinghen V, Barnetche T, Hiriart JB, Vergniol J, et al. Liver stiffness measurements for evaluation of central venous pressure in congenital heart diseases. Heart 2015; 101: 1499–1504.
– reference: 27. Toshima T, Shirabe K, Takeishi K, Motomura T, Mano Y, Uchiyama H, et al. New method for assessing liver fibrosis based on acoustic radiation force impulse: A special reference to the difference between right and left liver. J Gastroenterol 2011; 46: 705–711.
– reference: 16. Wong VW, Chan HL. Transient elastography. J Gastroenterol Hepatol 2010; 25: 1726–1731.
– reference: 9. Poelzl G, Auer J. Cardiohepatic syndrome. Curr Heart Fail Rep 2015; 12: 68–78.
– reference: 18. Boursier J, Isselin G, Fouchard-Hubert I, Oberti F, Dib N, Lebigot J, et al. Acoustic radiation force impulse: A new ultrasonographic technology for the widespread noninvasive diagnosis of liver fibrosis. Eur J Gastroenterol Hepatol 2010; 22: 1074–1084.
– reference: 10. Voelkel NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006; 114: 1883–1891.
– reference: 13. Lau GT, Tan HC, Kritharides L. Type of liver dysfunction in heart failure and its relation to the severity of tricuspid regurgitation. Am J Cardiol 2002; 90: 1405–1409.
– reference: 19. Gallotti A, D’Onofrio M, Pozzi Mucelli R. Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen. Radiol Med 2010; 115: 889–897.
– reference: 20. Colli A, Pozzoni P, Berzuini A, Gerosa A, Canovi C, Molteni EE, et al. Decompensated chronic heart failure: Increased liver stiffness measured by means of transient elastography. Radiology 2010; 257: 872–878.
– reference: 3. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary: A report of the American College ofCardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128: 1810–1852.
– reference: 24. Bota S, Herkner H, Sporea I, Salzl P, Sirli R, Neghina AM, et al. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int 2013; 33: 1138–1147.
– reference: 12. Nakagawa Y, Yasuno S, Kuwahara K. Differential relationships between anemia and outcome in subgroups of patients with chronic heart failure. Circ J 2015; 79: 1893–1894.
– reference: 15. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 2013; 62: 485–495.
– reference: 5. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: Report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31: 703–711.
– reference: 1. Goto Y. Exercise capacity: Just a powerful prognostic predictor, or a potential therapeutic target in patients with chronic heart failure? Circ J 2015; 79: 2547–2548.
– reference: 4. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology: Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012; 33: 1787–1847.
– reference: 17. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, et al. Transient elastography: A new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705–1713.
– reference: 26. Sakaguchi T, Yasumura K, Nishida H, Inoue H, Furukawa T, Shinouchi K, et al. Quantitative assessment of fluid accumulation using bioelectrical impedance analysis in patients with acute decompensated heart failure. Circ J 2015; 79: 2616–2622.
– reference: 6. Shamseddin MK, Parfrey PS. Mechanisms of the cardiorenal syndromes. Nat Rev Nephrol 2009; 5: 641–649.
– reference: 14. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589–596.
– reference: 28. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr 2007; 20: 857–861.
– reference: 7. Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, et al. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan: Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 2009; 73: 1442–1447.
– reference: 22. Millonig G, Friedrich S, Adolf S, Fonouni H, Golriz M, Mehrabi A, et al. Liver stiffness is directly influenced by central venous pressure. J Hepatol 2010; 52: 206–210.
– reference: 8. Laribi S, Mebazaa A. Cardiohepatic syndrome: Liver injury in decompensated heart failure. Curr Heart Fail Rep 2014; 11: 236–240.
– reference: 23. Nishi H, Toda K, Miyagawa S, Yoshikawa Y, Fukushima S, Kawamura M, et al. Novel method of evaluating liver stiffness using transient elastography to evaluate perioperative status in severe heart failure. Circ J 2015; 79: 391–397.
– reference: 21. Alegre F, Herrero JI, Inarrairaegui M, Gavira JJ, Pujol C, Montero A, et al. Increased liver stiffness values in patients with heart failure. Acta Gastroenterol Belg 2013; 76: 246–250.
– ident: 15
  doi: 10.1016/j.jacc.2013.04.070
– ident: 1
  doi: 10.1253/circj.CJ-15-1133
– ident: 4
  doi: 10.1093/eurheartj/ehs104
– ident: 14
  doi: 10.1016/j.jacc.2008.05.068
– ident: 13
  doi: 10.1016/S0002-9149(02)02886-2
– ident: 7
  doi: 10.1253/circj.CJ-09-0062
– ident: 22
  doi: 10.1016/j.jhep.2009.11.018
– ident: 2
  doi: 10.1253/circj.70.1617
– ident: 25
  doi: 10.1002/hep.23425
– ident: 27
  doi: 10.1007/s00535-010-0365-7
– ident: 5
  doi: 10.1093/eurheartj/ehp507
– ident: 12
  doi: 10.1253/circj.CJ-15-0852
– ident: 29
  doi: 10.1016/j.amjcard.2013.10.018
– ident: 30
  doi: 10.1136/heartjnl-2014-307385
– ident: 23
  doi: 10.1253/circj.CJ-14-0929
– ident: 17
  doi: 10.1016/j.ultrasmedbio.2003.07.001
– ident: 18
  doi: 10.1097/MEG.0b013e328339e0a1
– ident: 9
  doi: 10.1007/s11897-014-0238-0
– ident: 19
  doi: 10.1007/s11547-010-0504-5
– ident: 11
  doi: 10.1016/j.amjcard.2005.03.003
– ident: 31
  doi: 10.1093/eurjhf/hfs044
– ident: 3
  doi: 10.1161/CIR.0b013e31829e8807
– ident: 10
  doi: 10.1161/CIRCULATIONAHA.106.632208
– ident: 24
  doi: 10.1111/liv.12240
– ident: 6
  doi: 10.1038/nrneph.2009.156
– ident: 16
  doi: 10.1111/j.1440-1746.2010.06437.x
– ident: 8
  doi: 10.1007/s11897-014-0206-8
– ident: 28
  doi: 10.1016/j.echo.2007.01.005
– ident: 26
  doi: 10.1253/circj.CJ-15-0723
– ident: 21
– ident: 20
  doi: 10.1148/radiol.10100013
SSID ssj0029059
Score 2.3047898
Snippet Background:Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used...
Heart failure (HF) causes organ congestion, which is thought to increase organ stiffness. The virtual touch quantification (VTQ) method can be used to assess...
SourceID proquest
pubmed
crossref
jstage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1187
SubjectTerms Adult
Aged
Case-Control Studies
Central Venous Pressure - physiology
Congestion
Elasticity Imaging Techniques - methods
Elastography
Heart failure
Heart Failure - complications
Humans
Liver Diseases - diagnostic imaging
Liver Diseases - etiology
Middle Aged
Natriuretic Peptide, Brain - blood
Organ stiffness
Title Value of Virtual Touch Quantification Elastography for Assessing Liver Congestion in Patients With Heart Failure
URI https://www.jstage.jst.go.jp/article/circj/80/5/80_CJ-15-1200/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/27026257
https://www.proquest.com/docview/1784463405
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2016/04/25, Vol.80(5), pp.1187-1195
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZN8Zexu7LbmiwlxGc-iLZ8tMYoaUEOgZLS96MLdmN0ywujs3Y_uz-yo4ukd3QjHUvxhGSYvt8PkfHOuc7CH0gngho7KWOH_DYIVTEoAczOPNhNUFSn-eqfNvpl_DkjEzndD4Y_O5FLbVNNua_bswr-R-pQhvIVWbJ3kKydlJogHOQLxxBwnD8Jxmfp6tW-fznZa3yQGZVyxcyUFOHAGnhHsECuTHM1CqqUG_06vQmuGeZ9Sd3mUzU41fNtCoDY5uFTFOqm9FxWq4M9YilNShrbkp_WfqJfZwUcnE7Bassq12O-gNNzGinejaLstFVpkaz9FIWerKI3MDvH6m2CNVPa02-QfNlKfdMdOrR96pu7Rfu6kLWetH5R-Wy7H_i8EK5W6PToY1WDkjoxEzzOY3zbVvkEOa7fVWui0IZyNKeXpZF1Xs2XvLc3Wg_fFUEhMODWI4nU8ejjqeZVHeoundMqA1slC4VzJGoGZLJNPFoIme4g-764MeobPS5jUHyY1dV87P3Z_bRYYbD3Wu4tm66twTX4SLf7xWp1dHsEXpo3Br8WWP0MRrk6yfo_qkJ3HiKrhRUcVVgA1WsoIqvQxX3oYoBqthCFSuo4g6quFzjLVSxhCpWUMUGqs_Q2fHRbHLimGIfDicxaZwizMOcg38cUr9g4EW4GYtIVvgiCFgaCS_goWARZ2kWeAVRtEk0A_MRualPMhE8Rwfrap2_RLiguaQgEkx4LikymgWkKCIhCFgnV3A2RIfbRwmC0hEvsiDLKtknviH6aEdcaRaYv_T9pKVjexr9YHoyN6Hy0I3oOizSGvTaEL3fijUBZS938OAFrdpN4kWMkDAAJ2uIXmh523-RiaUhGOBXt7jW1-hB9769QQdN3eZvYZHdZO8UUP8A4NHX5g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Value+of+Virtual+Touch+Quantification+Elastography+for+Assessing+Liver+Congestion+in+Patients+With+Heart+Failure&rft.jtitle=Circulation+journal+%3A+official+journal+of+the+Japanese+Circulation+Society&rft.au=Yoshitani%2C+Takashi&rft.au=Asakawa%2C+Naoya&rft.au=Sakakibara%2C+Mamoru&rft.au=Noguchi%2C+Keiji&rft.date=2016-04-25&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=80&rft.issue=5&rft.spage=1187&rft.epage=1195&rft_id=info:doi/10.1253%2Fcircj.CJ-15-1200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1253_circj_CJ_15_1200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon