Rethinking feature representation and attention mechanisms in intelligent recognition of leaf pests and diseases in wheat

Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 15624 - 12
Main Authors Zhang, Yuhan, Liu, Dongsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.
AbstractList Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.
Abstract Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.
Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.
ArticleNumber 15624
Author Liu, Dongsheng
Zhang, Yuhan
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Zhang
  fullname: Zhang, Yuhan
  email: jsaj63@163.com
  organization: School of Information Science and Technology, Harbin Institute of Technology (Weihai)
– sequence: 2
  givenname: Dongsheng
  surname: Liu
  fullname: Liu, Dongsheng
  organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40320435$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAkdiwCfgSJ_EKoYpLpUpICNaW40xyfMixD7YD6tszSUppWRBFcez55rf9zzwlJz54IOQ5o68ZFe2bVDGp2pJyWSpFeVOKR-SM00qWXHB-cu__lFyktKf4SK4qpp6Q04oKDAt5Rm6-QN45_935sRjA5DlCEeEYIYHPJrvgC-P7wuSM82V2ALsz3qVDKpzHN8M0uRGDmGbD6N1KhaGYwAzFEVJOq0LvEpgEa9avHe70jDwezJTg4nY8J98-vP96-am8_vzx6vLddWkrVeUShqHtm7YW0siGVRZMA6Jv8Vtb4Kw1kkInW9UjxTpDG1CyqaDtuDWtokKck6tNtw9mr4_RHUy80cE4vS6EOGoTs7MTaNUu_tCh6YSs6k4oDn2tumZgNVNC1qj1dtM6zt0BeovXjmZ6IPow4t1Oj-GnZpxKLBJFhVe3CjH8mNEdfXDJoofGQ5iTxrpgbYRa0Zf_oPswR49eLZQQTUWZROrF_SPdneVPiRHgG2BjSCnCcIcwqpdW0lsraWwlvbaSXkwTW1JC2I8Q_-79n6zfGrzMuA
Cites_doi 10.3390/insects14030278
10.1109/CVPR42600.2020.01079
10.1109/CVPR42600.2020.01155
10.1109/ICCV.2015.169
10.1007/978-3-031-25066-8_9
10.1007/s11042-023-16570-9
10.1016/j.compag.2025.109920
10.1007/978-3-030-01264-9_45
10.1109/CVPR.2018.00913
10.1109/CVPR.2017.690
10.3389/fpls.2023.1150958
10.25165/j.ijabe.20201304.4826
10.1109/CVPR.2017.106
10.1145/3065386
10.1007/s11760-023-02710-z
10.1109/CAC57257.2022.10054894
10.3389/fpls.2020.00898
10.1109/ICCECE61317.2024.10504248
10.1109/TPAMI.2016.2644615
10.1109/ICACITE53722.2022.9823459
10.1109/CVPR.2017.243
10.1609/aaai.v34i07.6999
10.1016/j.engappai.2022.105665
10.1515/biol-2022-0632
10.1109/CVPR.2016.90
10.1109/ICCV.2019.00667
10.1007/s11548-018-1856-x
10.1016/j.compag.2021.106184
10.1109/ICITBS49701.2020.00194
10.1109/CVPR52729.2023.00721
10.1109/CVPR.2016.91
10.1016/j.neucom.2022.07.042
10.1007/s00521-021-06029-z
10.1109/ACCESS.2020.2982456
10.3390/agriculture13091812
10.1109/CVPR.2017.634
10.1016/j.imu.2021.100642
10.1016/j.ecoinf.2023.102340
10.3835/plantgenome2017.11.0104
10.1007/978-3-031-72751-1_1
10.1109/CVPR.2019.00094
10.1007/s12161-022-02251-0
10.1016/j.pmpp.2022.101940
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-99027-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_9894190f7b3546b392ed69b7f1619356
PMC12050270
40320435
10_1038_s41598_025_99027_3
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-eff8d78635a5714cea7e3d8a7e6ce218a50eb589d8d71ba07e9574e8b2ca89033
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:19 EDT 2025
Thu Aug 21 18:27:46 EDT 2025
Fri Jul 11 18:15:00 EDT 2025
Wed Aug 13 05:10:53 EDT 2025
Thu May 08 05:30:50 EDT 2025
Tue Jul 01 05:01:48 EDT 2025
Mon May 05 01:47:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Attention mechanism
Wheat recognition
Prediction model
Big data
Feature fusion
Neural network
Disease recognition
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-eff8d78635a5714cea7e3d8a7e6ce218a50eb589d8d71ba07e9574e8b2ca89033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-99027-3
PMID 40320435
PQID 3203374015
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_9894190f7b3546b392ed69b7f1619356
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12050270
proquest_miscellaneous_3200323970
proquest_journals_3203374015
pubmed_primary_40320435
crossref_primary_10_1038_s41598_025_99027_3
springer_journals_10_1038_s41598_025_99027_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-05
PublicationDateYYYYMMDD 2025-05-05
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 99027_CR13
99027_CR12
99027_CR11
99027_CR10
99027_CR17
99027_CR16
99027_CR15
99027_CR14
L Goyal (99027_CR29) 2021; 25
B Xiao (99027_CR49) 2024; 83
A Krizhevsky (99027_CR5) 2017; 60
S Yang (99027_CR39) 2023; 14
R Gai (99027_CR46) 2023; 35
L Xu (99027_CR1) 2023; 123
99027_CR44
99027_CR43
99027_CR48
Y Bai (99027_CR42) 2023; 13
M Karthikeyan (99027_CR45) 2024; 18
99027_CR6
99027_CR7
99027_CR8
M Villa (99027_CR25) 2018; 13
J Liu (99027_CR35) 2020; 11
JM González-Camacho (99027_CR28) 2018; 11
H Liu (99027_CR41) 2025; 231
K Sabanci (99027_CR32) 2022; 15
99027_CR38
J Dai (99027_CR20) 2016; 29
99027_CR37
99027_CR31
J He (99027_CR51) 2021; 34
M Dong (99027_CR30) 2020; 13
Z Tang (99027_CR40) 2023; 78
99027_CR9
Y Zhang (99027_CR34) 2020; 8
PLT Mbouembe (99027_CR36) 2023; 14
Z Jiang (99027_CR3) 2021; 186
F Yang (99027_CR2) 2024; 6
99027_CR24
99027_CR23
99027_CR22
99027_CR21
99027_CR27
YF Zhang (99027_CR50) 2022; 506
V Badrinarayanan (99027_CR26) 2017; 39
A Vaswani (99027_CR4) 2017; 30
F Mushtaq (99027_CR47) 2023; 118
99027_CR18
J Yao (99027_CR33) 2023; 18
S Ren (99027_CR19) 2015; 28
References_xml – volume: 14
  start-page: 278
  issue: 3
  year: 2023
  ident: 99027_CR39
  publication-title: Insects
  doi: 10.3390/insects14030278
– ident: 99027_CR12
  doi: 10.1109/CVPR42600.2020.01079
– ident: 99027_CR43
  doi: 10.1109/CVPR42600.2020.01155
– ident: 99027_CR18
  doi: 10.1109/ICCV.2015.169
– ident: 99027_CR27
  doi: 10.1007/978-3-031-25066-8_9
– volume: 83
  start-page: 28039
  issue: 9
  year: 2024
  ident: 99027_CR49
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-023-16570-9
– volume: 231
  start-page: 109920
  year: 2025
  ident: 99027_CR41
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2025.109920
– ident: 99027_CR23
  doi: 10.1007/978-3-030-01264-9_45
– ident: 99027_CR13
  doi: 10.1109/CVPR.2018.00913
– ident: 99027_CR15
  doi: 10.1109/CVPR.2017.690
– volume: 14
  start-page: 1150958
  year: 2023
  ident: 99027_CR36
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2023.1150958
– volume: 13
  start-page: 205
  issue: 4
  year: 2020
  ident: 99027_CR30
  publication-title: Int. J. Agricultural Biol. Eng.
  doi: 10.25165/j.ijabe.20201304.4826
– ident: 99027_CR11
  doi: 10.1109/CVPR.2017.106
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 99027_CR5
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 18
  start-page: 119
  issue: 1
  year: 2024
  ident: 99027_CR45
  publication-title: Signal. Image Video Process.
  doi: 10.1007/s11760-023-02710-z
– ident: 99027_CR37
  doi: 10.1109/CAC57257.2022.10054894
– volume: 28
  start-page: 1
  year: 2015
  ident: 99027_CR19
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 11
  start-page: 898
  year: 2020
  ident: 99027_CR35
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00898
– ident: 99027_CR22
– ident: 99027_CR38
  doi: 10.1109/ICCECE61317.2024.10504248
– volume: 6
  start-page: 147
  issue: 01
  year: 2024
  ident: 99027_CR2
  publication-title: Smart Agric.
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 99027_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 99027_CR31
  doi: 10.1109/ICACITE53722.2022.9823459
– volume: 29
  start-page: 1
  year: 2016
  ident: 99027_CR20
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 99027_CR9
  doi: 10.1109/CVPR.2017.243
– ident: 99027_CR44
  doi: 10.1609/aaai.v34i07.6999
– volume: 118
  start-page: 105665
  year: 2023
  ident: 99027_CR47
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105665
– volume: 18
  start-page: 20220632
  issue: 1
  year: 2023
  ident: 99027_CR33
  publication-title: Open. Life Sci.
  doi: 10.1515/biol-2022-0632
– ident: 99027_CR7
  doi: 10.1109/CVPR.2016.90
– ident: 99027_CR21
  doi: 10.1109/ICCV.2019.00667
– volume: 13
  start-page: 1707
  year: 2018
  ident: 99027_CR25
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1856-x
– volume: 186
  start-page: 106184
  year: 2021
  ident: 99027_CR3
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106184
– ident: 99027_CR10
  doi: 10.1109/ICITBS49701.2020.00194
– ident: 99027_CR48
  doi: 10.1109/CVPR52729.2023.00721
– ident: 99027_CR16
  doi: 10.1109/CVPR.2016.91
– volume: 506
  start-page: 146
  year: 2022
  ident: 99027_CR50
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.042
– volume: 35
  start-page: 13895
  issue: 19
  year: 2023
  ident: 99027_CR46
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06029-z
– volume: 8
  start-page: 56607
  year: 2020
  ident: 99027_CR34
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2982456
– volume: 13
  start-page: 1812
  issue: 9
  year: 2023
  ident: 99027_CR42
  publication-title: Agriculture
  doi: 10.3390/agriculture13091812
– volume: 34
  start-page: 20230
  year: 2021
  ident: 99027_CR51
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 99027_CR8
  doi: 10.1109/CVPR.2017.634
– volume: 30
  start-page: 1
  year: 2017
  ident: 99027_CR4
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 25
  start-page: 100642
  year: 2021
  ident: 99027_CR29
  publication-title: Inf. Med. Unlocked
  doi: 10.1016/j.imu.2021.100642
– volume: 78
  start-page: 102340
  year: 2023
  ident: 99027_CR40
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2023.102340
– volume: 11
  start-page: 170104
  issue: 2
  year: 2018
  ident: 99027_CR28
  publication-title: Plant. Genome
  doi: 10.3835/plantgenome2017.11.0104
– ident: 99027_CR17
  doi: 10.1007/978-3-031-72751-1_1
– ident: 99027_CR24
  doi: 10.1109/CVPR.2019.00094
– ident: 99027_CR6
– volume: 15
  start-page: 1748
  issue: 6
  year: 2022
  ident: 99027_CR32
  publication-title: Food. Anal. Methods
  doi: 10.1007/s12161-022-02251-0
– volume: 123
  start-page: 101940
  year: 2023
  ident: 99027_CR1
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2022.101940
– ident: 99027_CR14
SSID ssj0000529419
Score 2.4462137
Snippet Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat...
Abstract Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15624
SubjectTerms 639/705/117
639/705/258
639/705/531
Algorithms
Attention mechanism
Big data
Cereal crops
Crops
Disease
Disease recognition
Humanities and Social Sciences
Leaves
multidisciplinary
Neural network
Pests
Plant Diseases - parasitology
Plant Leaves - parasitology
Prediction model
Science
Science (multidisciplinary)
Triticum - parasitology
Wheat
Wheat recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgR18-6q0TwpmXzmqRJjioui6AHcWFvIWmm7AO3b7FdZP97Z5K-us8PvHhpoZmE6cwkM20mv2HspWtTQkeg6g69eY0eItQhuFj3OoGNDYi2ox_6Hz-1J6fqw5k-u1Hqi3LCCjxwEdwRAYSj0-pNlFq1Ed05pNZF02Oo4qTOYNvo8258TBVU74a6zadkhLRHI_JBp8kaXeMC3ODM2vFEGbD_T1Hm78mSv-yYZkd0fI_dnSNI_qZwvs9uwXCf3S41Ja8fsOvPMJ2Xggi8hwzbyTNy5faU0cDDkDjBauZER34BdPh3PV6MfD3w9QLROfEluQipNj3_CqHnl8j1mEeYt3Zyr--0pD9kp8fvv7w7qef6CnWnnJpq6HubjMWQI2izUh0EAzJZvFKZsJUNWkDU1iWkWsUgDDhtFKmwC9YJKR-xvWEzwBPGRRdNVF2I4PAWwaY2QitUMCHYzqSKvdrK2l8WGA2ft7-l9UUzHjXjs2a8rNhbUsdCSRDY-QEahp8Nw__LMCp2uFWmn-fl6GWDbFMRQl2xF0szzijaJgkDbK4yjZANxmmiYo-L7hdOFNWbxwizYnbHKnZY3W0Z1ucZtXvVCI1vh4O-3hrQT77-Loun_0MWB-xOQ5ZPiZr6kO1N367gGQZTU3ye580P_6gcQg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0HedpkWF3loT2ZIs6VSS0hAK7aE0sDchWXKz0Nib2CHk33dGfoTt62KDLZuxZ0bzoRl9Q8hbU4UAgUDkNUTzHCKEy50zPm9kiNqXkVU1Luh_-VqdnIrPK7maFtz6qaxynhPTRB26GtfID3jJOMf2cfLD5iLHrlGYXZ1aaNwl95C6DK1ardSyxoJZLFGYaa8M4_qgB2lwT1kpc5iGS_CvrXiUaPv_hjX_LJn8LW-awtHxQ7I74Uh6OCr-EbkT28fk_thZ8uYJufkWh7OxLQJtYiLvpIm_ct5r1FLXBorkmqnckZ5H3AK87s97um7peiHqHOhSYgSjuob-jK6hG5C6T2-YEjzpqWuc2J-S0-NP3z-e5FOXhbwWRgx5bBodlAbg4aQqRB2dijxoOGKzsEI7yaKX2gQYVXjHVDRSCVRk7bQBpTwjO23XxheEstorL2rno4GTjzpUPlZMOOWcrlXIyLv5X9vNSKZhUxKcaztqxoJmbNKM5Rk5QnUsI5EIO13oLn_Yya8s8scDpmmU51JUHtBeDJXxqgEka7isMrI_K9NO3tnbW1vKyJvlNvgVJktcG7urNIbxEtAay8jzUfeLJAK7zgPOzIjesootUbfvtOuzxN1dlEzC18FL388GdCvXv__F3v8_4yV5UKJNYyGm3Cc7w-VVfAVgafCvk0f8Am3qFTg
  priority: 102
  providerName: ProQuest
Title Rethinking feature representation and attention mechanisms in intelligent recognition of leaf pests and diseases in wheat
URI https://link.springer.com/article/10.1038/s41598-025-99027-3
https://www.ncbi.nlm.nih.gov/pubmed/40320435
https://www.proquest.com/docview/3203374015
https://www.proquest.com/docview/3200323970
https://pubmed.ncbi.nlm.nih.gov/PMC12050270
https://doaj.org/article/9894190f7b3546b392ed69b7f1619356
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBf9YLCXse-l6w4P9raFJbEd24_Xo6UcrIxuhXszduysB2uuNCmj_31l52Pc1j3sJYFEMXIkW8KSfgL4oErn0BCwtEJrnqKFMKkxyqY1d17awmdlFQ70v5yVpxdsueKrHSjGWpiYtB8hLeM2PWaHfW5xmFAMVvAU988CF8Yu7AeodtTt_fl8-W05nayE2BXL1VAhk1H5wMdbViiC9T_kYf6dKPlHtDQaoZOn8GTwHsm85_cZ7PjmOTzq-0nevYC7c99d9s0QSO3j_EhErRwrjBpiGkcCpGZMciRXPhT-rturlqwbsp7gOTsyJRYh1aYmP72pyTVy3cYRhrBO_OpX2M5fwsXJ8ffFaTr0VkgrpliX-rqWTkh0NwwXOau8EZ46idfQIiyXhmfecqkcUuXWZMIrLlgQX2Wkyih9BXvNpvFvgGSVFZZVxnqFN-ulK60vM2aEMbISLoGP47_W1z2Eho6hbyp1LxmNktFRMpomcBTEMVEG-Ov4YHPzQw_qoANqPHoytbCUs9Kij-ddqayo0X9VlJcJHI7C1MOabDUtkO3QgJAn8H56jasphEhM4ze3kSajBfpoWQKve9lPnLDQax69ywTkllZssbr9pllfRsTuvMg4zg4H_TQq0G--_v0vDv6P_C08LoKOh3RMfgh73c2tf4cuU2dnsCtWYjasFLwfHZ99Pceni3Ixi8cQ9ywDGOI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KqKEFwQe0MLGAlOENVJ7Ng5IMRWTelyQK00N2PHDh2JZqZNqmp-im_kPWephu3WSyIlTvTst9pvI-RlkTsHioDHJWjzGDSEiY0pbFwJ55VNPctLPNA_OMwnx_zLVEzXyM8hFwbDKgeZGAS1m5d4Rr6dpSzLsH2ceLc4i7FrFHpXhxYaHVns-eUlbNmat7ufAL-v0nTn89HHSdx3FYhLXvA29lWlnFSgaI2QCS-9kT5zCq7YHCtRRjBvhSocjEqsYdIXQnIEvDSqYHgACiL_Bihehps9OZXjmQ56zXhS9Lk5LFPbDcwec9hSEYPYT4GfV_RfaBPwN9v2zxDN3_y0Qf3t3CV3eruVvu8I7R5Z8_V9crPrZLl8QJZffXvStWGglQ_FQmmolznkNtXU1I5iMc8QXklPPaYcz5rThs5qOhsLg7Z0DGmCUfOK_vCmoguAugl_6B1K4atLVCQPyfG1rP8jsl7Pa79BKCuttLw01hdws1653PqccSONUaV0EXk9rLVedMU7dHC6Z0p3mNGAGR0wo7OIfEB0jCOx8HZ4MD__rns-1livHmyoStpM8NyCdeldXlhZgeVcZCKPyNaATN1Lg0Zf0W5EXoyvgY_ROWNqP78IY1iWgnXIIvK4w_0ICccu92DXRkStUMUKqKtv6tlJqBWepEzA7OCnbwYCuoLr32vx5P_TeE5uTY4O9vX-7uHeJrmdIn1jEKjYIuvt-YV_CoZaa58F7qDk23Wz4y9azFLb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEO-GFjASnCBab2LHzgEhSrtqKayqikq9GTt26Eo0u222qvav8euYcR7V8rr1kkiJE9meGc_Y8_gIeZVnzoEi4HEB2jwGDWFiY3Ibl8J5ZRPPsgIP9L9Msr1j_ulEnKyRn10uDIZVdmtiWKjdrMAz8mGasDRF-DgxLNuwiMOd8fv5eYwIUuhp7eA0GhY58Msr2L7V7_Z3gNavk2S8-_XjXtwiDMQFz_ki9mWpnFSgdI2QI154I33qFFwRKGukjGDeCpU7aDWyhkmfC8lxEIVROcPDUFj-1yXuigZkfXt3cnjUn_CgD42P8jZTh6VqWMNcYEZbImJQAglI94o2DKABf7N0_wzY_M1rG5Th-B6521qx9EPDdvfJmq8ekFsNruXyIVke-cVpA8pASx9Kh9JQPbPLdKqoqRzF0p4h2JKeeUxAntZnNZ1WdNqXCV3QPsAJWs1K-sObks6h13X4Q-teCl9doVp5RI5vhAKPyaCaVX6DUFZYaXlhrM_hZr1ymfUZ40YaowrpIvKmm2s9b0p56OCCT5VuKKOBMjpQRqcR2UZy9C2xDHd4MLv4rlup1li9HiyqUtpU8MyCreldlltZgh2dpyKLyFZHTN2uDbW-5uSIvOxfg1Sjq8ZUfnYZ2rA0AVuRReRJQ_u-Jxwx78HKjYha4YqVrq6-qaanoXL4KGECRgc_fdsx0HW__j0XT_8_jBfkNoii_rw_OdgkdxJkb4wIFVtksLi49M_AalvY5614UPLtpiXyF8HxWHY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+feature+representation+and+attention+mechanisms+in+intelligent+recognition+of+leaf+pests+and+diseases+in+wheat&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Yuhan&rft.au=Liu%2C+Dongsheng&rft.date=2025-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-99027-3&rft.externalDocID=10_1038_s41598_025_99027_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon