Rethinking feature representation and attention mechanisms in intelligent recognition of leaf pests and diseases in wheat
Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 15624 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method. |
---|---|
AbstractList | Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method. Abstract Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method. Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method.Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat crops. The existing methods ignore the full pre-interaction of deep and shallow features, which largely affects the accuracy of identification. To address the above problems and needs, we rethink the feature representation and attention mechanism in intelligent recognition of wheat leaf diseases and pests, and propose a representation and recognition network (RReNet) based on the feature attention mechanism. RReNet captures key information more efficiently by focusing on complex pest and disease characteristics and fusing multi-semantic feature information. In addition, RReNet further enhances the perception of complex disease and pest features by using four layers of detection units and fast IoU loss function, which significantly improves the accuracy and robustness of wheat leaf disease and pest recognition. Tests on a challenging wheat leaf pest and disease dataset with twelve pest and disease types show that RReNet achieves precision, recall and mAP as high as 94.1%, 95.7% and 98.3% respectively. Also, ablation experiments proved the effectiveness of all parts of the proposed method. |
ArticleNumber | 15624 |
Author | Liu, Dongsheng Zhang, Yuhan |
Author_xml | – sequence: 1 givenname: Yuhan surname: Zhang fullname: Zhang, Yuhan email: jsaj63@163.com organization: School of Information Science and Technology, Harbin Institute of Technology (Weihai) – sequence: 2 givenname: Dongsheng surname: Liu fullname: Liu, Dongsheng organization: School of Computer and Communication Engineering, Northeastern University at Qinhuangdao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40320435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1UREvpC7BAkdiwCfgSJ_EKoYpLpUpICNaW40xyfMixD7YD6tszSUppWRBFcez55rf9zzwlJz54IOQ5o68ZFe2bVDGp2pJyWSpFeVOKR-SM00qWXHB-cu__lFyktKf4SK4qpp6Q04oKDAt5Rm6-QN45_935sRjA5DlCEeEYIYHPJrvgC-P7wuSM82V2ALsz3qVDKpzHN8M0uRGDmGbD6N1KhaGYwAzFEVJOq0LvEpgEa9avHe70jDwezJTg4nY8J98-vP96-am8_vzx6vLddWkrVeUShqHtm7YW0siGVRZMA6Jv8Vtb4Kw1kkInW9UjxTpDG1CyqaDtuDWtokKck6tNtw9mr4_RHUy80cE4vS6EOGoTs7MTaNUu_tCh6YSs6k4oDn2tumZgNVNC1qj1dtM6zt0BeovXjmZ6IPow4t1Oj-GnZpxKLBJFhVe3CjH8mNEdfXDJoofGQ5iTxrpgbYRa0Zf_oPswR49eLZQQTUWZROrF_SPdneVPiRHgG2BjSCnCcIcwqpdW0lsraWwlvbaSXkwTW1JC2I8Q_-79n6zfGrzMuA |
Cites_doi | 10.3390/insects14030278 10.1109/CVPR42600.2020.01079 10.1109/CVPR42600.2020.01155 10.1109/ICCV.2015.169 10.1007/978-3-031-25066-8_9 10.1007/s11042-023-16570-9 10.1016/j.compag.2025.109920 10.1007/978-3-030-01264-9_45 10.1109/CVPR.2018.00913 10.1109/CVPR.2017.690 10.3389/fpls.2023.1150958 10.25165/j.ijabe.20201304.4826 10.1109/CVPR.2017.106 10.1145/3065386 10.1007/s11760-023-02710-z 10.1109/CAC57257.2022.10054894 10.3389/fpls.2020.00898 10.1109/ICCECE61317.2024.10504248 10.1109/TPAMI.2016.2644615 10.1109/ICACITE53722.2022.9823459 10.1109/CVPR.2017.243 10.1609/aaai.v34i07.6999 10.1016/j.engappai.2022.105665 10.1515/biol-2022-0632 10.1109/CVPR.2016.90 10.1109/ICCV.2019.00667 10.1007/s11548-018-1856-x 10.1016/j.compag.2021.106184 10.1109/ICITBS49701.2020.00194 10.1109/CVPR52729.2023.00721 10.1109/CVPR.2016.91 10.1016/j.neucom.2022.07.042 10.1007/s00521-021-06029-z 10.1109/ACCESS.2020.2982456 10.3390/agriculture13091812 10.1109/CVPR.2017.634 10.1016/j.imu.2021.100642 10.1016/j.ecoinf.2023.102340 10.3835/plantgenome2017.11.0104 10.1007/978-3-031-72751-1_1 10.1109/CVPR.2019.00094 10.1007/s12161-022-02251-0 10.1016/j.pmpp.2022.101940 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-99027-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_9894190f7b3546b392ed69b7f1619356 PMC12050270 40320435 10_1038_s41598_025_99027_3 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK AARCD K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-eff8d78635a5714cea7e3d8a7e6ce218a50eb589d8d71ba07e9574e8b2ca89033 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:19 EDT 2025 Thu Aug 21 18:27:46 EDT 2025 Fri Jul 11 18:15:00 EDT 2025 Wed Aug 13 05:10:53 EDT 2025 Thu May 08 05:30:50 EDT 2025 Tue Jul 01 05:01:48 EDT 2025 Mon May 05 01:47:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Attention mechanism Wheat recognition Prediction model Big data Feature fusion Neural network Disease recognition |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-eff8d78635a5714cea7e3d8a7e6ce218a50eb589d8d71ba07e9574e8b2ca89033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-99027-3 |
PMID | 40320435 |
PQID | 3203374015 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9894190f7b3546b392ed69b7f1619356 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12050270 proquest_miscellaneous_3200323970 proquest_journals_3203374015 pubmed_primary_40320435 crossref_primary_10_1038_s41598_025_99027_3 springer_journals_10_1038_s41598_025_99027_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-05 |
PublicationDateYYYYMMDD | 2025-05-05 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 99027_CR13 99027_CR12 99027_CR11 99027_CR10 99027_CR17 99027_CR16 99027_CR15 99027_CR14 L Goyal (99027_CR29) 2021; 25 B Xiao (99027_CR49) 2024; 83 A Krizhevsky (99027_CR5) 2017; 60 S Yang (99027_CR39) 2023; 14 R Gai (99027_CR46) 2023; 35 L Xu (99027_CR1) 2023; 123 99027_CR44 99027_CR43 99027_CR48 Y Bai (99027_CR42) 2023; 13 M Karthikeyan (99027_CR45) 2024; 18 99027_CR6 99027_CR7 99027_CR8 M Villa (99027_CR25) 2018; 13 J Liu (99027_CR35) 2020; 11 JM González-Camacho (99027_CR28) 2018; 11 H Liu (99027_CR41) 2025; 231 K Sabanci (99027_CR32) 2022; 15 99027_CR38 J Dai (99027_CR20) 2016; 29 99027_CR37 99027_CR31 J He (99027_CR51) 2021; 34 M Dong (99027_CR30) 2020; 13 Z Tang (99027_CR40) 2023; 78 99027_CR9 Y Zhang (99027_CR34) 2020; 8 PLT Mbouembe (99027_CR36) 2023; 14 Z Jiang (99027_CR3) 2021; 186 F Yang (99027_CR2) 2024; 6 99027_CR24 99027_CR23 99027_CR22 99027_CR21 99027_CR27 YF Zhang (99027_CR50) 2022; 506 V Badrinarayanan (99027_CR26) 2017; 39 A Vaswani (99027_CR4) 2017; 30 F Mushtaq (99027_CR47) 2023; 118 99027_CR18 J Yao (99027_CR33) 2023; 18 S Ren (99027_CR19) 2015; 28 |
References_xml | – volume: 14 start-page: 278 issue: 3 year: 2023 ident: 99027_CR39 publication-title: Insects doi: 10.3390/insects14030278 – ident: 99027_CR12 doi: 10.1109/CVPR42600.2020.01079 – ident: 99027_CR43 doi: 10.1109/CVPR42600.2020.01155 – ident: 99027_CR18 doi: 10.1109/ICCV.2015.169 – ident: 99027_CR27 doi: 10.1007/978-3-031-25066-8_9 – volume: 83 start-page: 28039 issue: 9 year: 2024 ident: 99027_CR49 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-16570-9 – volume: 231 start-page: 109920 year: 2025 ident: 99027_CR41 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2025.109920 – ident: 99027_CR23 doi: 10.1007/978-3-030-01264-9_45 – ident: 99027_CR13 doi: 10.1109/CVPR.2018.00913 – ident: 99027_CR15 doi: 10.1109/CVPR.2017.690 – volume: 14 start-page: 1150958 year: 2023 ident: 99027_CR36 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2023.1150958 – volume: 13 start-page: 205 issue: 4 year: 2020 ident: 99027_CR30 publication-title: Int. J. Agricultural Biol. Eng. doi: 10.25165/j.ijabe.20201304.4826 – ident: 99027_CR11 doi: 10.1109/CVPR.2017.106 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 99027_CR5 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 18 start-page: 119 issue: 1 year: 2024 ident: 99027_CR45 publication-title: Signal. Image Video Process. doi: 10.1007/s11760-023-02710-z – ident: 99027_CR37 doi: 10.1109/CAC57257.2022.10054894 – volume: 28 start-page: 1 year: 2015 ident: 99027_CR19 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 11 start-page: 898 year: 2020 ident: 99027_CR35 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00898 – ident: 99027_CR22 – ident: 99027_CR38 doi: 10.1109/ICCECE61317.2024.10504248 – volume: 6 start-page: 147 issue: 01 year: 2024 ident: 99027_CR2 publication-title: Smart Agric. – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 99027_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 99027_CR31 doi: 10.1109/ICACITE53722.2022.9823459 – volume: 29 start-page: 1 year: 2016 ident: 99027_CR20 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 99027_CR9 doi: 10.1109/CVPR.2017.243 – ident: 99027_CR44 doi: 10.1609/aaai.v34i07.6999 – volume: 118 start-page: 105665 year: 2023 ident: 99027_CR47 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105665 – volume: 18 start-page: 20220632 issue: 1 year: 2023 ident: 99027_CR33 publication-title: Open. Life Sci. doi: 10.1515/biol-2022-0632 – ident: 99027_CR7 doi: 10.1109/CVPR.2016.90 – ident: 99027_CR21 doi: 10.1109/ICCV.2019.00667 – volume: 13 start-page: 1707 year: 2018 ident: 99027_CR25 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-018-1856-x – volume: 186 start-page: 106184 year: 2021 ident: 99027_CR3 publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106184 – ident: 99027_CR10 doi: 10.1109/ICITBS49701.2020.00194 – ident: 99027_CR48 doi: 10.1109/CVPR52729.2023.00721 – ident: 99027_CR16 doi: 10.1109/CVPR.2016.91 – volume: 506 start-page: 146 year: 2022 ident: 99027_CR50 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.07.042 – volume: 35 start-page: 13895 issue: 19 year: 2023 ident: 99027_CR46 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06029-z – volume: 8 start-page: 56607 year: 2020 ident: 99027_CR34 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.2982456 – volume: 13 start-page: 1812 issue: 9 year: 2023 ident: 99027_CR42 publication-title: Agriculture doi: 10.3390/agriculture13091812 – volume: 34 start-page: 20230 year: 2021 ident: 99027_CR51 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 99027_CR8 doi: 10.1109/CVPR.2017.634 – volume: 30 start-page: 1 year: 2017 ident: 99027_CR4 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 25 start-page: 100642 year: 2021 ident: 99027_CR29 publication-title: Inf. Med. Unlocked doi: 10.1016/j.imu.2021.100642 – volume: 78 start-page: 102340 year: 2023 ident: 99027_CR40 publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2023.102340 – volume: 11 start-page: 170104 issue: 2 year: 2018 ident: 99027_CR28 publication-title: Plant. Genome doi: 10.3835/plantgenome2017.11.0104 – ident: 99027_CR17 doi: 10.1007/978-3-031-72751-1_1 – ident: 99027_CR24 doi: 10.1109/CVPR.2019.00094 – ident: 99027_CR6 – volume: 15 start-page: 1748 issue: 6 year: 2022 ident: 99027_CR32 publication-title: Food. Anal. Methods doi: 10.1007/s12161-022-02251-0 – volume: 123 start-page: 101940 year: 2023 ident: 99027_CR1 publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2022.101940 – ident: 99027_CR14 |
SSID | ssj0000529419 |
Score | 2.4462137 |
Snippet | Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of wheat... Abstract Complex pest and disease features appearing during the growth of wheat crops are difficult to capture and can seriously affect the normal growth of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15624 |
SubjectTerms | 639/705/117 639/705/258 639/705/531 Algorithms Attention mechanism Big data Cereal crops Crops Disease Disease recognition Humanities and Social Sciences Leaves multidisciplinary Neural network Pests Plant Diseases - parasitology Plant Leaves - parasitology Prediction model Science Science (multidisciplinary) Triticum - parasitology Wheat Wheat recognition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgR18-6q0TwpmXzmqRJjioui6AHcWFvIWmm7AO3b7FdZP97Z5K-us8PvHhpoZmE6cwkM20mv2HspWtTQkeg6g69eY0eItQhuFj3OoGNDYi2ox_6Hz-1J6fqw5k-u1Hqi3LCCjxwEdwRAYSj0-pNlFq1Ed05pNZF02Oo4qTOYNvo8258TBVU74a6zadkhLRHI_JBp8kaXeMC3ODM2vFEGbD_T1Hm78mSv-yYZkd0fI_dnSNI_qZwvs9uwXCf3S41Ja8fsOvPMJ2Xggi8hwzbyTNy5faU0cDDkDjBauZER34BdPh3PV6MfD3w9QLROfEluQipNj3_CqHnl8j1mEeYt3Zyr--0pD9kp8fvv7w7qef6CnWnnJpq6HubjMWQI2izUh0EAzJZvFKZsJUNWkDU1iWkWsUgDDhtFKmwC9YJKR-xvWEzwBPGRRdNVF2I4PAWwaY2QitUMCHYzqSKvdrK2l8WGA2ft7-l9UUzHjXjs2a8rNhbUsdCSRDY-QEahp8Nw__LMCp2uFWmn-fl6GWDbFMRQl2xF0szzijaJgkDbK4yjZANxmmiYo-L7hdOFNWbxwizYnbHKnZY3W0Z1ucZtXvVCI1vh4O-3hrQT77-Loun_0MWB-xOQ5ZPiZr6kO1N367gGQZTU3ye580P_6gcQg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGX0HedpkWF3loT2ZIs6VSS0hAK7aE0sDchWXKz0Nib2CHk33dGfoTt62KDLZuxZ0bzoRl9Q8hbU4UAgUDkNUTzHCKEy50zPm9kiNqXkVU1Luh_-VqdnIrPK7maFtz6qaxynhPTRB26GtfID3jJOMf2cfLD5iLHrlGYXZ1aaNwl95C6DK1ardSyxoJZLFGYaa8M4_qgB2lwT1kpc5iGS_CvrXiUaPv_hjX_LJn8LW-awtHxQ7I74Uh6OCr-EbkT28fk_thZ8uYJufkWh7OxLQJtYiLvpIm_ct5r1FLXBorkmqnckZ5H3AK87s97um7peiHqHOhSYgSjuob-jK6hG5C6T2-YEjzpqWuc2J-S0-NP3z-e5FOXhbwWRgx5bBodlAbg4aQqRB2dijxoOGKzsEI7yaKX2gQYVXjHVDRSCVRk7bQBpTwjO23XxheEstorL2rno4GTjzpUPlZMOOWcrlXIyLv5X9vNSKZhUxKcaztqxoJmbNKM5Rk5QnUsI5EIO13oLn_Yya8s8scDpmmU51JUHtBeDJXxqgEka7isMrI_K9NO3tnbW1vKyJvlNvgVJktcG7urNIbxEtAay8jzUfeLJAK7zgPOzIjesootUbfvtOuzxN1dlEzC18FL388GdCvXv__F3v8_4yV5UKJNYyGm3Cc7w-VVfAVgafCvk0f8Am3qFTg priority: 102 providerName: ProQuest |
Title | Rethinking feature representation and attention mechanisms in intelligent recognition of leaf pests and diseases in wheat |
URI | https://link.springer.com/article/10.1038/s41598-025-99027-3 https://www.ncbi.nlm.nih.gov/pubmed/40320435 https://www.proquest.com/docview/3203374015 https://www.proquest.com/docview/3200323970 https://pubmed.ncbi.nlm.nih.gov/PMC12050270 https://doaj.org/article/9894190f7b3546b392ed69b7f1619356 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBf9YLCXse-l6w4P9raFJbEd24_Xo6UcrIxuhXszduysB2uuNCmj_31l52Pc1j3sJYFEMXIkW8KSfgL4oErn0BCwtEJrnqKFMKkxyqY1d17awmdlFQ70v5yVpxdsueKrHSjGWpiYtB8hLeM2PWaHfW5xmFAMVvAU988CF8Yu7AeodtTt_fl8-W05nayE2BXL1VAhk1H5wMdbViiC9T_kYf6dKPlHtDQaoZOn8GTwHsm85_cZ7PjmOTzq-0nevYC7c99d9s0QSO3j_EhErRwrjBpiGkcCpGZMciRXPhT-rturlqwbsp7gOTsyJRYh1aYmP72pyTVy3cYRhrBO_OpX2M5fwsXJ8ffFaTr0VkgrpliX-rqWTkh0NwwXOau8EZ46idfQIiyXhmfecqkcUuXWZMIrLlgQX2Wkyih9BXvNpvFvgGSVFZZVxnqFN-ulK60vM2aEMbISLoGP47_W1z2Eho6hbyp1LxmNktFRMpomcBTEMVEG-Ov4YHPzQw_qoANqPHoytbCUs9Kij-ddqayo0X9VlJcJHI7C1MOabDUtkO3QgJAn8H56jasphEhM4ze3kSajBfpoWQKve9lPnLDQax69ywTkllZssbr9pllfRsTuvMg4zg4H_TQq0G--_v0vDv6P_C08LoKOh3RMfgh73c2tf4cuU2dnsCtWYjasFLwfHZ99Pceni3Ixi8cQ9ywDGOI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1KqKEFwQe0MLGAlOENVJ7Ng5IMRWTelyQK00N2PHDh2JZqZNqmp-im_kPWephu3WSyIlTvTst9pvI-RlkTsHioDHJWjzGDSEiY0pbFwJ55VNPctLPNA_OMwnx_zLVEzXyM8hFwbDKgeZGAS1m5d4Rr6dpSzLsH2ceLc4i7FrFHpXhxYaHVns-eUlbNmat7ufAL-v0nTn89HHSdx3FYhLXvA29lWlnFSgaI2QCS-9kT5zCq7YHCtRRjBvhSocjEqsYdIXQnIEvDSqYHgACiL_Bihehps9OZXjmQ56zXhS9Lk5LFPbDcwec9hSEYPYT4GfV_RfaBPwN9v2zxDN3_y0Qf3t3CV3eruVvu8I7R5Z8_V9crPrZLl8QJZffXvStWGglQ_FQmmolznkNtXU1I5iMc8QXklPPaYcz5rThs5qOhsLg7Z0DGmCUfOK_vCmoguAugl_6B1K4atLVCQPyfG1rP8jsl7Pa79BKCuttLw01hdws1653PqccSONUaV0EXk9rLVedMU7dHC6Z0p3mNGAGR0wo7OIfEB0jCOx8HZ4MD__rns-1livHmyoStpM8NyCdeldXlhZgeVcZCKPyNaATN1Lg0Zf0W5EXoyvgY_ROWNqP78IY1iWgnXIIvK4w_0ICccu92DXRkStUMUKqKtv6tlJqBWepEzA7OCnbwYCuoLr32vx5P_TeE5uTY4O9vX-7uHeJrmdIn1jEKjYIuvt-YV_CoZaa58F7qDk23Wz4y9azFLb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrUBcEO-GFjASnCBab2LHzgEhSrtqKayqikq9GTt26Eo0u222qvav8euYcR7V8rr1kkiJE9meGc_Y8_gIeZVnzoEi4HEB2jwGDWFiY3Ibl8J5ZRPPsgIP9L9Msr1j_ulEnKyRn10uDIZVdmtiWKjdrMAz8mGasDRF-DgxLNuwiMOd8fv5eYwIUuhp7eA0GhY58Msr2L7V7_Z3gNavk2S8-_XjXtwiDMQFz_ki9mWpnFSgdI2QI154I33qFFwRKGukjGDeCpU7aDWyhkmfC8lxEIVROcPDUFj-1yXuigZkfXt3cnjUn_CgD42P8jZTh6VqWMNcYEZbImJQAglI94o2DKABf7N0_wzY_M1rG5Th-B6521qx9EPDdvfJmq8ekFsNruXyIVke-cVpA8pASx9Kh9JQPbPLdKqoqRzF0p4h2JKeeUxAntZnNZ1WdNqXCV3QPsAJWs1K-sObks6h13X4Q-teCl9doVp5RI5vhAKPyaCaVX6DUFZYaXlhrM_hZr1ymfUZ40YaowrpIvKmm2s9b0p56OCCT5VuKKOBMjpQRqcR2UZy9C2xDHd4MLv4rlup1li9HiyqUtpU8MyCreldlltZgh2dpyKLyFZHTN2uDbW-5uSIvOxfg1Sjq8ZUfnYZ2rA0AVuRReRJQ_u-Jxwx78HKjYha4YqVrq6-qaanoXL4KGECRgc_fdsx0HW__j0XT_8_jBfkNoii_rw_OdgkdxJkb4wIFVtksLi49M_AalvY5614UPLtpiXyF8HxWHY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+feature+representation+and+attention+mechanisms+in+intelligent+recognition+of+leaf+pests+and+diseases+in+wheat&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Yuhan&rft.au=Liu%2C+Dongsheng&rft.date=2025-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-99027-3&rft.externalDocID=10_1038_s41598_025_99027_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |