Reducing phosphorus losses from agricultural land to surface water

Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 y...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biotechnology Vol. 89; p. 103181
Main Authors McDowell, Richard W, Haygarth, Philip M
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses. •Enrichment of surface waters with phosphorus (P) leads to algal growth and eutrophication.•About 27% of agricultural land exceeds optimal soil P levels, posing a risk of P loss to surface waters.•Agricultural P loss driven by soil, fertilisers, crop residues, and livestock.•Much P loss comes from critical source areas (CSAs) with changing topography.•Targeting mitigation actions to CSAs enhances their cost-effectiveness.
AbstractList Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.
Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses. •Enrichment of surface waters with phosphorus (P) leads to algal growth and eutrophication.•About 27% of agricultural land exceeds optimal soil P levels, posing a risk of P loss to surface waters.•Agricultural P loss driven by soil, fertilisers, crop residues, and livestock.•Much P loss comes from critical source areas (CSAs) with changing topography.•Targeting mitigation actions to CSAs enhances their cost-effectiveness.
Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.
ArticleNumber 103181
Author Haygarth, Philip M
McDowell, Richard W
Author_xml – sequence: 1
  givenname: Richard W
  surname: McDowell
  fullname: McDowell, Richard W
  email: richard.mcdowell@agresearch.co.nz
  organization: AgResearch, Lincoln Science Centre, Lincoln, Canterbury, New Zealand
– sequence: 2
  givenname: Philip M
  surname: Haygarth
  fullname: Haygarth, Philip M
  organization: Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39151246$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaCZp_0EpXnbjqV6WrVAKSegjECiUdi3k6-tUE401leSE_PtocNpFNrMQgqvvHK7OOSVHU5iQkHeMrhll6uNmDWHXu7DmlMsyEqxjr8iKda2uqeT6iKyobrqaKaVPyGlKG0ppI1r6mpwIzRrGpVqRy584zOCm22r3J6Ry4pwqH1LCVI0xbCt7Gx3MPs_R-srbaahyqNIcRwtYPdiM8Q05Hq1P-Pb5PiO_v375dfW9vvnx7frq4qYGqWWuUcCIGpqma3rWWStFr_jQlgGI_cOoygc44107SKt77DmAbhVqaWFgtBdn5MPiu4vh74wpm61LgL4shWFORnDJaadUieIgSrWkUnRUFPT9Mzr3WxzMLrqtjY_mX0QFkAsAscQScfyPMGr2TZiNWZow-ybM0kSRnb-Qgcs2uzDlaJ0_JP68iLHkee8wmgQOJ8DBRYRshuAOGXx6YQDeTQ6sv8PHw_Inwye6Pg
CitedBy_id crossref_primary_10_1021_acs_jafc_4c09325
crossref_primary_10_1016_j_biortech_2025_132409
crossref_primary_10_1017_qpb_2025_1
Cites_doi 10.2134/jeq2016.07.0248
10.1038/s43016-021-00400-y
10.2134/jeq2006.0015
10.1080/10643389.2023.2240211
10.3389/fenvs.2022.878166
10.1038/s43017-023-00472-3
10.3390/w12051447
10.1038/s43016-021-00303-y
10.1038/s43016-022-00644-2
10.1002/hyp.14309
10.1111/gcb.17376
10.1016/j.geoderma.2013.12.004
10.1016/j.scitotenv.2005.02.001
10.2134/jeq2015.02.0090
10.1007/s10705-021-10146-5
10.1002/jeq2.20514
10.1038/s41598-020-60279-w
10.1016/j.agsy.2020.102813
10.1016/j.scitotenv.2023.161837
10.1016/j.scitotenv.2023.164963
10.1038/s41467-022-34411-5
10.1016/j.geoderma.2019.114125
10.1002/wat2.1373
10.1038/s43016-023-00890-y
10.1016/j.scitotenv.2017.02.034
10.1088/1748-9326/aa7bf4
10.1126/science.aan2409
10.1080/00288233.2022.2107025
10.1038/s43016-024-00952-9
10.1038/s41467-020-18326-7
10.1016/B978-0-12-420225-2.00005-4
10.1021/acs.est.8b01143
10.1007/s10705-022-10255-9
10.1038/s41561-022-01092-0
10.2134/jeq2019.03.0107
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.copbio.2024.103181
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0429
ExternalDocumentID 39151246
10_1016_j_copbio_2024_103181
S0958166924001174
Genre Journal Article
Review
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFRF
ABGSF
ABJNI
ABMAC
ABNUV
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
TWZ
VH1
WUQ
Z5R
~02
~G-
6I.
AAFTH
AFCTW
AGRNS
BNPGV
RIG
SSH
AAYXX
CITATION
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c494t-e3cfe9c5585b18aa43b62d7c55c3fe9cf618121287d4a9beb2cc976e94acd10b3
IEDL.DBID .~1
ISSN 0958-1669
1879-0429
IngestDate Fri Aug 22 20:23:10 EDT 2025
Fri Jul 11 07:10:33 EDT 2025
Mon Jul 21 05:41:00 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Thu Jul 03 08:37:05 EDT 2025
Sat Jul 19 17:11:45 EDT 2025
Tue Aug 26 16:32:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-e3cfe9c5585b18aa43b62d7c55c3fe9cf618121287d4a9beb2cc976e94acd10b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0958166924001174
PMID 39151246
PQID 3094043803
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3242086610
proquest_miscellaneous_3094043803
pubmed_primary_39151246
crossref_primary_10_1016_j_copbio_2024_103181
crossref_citationtrail_10_1016_j_copbio_2024_103181
elsevier_sciencedirect_doi_10_1016_j_copbio_2024_103181
elsevier_clinicalkey_doi_10_1016_j_copbio_2024_103181
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in biotechnology
PublicationTitleAlternate Curr Opin Biotechnol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References McDowell, Kleinman, Haygarth, McGrath, Smith, Heathwaite, Iho, Schoumans, Nash (bib31) 2024
The Fertilizer Institute (bib10) 2018
Sinha, Michalak, Balaji (bib17) 2017; 357
Kleinman, Smith, Bolster, Easton (bib24) 2015; 44
Kleinman, Srinivasan, Dell, Schmidt, Sharpley, Bryant (bib16) 2006; 35
McDowell, Rotz, Oenema, Macintosh (bib22) 2022; 3
Cooper, Hiscock (bib32) 2023; 869
Mogollón, Bouwman, Beusen, Lassaletta, van Grinsven, Westhoek (bib21) 2021; 2
Vinten, Sample, Ibiyemi, Abdul-Salam, Stutter (bib30) 2017; 586
van Vliet, Thorslund, Strokal, Hofstra, Flörke, Ehalt Macedo, Nkwasa, Tang, Kaushal, Kumar (bib18) 2023; 4
Margenot, Zhou, McDowell, Hebert, Fox, Schilling, Richmond, Kovar, Wickramarathne, Lemke (bib25) 2023; 52
Haygarth, Condron, Heathwaite, Turner, Harris (bib7) 2005; 344
Jägermeyr, Müller, Ruane, Elliott, Balkovic, Castillo, Faye, Foster, Folberth, Franke (bib19) 2021; 2
Drohan, Bechmann, Buda, Djodjic, Doody, Duncan, Iho, Jordan, Kleinman, McDowell (bib23) 2019; 48
McDowell, Noble, Pletnyakov, Haggard, Mosley (bib1) 2020; 10
van Doorn, van Rotterdam, Ros, Koopmans, Smolders, de Vries (bib14) 2024; 54
Macintosh, McDowell, Wright-Stow, Depree, Robinson (bib35) 2021; 120
Johnston, Poulton, Fixen, Curtin (bib15) 2014
Lasisi, Akinremi, Kumaragamage, Racz (bib6) 2023; 125
Margenot, Zhou, Xu, Condron, Metson, Haygarth, Wade, Agyeman (bib36) 2024; 30
Nash, Haygarth, Turner, Condron, McDowell, Richardson, Watkins, Heaven (bib8) 2014; 221-222
Spiegal, Kleinman, Endale, Bryant, Dell, Goslee, Meinen, Flynn, Baker, Browning (bib11) 2020; 182
McDowell, Catto, McDowell (bib12) 2020; 362
Minoli, Jägermeyr, Asseng, Urfels, Müller (bib20) 2022; 13
Macintosh, Mayer, McDowell, Powers, Baker, Boyer, Rittmann (bib28) 2018; 52
Wiering, Boezeman, Crabbé (bib33) 2020; 12
McDowell, Macintosh, Depree (bib34) 2023; 895
Alewell, Ringeval, Ballabio, Robinson, Panagos, Borrelli (bib9) 2020; 11
Fenton, Rice, Murnane, Tuohy, Daly (bib26) 2022
Van Meter, Basu (bib38) 2017; 12
Weeber, Tanner, Rozemeijer, Neal, Thiange, Van den Roovaart, Burger (bib29) 2023; 66
Pratt, El Hanandeh (bib5) 2023; 4
McDowell, Pletnyakov, Haygarth (bib4) 2024; 5
Withers, Nash, Laboski (bib13) 2005
Wurtsbaugh, Paerl, Dodds (bib2) 2019; 6
Levine, Burkitt, Horne, Tanner, Sukias, Condron, Paterson (bib27) 2021; 35
Jarvie, Johnson, Sharpley, Smith, Baker, Bruulsema, Confesor (bib37) 2017; 46
Demay, Ringeval, Pellerin, Nesme (bib3) 2023; 16
Macintosh (10.1016/j.copbio.2024.103181_bib35) 2021; 120
McDowell (10.1016/j.copbio.2024.103181_sbref4) 2024; 5
Haygarth (10.1016/j.copbio.2024.103181_bib7) 2005; 344
Alewell (10.1016/j.copbio.2024.103181_bib9) 2020; 11
McDowell (10.1016/j.copbio.2024.103181_bib34) 2023; 895
Nash (10.1016/j.copbio.2024.103181_bib8) 2014; 221-222
Wiering (10.1016/j.copbio.2024.103181_bib33) 2020; 12
Lasisi (10.1016/j.copbio.2024.103181_bib6) 2023; 125
Demay (10.1016/j.copbio.2024.103181_bib3) 2023; 16
Weeber (10.1016/j.copbio.2024.103181_bib29) 2023; 66
Wurtsbaugh (10.1016/j.copbio.2024.103181_bib2) 2019; 6
Withers (10.1016/j.copbio.2024.103181_bib13) 2005
Fenton (10.1016/j.copbio.2024.103181_bib26) 2022
Sinha (10.1016/j.copbio.2024.103181_bib17) 2017; 357
Levine (10.1016/j.copbio.2024.103181_bib27) 2021; 35
McDowell (10.1016/j.copbio.2024.103181_bib22) 2022; 3
Minoli (10.1016/j.copbio.2024.103181_bib20) 2022; 13
Pratt (10.1016/j.copbio.2024.103181_sbref5) 2023; 4
Macintosh (10.1016/j.copbio.2024.103181_bib28) 2018; 52
Vinten (10.1016/j.copbio.2024.103181_bib30) 2017; 586
Kleinman (10.1016/j.copbio.2024.103181_bib24) 2015; 44
McDowell (10.1016/j.copbio.2024.103181_sbref1) 2020; 10
Drohan (10.1016/j.copbio.2024.103181_bib23) 2019; 48
Van Meter (10.1016/j.copbio.2024.103181_bib38) 2017; 12
Spiegal (10.1016/j.copbio.2024.103181_bib11) 2020; 182
The Fertilizer Institute (10.1016/j.copbio.2024.103181_bib10) 2018
Kleinman (10.1016/j.copbio.2024.103181_bib16) 2006; 35
van Vliet (10.1016/j.copbio.2024.103181_bib18) 2023; 4
Jarvie (10.1016/j.copbio.2024.103181_bib37) 2017; 46
McDowell (10.1016/j.copbio.2024.103181_bib12) 2020; 362
Margenot (10.1016/j.copbio.2024.103181_bib25) 2023; 52
van Doorn (10.1016/j.copbio.2024.103181_bib14) 2024; 54
Johnston (10.1016/j.copbio.2024.103181_bib15) 2014
Jägermeyr (10.1016/j.copbio.2024.103181_bib19) 2021; 2
Margenot (10.1016/j.copbio.2024.103181_bib36) 2024; 30
Cooper (10.1016/j.copbio.2024.103181_bib32) 2023; 869
McDowell (10.1016/j.copbio.2024.103181_sbref31) 2024
Mogollón (10.1016/j.copbio.2024.103181_sbref21) 2021; 2
References_xml – year: 2022
  ident: bib26
  article-title: Dairy farm roadway surface materials as a P-source within the nutrient transfer continuum framework
  publication-title: Front Environ Sci
– volume: 12
  year: 2017
  ident: bib38
  article-title: Time lags in watershed-scale nutrient transport: an exploration of dominant controls
  publication-title: Environ Res Lett
– volume: 586
  start-page: 631
  year: 2017
  end-page: 641
  ident: bib30
  article-title: A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland
  publication-title: Sci Total Environ
– volume: 344
  start-page: 5
  year: 2005
  end-page: 14
  ident: bib7
  article-title: The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach
  publication-title: Sci Total Environ
– volume: 52
  start-page: 11995
  year: 2018
  end-page: 12009
  ident: bib28
  article-title: Managing diffuse phosphorus at the source versus at the sink
  publication-title: Environ Sci Technol
– volume: 6
  year: 2019
  ident: bib2
  article-title: Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum
  publication-title: WIREs Water
– volume: 357
  start-page: 405
  year: 2017
  end-page: 408
  ident: bib17
  article-title: Eutrophication will increase during the 21st century as a result of precipitation changes
  publication-title: Science
– volume: 362
  year: 2020
  ident: bib12
  article-title: The mitigation of phosphorus losses from a water-repellent soil used for grazed dairy farming
  publication-title: Geoderma
– volume: 48
  start-page: 1218
  year: 2019
  end-page: 1233
  ident: bib23
  article-title: A global perspective on phosphorus management decision support in agriculture: lessons learned and future directions
  publication-title: J Environ Qual
– volume: 11
  year: 2020
  ident: bib9
  article-title: Global phosphorus shortage will be aggravated by soil erosion
  publication-title: Nat Commun
– volume: 895
  year: 2023
  ident: bib34
  article-title: Linking the uptake of best management practices on dairy farms to catchment water quality improvement over a 20-year period
  publication-title: Sci Total Environ
– volume: 66
  start-page: 493
  year: 2023
  end-page: 517
  ident: bib29
  article-title: Modelling the feasibility and cost-effectiveness of edge-of-field mitigations for reducing nitrogen and phosphorus loads in the Waituna Lagoon Catchment, Southland
  publication-title: NZ J Agric Res
– volume: 2
  start-page: 509
  year: 2021
  end-page: 518
  ident: bib21
  article-title: More efficient phosphorus use can avoid cropland expansion
  publication-title: Nat Food
– start-page: 177
  year: 2014
  end-page: 228
  ident: bib15
  article-title: Chapter Five — Phosphorus: its efficient use in agriculture
  publication-title: Advances in Agronomy
– start-page: 781
  year: 2005
  end-page: 827
  ident: bib13
  article-title: Environmental management of phosphorus fertilizers
  publication-title: Phosphorus: Agriculture and the Environment
– year: 2018
  ident: bib10
  article-title: The 4Rs of Nutrient Stewardship
– volume: 44
  start-page: 460
  year: 2015
  end-page: 466
  ident: bib24
  article-title: Phosphorus fate, management, and modeling in artificially drained systems
  publication-title: J Environ Qual
– volume: 10
  year: 2020
  ident: bib1
  article-title: Global mapping of freshwater nutrient enrichment and periphyton growth potential
  publication-title: Sci Rep
– volume: 221-222
  start-page: 11
  year: 2014
  end-page: 19
  ident: bib8
  article-title: Using organic phosphorus to sustain pasture productivity: a perspective
  publication-title: Geoderma
– volume: 35
  year: 2021
  ident: bib27
  article-title: The ability of detainment bunds to decrease sediments transported from pastoral catchments in surface runoff
  publication-title: Hydrol Process
– volume: 46
  start-page: 123
  year: 2017
  end-page: 132
  ident: bib37
  article-title: Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices?
  publication-title: J Environ Qual
– start-page: 1
  year: 2024
  end-page: 20
  ident: bib31
  article-title: A review of the development and implementation of the critical source area concept: a reflection of Andrew Sharpley’s role in improving water quality
  publication-title: J Environ Qual
– volume: 4
  start-page: 687
  year: 2023
  end-page: 702
  ident: bib18
  article-title: Global river water quality under climate change and hydroclimatic extremes
  publication-title: Nat Rev Earth Environ
– volume: 13
  year: 2022
  ident: bib20
  article-title: Global crop yields can be lifted by timely adaptation of growing periods to climate change
  publication-title: Nat Commun
– volume: 5
  start-page: 332
  year: 2024
  end-page: 339
  ident: bib4
  article-title: Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves
  publication-title: Nat Food
– volume: 35
  start-page: 1248
  year: 2006
  end-page: 1259
  ident: bib16
  article-title: Role of rainfall intensity and hydrology in nutrient transport via surface runoff
  publication-title: J Environ Qual
– volume: 869
  year: 2023
  ident: bib32
  article-title: Two decades of the EU Water Framework Directive: evidence of success and failure from a lowland arable catchment (River Wensum, UK)
  publication-title: Sci Total Environ
– volume: 182
  year: 2020
  ident: bib11
  article-title: Manuresheds: advancing nutrient recycling in US agriculture
  publication-title: Agric Syst
– volume: 12
  year: 2020
  ident: bib33
  article-title: The water framework directive and agricultural diffuse pollution: fighting a running battle?
  publication-title: Water
– volume: 52
  start-page: 1063
  year: 2023
  end-page: 1079
  ident: bib25
  article-title: Streambank erosion and phosphorus loading to surface waters: knowns, unknowns, and implications for nutrient loss reduction research and policy
  publication-title: J Environ Qual
– volume: 125
  start-page: 63
  year: 2023
  end-page: 75
  ident: bib6
  article-title: Phosphorus drawdown rate following cessation of repeated manure application to annual crops
  publication-title: Nutr Cycl Agroecosystems
– volume: 16
  start-page: 69
  year: 2023
  end-page: 74
  ident: bib3
  article-title: Half of global agricultural soil phosphorus fertility derived from anthropogenic sources
  publication-title: Nat Geosci
– volume: 120
  start-page: 121
  year: 2021
  end-page: 129
  ident: bib35
  article-title: National-scale implementation of mandatory freshwater farm plans: a mechanism to deliver water quality improvement in productive catchments in New Zealand?
  publication-title: Nutr Cycl Agroecosystems
– volume: 2
  start-page: 873
  year: 2021
  end-page: 885
  ident: bib19
  article-title: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models
  publication-title: Nat Food
– volume: 54
  start-page: 385
  year: 2024
  end-page: 404
  ident: bib14
  article-title: The phosphorus saturation degree as a universal agronomic and environmental soil P test
  publication-title: Crit Rev Environ Sci Technol
– volume: 30
  year: 2024
  ident: bib36
  article-title: Missing phosphorus legacy of the Anthropocene: quantifying residual phosphorus in the biosphere
  publication-title: Glob Change Biol
– volume: 4
  start-page: 1024
  year: 2023
  end-page: 1026
  ident: bib5
  article-title: The untapped potential of legacy soil phosphorus
  publication-title: Nat Food
– volume: 3
  start-page: 1065
  year: 2022
  end-page: 1074
  ident: bib22
  article-title: Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems
  publication-title: Nat Food
– volume: 46
  start-page: 123
  year: 2017
  ident: 10.1016/j.copbio.2024.103181_bib37
  article-title: Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices?
  publication-title: J Environ Qual
  doi: 10.2134/jeq2016.07.0248
– volume: 2
  start-page: 873
  year: 2021
  ident: 10.1016/j.copbio.2024.103181_bib19
  article-title: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models
  publication-title: Nat Food
  doi: 10.1038/s43016-021-00400-y
– volume: 35
  start-page: 1248
  year: 2006
  ident: 10.1016/j.copbio.2024.103181_bib16
  article-title: Role of rainfall intensity and hydrology in nutrient transport via surface runoff
  publication-title: J Environ Qual
  doi: 10.2134/jeq2006.0015
– volume: 54
  start-page: 385
  year: 2024
  ident: 10.1016/j.copbio.2024.103181_bib14
  article-title: The phosphorus saturation degree as a universal agronomic and environmental soil P test
  publication-title: Crit Rev Environ Sci Technol
  doi: 10.1080/10643389.2023.2240211
– year: 2022
  ident: 10.1016/j.copbio.2024.103181_bib26
  article-title: Dairy farm roadway surface materials as a P-source within the nutrient transfer continuum framework
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2022.878166
– volume: 4
  start-page: 687
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib18
  article-title: Global river water quality under climate change and hydroclimatic extremes
  publication-title: Nat Rev Earth Environ
  doi: 10.1038/s43017-023-00472-3
– volume: 12
  year: 2020
  ident: 10.1016/j.copbio.2024.103181_bib33
  article-title: The water framework directive and agricultural diffuse pollution: fighting a running battle?
  publication-title: Water
  doi: 10.3390/w12051447
– volume: 2
  start-page: 509
  year: 2021
  ident: 10.1016/j.copbio.2024.103181_sbref21
  article-title: More efficient phosphorus use can avoid cropland expansion
  publication-title: Nat Food
  doi: 10.1038/s43016-021-00303-y
– volume: 3
  start-page: 1065
  year: 2022
  ident: 10.1016/j.copbio.2024.103181_bib22
  article-title: Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems
  publication-title: Nat Food
  doi: 10.1038/s43016-022-00644-2
– volume: 35
  year: 2021
  ident: 10.1016/j.copbio.2024.103181_bib27
  article-title: The ability of detainment bunds to decrease sediments transported from pastoral catchments in surface runoff
  publication-title: Hydrol Process
  doi: 10.1002/hyp.14309
– volume: 30
  year: 2024
  ident: 10.1016/j.copbio.2024.103181_bib36
  article-title: Missing phosphorus legacy of the Anthropocene: quantifying residual phosphorus in the biosphere
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.17376
– volume: 221-222
  start-page: 11
  year: 2014
  ident: 10.1016/j.copbio.2024.103181_bib8
  article-title: Using organic phosphorus to sustain pasture productivity: a perspective
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.12.004
– volume: 344
  start-page: 5
  year: 2005
  ident: 10.1016/j.copbio.2024.103181_bib7
  article-title: The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2005.02.001
– volume: 44
  start-page: 460
  year: 2015
  ident: 10.1016/j.copbio.2024.103181_bib24
  article-title: Phosphorus fate, management, and modeling in artificially drained systems
  publication-title: J Environ Qual
  doi: 10.2134/jeq2015.02.0090
– volume: 120
  start-page: 121
  year: 2021
  ident: 10.1016/j.copbio.2024.103181_bib35
  article-title: National-scale implementation of mandatory freshwater farm plans: a mechanism to deliver water quality improvement in productive catchments in New Zealand?
  publication-title: Nutr Cycl Agroecosystems
  doi: 10.1007/s10705-021-10146-5
– volume: 52
  start-page: 1063
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib25
  article-title: Streambank erosion and phosphorus loading to surface waters: knowns, unknowns, and implications for nutrient loss reduction research and policy
  publication-title: J Environ Qual
  doi: 10.1002/jeq2.20514
– volume: 10
  year: 2020
  ident: 10.1016/j.copbio.2024.103181_sbref1
  article-title: Global mapping of freshwater nutrient enrichment and periphyton growth potential
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-60279-w
– volume: 182
  year: 2020
  ident: 10.1016/j.copbio.2024.103181_bib11
  article-title: Manuresheds: advancing nutrient recycling in US agriculture
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2020.102813
– volume: 869
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib32
  article-title: Two decades of the EU Water Framework Directive: evidence of success and failure from a lowland arable catchment (River Wensum, UK)
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.161837
– volume: 895
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib34
  article-title: Linking the uptake of best management practices on dairy farms to catchment water quality improvement over a 20-year period
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.164963
– volume: 13
  year: 2022
  ident: 10.1016/j.copbio.2024.103181_bib20
  article-title: Global crop yields can be lifted by timely adaptation of growing periods to climate change
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34411-5
– volume: 362
  year: 2020
  ident: 10.1016/j.copbio.2024.103181_bib12
  article-title: The mitigation of phosphorus losses from a water-repellent soil used for grazed dairy farming
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114125
– volume: 6
  year: 2019
  ident: 10.1016/j.copbio.2024.103181_bib2
  article-title: Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum
  publication-title: WIREs Water
  doi: 10.1002/wat2.1373
– volume: 4
  start-page: 1024
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_sbref5
  article-title: The untapped potential of legacy soil phosphorus
  publication-title: Nat Food
  doi: 10.1038/s43016-023-00890-y
– start-page: 1
  year: 2024
  ident: 10.1016/j.copbio.2024.103181_sbref31
  article-title: A review of the development and implementation of the critical source area concept: a reflection of Andrew Sharpley’s role in improving water quality
  publication-title: J Environ Qual
– volume: 586
  start-page: 631
  year: 2017
  ident: 10.1016/j.copbio.2024.103181_bib30
  article-title: A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.034
– volume: 12
  year: 2017
  ident: 10.1016/j.copbio.2024.103181_bib38
  article-title: Time lags in watershed-scale nutrient transport: an exploration of dominant controls
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa7bf4
– volume: 357
  start-page: 405
  year: 2017
  ident: 10.1016/j.copbio.2024.103181_bib17
  article-title: Eutrophication will increase during the 21st century as a result of precipitation changes
  publication-title: Science
  doi: 10.1126/science.aan2409
– volume: 66
  start-page: 493
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib29
  article-title: Modelling the feasibility and cost-effectiveness of edge-of-field mitigations for reducing nitrogen and phosphorus loads in the Waituna Lagoon Catchment, Southland
  publication-title: NZ J Agric Res
  doi: 10.1080/00288233.2022.2107025
– volume: 5
  start-page: 332
  year: 2024
  ident: 10.1016/j.copbio.2024.103181_sbref4
  article-title: Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves
  publication-title: Nat Food
  doi: 10.1038/s43016-024-00952-9
– volume: 11
  year: 2020
  ident: 10.1016/j.copbio.2024.103181_bib9
  article-title: Global phosphorus shortage will be aggravated by soil erosion
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18326-7
– start-page: 177
  year: 2014
  ident: 10.1016/j.copbio.2024.103181_bib15
  article-title: Chapter Five — Phosphorus: its efficient use in agriculture
  doi: 10.1016/B978-0-12-420225-2.00005-4
– volume: 52
  start-page: 11995
  year: 2018
  ident: 10.1016/j.copbio.2024.103181_bib28
  article-title: Managing diffuse phosphorus at the source versus at the sink
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b01143
– volume: 125
  start-page: 63
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib6
  article-title: Phosphorus drawdown rate following cessation of repeated manure application to annual crops
  publication-title: Nutr Cycl Agroecosystems
  doi: 10.1007/s10705-022-10255-9
– volume: 16
  start-page: 69
  year: 2023
  ident: 10.1016/j.copbio.2024.103181_bib3
  article-title: Half of global agricultural soil phosphorus fertility derived from anthropogenic sources
  publication-title: Nat Geosci
  doi: 10.1038/s41561-022-01092-0
– volume: 48
  start-page: 1218
  year: 2019
  ident: 10.1016/j.copbio.2024.103181_bib23
  article-title: A global perspective on phosphorus management decision support in agriculture: lessons learned and future directions
  publication-title: J Environ Qual
  doi: 10.2134/jeq2019.03.0107
– year: 2018
  ident: 10.1016/j.copbio.2024.103181_bib10
– start-page: 781
  year: 2005
  ident: 10.1016/j.copbio.2024.103181_bib13
  article-title: Environmental management of phosphorus fertilizers
SSID ssj0005370
Score 2.488373
SecondaryResourceType review_article
Snippet Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103181
SubjectTerms agricultural land
algae
biotechnology
cost effectiveness
Europe
eutrophication
intensive farming
people
phosphorus
remediation
runoff
soil
subsurface flow
surface water
topography
Title Reducing phosphorus losses from agricultural land to surface water
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0958166924001174
https://dx.doi.org/10.1016/j.copbio.2024.103181
https://www.ncbi.nlm.nih.gov/pubmed/39151246
https://www.proquest.com/docview/3094043803
https://www.proquest.com/docview/3242086610
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-BYfZE28Vmh3-zoikaBGDioJt83udlEMoaSUePO3O9NX8IAYD036mEm20-nM1-7Mt4Rcj9tcRjY6r0RSbcMDSwa-ttzQMwDnNbMj_A_5NPD6Q_4wckc10i17YbCssoj9eUzPonVxplVYszWfTFovAA5w0ivEKkgbgDV2sHMfvfzma6XMg2ULxqGwhdJl-1xW46XjuZpgC6DDsfvcDux16Wkd_MzSUG-P7Bb4kXbyIe6TmpkdkJ0VVsFDcvuMdKywS-fv8QK2ZLmg0xhndyl2k1D5llSMGxQrG2ka08UyGUtt6CeAz-SIDHt3r92-VSyVYGke8tQyTI9NqF0A_8oOpORMeU7kwwnN8MLYw0wOuciPuAwVfE5rDUDEhFzqyG4rdkzqs3hmTgmV0omUApwVQOYPOZOuY5jirmwbm0WuaRBWWkjogkccl7OYirJg7EPkdhVoV5HbtUGsSmue82hskHdL44uyRxSimoBAv0HPr_R--NEfNK_KZyzgFcN5Ezkz8XIhGHIMIjM_-0XGwToFADvtBjnJHaS6T-TgBxjlnf17bOdkG4_yIsILUk-TpbkEMJSqZubtTbLVuX_sD74BTFcIFw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4BewAOaJdnYVmMBMfQJnbS5MCBx6LyPPCQejO240IRaqqkFeLCn-IPMpNHxR7YIiQOkaLYjpyxPfM5_mYGYKvTECp2afIqCqptReiosGkcPwoswnnD3Zj-Q55fBK0bcdL22xPwWvnCEK2y1P2FTs-1dfmkXkqz3u9261cIDujQKyIWpIvAumRWntrnJ9y3ZbvHhzjI25539Pf6oOWUqQUcIyIxcCw3HRsZH8GydkOlBNeBFzfxgeFU0AnI8qHubsZCRRq3n8ag4baRUCZ2G5rjeyfhh0B1QWkTdl7e8Up4nqGOeudQ9yp_vZxUZpK-7pLPoSfI3d0N3Y_s4Ud4N7d7Rz9hrgSsbK-QyS-YsL15mH0XxnAB9i8p_ivesv59kuGVDjP2mNBxMiP3Fabu0lGID0ZUSjZIWDZMO8pY9oRoN12Em28R4BJM9ZKeXQGmlBdrjcAuRKgRCa58z3ItfNWwLo99WwNeSUiaMnA55c94lBVD7UEWcpUkV1nItQbOqFW_CNwxpr5fCV9WTqmoRiValjHtmqN2_0zcT7TcrMZY4pqmgxrVs8kwk5yCGlIqAP6fOh4RIxBdNWqwXEyQ0XdS0H_EbcHql_u2AdOt6_MzeXZ8cboGM1RSMBh_w9QgHdp1RGID_Sef-Qxuv3upvQFFSkUV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+phosphorus+losses+from+agricultural+land+to+surface+water&rft.jtitle=Current+opinion+in+biotechnology&rft.au=McDowell%2C+Richard+W&rft.au=Haygarth%2C+Philip+M&rft.date=2024-10-01&rft.issn=0958-1669&rft.volume=89+p.103181-&rft_id=info:doi/10.1016%2Fj.copbio.2024.103181&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-1669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-1669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-1669&client=summon