Reducing phosphorus losses from agricultural land to surface water
Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 y...
Saved in:
Published in | Current opinion in biotechnology Vol. 89; p. 103181 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.
•Enrichment of surface waters with phosphorus (P) leads to algal growth and eutrophication.•About 27% of agricultural land exceeds optimal soil P levels, posing a risk of P loss to surface waters.•Agricultural P loss driven by soil, fertilisers, crop residues, and livestock.•Much P loss comes from critical source areas (CSAs) with changing topography.•Targeting mitigation actions to CSAs enhances their cost-effectiveness. |
---|---|
AbstractList | Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses. Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses. •Enrichment of surface waters with phosphorus (P) leads to algal growth and eutrophication.•About 27% of agricultural land exceeds optimal soil P levels, posing a risk of P loss to surface waters.•Agricultural P loss driven by soil, fertilisers, crop residues, and livestock.•Much P loss comes from critical source areas (CSAs) with changing topography.•Targeting mitigation actions to CSAs enhances their cost-effectiveness. Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses.Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.4 billion in the USA. Agricultural intensification over the past 50 years has increased P use brought into the system from mined fertiliser sources. This has enriched soil P concentrations and loss to surface waters via pathways such as surface runoff and subsurface flow, which are influenced by precipitation, slope, and farming practices. Effective mitigation of losses involves managing P sources, mobilisation, and transport/delivery mechanisms. The cost-effectiveness of mitigation actions can be improved if they are targeted to critical source areas (CSAs), which are small zones that disproportionately contribute to P loss. While targeting CSAs works well in areas with variable topography, flatter landscapes require managing legacy sources, such as enriched soil P to prevent P losses. |
ArticleNumber | 103181 |
Author | Haygarth, Philip M McDowell, Richard W |
Author_xml | – sequence: 1 givenname: Richard W surname: McDowell fullname: McDowell, Richard W email: richard.mcdowell@agresearch.co.nz organization: AgResearch, Lincoln Science Centre, Lincoln, Canterbury, New Zealand – sequence: 2 givenname: Philip M surname: Haygarth fullname: Haygarth, Philip M organization: Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39151246$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaCZp_0EpXnbjqV6WrVAKSegjECiUdi3k6-tUE401leSE_PtocNpFNrMQgqvvHK7OOSVHU5iQkHeMrhll6uNmDWHXu7DmlMsyEqxjr8iKda2uqeT6iKyobrqaKaVPyGlKG0ppI1r6mpwIzRrGpVqRy584zOCm22r3J6Ry4pwqH1LCVI0xbCt7Gx3MPs_R-srbaahyqNIcRwtYPdiM8Q05Hq1P-Pb5PiO_v375dfW9vvnx7frq4qYGqWWuUcCIGpqma3rWWStFr_jQlgGI_cOoygc44107SKt77DmAbhVqaWFgtBdn5MPiu4vh74wpm61LgL4shWFORnDJaadUieIgSrWkUnRUFPT9Mzr3WxzMLrqtjY_mX0QFkAsAscQScfyPMGr2TZiNWZow-ybM0kSRnb-Qgcs2uzDlaJ0_JP68iLHkee8wmgQOJ8DBRYRshuAOGXx6YQDeTQ6sv8PHw_Inwye6Pg |
CitedBy_id | crossref_primary_10_1021_acs_jafc_4c09325 crossref_primary_10_1016_j_biortech_2025_132409 crossref_primary_10_1017_qpb_2025_1 |
Cites_doi | 10.2134/jeq2016.07.0248 10.1038/s43016-021-00400-y 10.2134/jeq2006.0015 10.1080/10643389.2023.2240211 10.3389/fenvs.2022.878166 10.1038/s43017-023-00472-3 10.3390/w12051447 10.1038/s43016-021-00303-y 10.1038/s43016-022-00644-2 10.1002/hyp.14309 10.1111/gcb.17376 10.1016/j.geoderma.2013.12.004 10.1016/j.scitotenv.2005.02.001 10.2134/jeq2015.02.0090 10.1007/s10705-021-10146-5 10.1002/jeq2.20514 10.1038/s41598-020-60279-w 10.1016/j.agsy.2020.102813 10.1016/j.scitotenv.2023.161837 10.1016/j.scitotenv.2023.164963 10.1038/s41467-022-34411-5 10.1016/j.geoderma.2019.114125 10.1002/wat2.1373 10.1038/s43016-023-00890-y 10.1016/j.scitotenv.2017.02.034 10.1088/1748-9326/aa7bf4 10.1126/science.aan2409 10.1080/00288233.2022.2107025 10.1038/s43016-024-00952-9 10.1038/s41467-020-18326-7 10.1016/B978-0-12-420225-2.00005-4 10.1021/acs.est.8b01143 10.1007/s10705-022-10255-9 10.1038/s41561-022-01092-0 10.2134/jeq2019.03.0107 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.copbio.2024.103181 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0429 |
ExternalDocumentID | 39151246 10_1016_j_copbio_2024_103181 S0958166924001174 |
Genre | Journal Article Review |
GeographicLocations | Europe |
GeographicLocations_xml | – name: Europe |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABEFU ABFRF ABGSF ABJNI ABMAC ABNUV ABOCM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LUGTX LX3 M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K TWZ VH1 WUQ Z5R ~02 ~G- 6I. AAFTH AFCTW AGRNS BNPGV RIG SSH AAYXX CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c494t-e3cfe9c5585b18aa43b62d7c55c3fe9cf618121287d4a9beb2cc976e94acd10b3 |
IEDL.DBID | .~1 |
ISSN | 0958-1669 1879-0429 |
IngestDate | Fri Aug 22 20:23:10 EDT 2025 Fri Jul 11 07:10:33 EDT 2025 Mon Jul 21 05:41:00 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Thu Jul 03 08:37:05 EDT 2025 Sat Jul 19 17:11:45 EDT 2025 Tue Aug 26 16:32:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-e3cfe9c5585b18aa43b62d7c55c3fe9cf618121287d4a9beb2cc976e94acd10b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0958166924001174 |
PMID | 39151246 |
PQID | 3094043803 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3242086610 proquest_miscellaneous_3094043803 pubmed_primary_39151246 crossref_primary_10_1016_j_copbio_2024_103181 crossref_citationtrail_10_1016_j_copbio_2024_103181 elsevier_sciencedirect_doi_10_1016_j_copbio_2024_103181 elsevier_clinicalkey_doi_10_1016_j_copbio_2024_103181 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in biotechnology |
PublicationTitleAlternate | Curr Opin Biotechnol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | McDowell, Kleinman, Haygarth, McGrath, Smith, Heathwaite, Iho, Schoumans, Nash (bib31) 2024 The Fertilizer Institute (bib10) 2018 Sinha, Michalak, Balaji (bib17) 2017; 357 Kleinman, Smith, Bolster, Easton (bib24) 2015; 44 Kleinman, Srinivasan, Dell, Schmidt, Sharpley, Bryant (bib16) 2006; 35 McDowell, Rotz, Oenema, Macintosh (bib22) 2022; 3 Cooper, Hiscock (bib32) 2023; 869 Mogollón, Bouwman, Beusen, Lassaletta, van Grinsven, Westhoek (bib21) 2021; 2 Vinten, Sample, Ibiyemi, Abdul-Salam, Stutter (bib30) 2017; 586 van Vliet, Thorslund, Strokal, Hofstra, Flörke, Ehalt Macedo, Nkwasa, Tang, Kaushal, Kumar (bib18) 2023; 4 Margenot, Zhou, McDowell, Hebert, Fox, Schilling, Richmond, Kovar, Wickramarathne, Lemke (bib25) 2023; 52 Haygarth, Condron, Heathwaite, Turner, Harris (bib7) 2005; 344 Jägermeyr, Müller, Ruane, Elliott, Balkovic, Castillo, Faye, Foster, Folberth, Franke (bib19) 2021; 2 Drohan, Bechmann, Buda, Djodjic, Doody, Duncan, Iho, Jordan, Kleinman, McDowell (bib23) 2019; 48 McDowell, Noble, Pletnyakov, Haggard, Mosley (bib1) 2020; 10 van Doorn, van Rotterdam, Ros, Koopmans, Smolders, de Vries (bib14) 2024; 54 Macintosh, McDowell, Wright-Stow, Depree, Robinson (bib35) 2021; 120 Johnston, Poulton, Fixen, Curtin (bib15) 2014 Lasisi, Akinremi, Kumaragamage, Racz (bib6) 2023; 125 Margenot, Zhou, Xu, Condron, Metson, Haygarth, Wade, Agyeman (bib36) 2024; 30 Nash, Haygarth, Turner, Condron, McDowell, Richardson, Watkins, Heaven (bib8) 2014; 221-222 Spiegal, Kleinman, Endale, Bryant, Dell, Goslee, Meinen, Flynn, Baker, Browning (bib11) 2020; 182 McDowell, Catto, McDowell (bib12) 2020; 362 Minoli, Jägermeyr, Asseng, Urfels, Müller (bib20) 2022; 13 Macintosh, Mayer, McDowell, Powers, Baker, Boyer, Rittmann (bib28) 2018; 52 Wiering, Boezeman, Crabbé (bib33) 2020; 12 McDowell, Macintosh, Depree (bib34) 2023; 895 Alewell, Ringeval, Ballabio, Robinson, Panagos, Borrelli (bib9) 2020; 11 Fenton, Rice, Murnane, Tuohy, Daly (bib26) 2022 Van Meter, Basu (bib38) 2017; 12 Weeber, Tanner, Rozemeijer, Neal, Thiange, Van den Roovaart, Burger (bib29) 2023; 66 Pratt, El Hanandeh (bib5) 2023; 4 McDowell, Pletnyakov, Haygarth (bib4) 2024; 5 Withers, Nash, Laboski (bib13) 2005 Wurtsbaugh, Paerl, Dodds (bib2) 2019; 6 Levine, Burkitt, Horne, Tanner, Sukias, Condron, Paterson (bib27) 2021; 35 Jarvie, Johnson, Sharpley, Smith, Baker, Bruulsema, Confesor (bib37) 2017; 46 Demay, Ringeval, Pellerin, Nesme (bib3) 2023; 16 Macintosh (10.1016/j.copbio.2024.103181_bib35) 2021; 120 McDowell (10.1016/j.copbio.2024.103181_sbref4) 2024; 5 Haygarth (10.1016/j.copbio.2024.103181_bib7) 2005; 344 Alewell (10.1016/j.copbio.2024.103181_bib9) 2020; 11 McDowell (10.1016/j.copbio.2024.103181_bib34) 2023; 895 Nash (10.1016/j.copbio.2024.103181_bib8) 2014; 221-222 Wiering (10.1016/j.copbio.2024.103181_bib33) 2020; 12 Lasisi (10.1016/j.copbio.2024.103181_bib6) 2023; 125 Demay (10.1016/j.copbio.2024.103181_bib3) 2023; 16 Weeber (10.1016/j.copbio.2024.103181_bib29) 2023; 66 Wurtsbaugh (10.1016/j.copbio.2024.103181_bib2) 2019; 6 Withers (10.1016/j.copbio.2024.103181_bib13) 2005 Fenton (10.1016/j.copbio.2024.103181_bib26) 2022 Sinha (10.1016/j.copbio.2024.103181_bib17) 2017; 357 Levine (10.1016/j.copbio.2024.103181_bib27) 2021; 35 McDowell (10.1016/j.copbio.2024.103181_bib22) 2022; 3 Minoli (10.1016/j.copbio.2024.103181_bib20) 2022; 13 Pratt (10.1016/j.copbio.2024.103181_sbref5) 2023; 4 Macintosh (10.1016/j.copbio.2024.103181_bib28) 2018; 52 Vinten (10.1016/j.copbio.2024.103181_bib30) 2017; 586 Kleinman (10.1016/j.copbio.2024.103181_bib24) 2015; 44 McDowell (10.1016/j.copbio.2024.103181_sbref1) 2020; 10 Drohan (10.1016/j.copbio.2024.103181_bib23) 2019; 48 Van Meter (10.1016/j.copbio.2024.103181_bib38) 2017; 12 Spiegal (10.1016/j.copbio.2024.103181_bib11) 2020; 182 The Fertilizer Institute (10.1016/j.copbio.2024.103181_bib10) 2018 Kleinman (10.1016/j.copbio.2024.103181_bib16) 2006; 35 van Vliet (10.1016/j.copbio.2024.103181_bib18) 2023; 4 Jarvie (10.1016/j.copbio.2024.103181_bib37) 2017; 46 McDowell (10.1016/j.copbio.2024.103181_bib12) 2020; 362 Margenot (10.1016/j.copbio.2024.103181_bib25) 2023; 52 van Doorn (10.1016/j.copbio.2024.103181_bib14) 2024; 54 Johnston (10.1016/j.copbio.2024.103181_bib15) 2014 Jägermeyr (10.1016/j.copbio.2024.103181_bib19) 2021; 2 Margenot (10.1016/j.copbio.2024.103181_bib36) 2024; 30 Cooper (10.1016/j.copbio.2024.103181_bib32) 2023; 869 McDowell (10.1016/j.copbio.2024.103181_sbref31) 2024 Mogollón (10.1016/j.copbio.2024.103181_sbref21) 2021; 2 |
References_xml | – year: 2022 ident: bib26 article-title: Dairy farm roadway surface materials as a P-source within the nutrient transfer continuum framework publication-title: Front Environ Sci – volume: 12 year: 2017 ident: bib38 article-title: Time lags in watershed-scale nutrient transport: an exploration of dominant controls publication-title: Environ Res Lett – volume: 586 start-page: 631 year: 2017 end-page: 641 ident: bib30 article-title: A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland publication-title: Sci Total Environ – volume: 344 start-page: 5 year: 2005 end-page: 14 ident: bib7 article-title: The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach publication-title: Sci Total Environ – volume: 52 start-page: 11995 year: 2018 end-page: 12009 ident: bib28 article-title: Managing diffuse phosphorus at the source versus at the sink publication-title: Environ Sci Technol – volume: 6 year: 2019 ident: bib2 article-title: Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum publication-title: WIREs Water – volume: 357 start-page: 405 year: 2017 end-page: 408 ident: bib17 article-title: Eutrophication will increase during the 21st century as a result of precipitation changes publication-title: Science – volume: 362 year: 2020 ident: bib12 article-title: The mitigation of phosphorus losses from a water-repellent soil used for grazed dairy farming publication-title: Geoderma – volume: 48 start-page: 1218 year: 2019 end-page: 1233 ident: bib23 article-title: A global perspective on phosphorus management decision support in agriculture: lessons learned and future directions publication-title: J Environ Qual – volume: 11 year: 2020 ident: bib9 article-title: Global phosphorus shortage will be aggravated by soil erosion publication-title: Nat Commun – volume: 895 year: 2023 ident: bib34 article-title: Linking the uptake of best management practices on dairy farms to catchment water quality improvement over a 20-year period publication-title: Sci Total Environ – volume: 66 start-page: 493 year: 2023 end-page: 517 ident: bib29 article-title: Modelling the feasibility and cost-effectiveness of edge-of-field mitigations for reducing nitrogen and phosphorus loads in the Waituna Lagoon Catchment, Southland publication-title: NZ J Agric Res – volume: 2 start-page: 509 year: 2021 end-page: 518 ident: bib21 article-title: More efficient phosphorus use can avoid cropland expansion publication-title: Nat Food – start-page: 177 year: 2014 end-page: 228 ident: bib15 article-title: Chapter Five — Phosphorus: its efficient use in agriculture publication-title: Advances in Agronomy – start-page: 781 year: 2005 end-page: 827 ident: bib13 article-title: Environmental management of phosphorus fertilizers publication-title: Phosphorus: Agriculture and the Environment – year: 2018 ident: bib10 article-title: The 4Rs of Nutrient Stewardship – volume: 44 start-page: 460 year: 2015 end-page: 466 ident: bib24 article-title: Phosphorus fate, management, and modeling in artificially drained systems publication-title: J Environ Qual – volume: 10 year: 2020 ident: bib1 article-title: Global mapping of freshwater nutrient enrichment and periphyton growth potential publication-title: Sci Rep – volume: 221-222 start-page: 11 year: 2014 end-page: 19 ident: bib8 article-title: Using organic phosphorus to sustain pasture productivity: a perspective publication-title: Geoderma – volume: 35 year: 2021 ident: bib27 article-title: The ability of detainment bunds to decrease sediments transported from pastoral catchments in surface runoff publication-title: Hydrol Process – volume: 46 start-page: 123 year: 2017 end-page: 132 ident: bib37 article-title: Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices? publication-title: J Environ Qual – start-page: 1 year: 2024 end-page: 20 ident: bib31 article-title: A review of the development and implementation of the critical source area concept: a reflection of Andrew Sharpley’s role in improving water quality publication-title: J Environ Qual – volume: 4 start-page: 687 year: 2023 end-page: 702 ident: bib18 article-title: Global river water quality under climate change and hydroclimatic extremes publication-title: Nat Rev Earth Environ – volume: 13 year: 2022 ident: bib20 article-title: Global crop yields can be lifted by timely adaptation of growing periods to climate change publication-title: Nat Commun – volume: 5 start-page: 332 year: 2024 end-page: 339 ident: bib4 article-title: Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves publication-title: Nat Food – volume: 35 start-page: 1248 year: 2006 end-page: 1259 ident: bib16 article-title: Role of rainfall intensity and hydrology in nutrient transport via surface runoff publication-title: J Environ Qual – volume: 869 year: 2023 ident: bib32 article-title: Two decades of the EU Water Framework Directive: evidence of success and failure from a lowland arable catchment (River Wensum, UK) publication-title: Sci Total Environ – volume: 182 year: 2020 ident: bib11 article-title: Manuresheds: advancing nutrient recycling in US agriculture publication-title: Agric Syst – volume: 12 year: 2020 ident: bib33 article-title: The water framework directive and agricultural diffuse pollution: fighting a running battle? publication-title: Water – volume: 52 start-page: 1063 year: 2023 end-page: 1079 ident: bib25 article-title: Streambank erosion and phosphorus loading to surface waters: knowns, unknowns, and implications for nutrient loss reduction research and policy publication-title: J Environ Qual – volume: 125 start-page: 63 year: 2023 end-page: 75 ident: bib6 article-title: Phosphorus drawdown rate following cessation of repeated manure application to annual crops publication-title: Nutr Cycl Agroecosystems – volume: 16 start-page: 69 year: 2023 end-page: 74 ident: bib3 article-title: Half of global agricultural soil phosphorus fertility derived from anthropogenic sources publication-title: Nat Geosci – volume: 120 start-page: 121 year: 2021 end-page: 129 ident: bib35 article-title: National-scale implementation of mandatory freshwater farm plans: a mechanism to deliver water quality improvement in productive catchments in New Zealand? publication-title: Nutr Cycl Agroecosystems – volume: 2 start-page: 873 year: 2021 end-page: 885 ident: bib19 article-title: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models publication-title: Nat Food – volume: 54 start-page: 385 year: 2024 end-page: 404 ident: bib14 article-title: The phosphorus saturation degree as a universal agronomic and environmental soil P test publication-title: Crit Rev Environ Sci Technol – volume: 30 year: 2024 ident: bib36 article-title: Missing phosphorus legacy of the Anthropocene: quantifying residual phosphorus in the biosphere publication-title: Glob Change Biol – volume: 4 start-page: 1024 year: 2023 end-page: 1026 ident: bib5 article-title: The untapped potential of legacy soil phosphorus publication-title: Nat Food – volume: 3 start-page: 1065 year: 2022 end-page: 1074 ident: bib22 article-title: Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems publication-title: Nat Food – volume: 46 start-page: 123 year: 2017 ident: 10.1016/j.copbio.2024.103181_bib37 article-title: Increased soluble phosphorus loads to Lake Erie: unintended consequences of conservation practices? publication-title: J Environ Qual doi: 10.2134/jeq2016.07.0248 – volume: 2 start-page: 873 year: 2021 ident: 10.1016/j.copbio.2024.103181_bib19 article-title: Climate impacts on global agriculture emerge earlier in new generation of climate and crop models publication-title: Nat Food doi: 10.1038/s43016-021-00400-y – volume: 35 start-page: 1248 year: 2006 ident: 10.1016/j.copbio.2024.103181_bib16 article-title: Role of rainfall intensity and hydrology in nutrient transport via surface runoff publication-title: J Environ Qual doi: 10.2134/jeq2006.0015 – volume: 54 start-page: 385 year: 2024 ident: 10.1016/j.copbio.2024.103181_bib14 article-title: The phosphorus saturation degree as a universal agronomic and environmental soil P test publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2023.2240211 – year: 2022 ident: 10.1016/j.copbio.2024.103181_bib26 article-title: Dairy farm roadway surface materials as a P-source within the nutrient transfer continuum framework publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.878166 – volume: 4 start-page: 687 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib18 article-title: Global river water quality under climate change and hydroclimatic extremes publication-title: Nat Rev Earth Environ doi: 10.1038/s43017-023-00472-3 – volume: 12 year: 2020 ident: 10.1016/j.copbio.2024.103181_bib33 article-title: The water framework directive and agricultural diffuse pollution: fighting a running battle? publication-title: Water doi: 10.3390/w12051447 – volume: 2 start-page: 509 year: 2021 ident: 10.1016/j.copbio.2024.103181_sbref21 article-title: More efficient phosphorus use can avoid cropland expansion publication-title: Nat Food doi: 10.1038/s43016-021-00303-y – volume: 3 start-page: 1065 year: 2022 ident: 10.1016/j.copbio.2024.103181_bib22 article-title: Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems publication-title: Nat Food doi: 10.1038/s43016-022-00644-2 – volume: 35 year: 2021 ident: 10.1016/j.copbio.2024.103181_bib27 article-title: The ability of detainment bunds to decrease sediments transported from pastoral catchments in surface runoff publication-title: Hydrol Process doi: 10.1002/hyp.14309 – volume: 30 year: 2024 ident: 10.1016/j.copbio.2024.103181_bib36 article-title: Missing phosphorus legacy of the Anthropocene: quantifying residual phosphorus in the biosphere publication-title: Glob Change Biol doi: 10.1111/gcb.17376 – volume: 221-222 start-page: 11 year: 2014 ident: 10.1016/j.copbio.2024.103181_bib8 article-title: Using organic phosphorus to sustain pasture productivity: a perspective publication-title: Geoderma doi: 10.1016/j.geoderma.2013.12.004 – volume: 344 start-page: 5 year: 2005 ident: 10.1016/j.copbio.2024.103181_bib7 article-title: The phosphorus transfer continuum: linking source to impact with an interdisciplinary and multi-scaled approach publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2005.02.001 – volume: 44 start-page: 460 year: 2015 ident: 10.1016/j.copbio.2024.103181_bib24 article-title: Phosphorus fate, management, and modeling in artificially drained systems publication-title: J Environ Qual doi: 10.2134/jeq2015.02.0090 – volume: 120 start-page: 121 year: 2021 ident: 10.1016/j.copbio.2024.103181_bib35 article-title: National-scale implementation of mandatory freshwater farm plans: a mechanism to deliver water quality improvement in productive catchments in New Zealand? publication-title: Nutr Cycl Agroecosystems doi: 10.1007/s10705-021-10146-5 – volume: 52 start-page: 1063 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib25 article-title: Streambank erosion and phosphorus loading to surface waters: knowns, unknowns, and implications for nutrient loss reduction research and policy publication-title: J Environ Qual doi: 10.1002/jeq2.20514 – volume: 10 year: 2020 ident: 10.1016/j.copbio.2024.103181_sbref1 article-title: Global mapping of freshwater nutrient enrichment and periphyton growth potential publication-title: Sci Rep doi: 10.1038/s41598-020-60279-w – volume: 182 year: 2020 ident: 10.1016/j.copbio.2024.103181_bib11 article-title: Manuresheds: advancing nutrient recycling in US agriculture publication-title: Agric Syst doi: 10.1016/j.agsy.2020.102813 – volume: 869 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib32 article-title: Two decades of the EU Water Framework Directive: evidence of success and failure from a lowland arable catchment (River Wensum, UK) publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.161837 – volume: 895 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib34 article-title: Linking the uptake of best management practices on dairy farms to catchment water quality improvement over a 20-year period publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.164963 – volume: 13 year: 2022 ident: 10.1016/j.copbio.2024.103181_bib20 article-title: Global crop yields can be lifted by timely adaptation of growing periods to climate change publication-title: Nat Commun doi: 10.1038/s41467-022-34411-5 – volume: 362 year: 2020 ident: 10.1016/j.copbio.2024.103181_bib12 article-title: The mitigation of phosphorus losses from a water-repellent soil used for grazed dairy farming publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114125 – volume: 6 year: 2019 ident: 10.1016/j.copbio.2024.103181_bib2 article-title: Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum publication-title: WIREs Water doi: 10.1002/wat2.1373 – volume: 4 start-page: 1024 year: 2023 ident: 10.1016/j.copbio.2024.103181_sbref5 article-title: The untapped potential of legacy soil phosphorus publication-title: Nat Food doi: 10.1038/s43016-023-00890-y – start-page: 1 year: 2024 ident: 10.1016/j.copbio.2024.103181_sbref31 article-title: A review of the development and implementation of the critical source area concept: a reflection of Andrew Sharpley’s role in improving water quality publication-title: J Environ Qual – volume: 586 start-page: 631 year: 2017 ident: 10.1016/j.copbio.2024.103181_bib30 article-title: A tool for cost-effectiveness analysis of field scale sediment-bound phosphorus mitigation measures and application to analysis of spatial and temporal targeting in the Lunan Water catchment, Scotland publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.034 – volume: 12 year: 2017 ident: 10.1016/j.copbio.2024.103181_bib38 article-title: Time lags in watershed-scale nutrient transport: an exploration of dominant controls publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa7bf4 – volume: 357 start-page: 405 year: 2017 ident: 10.1016/j.copbio.2024.103181_bib17 article-title: Eutrophication will increase during the 21st century as a result of precipitation changes publication-title: Science doi: 10.1126/science.aan2409 – volume: 66 start-page: 493 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib29 article-title: Modelling the feasibility and cost-effectiveness of edge-of-field mitigations for reducing nitrogen and phosphorus loads in the Waituna Lagoon Catchment, Southland publication-title: NZ J Agric Res doi: 10.1080/00288233.2022.2107025 – volume: 5 start-page: 332 year: 2024 ident: 10.1016/j.copbio.2024.103181_sbref4 article-title: Phosphorus applications adjusted to optimal crop yields can help sustain global phosphorus reserves publication-title: Nat Food doi: 10.1038/s43016-024-00952-9 – volume: 11 year: 2020 ident: 10.1016/j.copbio.2024.103181_bib9 article-title: Global phosphorus shortage will be aggravated by soil erosion publication-title: Nat Commun doi: 10.1038/s41467-020-18326-7 – start-page: 177 year: 2014 ident: 10.1016/j.copbio.2024.103181_bib15 article-title: Chapter Five — Phosphorus: its efficient use in agriculture doi: 10.1016/B978-0-12-420225-2.00005-4 – volume: 52 start-page: 11995 year: 2018 ident: 10.1016/j.copbio.2024.103181_bib28 article-title: Managing diffuse phosphorus at the source versus at the sink publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b01143 – volume: 125 start-page: 63 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib6 article-title: Phosphorus drawdown rate following cessation of repeated manure application to annual crops publication-title: Nutr Cycl Agroecosystems doi: 10.1007/s10705-022-10255-9 – volume: 16 start-page: 69 year: 2023 ident: 10.1016/j.copbio.2024.103181_bib3 article-title: Half of global agricultural soil phosphorus fertility derived from anthropogenic sources publication-title: Nat Geosci doi: 10.1038/s41561-022-01092-0 – volume: 48 start-page: 1218 year: 2019 ident: 10.1016/j.copbio.2024.103181_bib23 article-title: A global perspective on phosphorus management decision support in agriculture: lessons learned and future directions publication-title: J Environ Qual doi: 10.2134/jeq2019.03.0107 – year: 2018 ident: 10.1016/j.copbio.2024.103181_bib10 – start-page: 781 year: 2005 ident: 10.1016/j.copbio.2024.103181_bib13 article-title: Environmental management of phosphorus fertilizers |
SSID | ssj0005370 |
Score | 2.488373 |
SecondaryResourceType | review_article |
Snippet | Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 103181 |
SubjectTerms | agricultural land algae biotechnology cost effectiveness Europe eutrophication intensive farming people phosphorus remediation runoff soil subsurface flow surface water topography |
Title | Reducing phosphorus losses from agricultural land to surface water |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0958166924001174 https://dx.doi.org/10.1016/j.copbio.2024.103181 https://www.ncbi.nlm.nih.gov/pubmed/39151246 https://www.proquest.com/docview/3094043803 https://www.proquest.com/docview/3242086610 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-BYfZE28Vmh3-zoikaBGDioJt83udlEMoaSUePO3O9NX8IAYD036mEm20-nM1-7Mt4Rcj9tcRjY6r0RSbcMDSwa-ttzQMwDnNbMj_A_5NPD6Q_4wckc10i17YbCssoj9eUzPonVxplVYszWfTFovAA5w0ivEKkgbgDV2sHMfvfzma6XMg2ULxqGwhdJl-1xW46XjuZpgC6DDsfvcDux16Wkd_MzSUG-P7Bb4kXbyIe6TmpkdkJ0VVsFDcvuMdKywS-fv8QK2ZLmg0xhndyl2k1D5llSMGxQrG2ka08UyGUtt6CeAz-SIDHt3r92-VSyVYGke8tQyTI9NqF0A_8oOpORMeU7kwwnN8MLYw0wOuciPuAwVfE5rDUDEhFzqyG4rdkzqs3hmTgmV0omUApwVQOYPOZOuY5jirmwbm0WuaRBWWkjogkccl7OYirJg7EPkdhVoV5HbtUGsSmue82hskHdL44uyRxSimoBAv0HPr_R--NEfNK_KZyzgFcN5Ezkz8XIhGHIMIjM_-0XGwToFADvtBjnJHaS6T-TgBxjlnf17bOdkG4_yIsILUk-TpbkEMJSqZubtTbLVuX_sD74BTFcIFw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB4BewAOaJdnYVmMBMfQJnbS5MCBx6LyPPCQejO240IRaqqkFeLCn-IPMpNHxR7YIiQOkaLYjpyxPfM5_mYGYKvTECp2afIqCqptReiosGkcPwoswnnD3Zj-Q55fBK0bcdL22xPwWvnCEK2y1P2FTs-1dfmkXkqz3u9261cIDujQKyIWpIvAumRWntrnJ9y3ZbvHhzjI25539Pf6oOWUqQUcIyIxcCw3HRsZH8GydkOlBNeBFzfxgeFU0AnI8qHubsZCRRq3n8ag4baRUCZ2G5rjeyfhh0B1QWkTdl7e8Up4nqGOeudQ9yp_vZxUZpK-7pLPoSfI3d0N3Y_s4Ud4N7d7Rz9hrgSsbK-QyS-YsL15mH0XxnAB9i8p_ivesv59kuGVDjP2mNBxMiP3Fabu0lGID0ZUSjZIWDZMO8pY9oRoN12Em28R4BJM9ZKeXQGmlBdrjcAuRKgRCa58z3ItfNWwLo99WwNeSUiaMnA55c94lBVD7UEWcpUkV1nItQbOqFW_CNwxpr5fCV9WTqmoRiValjHtmqN2_0zcT7TcrMZY4pqmgxrVs8kwk5yCGlIqAP6fOh4RIxBdNWqwXEyQ0XdS0H_EbcHql_u2AdOt6_MzeXZ8cboGM1RSMBh_w9QgHdp1RGID_Sef-Qxuv3upvQFFSkUV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+phosphorus+losses+from+agricultural+land+to+surface+water&rft.jtitle=Current+opinion+in+biotechnology&rft.au=McDowell%2C+Richard+W&rft.au=Haygarth%2C+Philip+M&rft.date=2024-10-01&rft.issn=0958-1669&rft.volume=89+p.103181-&rft_id=info:doi/10.1016%2Fj.copbio.2024.103181&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-1669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-1669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-1669&client=summon |