Structural insights into terminal arabinosylation of mycobacterial cell wall arabinan

The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor in Mtb ’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interv...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3973 - 16
Main Authors Liu, Yaqi, Brown, Chelsea M., Erramilli, Satchal, Su, Yi-Chia, Guu, Shih-Yun, Tseng, Po-Sen, Wang, Yu-Jen, Duong, Nam Ha, Tokarz, Piotr, Kloss, Brian, Han, Cheng-Ruei, Chen, Hung-Yu, Rodrigues, José, Khoo, Kay-Hooi, Archer, Margarida, Kossiakoff, Anthony A., Lowary, Todd L., Stansfeld, Phillip J., Nygaard, Rie, Mancia, Filippo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor in Mtb ’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB’s reaction mechanism and propose a model for its catalytic function. Here, the authors present cryoEM structures of AftB, a key mycobacterial enzyme that adds terminal arabinose residues to the cell wall. In concert with functional assays and MD simulations, mechanistic insights are presented.
AbstractList The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor in Mtb ’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB’s reaction mechanism and propose a model for its catalytic function. Here, the authors present cryoEM structures of AftB, a key mycobacterial enzyme that adds terminal arabinose residues to the cell wall. In concert with functional assays and MD simulations, mechanistic insights are presented.
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor in Mtb ’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB’s reaction mechanism and propose a model for its catalytic function.
Abstract The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB’s reaction mechanism and propose a model for its catalytic function.
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb’s pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB’s reaction mechanism and propose a model for its catalytic function.Here, the authors present cryoEM structures of AftB, a key mycobacterial enzyme that adds terminal arabinose residues to the cell wall. In concert with functional assays and MD simulations, mechanistic insights are presented.
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb's pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB's reaction mechanism and propose a model for its catalytic function.The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb's pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB's reaction mechanism and propose a model for its catalytic function.
ArticleNumber 3973
Author Nygaard, Rie
Khoo, Kay-Hooi
Kossiakoff, Anthony A.
Archer, Margarida
Wang, Yu-Jen
Liu, Yaqi
Tseng, Po-Sen
Kloss, Brian
Mancia, Filippo
Chen, Hung-Yu
Su, Yi-Chia
Guu, Shih-Yun
Brown, Chelsea M.
Rodrigues, José
Stansfeld, Phillip J.
Duong, Nam Ha
Tokarz, Piotr
Erramilli, Satchal
Han, Cheng-Ruei
Lowary, Todd L.
Author_xml – sequence: 1
  givenname: Yaqi
  orcidid: 0009-0007-2281-8160
  surname: Liu
  fullname: Liu, Yaqi
  organization: Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center
– sequence: 2
  givenname: Chelsea M.
  orcidid: 0000-0003-2006-5015
  surname: Brown
  fullname: Brown, Chelsea M.
  organization: School of Life Sciences & Department of Chemistry, University of Warwick, Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen
– sequence: 3
  givenname: Satchal
  orcidid: 0000-0001-8694-7681
  surname: Erramilli
  fullname: Erramilli, Satchal
  organization: Department of Biochemistry and Molecular Biophysics, University of Chicago
– sequence: 4
  givenname: Yi-Chia
  surname: Su
  fullname: Su, Yi-Chia
  organization: Institute of Biological Chemistry, Academia Sinica
– sequence: 5
  givenname: Shih-Yun
  surname: Guu
  fullname: Guu, Shih-Yun
  organization: Institute of Biological Chemistry, Academia Sinica
– sequence: 6
  givenname: Po-Sen
  orcidid: 0000-0003-2860-5725
  surname: Tseng
  fullname: Tseng, Po-Sen
  organization: Department of Chemistry, University of Alberta
– sequence: 7
  givenname: Yu-Jen
  surname: Wang
  fullname: Wang, Yu-Jen
  organization: Institute of Biological Chemistry, Academia Sinica
– sequence: 8
  givenname: Nam Ha
  orcidid: 0009-0000-3626-6271
  surname: Duong
  fullname: Duong, Nam Ha
  organization: Institute of Biological Chemistry, Academia Sinica, Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Department of Chemistry, National Tsing Hua University
– sequence: 9
  givenname: Piotr
  surname: Tokarz
  fullname: Tokarz, Piotr
  organization: Department of Biochemistry and Molecular Biophysics, University of Chicago
– sequence: 10
  givenname: Brian
  orcidid: 0000-0003-0130-8739
  surname: Kloss
  fullname: Kloss, Brian
  organization: Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center
– sequence: 11
  givenname: Cheng-Ruei
  surname: Han
  fullname: Han, Cheng-Ruei
  organization: Institute of Biological Chemistry, Academia Sinica
– sequence: 12
  givenname: Hung-Yu
  surname: Chen
  fullname: Chen, Hung-Yu
  organization: Institute of Biological Chemistry, Academia Sinica
– sequence: 13
  givenname: José
  orcidid: 0000-0003-0829-9054
  surname: Rodrigues
  fullname: Rodrigues, José
  organization: Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL)
– sequence: 14
  givenname: Kay-Hooi
  surname: Khoo
  fullname: Khoo, Kay-Hooi
  organization: Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University
– sequence: 15
  givenname: Margarida
  orcidid: 0000-0001-8419-5420
  surname: Archer
  fullname: Archer, Margarida
  organization: Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL)
– sequence: 16
  givenname: Anthony A.
  orcidid: 0000-0003-3174-9359
  surname: Kossiakoff
  fullname: Kossiakoff, Anthony A.
  organization: Department of Biochemistry and Molecular Biophysics, University of Chicago
– sequence: 17
  givenname: Todd L.
  orcidid: 0000-0002-8331-8211
  surname: Lowary
  fullname: Lowary, Todd L.
  email: tlowary@as.edu.tw
  organization: Institute of Biological Chemistry, Academia Sinica, Department of Chemistry, University of Alberta, Institute of Biochemical Sciences, National Taiwan University
– sequence: 18
  givenname: Phillip J.
  orcidid: 0000-0001-8800-7669
  surname: Stansfeld
  fullname: Stansfeld, Phillip J.
  email: Phillip.Stansfeld@warwick.ac.uk
  organization: School of Life Sciences & Department of Chemistry, University of Warwick
– sequence: 19
  givenname: Rie
  orcidid: 0000-0002-0425-234X
  surname: Nygaard
  fullname: Nygaard, Rie
  email: rin7007@med.cornell.edu
  organization: Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, Department of Radiation Oncology, Weill Cornell Medicine
– sequence: 20
  givenname: Filippo
  orcidid: 0000-0003-3293-2200
  surname: Mancia
  fullname: Mancia, Filippo
  email: fm123@cumc.columbia.edu
  organization: Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40301320$$D View this record in MEDLINE/PubMed
BookMark eNp9kstO3TAQhq0KVOgpL9BFFambblJ8Sxyvqgr1goTEomVtjR3n4KPEprZDdd6-DgEKXeCFPRp_8894PG_QgQ_eIvSO4E8Es-40ccJbUWPa1E1HZFs3r9AxxZzURFB28MQ-Qicp7XBZTJKO89foiGOGCaP4GF39zHE2eY4wVs4nt73OqRg5VNnGyfnihgja-ZD2I2QXfBWGatqboMEUxBXA2HGs_sD4gIJ_iw4HGJM9uT836Orb119nP-qLy-_nZ18uasMlz8veGskE6brBUqGl6A2xHA9dK7iRdhiEpkwLzbqOtiBxiSpvN4wxoMAs26DzVbcPsFM30U0Q9yqAU3eOELcKYnZmtAoIgcEyphkIbnUnLW640QT6oRe0yG7Q51XrZtaT7Y31uTTlmejzG--u1TbcKrJ0mkpZFD7eK8Twe7Ypq8mlpTngbZiTYkSKlmPeNAX98B-6C3Ms3S4UJUxw0uC2UO-flvRYy8P3FYCugIkhpWiHR4RgtYyJWsdElTFRd2OiltxsDUoF9lsb_-V-Ieov08i_ug
Cites_doi 10.1093/nar/gkq395
10.1038/s41598-018-34534-0
10.1073/pnas.0709530105
10.1017/S0031182016002377
10.1021/acs.jctc.3c00547
10.1063/1.328693
10.1021/bi060688d
10.1038/s41592-021-01098-3
10.1016/j.jmb.2019.02.016
10.1101/cshperspect.a017863
10.1146/annurev-micro-091014-104121
10.1016/j.jgg.2016.10.002
10.1016/bs.mie.2014.12.032
10.1093/glycob/cwp116
10.1002/jcc.24829
10.1021/ja070330k
10.1107/S0907444909042073
10.1042/BST0351325
10.1371/journal.pone.0071077
10.1016/S1473-3099(21)00808-2
10.1038/s41586-020-2044-z
10.2210/pdb8tj3/pdb
10.1371/journal.pone.0043746
10.1093/glycob/cwj016
10.1101/2024.09.17.613550
10.1063/1.2408420
10.1073/pnas.2201632119
10.1021/acs.jcim.1c00203
10.1016/j.tetlet.2005.11.068
10.1128/AAC.00162-09
10.1126/science.aad1172
10.1038/s41586-019-1795-x
10.3109/10409238.2014.925420
10.1021/acscatal.3c00620
10.1016/0923-2508(91)90120-Y
10.1007/s13238-020-00726-6
10.1002/jcc.21367
10.1126/science.adl2528
10.1126/science.aaz3505
10.1126/science.8284673
10.1074/jbc.M411418200
10.1038/nmeth.4169
10.1016/j.idcr.2020.e00742
10.1016/j.jbc.2023.104609
10.1107/S0907444904019158
10.1073/pnas.2302858120
10.1128/AAC.33.9.1493
10.1016/j.cpc.2013.09.018
10.1093/bioinformatics/btm477
10.1021/acs.jctc.1c00295
10.1107/S2059798319011471
10.1021/ct100578z
10.1039/c5cs00600g
10.1093/glycob/cwr095
10.1128/AAC.2.1.29
10.1021/acs.jcim.7b00096
10.1101/cshperspect.a021113
10.1038/s41586-022-04555-x
10.2217/fmb.11.123
10.1063/5.0020514
10.1093/glycob/11.9.107R
10.1038/nm0597-567
10.1146/annurev.biochem.76.061005.092322
10.1074/jbc.M700271200
10.1016/j.tcsw.2017.10.001
10.3390/microorganisms10071454
10.1016/j.jsb.2005.03.010
10.1109/MCSE.2007.55
10.1016/j.softx.2015.06.001
10.1016/j.tcsw.2020.100044
10.1021/ja00153a002
10.1007/978-1-4939-6857-2_6
10.1038/nsmb.2002
10.1016/j.sbi.2023.102547
10.1021/cb200091m
10.1042/BCJ20190324
10.1038/nchembio.628
10.1126/science.aba9102
10.1021/acschembio.6b00898
10.1093/emboj/cdg494
10.1016/S0021-9258(18)98826-5
10.1093/femsre/fuv008
10.1038/s41579-019-0273-7
10.1073/pnas.93.21.11919
10.1016/j.str.2025.01.003
10.3389/fchem.2019.00200
10.1038/nmeth.4067
10.1093/glycob/7.8.1121
10.1038/nsmb.3491
10.1093/nar/gkw357
10.1002/0471140864.ps2906s74
10.1016/j.carres.2006.08.020
10.3389/fimmu.2020.00303
10.1002/adts.202100391
10.1111/j.1365-2958.2008.06354.x
10.1021/acs.jctc.5b00209
10.1021/acschembio.0c00765
10.1074/jbc.M116.739227
10.1128/mBio.00972-16
10.1021/acs.jctc.1c00708
10.1016/0263-7855(96)00018-5
10.1021/acs.jpcb.4c02073
10.1038/s41467-022-29836-x
10.1128/mBio.00472-12
10.1016/S0021-9258(17)31657-5
10.1038/s41589-019-0350-2
10.1016/j.molcel.2020.04.014
10.1016/j.str.2015.11.014
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-58196-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_a11afe33b3a74eb89e054cb1adfd7240
PMC12041299
40301320
10_1038_s41467_025_58196_5
Genre Journal Article
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM132120
  funderid: https://doi.org/10.13039/100000057
– fundername: Wellcome Trust
– fundername: NIGMS NIH HHS
  grantid: R35 GM132120
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: R35GM132120
– fundername: NIGMS NIH HHS
  grantid: R01 GM117372
– fundername: NIAID NIH HHS
  grantid: R01 AI174416
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-c496c937188fe27b97dc1e40f8674c9eff7b23b7b38826a90494038c333a2a3e3
IEDL.DBID AAJSJ
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:10 EDT 2025
Thu Aug 21 18:26:37 EDT 2025
Fri Jul 11 18:42:38 EDT 2025
Sat Aug 23 12:42:57 EDT 2025
Thu May 08 05:30:48 EDT 2025
Tue Jul 01 04:55:44 EDT 2025
Wed Apr 30 01:19:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-c496c937188fe27b97dc1e40f8674c9eff7b23b7b38826a90494038c333a2a3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2860-5725
0000-0003-0130-8739
0000-0002-0425-234X
0000-0003-0829-9054
0000-0003-3174-9359
0000-0001-8800-7669
0009-0007-2281-8160
0000-0001-8694-7681
0009-0000-3626-6271
0000-0003-3293-2200
0000-0001-8419-5420
0000-0003-2006-5015
0000-0002-8331-8211
OpenAccessLink https://www.nature.com/articles/s41467-025-58196-5
PMID 40301320
PQID 3213741506
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a11afe33b3a74eb89e054cb1adfd7240
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12041299
proquest_miscellaneous_3197640455
proquest_journals_3213741506
pubmed_primary_40301320
crossref_primary_10_1038_s41467_025_58196_5
springer_journals_10_1038_s41467_025_58196_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-29
PublicationDateYYYYMMDD 2025-04-29
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 58196_CR17
KU Ashraf (58196_CR106) 2022; 604
W Song (58196_CR109) 2022; 18
MJ Abraham (58196_CR101) 2015; 1–2
58196_CR1
58196_CR11
K Takayama (58196_CR18) 1972; 2
58196_CR99
58196_CR10
ON Vickery (58196_CR103) 2021; 17
PC Kroon (58196_CR97) 2023; 12
58196_CR8
58196_CR6
T Fukuda (58196_CR14) 2013; 4
R Goude (58196_CR21) 2009; 53
58196_CR4
M Joe (58196_CR57) 2006; 341
M Seidel (58196_CR36) 2007; 282
BA Wolucka (58196_CR28) 1994; 269
M Napiórkowska (58196_CR52) 2018; 8
MM Islam (58196_CR16) 2017; 44
E Koh (58196_CR39) 2022; 119
58196_CR22
P Emsley (58196_CR87) 2004; 60
JS Bloch (58196_CR55) 2020; 579
W Humphrey (58196_CR113) 1996; 14
58196_CR38
M Bernetti (58196_CR108) 2020; 153
58196_CR100
AS Dean (58196_CR26) 2022; 22
NS Gandhi (58196_CR70) 2012; 22
L Slabinski (58196_CR89) 2007; 23
MHM Olsson (58196_CR112) 2011; 7
SS Rizk (58196_CR45) 2011; 18
L Zhang (58196_CR75) 2020; 11
HL Birch (58196_CR32) 2008; 69
58196_CR102
J Eberhardt (58196_CR60) 2021; 61
58196_CR107
A Banerjee (58196_CR20) 1994; 263
58196_CR49
J Zhang (58196_CR43) 2007; 129
JD Hunter (58196_CR111) 2007; 9
DC Crick (58196_CR13) 2001; 11
58196_CR44
L Holm (58196_CR50) 2016; 44
AS Ramírez (58196_CR56) 2019; 366
CN Ratnatunga (58196_CR77) 2020; 11
KR Miller (58196_CR83) 2012; 7
A Punjani (58196_CR86) 2017; 14
R Kalscheuer (58196_CR3) 2019; 476
MR McNeil (58196_CR2) 1991; 142
TJB Forrester (58196_CR66) 2022; 13
HFM Abdelaal (58196_CR79) 2022; 10
LJ Alderwick (58196_CR7) 2015; 5
S Pengthaisong (58196_CR71) 2023; 13
H Škovierová (58196_CR33) 2009; 19
KA Abrahams (58196_CR5) 2018; 145
AE Grzegorzewicz (58196_CR9) 2016; 291
A Lee (58196_CR42) 2006; 45
L Zhang (58196_CR24) 2020; 368
58196_CR59
LL Lairson (58196_CR48) 2008; 77
58196_CR58
NR Voss (58196_CR114) 2010; 38
M Napiórkowska (58196_CR53) 2017; 24
AE Belanger (58196_CR23) 1996; 93
L Doyle (58196_CR68) 2023; 299
K Takayama (58196_CR76) 1989; 33
RE Lee (58196_CR27) 1995; 117
58196_CR61
K Hövel (58196_CR69) 2003; 22
PK Dominik (58196_CR84) 2016; 24
AO Oluwole (58196_CR91) 2022; 13
58196_CR63
JA Graham (58196_CR96) 2017; 57
Jian Zhang (58196_CR41) 2011; 6
A Liav (58196_CR64) 2006; 47
58196_CR67
C Hoffmann (58196_CR12) 2008; 105
KW Moremen (58196_CR51) 2019; 15
58196_CR73
J Ruan (58196_CR78) 2020; 20
SS Lee (58196_CR65) 2011; 7
S Kim (58196_CR105) 2017; 38
SK Angala (58196_CR40) 2021; 16
J Huang (58196_CR104) 2017; 14
K Vanommeslaeghe (58196_CR95) 2010; 31
C Vilchèze (58196_CR19) 2019; 431
PCT Souza (58196_CR92) 2021; 18
C Sohlenkamp (58196_CR46) 2015; 40
Yicheng Gong (58196_CR30) 2023; 120
58196_CR80
D Liebschner (58196_CR88) 2019; 75
J Kim (58196_CR82) 2019; 576
JAN Alexander (58196_CR47) 2023; 79
YZ Tan (58196_CR74) 2020; 78
L Borges-Araújo (58196_CR94) 2023; 19
M Jankute (58196_CR35) 2017; 12
TA Wassenaar (58196_CR98) 2015; 11
C Suloway (58196_CR81) 2005; 151
LJ Alderwick (58196_CR34) 2018; 1
C Breton (58196_CR62) 2006; 16
GA Tribello (58196_CR110) 2014; 185
S Romero-Téllez (58196_CR72) 2019; 7
58196_CR85
M McNeil (58196_CR37) 1991; 266
RE Lee (58196_CR29) 1997; 7
S Berg (58196_CR31) 2005; 280
58196_CR93
VI Petrou (58196_CR54) 2016; 351
VB Chen (58196_CR90) 2010; 66
LJ Alderwick (58196_CR15) 2007; 35
KJ Seung (58196_CR25) 2015; 5
39345558 - bioRxiv. 2024 Sep 18:2024.09.17.613533. doi: 10.1101/2024.09.17.613533.
References_xml – ident: 58196_CR102
– volume: 38
  start-page: 555
  year: 2010
  ident: 58196_CR114
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq395
– volume: 8
  start-page: 1
  year: 2018
  ident: 58196_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34534-0
– volume: 105
  start-page: 3963
  year: 2008
  ident: 58196_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709530105
– volume: 145
  start-page: 116
  year: 2018
  ident: 58196_CR5
  publication-title: Parasitology
  doi: 10.1017/S0031182016002377
– volume: 19
  start-page: 7387
  year: 2023
  ident: 58196_CR94
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.3c00547
– ident: 58196_CR99
  doi: 10.1063/1.328693
– volume: 45
  start-page: 15817
  year: 2006
  ident: 58196_CR42
  publication-title: Biochemistry
  doi: 10.1021/bi060688d
– volume: 18
  start-page: 382
  year: 2021
  ident: 58196_CR92
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01098-3
– volume: 431
  start-page: 3450
  year: 2019
  ident: 58196_CR19
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.02.016
– volume: 5
  start-page: 1
  year: 2015
  ident: 58196_CR25
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a017863
– ident: 58196_CR6
  doi: 10.1146/annurev-micro-091014-104121
– volume: 44
  start-page: 21
  year: 2017
  ident: 58196_CR16
  publication-title: J. Genet. Genom.
  doi: 10.1016/j.jgg.2016.10.002
– ident: 58196_CR44
  doi: 10.1016/bs.mie.2014.12.032
– volume: 19
  start-page: 1235
  year: 2009
  ident: 58196_CR33
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp116
– volume: 38
  start-page: 1879
  year: 2017
  ident: 58196_CR105
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24829
– volume: 129
  start-page: 9650
  year: 2007
  ident: 58196_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070330k
– volume: 66
  start-page: 12
  year: 2010
  ident: 58196_CR90
  publication-title: Acta Crystallogr. D Biol. Crystallogr
  doi: 10.1107/S0907444909042073
– volume: 35
  start-page: 1325
  year: 2007
  ident: 58196_CR15
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0351325
– ident: 58196_CR63
  doi: 10.1371/journal.pone.0071077
– volume: 22
  start-page: e191
  year: 2022
  ident: 58196_CR26
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00808-2
– volume: 579
  start-page: 443
  year: 2020
  ident: 58196_CR55
  publication-title: Nature
  doi: 10.1038/s41586-020-2044-z
– ident: 58196_CR107
  doi: 10.2210/pdb8tj3/pdb
– volume: 7
  start-page: 1
  year: 2012
  ident: 58196_CR83
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0043746
– volume: 16
  start-page: 29
  year: 2006
  ident: 58196_CR62
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj016
– ident: 58196_CR73
  doi: 10.1101/2024.09.17.613550
– ident: 58196_CR100
  doi: 10.1063/1.2408420
– volume: 119
  start-page: e2201632119
  year: 2022
  ident: 58196_CR39
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2201632119
– volume: 61
  start-page: 3891
  year: 2021
  ident: 58196_CR60
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00203
– volume: 47
  start-page: 545
  year: 2006
  ident: 58196_CR64
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.11.068
– volume: 13
  start-page: 1
  year: 2022
  ident: 58196_CR66
  publication-title: Nat. Commun.
– volume: 53
  start-page: 4138
  year: 2009
  ident: 58196_CR21
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00162-09
– volume: 351
  start-page: 608
  year: 2016
  ident: 58196_CR54
  publication-title: Science
  doi: 10.1126/science.aad1172
– volume: 576
  start-page: 315
  year: 2019
  ident: 58196_CR82
  publication-title: Nature
  doi: 10.1038/s41586-019-1795-x
– ident: 58196_CR8
  doi: 10.3109/10409238.2014.925420
– volume: 13
  start-page: 5850
  year: 2023
  ident: 58196_CR71
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00620
– volume: 142
  start-page: 451
  year: 1991
  ident: 58196_CR2
  publication-title: Res. Microbiol.
  doi: 10.1016/0923-2508(91)90120-Y
– volume: 11
  start-page: 505
  year: 2020
  ident: 58196_CR75
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00726-6
– volume: 31
  start-page: 671
  year: 2010
  ident: 58196_CR95
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21367
– ident: 58196_CR59
  doi: 10.1126/science.adl2528
– volume: 366
  start-page: 1372
  year: 2019
  ident: 58196_CR56
  publication-title: Science
  doi: 10.1126/science.aaz3505
– volume: 263
  start-page: 227
  year: 1994
  ident: 58196_CR20
  publication-title: Science
  doi: 10.1126/science.8284673
– volume: 280
  start-page: 5651
  year: 2005
  ident: 58196_CR31
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411418200
– volume: 14
  start-page: 290
  year: 2017
  ident: 58196_CR86
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4169
– volume: 20
  start-page: e00742
  year: 2020
  ident: 58196_CR78
  publication-title: IDCases
  doi: 10.1016/j.idcr.2020.e00742
– volume: 299
  start-page: 1
  year: 2023
  ident: 58196_CR68
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2023.104609
– volume: 60
  start-page: 2126
  year: 2004
  ident: 58196_CR87
  publication-title: Acta Crystallogr. D Biol. Crystallogr
  doi: 10.1107/S0907444904019158
– volume: 120
  start-page: 2017
  year: 2023
  ident: 58196_CR30
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2302858120
– volume: 33
  start-page: 1493
  year: 1989
  ident: 58196_CR76
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.33.9.1493
– volume: 185
  start-page: 604
  year: 2014
  ident: 58196_CR110
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.09.018
– volume: 23
  start-page: 3403
  year: 2007
  ident: 58196_CR89
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm477
– volume: 17
  start-page: 6472
  year: 2021
  ident: 58196_CR103
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00295
– volume: 75
  start-page: 861
  year: 2019
  ident: 58196_CR88
  publication-title: Acta Crystallogr. D Struct. Biol.
  doi: 10.1107/S2059798319011471
– volume: 7
  start-page: 525
  year: 2011
  ident: 58196_CR112
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct100578z
– ident: 58196_CR61
  doi: 10.1039/c5cs00600g
– volume: 22
  start-page: 35
  year: 2012
  ident: 58196_CR70
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwr095
– volume: 2
  start-page: 29
  year: 1972
  ident: 58196_CR18
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.2.1.29
– volume: 57
  start-page: 650
  year: 2017
  ident: 58196_CR96
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00096
– volume: 5
  start-page: 1
  year: 2015
  ident: 58196_CR7
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a021113
– volume: 604
  start-page: 371
  year: 2022
  ident: 58196_CR106
  publication-title: Nature
  doi: 10.1038/s41586-022-04555-x
– ident: 58196_CR17
  doi: 10.2217/fmb.11.123
– ident: 58196_CR58
– volume: 153
  start-page: 1
  year: 2020
  ident: 58196_CR108
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0020514
– volume: 12
  start-page: 1
  year: 2023
  ident: 58196_CR97
  publication-title: eLife
– volume: 11
  start-page: 107
  year: 2001
  ident: 58196_CR13
  publication-title: Glycobiology
  doi: 10.1093/glycob/11.9.107R
– ident: 58196_CR22
  doi: 10.1038/nm0597-567
– volume: 77
  start-page: 521
  year: 2008
  ident: 58196_CR48
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.061005.092322
– volume: 282
  start-page: 14729
  year: 2007
  ident: 58196_CR36
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M700271200
– volume: 1
  start-page: 2
  year: 2018
  ident: 58196_CR34
  publication-title: Cell Surf.
  doi: 10.1016/j.tcsw.2017.10.001
– volume: 10
  start-page: 1
  year: 2022
  ident: 58196_CR79
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10071454
– volume: 151
  start-page: 41
  year: 2005
  ident: 58196_CR81
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.03.010
– volume: 9
  start-page: 90
  year: 2007
  ident: 58196_CR111
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 58196_CR101
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– ident: 58196_CR4
  doi: 10.1016/j.tcsw.2020.100044
– volume: 117
  start-page: 11829
  year: 1995
  ident: 58196_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00153a002
– ident: 58196_CR85
  doi: 10.1007/978-1-4939-6857-2_6
– volume: 18
  start-page: 437
  year: 2011
  ident: 58196_CR45
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2002
– volume: 79
  start-page: 102547
  year: 2023
  ident: 58196_CR47
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2023.102547
– volume: 6
  start-page: 819
  year: 2011
  ident: 58196_CR41
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb200091m
– volume: 476
  start-page: 1995
  year: 2019
  ident: 58196_CR3
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20190324
– ident: 58196_CR10
  doi: 10.3109/10409238.2014.925420
– volume: 7
  start-page: 631
  year: 2011
  ident: 58196_CR65
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.628
– volume: 368
  start-page: 1211
  year: 2020
  ident: 58196_CR24
  publication-title: Science
  doi: 10.1126/science.aba9102
– volume: 12
  start-page: 183
  year: 2017
  ident: 58196_CR35
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.6b00898
– volume: 22
  start-page: 4922
  year: 2003
  ident: 58196_CR69
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg494
– volume: 266
  start-page: 13217
  year: 1991
  ident: 58196_CR37
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98826-5
– volume: 40
  start-page: 133
  year: 2015
  ident: 58196_CR46
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuv008
– ident: 58196_CR1
– ident: 58196_CR11
  doi: 10.1038/s41579-019-0273-7
– volume: 93
  start-page: 11919
  year: 1996
  ident: 58196_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.21.11919
– ident: 58196_CR49
  doi: 10.1016/j.str.2025.01.003
– volume: 7
  start-page: 1
  year: 2019
  ident: 58196_CR72
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00200
– volume: 14
  start-page: 71
  year: 2017
  ident: 58196_CR104
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4067
– volume: 7
  start-page: 1121
  year: 1997
  ident: 58196_CR29
  publication-title: Glycobiology
  doi: 10.1093/glycob/7.8.1121
– volume: 24
  start-page: 1100
  year: 2017
  ident: 58196_CR53
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3491
– volume: 44
  start-page: W351
  year: 2016
  ident: 58196_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw357
– ident: 58196_CR80
  doi: 10.1002/0471140864.ps2906s74
– volume: 341
  start-page: 2723
  year: 2006
  ident: 58196_CR57
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2006.08.020
– volume: 11
  start-page: 1
  year: 2020
  ident: 58196_CR77
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00303
– ident: 58196_CR93
  doi: 10.1002/adts.202100391
– volume: 69
  start-page: 1191
  year: 2008
  ident: 58196_CR32
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06354.x
– volume: 11
  start-page: 2144
  year: 2015
  ident: 58196_CR98
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00209
– volume: 16
  start-page: 20
  year: 2021
  ident: 58196_CR40
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.0c00765
– volume: 291
  start-page: 18867
  year: 2016
  ident: 58196_CR9
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.739227
– ident: 58196_CR38
  doi: 10.1128/mBio.00972-16
– volume: 18
  start-page: 1188
  year: 2022
  ident: 58196_CR109
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00708
– volume: 14
  start-page: 33
  year: 1996
  ident: 58196_CR113
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– ident: 58196_CR67
  doi: 10.1021/acs.jpcb.4c02073
– volume: 13
  start-page: 1
  year: 2022
  ident: 58196_CR91
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29836-x
– volume: 4
  start-page: 8
  year: 2013
  ident: 58196_CR14
  publication-title: mBio
  doi: 10.1128/mBio.00472-12
– volume: 269
  start-page: 23328
  year: 1994
  ident: 58196_CR28
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31657-5
– volume: 15
  start-page: 853
  year: 2019
  ident: 58196_CR51
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0350-2
– volume: 78
  start-page: 683
  year: 2020
  ident: 58196_CR74
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.014
– volume: 24
  start-page: 300
  year: 2016
  ident: 58196_CR84
  publication-title: Structure
  doi: 10.1016/j.str.2015.11.014
– reference: 39345558 - bioRxiv. 2024 Sep 18:2024.09.17.613533. doi: 10.1101/2024.09.17.613533.
SSID ssj0000391844
Score 2.46923
Snippet The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor...
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb) , is compounded by the emergence of drug-resistant strains. A critical factor...
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor...
Abstract The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3973
SubjectTerms 101/28
631/326/41/2536
631/45/173
631/535/1258/1259
82/80
82/83
Arabinogalactan
Arabinose
Arabinose - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding sites
Biosynthesis
Cell Wall - chemistry
Cell Wall - metabolism
Cell walls
Cryoelectron Microscopy
Drug resistance
Galactans - metabolism
Helices
Humanities and Social Sciences
Lipopolysaccharides - chemistry
Lipopolysaccharides - metabolism
Models, Molecular
Molecular dynamics
multidisciplinary
Mycobacterium - metabolism
Mycobacterium tuberculosis - metabolism
Pathogenicity
Pentosyltransferases - chemistry
Pentosyltransferases - genetics
Pentosyltransferases - metabolism
Polysaccharides
Polysaccharides - chemistry
Polysaccharides - metabolism
Reaction mechanisms
Residues
Saccharides
Science
Science (multidisciplinary)
Structural analysis
Structure-function relationships
Tuberculosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BS-UwEA4iLHiRddd1q2-lgjcttpk0bY6uKLKHvegDbyFJE1Zw28U-kffvnUn7nr7VxcteSmlCGb5JMt800y-MHQZwpaPqmSJIn4lKqsx67jLuSM7cNSSBRtUWP-XlVPy4KW9eHPVFNWGDPPAA3IkpChM8gAVTCW9r5ZFkOFuYJjQVhiNafTHmvUim4hoMClMXMf4lk0N90ou4JtDprSVGQZmVK5EoCva_xTJfF0v-tWMaA9HFR7Y5Msj0dLB8i6359hP7MJwpOf_MpldREZbUNNLbtqfcu8ebWZeOdS93qbk3mA93_Xyog0u7kP6eO5zYUbgZO9DX_PTR3C26mnabTS_Or88us_HshMwJJWZ0lY607uo6eF5ZVTWu8CIPtayEUz6EynKwlQWk2NIokolBmBwAGG7Awxe23nat_8rS3JaB-wb9oCTSt9yYgG73rpZWiDJAwo4WOOo_g0SGjlvbUOsBdY2o64i6LhP2naBe9iR56_gAna5Hp-v3nJ6wycJRepxzvQZeAPGjXCbsYNmMs4VAM63vHrBPgfRLII1FO3YGvy4tEZQdAseX1yseXzF1taW9_RUVuQtOsmVKJex4MTie7fo3Frv_A4s9tsFpVOci42rC1nGQ-W9IlGZ2P86JJ_e5EO0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6EBIXBAVKoKAgcYOoie34cUKAqCoOvcBKe7Nsx4ZKbVKaRWj_PTOOs9VC6SWKklHizMP-bE--IeRNZL71mD3TRBEqLoWuXKC-oh7pzH2HFGiYbXEmThf8y7Jd5gW3MadVzn1i6qi7weMa-TGjDcPRrxbvr35WWDUKd1dzCY1dso_UZejVcik3ayzIfq44z__K1Ewdjzz1DFjDtYWxUFTt1niUaPtvw5r_pkz-tW-ahqOTh-RBxpHlh8nwj8hO6A_Ivamy5PoxWXxNvLDIqVGe9yPOwEc4WQ1lzn65KO21hVnxMK6nbLhyiOXl2kN4J_pmEMA1_fK3vZhFbf-ELE4-f_t0WuUKCpXnmq_wKDwy3ikVA5VOy843gddRCcm9DjFKR5mTjgHQFlYjWQyoyTPGLLUssKdkrx_68IyUtWsjDV3TWC0AxNXWRjB-8Eo4ztvICvJ21qO5mogyTNrgZspMWjegdZO0btqCfERVbySR5DpdGK6_mxwzxsLLYmDMMSt5cEoHwJfeNbaLnQQkUpCj2VAmR95obvykIK83tyFmUGm2D8MvkGkAhHEAs9COw8mum5ZwnCMyCg9XWxbfaur2nf78R-LlbiiSl2ldkHezc9y06_-6eH73Z7wg9yn6a80rqo_IHrhPeAlAaOVeJW__A1KdB00
  priority: 102
  providerName: ProQuest
Title Structural insights into terminal arabinosylation of mycobacterial cell wall arabinan
URI https://link.springer.com/article/10.1038/s41467-025-58196-5
https://www.ncbi.nlm.nih.gov/pubmed/40301320
https://www.proquest.com/docview/3213741506
https://www.proquest.com/docview/3197640455
https://pubmed.ncbi.nlm.nih.gov/PMC12041299
https://doaj.org/article/a11afe33b3a74eb89e054cb1adfd7240
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiDeBpQoSN4hIbMePY7fasuphhVgq9WbZrg0r7SZoU4T675lxkqLCcuCSRM4kGc144s_2-DMhbyPztcfsmSqKUHApdOEC9QX1SGfu10iBhtkWF-J8yRerenVA6LgWJiXtJ0rL9Jses8M-dDyFNG6-WkMjJor6kBwjVTvU7ePpdHG52I2sIOe54nxYIVMydcfDe61QIuu_C2H-nSj5x2xpaoTmD8mDAT3m017fR-QgNI_JvX4_ye0TsrxMbLDIpJFfNR32uzu42LT5kPNyndtbC33httv2OXB5G_ObrYegTqTNIIAj-flPez2K2uYpWc7PvszOi2HfhMJzzTd4FB557pSKgUqn5dpXgZdRCcm9DjFKR5mTjgG8FlYjRQyYyTPGLLUssGfkqGmb8ILkpasjDeuqsloAdCutjeDy4JVwnNeRZeTdaEfzvafHMGlamynTW92A1U2yuqkzcoqm3kkitXUqaG-_msHVxsLHYmDMMSt5cEoHQJXeVXYd1xLwR0ZORkeZId46w2jFEBuVIiNvdrchUtBotgntD5CpAHpxgLCgx_PerztNOPYMGYWXqz2P76m6f6e5-pbYuCuKlGVaZ-T9WDl-6_VvW7z8P_FX5D7F-lvyguoTcgTVKbwGOLRxE3IoVxKOav5xMsQCnE_PLj59htKZmE3SQMMvpisL0w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviDeBAkGCE0RNbMdJDgjxWra09EJX6s3Yjk0rlaQ0i6r9U_xGZpxkq-V16yWKYsdxxmPPZ3v8DcBTz21uyXsm89IlopBVYhyzCbNEZ25rokAjb4s9OZ2Jjwf5wRr8HM_CkFvlOCaGgbpuLa2Rb3GWcbJ-qXx18j2hqFG0uzqG0OjVYsctznDK1r3cfoft-4yxyfv9t9NkiCqQWFGJOV2lJRa4svSOFaYqaps5kfpSFsJWzvvCMG4KwxF8Sl0RgUrKS8s510xzx7HcS3BZcLTkdDJ98mG5pkNs66UQw9kcfGmrE2EkopixOdpemeQr9i-ECfgbtv3TRfO3fdpg_ibX4dqAW-PXvaLdgDXX3IQrfSTLxS2YfQ48tMThER81Hc34O7yZt_HgbXMc61ONs_C2W_Ted3Hr428Li8NJoIvGDLSHEJ_p4zGrbm7D7EJkewfWm7Zx9yBOTe6Zq7NMVxJBY6q1R2VztpRGiNzzCJ6PclQnPTGHChvqvFS91BVKXQWpqzyCNyTqZU4i1Q4P2tOvauijSuPHvOPccF0IZ8rKIZ61JtO1rwtEPhFsjg2lhp7eqXO9jODJMhn7KAlNN679gXkyBH0CwTPW427frsuaCJqTcoaFlystvlLV1ZTm6DDwgGeMyNKqKoIXo3Kc1-vfsrj__994DFen-5921e723s4D2GCku6lIWLUJ66hK7iGCsLl5FDQ_hi8X3dV-AStnQxk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4g2sR0nOSBEaVctRasKWKk313ZsWqlNSrOo2r_Gr2Mmj62W162XKEocxxnP2N_E428AXnpuU0vRM4mXLhKZLCLjmI2YJTpzWxIFGkVbTOXOTHw8SA_W4OewF4bCKocxsR2oy9rSP_IxZwmn2S-WY9-HRexvTd6dfY8ogxSttA7pNDoV2XOLC3Tfmre7W9jXrxibbH_9sBP1GQYiKwoxp6O0xAiX596xzBRZaRMnYp_LTNjCeZ8Zxk1mOAJRqQsiU4l5bjnnmmnuONZ7DdYz8opGsL65Pd3_vPzDQ9zruRD9Th18bNyIdlyiDLIpzsQySldmwzZpwN-Q7p8Bm7-t2raT4eQ23OpRbPi-U7s7sOaqu3C9y2u5uAezLy0rLTF6hMdVQ_5_gyfzOuxjb05Cfa7RJ6-bRReLF9Y-PF1YHFxa8mgsQCsK4YU-GYrq6j7MrkS6D2BU1ZV7BGFsUs9cmSS6kAghY609qp6zuTRCpJ4H8HqQozrraDpUu7zOc9VJXaHUVSt1lQawSaJeliSK7fZCff5N9RarNL7MO84N15lwJi8coltrEl36MkMcFMDG0FGqt_tGXWppAC-Wt9FiSWi6cvUPLJMgBBQIpbEdD7t-XbZEkIfKGVaer_T4SlNX71THRy0reMKIOq0oAngzKMdlu_4ti8f__4zncAPNTH3ane49gZuMVDcWESs2YISa5J4iIpubZ73qh3B41db2C5--SKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+insights+into+terminal+arabinosylation+of+mycobacterial+cell+wall+arabinan&rft.jtitle=Nature+communications&rft.au=Liu%2C+Yaqi&rft.au=Brown%2C+Chelsea+M.&rft.au=Erramilli%2C+Satchal&rft.au=Su%2C+Yi-Chia&rft.date=2025-04-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-58196-5&rft.externalDocID=10_1038_s41467_025_58196_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon