Examining embedded lies through computational text analysis
Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, res...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 26482 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection. |
---|---|
AbstractList | Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection. Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection. Abstract Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection. |
ArticleNumber | 26482 |
Author | Kleinberg, Bennett Loconte, Riccardo |
Author_xml | – sequence: 1 givenname: Riccardo surname: Loconte fullname: Loconte, Riccardo email: riccardo.loconte@imtlucca.it organization: Molecular Mind Lab, IMT School of Advanced Studies Lucca, Department of Methodology and Statistics, Tilburg University – sequence: 2 givenname: Bennett surname: Kleinberg fullname: Kleinberg, Bennett organization: Department of Methodology and Statistics, Tilburg University, Department of Security and Crime Science, University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40691231$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstO3TAQhq2KqlDKC3RRReqmm7S-HsfqoqoQtEhIbGBt-TLJ8VESn9oJl7fHnACFLuqNR-Nv_hmN__dob4wjIPSR4K8Es-Zb5kSopsZU1IQwKuubN-iAYi5qyijdexHvo6OcN7gcQRUn6h3a53ilCGXkAH0_uTVDGMPYVTBY8B581QfI1bROce7WlYvDdp7MFOJo-mqC26kyJbrLIX9Ab1vTZzh6vA_R1enJ5fHv-vzi19nxz_PaccWn2hGwYiWlakUDzklDiWxUaxhbUauodUaCw7ikpPWkpa3z3njL_Ko1SnJgh-hs0fXRbPQ2hcGkOx1N0LtETJ02aQquBy2UAmGkxxgsF2CVsK5hpsXEcYZbXrR-LFrb2Q7gHYxTMv0r0dcvY1jrLl5rQmmDCadF4cujQop_ZsiTHkJ20PdmhDhnzcrOiZRCPDT7_A-6iXMq29tRRKmGUVWoTy9Hep7l6ZMKQBfApZhzgvYZIVg_mEEvZtDFDHpnBn1TithSlAs8dpD-9v5P1T3H67fm |
Cites_doi | 10.1371/journal.pone.0281323 10.1038/s41562-023-01556-2 10.1207/s15327957pspr1003_2 10.1038/s41598-023-50214-0 10.1002/acp.3288 10.1080/08824096.2013.806254 10.1177/0146167203029005010 10.1111/j.0021-9029.2006.00055.x 10.48550/arXiv.2407.21783 10.1021/ci00065a010 10.48550/arXiv.2210.11416 10.1371/journal.pone.0220228 10.1073/pnas.2211715119 10.1080/10683160600750264 10.1111/j.2044-8333.2011.02041.x 10.5210/fm.v17i3.3933 10.1007/s11896-017-9224-2 10.1016/S0092-6566(02)00505-6 10.1037/0022-3514.70.5.1037 10.1037/pspp0000139 10.1088/0031-9155/44/6/101 10.1007/s10979-007-9103-y 10.1002/acp.2974 10.3389/fpsyg.2023.1128194 10.1016/j.chb.2021.107063 10.1002/acp.3775 10.1007/s12646-020-00563-x 10.1002/acp.3407 10.3115/1667583.1667679 10.1111/1556-4029.13645 10.5093/ejpalc2021a10 10.1207/s15324834basp1803_1 10.1177/1088868314556539 10.1017/CBO9780511490071.004 10.1080/1068316X.2019.1669596 10.1038/s41598-021-02414-9 10.1007/s12144-021-01760-1 10.1037//0033-295X.88.1.67 10.1016/j.paid.2019.05.007 10.1002/acp.4215 10.1023/B:GRUP.0000021838.66662.0c 10.1016/j.actpsy.2020.103250 10.1037/0033-2909.129.1.74 10.3390/brainsci12121644 10.1002/(SICI)1099-0720(199710)11:5<373::AID-ACP461>3.0.CO;2-0 10.3758/s13428-013-0403-5 10.1038/s41537-022-00306-z 10.1007/978-3-031-02158-9 10.1371/journal.pone.0225566 10.1002/meet.2011.14504801098 10.1111/hcre.12019 10.1111/j.2044-8333.2012.02069.x 10.1177/0261927X14528804 10.1037/h0101785 10.1111/j.1468-2958.2009.01366.x 10.1177/2158244015621113 10.1080/13218719.2020.1767712 10.1038/s41598-018-20462-6 10.4135/9781483399782 10.1016/j.ijchp.2016.01.002 10.1111/lcrp.12088 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-11327-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_599e5a7d00eb45eb95bc83af01c430f4 PMC12280142 40691231 10_1038_s41598_025_11327_w |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-c1eb56779f58ecc7a21789fa3362b92bca7ec0089f7bd1f2fcddadb3d6fa974e3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:37 EDT 2025 Thu Aug 21 18:25:24 EDT 2025 Tue Jul 22 17:01:44 EDT 2025 Sat Aug 23 12:39:22 EDT 2025 Fri Jul 25 01:42:11 EDT 2025 Thu Jul 24 02:19:56 EDT 2025 Tue Jul 22 01:11:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Embedded lies Lying profile Natural Language processing Deception Individual differences |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-c1eb56779f58ecc7a21789fa3362b92bca7ec0089f7bd1f2fcddadb3d6fa974e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3231998329?pq-origsite=%requestingapplication% |
PMID | 40691231 |
PQID | 3231998329 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_599e5a7d00eb45eb95bc83af01c430f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12280142 proquest_miscellaneous_3232177554 proquest_journals_3231998329 pubmed_primary_40691231 crossref_primary_10_1038_s41598_025_11327_w springer_journals_10_1038_s41598_025_11327_w |
PublicationCentury | 2000 |
PublicationDate | 2025-07-21 |
PublicationDateYYYYMMDD | 2025-07-21 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | N Palena (11327_CR7) 2021; 10 11327_CR60 11327_CR61 11327_CR63 11327_CR20 11327_CR21 11327_CR65 11327_CR22 11327_CR66 11327_CR67 DL Paulhus (11327_CR46) 2002; 36 11327_CR68 M Brysbaert (11327_CR57) 2014; 46 B Kleinberg (11327_CR30) 2021; 213 TR Levine (11327_CR37) 2013; 30 RG Lawson (11327_CR64) 1990; 30 A Vrij (11327_CR29) 2008; 32 A Vaswani (11327_CR18) 2017; 2017-December DA Kashy (11327_CR41) 1996; 70 11327_CR50 11327_CR51 11327_CR10 11327_CR54 11327_CR11 11327_CR12 11327_CR13 11327_CR58 CL Hart (11327_CR40) 2020; 65 11327_CR59 11327_CR17 BG Amado (11327_CR3) 2016; 16 B Verschuere (11327_CR8) 2021; 35 M Hartwig (11327_CR27) 2007; 13 A Vrij (11327_CR35) 2016; 30 DM Markowitz (11327_CR2) 2024; 38 B Kleinberg (11327_CR15) 2018; 32 B Kleinberg (11327_CR14) 2018; 63 B Weiss (11327_CR42) 2006; 36 SL Sporer (11327_CR55) 1997; 11 11327_CR48 KB Serota (11327_CR39) 2010; 36 D Makowski (11327_CR49) 2023; 42 G Nahari (11327_CR6) 2014; 19 J Devlin (11327_CR19) 2018; 1 R Halevy (11327_CR44) 2014; 40 BL Verigin (11327_CR34) 2021; 28 B Kleinberg (11327_CR47) 2019; 14 ML Newman (11327_CR52) 2003; 29 DA Leins (11327_CR25) 2017; 32 V Hauch (11327_CR16) 2015; 19 KL Bell (11327_CR24) 1996; 18 11327_CR31 11327_CR32 11327_CR4 11327_CR5 11327_CR36 KB Serota (11327_CR38) 2015; 34 G Nahari (11327_CR56) 2014; 28 11327_CR1 G Wang (11327_CR23) 2004; 13 BL Verigin (11327_CR33) 2020; 26 DA Leins (11327_CR28) 2013; 18 DN Jones (11327_CR43) 2017; 113 A Vrij (11327_CR53) 2017; 22 Y Gancedo (11327_CR9) 2021; 13 BM DePaulo (11327_CR26) 2003; 129 M Semrad (11327_CR45) 2019; 147 JH Moore (11327_CR62) 1999; 44 CF Bond Jr (11327_CR69) 2006; 10 11327_CR70 |
References_xml | – ident: 11327_CR11 – ident: 11327_CR17 doi: 10.1371/journal.pone.0281323 – ident: 11327_CR70 doi: 10.1038/s41562-023-01556-2 – volume: 10 start-page: 214 issue: 3 year: 2006 ident: 11327_CR69 publication-title: Personality Social Psychol. Rev. doi: 10.1207/s15327957pspr1003_2 – ident: 11327_CR22 doi: 10.1038/s41598-023-50214-0 – volume: 30 start-page: 1112 year: 2016 ident: 11327_CR35 publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.3288 – ident: 11327_CR67 – volume: 30 start-page: 211 year: 2013 ident: 11327_CR37 publication-title: Communication Res. Rep. doi: 10.1080/08824096.2013.806254 – volume: 29 start-page: 665 year: 2003 ident: 11327_CR52 publication-title: Pers. Soc. Psy Bullettin doi: 10.1177/0146167203029005010 – volume: 1 start-page: 4171 year: 2018 ident: 11327_CR19 publication-title: NAACL HLT 2019–2019 Conf. North. Am. Chapter Association Comput. Linguistics: Hum. Lang. Technol. - Proc. Conf. – volume: 36 start-page: 1070 year: 2006 ident: 11327_CR42 publication-title: J. Appl. Soc. Psychol. doi: 10.1111/j.0021-9029.2006.00055.x – ident: 11327_CR61 doi: 10.48550/arXiv.2407.21783 – volume: 30 start-page: 36 year: 1990 ident: 11327_CR64 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00065a010 – ident: 11327_CR21 doi: 10.48550/arXiv.2210.11416 – volume: 14 start-page: e0220228 year: 2019 ident: 11327_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0220228 – ident: 11327_CR20 – ident: 11327_CR31 doi: 10.1073/pnas.2211715119 – volume: 13 start-page: 213 year: 2007 ident: 11327_CR27 publication-title: Psychol. Crime. Law doi: 10.1080/10683160600750264 – volume: 18 start-page: 141 year: 2013 ident: 11327_CR28 publication-title: Legal Criminol. Psychol. doi: 10.1111/j.2044-8333.2011.02041.x – ident: 11327_CR65 doi: 10.5210/fm.v17i3.3933 – volume: 32 start-page: 319 year: 2017 ident: 11327_CR25 publication-title: J. Police Crim Psychol. doi: 10.1007/s11896-017-9224-2 – volume: 36 start-page: 556 year: 2002 ident: 11327_CR46 publication-title: J. Res. Pers. doi: 10.1016/S0092-6566(02)00505-6 – volume: 70 start-page: 1037 year: 1996 ident: 11327_CR41 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/0022-3514.70.5.1037 – volume: 113 start-page: 329 year: 2017 ident: 11327_CR43 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/pspp0000139 – volume: 44 start-page: L11 year: 1999 ident: 11327_CR62 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/44/6/101 – volume: 32 start-page: 253 year: 2008 ident: 11327_CR29 publication-title: Law Hum. Behav. doi: 10.1007/s10979-007-9103-y – volume: 28 start-page: 122 year: 2014 ident: 11327_CR56 publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.2974 – ident: 11327_CR36 doi: 10.3389/fpsyg.2023.1128194 – ident: 11327_CR32 doi: 10.1016/j.chb.2021.107063 – volume: 35 start-page: 374 year: 2021 ident: 11327_CR8 publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.3775 – volume: 65 start-page: 239 year: 2020 ident: 11327_CR40 publication-title: Psychol. Stud. (Mysore) doi: 10.1007/s12646-020-00563-x – volume: 32 start-page: 354 year: 2018 ident: 11327_CR15 publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.3407 – ident: 11327_CR12 doi: 10.3115/1667583.1667679 – volume: 63 start-page: 714 year: 2018 ident: 11327_CR14 publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.13645 – volume: 13 start-page: 99 year: 2021 ident: 11327_CR9 publication-title: Eur. J. Psychol. Appl. Leg. Context doi: 10.5093/ejpalc2021a10 – volume: 2017-December start-page: 5999 year: 2017 ident: 11327_CR18 publication-title: Adv. Neural Inf. Process. Syst. – volume: 18 start-page: 243 year: 1996 ident: 11327_CR24 publication-title: Basic. Appl. Soc. Psych doi: 10.1207/s15324834basp1803_1 – volume: 19 start-page: 307 year: 2015 ident: 11327_CR16 publication-title: Personality Social Psychol. Rev. doi: 10.1177/1088868314556539 – ident: 11327_CR13 – ident: 11327_CR5 doi: 10.1017/CBO9780511490071.004 – volume: 26 start-page: 367 year: 2020 ident: 11327_CR33 publication-title: Psychol. Crime. Law doi: 10.1080/1068316X.2019.1669596 – ident: 11327_CR58 doi: 10.1038/s41598-021-02414-9 – volume: 42 start-page: 4001 year: 2023 ident: 11327_CR49 publication-title: Curr. Psychol. doi: 10.1007/s12144-021-01760-1 – ident: 11327_CR4 doi: 10.1037//0033-295X.88.1.67 – volume: 147 start-page: 306 year: 2019 ident: 11327_CR45 publication-title: Pers. Ind. Diff doi: 10.1016/j.paid.2019.05.007 – volume: 38 start-page: e4215 year: 2024 ident: 11327_CR2 publication-title: Appl. Cogn. Psychol. doi: 10.1002/acp.4215 – volume: 13 start-page: 111 year: 2004 ident: 11327_CR23 publication-title: Group. Decis. Negot. doi: 10.1023/B:GRUP.0000021838.66662.0c – ident: 11327_CR51 – volume: 213 start-page: 103250 year: 2021 ident: 11327_CR30 publication-title: Acta Psychol. (Amst) doi: 10.1016/j.actpsy.2020.103250 – volume: 129 start-page: 74 year: 2003 ident: 11327_CR26 publication-title: Psychol. Bull. doi: 10.1037/0033-2909.129.1.74 – ident: 11327_CR48 doi: 10.3390/brainsci12121644 – volume: 11 start-page: 373 year: 1997 ident: 11327_CR55 publication-title: Appl. Cogn. Psychol. doi: 10.1002/(SICI)1099-0720(199710)11:5<373::AID-ACP461>3.0.CO;2-0 – volume: 46 start-page: 904 year: 2014 ident: 11327_CR57 publication-title: Behav. Res. Methods doi: 10.3758/s13428-013-0403-5 – ident: 11327_CR63 doi: 10.1038/s41537-022-00306-z – ident: 11327_CR10 doi: 10.1007/978-3-031-02158-9 – ident: 11327_CR60 – ident: 11327_CR1 doi: 10.1371/journal.pone.0225566 – ident: 11327_CR66 doi: 10.1002/meet.2011.14504801098 – volume: 40 start-page: 54 year: 2014 ident: 11327_CR44 publication-title: Hum. Commun. Res. doi: 10.1111/hcre.12019 – volume: 19 start-page: 227 year: 2014 ident: 11327_CR6 publication-title: Legal Criminol. Psychol. doi: 10.1111/j.2044-8333.2012.02069.x – ident: 11327_CR68 – volume: 34 start-page: 138 year: 2015 ident: 11327_CR38 publication-title: J. Lang. Soc. Psychol. doi: 10.1177/0261927X14528804 – volume: 10 start-page: 155 year: 2021 ident: 11327_CR7 publication-title: J. Appl. Res. Mem. Cogn. doi: 10.1037/h0101785 – volume: 36 start-page: 2 year: 2010 ident: 11327_CR39 publication-title: Hum. Commun. Res. doi: 10.1111/j.1468-2958.2009.01366.x – ident: 11327_CR50 doi: 10.1177/2158244015621113 – volume: 28 start-page: 94 year: 2021 ident: 11327_CR34 publication-title: Psychiatry Psychol. Law doi: 10.1080/13218719.2020.1767712 – ident: 11327_CR54 doi: 10.1038/s41598-018-20462-6 – ident: 11327_CR59 doi: 10.4135/9781483399782 – volume: 16 start-page: 201 year: 2016 ident: 11327_CR3 publication-title: Int. J. Clin. Health Psychol. doi: 10.1016/j.ijchp.2016.01.002 – volume: 22 start-page: 1 year: 2017 ident: 11327_CR53 publication-title: Legal Criminol. Psychol. doi: 10.1111/lcrp.12088 |
SSID | ssj0000529419 |
Score | 2.4527526 |
Snippet | Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges... Abstract Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 26482 |
SubjectTerms | 631/477 631/477/2811 Automation Credibility Deception Embedded lies Humanities and Social Sciences Individual differences Lying Lying profile Machine learning multidisciplinary Narratives Natural Language processing Science Science (multidisciplinary) Semantics Support vector machines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhcUAsFQgtKJW7UauKPOFZPgFqtkMqJSr1Z_hgLDk0rdqvCv-_YyW53C4gLh-QQ-zB6Y3tmYvs9gHeYGVoEeqZpIWDSU8HqItfMaRO9pqCTQv41cPalm53LzxfqYk3qK58JG-mBR-COlDGonI5Ng14q9Eb50AuXmjZI0aTCBEoxb62YGlm9uZGtmW7JNKI_mlOkyrfJuGJZXF2z241IVAj7_5Rl_n5Y8sGOaQlEp9vwdMog6w-j5TvwCIdn8HjUlPz1HI5PfrrLovpQ46VHWldiTXnmvJ4UeepQdBymf4B1PvhRu4mZZBfOT0--fpqxSSGBBWnkgoUWveq0Nkn15AvtqMDoTXKCwpI33AenMRDgJmkf28RTiNFFL2KXHBUSKF7A1nA14CuoMXQoHKcnSildY7xH1QWHit5c9hW8X6Jlr0ciDFs2sEVvR2wtYWsLtva2go8Z0FXPTGJdPpBr7eRa-y_XVrC_dIedZtbcCkpIqUQU3FRwsGqmOZE3OtyAVzelDwGhKVOq4OXovZUl-aYvReu2gn7DrxumbrYM378V3u02Uwe1kldwuBwC93b9HYvX_wOLPXjC89htNOPtPmwtftzgG0qHFv5tGfl37v8Ipw priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiG8KAxWJG1S0-WgacXqgTdOT4AKTdovy4QCH9aG9Nw3-e5w0fejBOHBoD00qRbYT27H9M8BLTAgtHF2j6CBohCOH1QamGqt0cIqUTvTpauDDx_7kVCzP5NkesLkWJiftZ0jLfEzP2WFv1qRoUjEYk03qja6aqxtwkKDaSbYPFovlp-X2ZiXFrkSnS4VMy4drft7RQhms_zoL8-9EyT-ipVkJHd-B28V6rBfTeu_CHo734ObUT_LnfXh79MOe544PNZ47pDMl1GRjruvSjaf2uYdDuf-rU9JHbQsqyQM4PT76_P6kKd0RGi-02DS-Qyd7pXSUA_FBWXIuBh0tJ5XkNHPeKvREbB2VC11k0Ydgg-Ohj5acCOQPYX9cjfgYavQ9csvoCUII22rnUPbeoqQ3E0MFr2Zqme8TCIbJwWs-mIm2hmhrMm3NVQXvEkG3MxOAdf6wuvhiCkON1BqlVaFt0QmJTkvnB25j23nB2ygqOJzZYcquWhtOxii5h5zpCl5sh2k_pCCHHXF1mecQIRRZSRU8mri3XUmq8iVN3VUw7PB1Z6m7I-O3rxlzu0uwQZ1gFbyeReD3uv5Niyf_N_0p3GJJSlvVsO4Q9jcXl_iMjJ6Ne16k_Bf4Kv9V priority: 102 providerName: Springer Nature |
Title | Examining embedded lies through computational text analysis |
URI | https://link.springer.com/article/10.1038/s41598-025-11327-w https://www.ncbi.nlm.nih.gov/pubmed/40691231 https://www.proquest.com/docview/3231998329 https://www.proquest.com/docview/3232177554 https://pubmed.ncbi.nlm.nih.gov/PMC12280142 https://doaj.org/article/599e5a7d00eb45eb95bc83af01c430f4 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuFW9SyipI3MBq4kcciwParraqVqJCQKW9WX6lcGi2dLcq_HvGjner5XVIItk-ODNjz8v-BuB1iAgtLFgicSMg3KLDajyVxEjlrUSl07kYGvhw2pyc8dlczHPAbZmPVa73xLRR-4WLMfJDhoYIugaMqveX30msGhWzq7mExl3YjdBlUarlXG5iLDGLxWuV78pUrD1cor6Kd8qoILHEuiQ3W_oowfb_zdb888jkb3nTpI6OH8BetiPL8cD4h3An9I_g3lBZ8udjeDf9YS5S7YcyXNiAu4sv0dpclrkuT-lSNYccCSzj8Y_SZHySJ3B2PP0yOSG5TgJxXPEVcXWwopFSdaJFjkiDbkarOsNQOVlFrTMyOCS76qT1dUc7573xlvmmM-hOBPYUdvpFH55DGVwTmKH4eM65qZS1QTTOBIFvytsC3qyppS8HOAyd0tis1QNtNdJWJ9rqmwKOIkE3IyOUdWpYXJ3rvDK0UCoII31VBctFsEpY1zLTVbXjrOp4AQdrdui8vpb6VhoKeLXpxpUR0x2mD4vrNAYJIdFeKuDZwL3NTOJ9X9TZdQHtFl-3prrd03_7mtC36wggVHNawNu1CNzO69-02P__b7yA-zRKZSUJrQ9gZ3V1HV6iubOyoyTTI9gdj2efZ_g9mp5-_IStk2YySiGEX4QUBME |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcbKBAkOIHVxI84FkKIR6stfZxaaW_GrwCHZkt3q6V_it_I2Em2Wl63HpJDHEWT8Xjms8eeD-B5iBVaWLBEoiMg3OKE1XgqiZHKW4lBp3FxaeDgsBod809jMV6Bn8NZmLitcvCJyVH7iYtr5FsMgQhODRhVb0-_k8gaFbOrA4VGZxZ74WKOU7bpm92P2L8vKN3ZPvowIj2rAHFc8RlxZbCiklI1okb5pUFQXqvGMHTlVlHrjAwOhVSNtL5saOO8N94yXzUGwXdg-N1rcB0DbxEne3IsF2s6MWvGS9WfzSlYvTXF-BjPsFFBIqW7JPOl-JdoAv6Gbf_covlbnjaFv53bcKvHrfm7ztDuwEpo78KNjsny4h683v5hThLXRB5ObEBv5nNEt9O85wHKXWKP6Fce87jdJDd9PZT7cHwlGnwAq-2kDRuQB1cFZihennNuCmVtEJUzQeCd8jqDl4O29GlXfkOntDmrdadbjbrVSbd6nsH7qNDFm7F0dnowOfui-5GohVJBGOmLIlguglXCupqZpigdZ0XDM9gcukP343mqL60vg2eLZhyJMb1i2jA5T--gIiTiswzWu95bSBLPFyNGKDOol_p1SdTllvbb11Ttu4wFi0pOM3g1mMClXP_WxcP__8ZTuDk6OtjX-7uHe49gjUYLLSSh5Saszs7Ow2OEWjP7JNl3Dp-vekD9AhAAPzY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4g28SOOhRCidFcthVWFqNSb8Ssth2ZLd6ulf41fx9hJtlpetx42h00UOZ9nxp899nwAz32o0EK9yQQGgowZnLBqR0SmhXRG4KBT27A08GlSbu-zDwf8YA1-9mdhwrbKPibGQO2mNqyRDykSEZwaUCKHdbctYm9r_PbkexYUpEKmtZfTaE1k158vcPo2e7OzhX39gpDx6Mv77axTGMgsk2ye2cIbXgoha17htwiNBL2StaYY1o0kxmrhLTZY1sK4oia1dU47Q11ZayTinuJ7r8C6CLOiAaxvjiZ7n5crPCGHxgrZndTJaTWc4WgZTrQRngWBd5EtVkbDKBrwN6b754bN37K2cTAc34QbHYtN37VmdwvWfHMbrra6lud34PXohz6OyhOpPzYeY5tLkevO0k4VKLVRS6Jbh0wDyqnuqqPchf1LwfAeDJpp4x9A6m3pqSb4c4wxnUtjPC-t9hyvhFUJvOzRUidtMQ4Vk-i0Ui22CrFVEVu1SGAzALp8MhTSjn9MTw9V55eKS-m5Fi7PvWHcG8mNraiu88IymtcsgY2-O1Tn3TN1YYsJPFveRr8MyRbd-OlZfAaBEMjWErjf9t6yJeG0MTKGIoFqpV9Xmrp6p_l2FGt_F6F8UcFIAq96E7ho17-xePj_z3gK19CZ1Medye4juE6CgeYiI8UGDOanZ_4x8q65edIZeApfL9unfgEe2kTR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+embedded+lies+through+computational+text+analysis&rft.jtitle=Scientific+reports&rft.au=Loconte%2C+Riccardo&rft.au=Kleinberg%2C+Bennett&rft.date=2025-07-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-11327-w&rft_id=info%3Apmid%2F40691231&rft.externalDocID=PMC12280142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |