Examining embedded lies through computational text analysis

Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, res...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 26482 - 16
Main Authors Loconte, Riccardo, Kleinberg, Bennett
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.
AbstractList Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.
Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.
Abstract Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges that the veracity of statements exists on a continuum, with truthful and deceptive parts being embedded within the same statement. However, research on embedded lies has been lagging behind. We collected a novel dataset of 2,088 truthful and deceptive statements with annotated embedded lies. Using a counterbalanced within-subjects design, participants provided two versions of an autobiographical event. One was described truthfully, and the other one deceptively by including embedded lies. Participants later highlighted those embedded lies and judged them on lie centrality, deceptiveness, and source. We show that a fine-tuned language model (Llama-3-8B) can classify truthful statements and those containing embedded lies significantly above the chance level (64% accuracy). Individual differences, linguistic properties, and explainability analysis suggest that the challenge of moving the dial towards embedded lies stems from their resemblance to truthful statements. Typical deceptive statements consisted of 2/3 truthful information and 1/3 embedded lies, largely derived from past personal experiences and with minimal linguistic differences from their truthful counterparts. We present this dataset as a novel resource to address this challenge and foster research on embedded lies in verbal deception detection.
ArticleNumber 26482
Author Kleinberg, Bennett
Loconte, Riccardo
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Loconte
  fullname: Loconte, Riccardo
  email: riccardo.loconte@imtlucca.it
  organization: Molecular Mind Lab, IMT School of Advanced Studies Lucca, Department of Methodology and Statistics, Tilburg University
– sequence: 2
  givenname: Bennett
  surname: Kleinberg
  fullname: Kleinberg, Bennett
  organization: Department of Methodology and Statistics, Tilburg University, Department of Security and Crime Science, University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40691231$$D View this record in MEDLINE/PubMed
BookMark eNp9kstO3TAQhq2KqlDKC3RRReqmm7S-HsfqoqoQtEhIbGBt-TLJ8VESn9oJl7fHnACFLuqNR-Nv_hmN__dob4wjIPSR4K8Es-Zb5kSopsZU1IQwKuubN-iAYi5qyijdexHvo6OcN7gcQRUn6h3a53ilCGXkAH0_uTVDGMPYVTBY8B581QfI1bROce7WlYvDdp7MFOJo-mqC26kyJbrLIX9Ab1vTZzh6vA_R1enJ5fHv-vzi19nxz_PaccWn2hGwYiWlakUDzklDiWxUaxhbUauodUaCw7ikpPWkpa3z3njL_Ko1SnJgh-hs0fXRbPQ2hcGkOx1N0LtETJ02aQquBy2UAmGkxxgsF2CVsK5hpsXEcYZbXrR-LFrb2Q7gHYxTMv0r0dcvY1jrLl5rQmmDCadF4cujQop_ZsiTHkJ20PdmhDhnzcrOiZRCPDT7_A-6iXMq29tRRKmGUVWoTy9Hep7l6ZMKQBfApZhzgvYZIVg_mEEvZtDFDHpnBn1TithSlAs8dpD-9v5P1T3H67fm
Cites_doi 10.1371/journal.pone.0281323
10.1038/s41562-023-01556-2
10.1207/s15327957pspr1003_2
10.1038/s41598-023-50214-0
10.1002/acp.3288
10.1080/08824096.2013.806254
10.1177/0146167203029005010
10.1111/j.0021-9029.2006.00055.x
10.48550/arXiv.2407.21783
10.1021/ci00065a010
10.48550/arXiv.2210.11416
10.1371/journal.pone.0220228
10.1073/pnas.2211715119
10.1080/10683160600750264
10.1111/j.2044-8333.2011.02041.x
10.5210/fm.v17i3.3933
10.1007/s11896-017-9224-2
10.1016/S0092-6566(02)00505-6
10.1037/0022-3514.70.5.1037
10.1037/pspp0000139
10.1088/0031-9155/44/6/101
10.1007/s10979-007-9103-y
10.1002/acp.2974
10.3389/fpsyg.2023.1128194
10.1016/j.chb.2021.107063
10.1002/acp.3775
10.1007/s12646-020-00563-x
10.1002/acp.3407
10.3115/1667583.1667679
10.1111/1556-4029.13645
10.5093/ejpalc2021a10
10.1207/s15324834basp1803_1
10.1177/1088868314556539
10.1017/CBO9780511490071.004
10.1080/1068316X.2019.1669596
10.1038/s41598-021-02414-9
10.1007/s12144-021-01760-1
10.1037//0033-295X.88.1.67
10.1016/j.paid.2019.05.007
10.1002/acp.4215
10.1023/B:GRUP.0000021838.66662.0c
10.1016/j.actpsy.2020.103250
10.1037/0033-2909.129.1.74
10.3390/brainsci12121644
10.1002/(SICI)1099-0720(199710)11:5<373::AID-ACP461>3.0.CO;2-0
10.3758/s13428-013-0403-5
10.1038/s41537-022-00306-z
10.1007/978-3-031-02158-9
10.1371/journal.pone.0225566
10.1002/meet.2011.14504801098
10.1111/hcre.12019
10.1111/j.2044-8333.2012.02069.x
10.1177/0261927X14528804
10.1037/h0101785
10.1111/j.1468-2958.2009.01366.x
10.1177/2158244015621113
10.1080/13218719.2020.1767712
10.1038/s41598-018-20462-6
10.4135/9781483399782
10.1016/j.ijchp.2016.01.002
10.1111/lcrp.12088
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-11327-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_599e5a7d00eb45eb95bc83af01c430f4
PMC12280142
40691231
10_1038_s41598_025_11327_w
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-c1eb56779f58ecc7a21789fa3362b92bca7ec0089f7bd1f2fcddadb3d6fa974e3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:37 EDT 2025
Thu Aug 21 18:25:24 EDT 2025
Tue Jul 22 17:01:44 EDT 2025
Sat Aug 23 12:39:22 EDT 2025
Fri Jul 25 01:42:11 EDT 2025
Thu Jul 24 02:19:56 EDT 2025
Tue Jul 22 01:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Embedded lies
Lying profile
Natural Language processing
Deception
Individual differences
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-c1eb56779f58ecc7a21789fa3362b92bca7ec0089f7bd1f2fcddadb3d6fa974e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3231998329?pq-origsite=%requestingapplication%
PMID 40691231
PQID 3231998329
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_599e5a7d00eb45eb95bc83af01c430f4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12280142
proquest_miscellaneous_3232177554
proquest_journals_3231998329
pubmed_primary_40691231
crossref_primary_10_1038_s41598_025_11327_w
springer_journals_10_1038_s41598_025_11327_w
PublicationCentury 2000
PublicationDate 2025-07-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References N Palena (11327_CR7) 2021; 10
11327_CR60
11327_CR61
11327_CR63
11327_CR20
11327_CR21
11327_CR65
11327_CR22
11327_CR66
11327_CR67
DL Paulhus (11327_CR46) 2002; 36
11327_CR68
M Brysbaert (11327_CR57) 2014; 46
B Kleinberg (11327_CR30) 2021; 213
TR Levine (11327_CR37) 2013; 30
RG Lawson (11327_CR64) 1990; 30
A Vrij (11327_CR29) 2008; 32
A Vaswani (11327_CR18) 2017; 2017-December
DA Kashy (11327_CR41) 1996; 70
11327_CR50
11327_CR51
11327_CR10
11327_CR54
11327_CR11
11327_CR12
11327_CR13
11327_CR58
CL Hart (11327_CR40) 2020; 65
11327_CR59
11327_CR17
BG Amado (11327_CR3) 2016; 16
B Verschuere (11327_CR8) 2021; 35
M Hartwig (11327_CR27) 2007; 13
A Vrij (11327_CR35) 2016; 30
DM Markowitz (11327_CR2) 2024; 38
B Kleinberg (11327_CR15) 2018; 32
B Kleinberg (11327_CR14) 2018; 63
B Weiss (11327_CR42) 2006; 36
SL Sporer (11327_CR55) 1997; 11
11327_CR48
KB Serota (11327_CR39) 2010; 36
D Makowski (11327_CR49) 2023; 42
G Nahari (11327_CR6) 2014; 19
J Devlin (11327_CR19) 2018; 1
R Halevy (11327_CR44) 2014; 40
BL Verigin (11327_CR34) 2021; 28
B Kleinberg (11327_CR47) 2019; 14
ML Newman (11327_CR52) 2003; 29
DA Leins (11327_CR25) 2017; 32
V Hauch (11327_CR16) 2015; 19
KL Bell (11327_CR24) 1996; 18
11327_CR31
11327_CR32
11327_CR4
11327_CR5
11327_CR36
KB Serota (11327_CR38) 2015; 34
G Nahari (11327_CR56) 2014; 28
11327_CR1
G Wang (11327_CR23) 2004; 13
BL Verigin (11327_CR33) 2020; 26
DA Leins (11327_CR28) 2013; 18
DN Jones (11327_CR43) 2017; 113
A Vrij (11327_CR53) 2017; 22
Y Gancedo (11327_CR9) 2021; 13
BM DePaulo (11327_CR26) 2003; 129
M Semrad (11327_CR45) 2019; 147
JH Moore (11327_CR62) 1999; 44
CF Bond Jr (11327_CR69) 2006; 10
11327_CR70
References_xml – ident: 11327_CR11
– ident: 11327_CR17
  doi: 10.1371/journal.pone.0281323
– ident: 11327_CR70
  doi: 10.1038/s41562-023-01556-2
– volume: 10
  start-page: 214
  issue: 3
  year: 2006
  ident: 11327_CR69
  publication-title: Personality Social Psychol. Rev.
  doi: 10.1207/s15327957pspr1003_2
– ident: 11327_CR22
  doi: 10.1038/s41598-023-50214-0
– volume: 30
  start-page: 1112
  year: 2016
  ident: 11327_CR35
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.3288
– ident: 11327_CR67
– volume: 30
  start-page: 211
  year: 2013
  ident: 11327_CR37
  publication-title: Communication Res. Rep.
  doi: 10.1080/08824096.2013.806254
– volume: 29
  start-page: 665
  year: 2003
  ident: 11327_CR52
  publication-title: Pers. Soc. Psy Bullettin
  doi: 10.1177/0146167203029005010
– volume: 1
  start-page: 4171
  year: 2018
  ident: 11327_CR19
  publication-title: NAACL HLT 2019–2019 Conf. North. Am. Chapter Association Comput. Linguistics: Hum. Lang. Technol. - Proc. Conf.
– volume: 36
  start-page: 1070
  year: 2006
  ident: 11327_CR42
  publication-title: J. Appl. Soc. Psychol.
  doi: 10.1111/j.0021-9029.2006.00055.x
– ident: 11327_CR61
  doi: 10.48550/arXiv.2407.21783
– volume: 30
  start-page: 36
  year: 1990
  ident: 11327_CR64
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00065a010
– ident: 11327_CR21
  doi: 10.48550/arXiv.2210.11416
– volume: 14
  start-page: e0220228
  year: 2019
  ident: 11327_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0220228
– ident: 11327_CR20
– ident: 11327_CR31
  doi: 10.1073/pnas.2211715119
– volume: 13
  start-page: 213
  year: 2007
  ident: 11327_CR27
  publication-title: Psychol. Crime. Law
  doi: 10.1080/10683160600750264
– volume: 18
  start-page: 141
  year: 2013
  ident: 11327_CR28
  publication-title: Legal Criminol. Psychol.
  doi: 10.1111/j.2044-8333.2011.02041.x
– ident: 11327_CR65
  doi: 10.5210/fm.v17i3.3933
– volume: 32
  start-page: 319
  year: 2017
  ident: 11327_CR25
  publication-title: J. Police Crim Psychol.
  doi: 10.1007/s11896-017-9224-2
– volume: 36
  start-page: 556
  year: 2002
  ident: 11327_CR46
  publication-title: J. Res. Pers.
  doi: 10.1016/S0092-6566(02)00505-6
– volume: 70
  start-page: 1037
  year: 1996
  ident: 11327_CR41
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.70.5.1037
– volume: 113
  start-page: 329
  year: 2017
  ident: 11327_CR43
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/pspp0000139
– volume: 44
  start-page: L11
  year: 1999
  ident: 11327_CR62
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/44/6/101
– volume: 32
  start-page: 253
  year: 2008
  ident: 11327_CR29
  publication-title: Law Hum. Behav.
  doi: 10.1007/s10979-007-9103-y
– volume: 28
  start-page: 122
  year: 2014
  ident: 11327_CR56
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.2974
– ident: 11327_CR36
  doi: 10.3389/fpsyg.2023.1128194
– ident: 11327_CR32
  doi: 10.1016/j.chb.2021.107063
– volume: 35
  start-page: 374
  year: 2021
  ident: 11327_CR8
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.3775
– volume: 65
  start-page: 239
  year: 2020
  ident: 11327_CR40
  publication-title: Psychol. Stud. (Mysore)
  doi: 10.1007/s12646-020-00563-x
– volume: 32
  start-page: 354
  year: 2018
  ident: 11327_CR15
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.3407
– ident: 11327_CR12
  doi: 10.3115/1667583.1667679
– volume: 63
  start-page: 714
  year: 2018
  ident: 11327_CR14
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13645
– volume: 13
  start-page: 99
  year: 2021
  ident: 11327_CR9
  publication-title: Eur. J. Psychol. Appl. Leg. Context
  doi: 10.5093/ejpalc2021a10
– volume: 2017-December
  start-page: 5999
  year: 2017
  ident: 11327_CR18
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 18
  start-page: 243
  year: 1996
  ident: 11327_CR24
  publication-title: Basic. Appl. Soc. Psych
  doi: 10.1207/s15324834basp1803_1
– volume: 19
  start-page: 307
  year: 2015
  ident: 11327_CR16
  publication-title: Personality Social Psychol. Rev.
  doi: 10.1177/1088868314556539
– ident: 11327_CR13
– ident: 11327_CR5
  doi: 10.1017/CBO9780511490071.004
– volume: 26
  start-page: 367
  year: 2020
  ident: 11327_CR33
  publication-title: Psychol. Crime. Law
  doi: 10.1080/1068316X.2019.1669596
– ident: 11327_CR58
  doi: 10.1038/s41598-021-02414-9
– volume: 42
  start-page: 4001
  year: 2023
  ident: 11327_CR49
  publication-title: Curr. Psychol.
  doi: 10.1007/s12144-021-01760-1
– ident: 11327_CR4
  doi: 10.1037//0033-295X.88.1.67
– volume: 147
  start-page: 306
  year: 2019
  ident: 11327_CR45
  publication-title: Pers. Ind. Diff
  doi: 10.1016/j.paid.2019.05.007
– volume: 38
  start-page: e4215
  year: 2024
  ident: 11327_CR2
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/acp.4215
– volume: 13
  start-page: 111
  year: 2004
  ident: 11327_CR23
  publication-title: Group. Decis. Negot.
  doi: 10.1023/B:GRUP.0000021838.66662.0c
– ident: 11327_CR51
– volume: 213
  start-page: 103250
  year: 2021
  ident: 11327_CR30
  publication-title: Acta Psychol. (Amst)
  doi: 10.1016/j.actpsy.2020.103250
– volume: 129
  start-page: 74
  year: 2003
  ident: 11327_CR26
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.129.1.74
– ident: 11327_CR48
  doi: 10.3390/brainsci12121644
– volume: 11
  start-page: 373
  year: 1997
  ident: 11327_CR55
  publication-title: Appl. Cogn. Psychol.
  doi: 10.1002/(SICI)1099-0720(199710)11:5<373::AID-ACP461>3.0.CO;2-0
– volume: 46
  start-page: 904
  year: 2014
  ident: 11327_CR57
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-013-0403-5
– ident: 11327_CR63
  doi: 10.1038/s41537-022-00306-z
– ident: 11327_CR10
  doi: 10.1007/978-3-031-02158-9
– ident: 11327_CR60
– ident: 11327_CR1
  doi: 10.1371/journal.pone.0225566
– ident: 11327_CR66
  doi: 10.1002/meet.2011.14504801098
– volume: 40
  start-page: 54
  year: 2014
  ident: 11327_CR44
  publication-title: Hum. Commun. Res.
  doi: 10.1111/hcre.12019
– volume: 19
  start-page: 227
  year: 2014
  ident: 11327_CR6
  publication-title: Legal Criminol. Psychol.
  doi: 10.1111/j.2044-8333.2012.02069.x
– ident: 11327_CR68
– volume: 34
  start-page: 138
  year: 2015
  ident: 11327_CR38
  publication-title: J. Lang. Soc. Psychol.
  doi: 10.1177/0261927X14528804
– volume: 10
  start-page: 155
  year: 2021
  ident: 11327_CR7
  publication-title: J. Appl. Res. Mem. Cogn.
  doi: 10.1037/h0101785
– volume: 36
  start-page: 2
  year: 2010
  ident: 11327_CR39
  publication-title: Hum. Commun. Res.
  doi: 10.1111/j.1468-2958.2009.01366.x
– ident: 11327_CR50
  doi: 10.1177/2158244015621113
– volume: 28
  start-page: 94
  year: 2021
  ident: 11327_CR34
  publication-title: Psychiatry Psychol. Law
  doi: 10.1080/13218719.2020.1767712
– ident: 11327_CR54
  doi: 10.1038/s41598-018-20462-6
– ident: 11327_CR59
  doi: 10.4135/9781483399782
– volume: 16
  start-page: 201
  year: 2016
  ident: 11327_CR3
  publication-title: Int. J. Clin. Health Psychol.
  doi: 10.1016/j.ijchp.2016.01.002
– volume: 22
  start-page: 1
  year: 2017
  ident: 11327_CR53
  publication-title: Legal Criminol. Psychol.
  doi: 10.1111/lcrp.12088
SSID ssj0000529419
Score 2.4527526
Snippet Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective acknowledges...
Abstract Verbal deception detection research relies on narratives and commonly assumes statements as truthful or deceptive. A more realistic perspective...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26482
SubjectTerms 631/477
631/477/2811
Automation
Credibility
Deception
Embedded lies
Humanities and Social Sciences
Individual differences
Lying
Lying profile
Machine learning
multidisciplinary
Narratives
Natural Language processing
Science
Science (multidisciplinary)
Semantics
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hSkhcUAsFQgtKJW7UauKPOFZPgFqtkMqJSr1Z_hgLDk0rdqvCv-_YyW53C4gLh-QQ-zB6Y3tmYvs9gHeYGVoEeqZpIWDSU8HqItfMaRO9pqCTQv41cPalm53LzxfqYk3qK58JG-mBR-COlDGonI5Ng14q9Eb50AuXmjZI0aTCBEoxb62YGlm9uZGtmW7JNKI_mlOkyrfJuGJZXF2z241IVAj7_5Rl_n5Y8sGOaQlEp9vwdMog6w-j5TvwCIdn8HjUlPz1HI5PfrrLovpQ46VHWldiTXnmvJ4UeepQdBymf4B1PvhRu4mZZBfOT0--fpqxSSGBBWnkgoUWveq0Nkn15AvtqMDoTXKCwpI33AenMRDgJmkf28RTiNFFL2KXHBUSKF7A1nA14CuoMXQoHKcnSildY7xH1QWHit5c9hW8X6Jlr0ciDFs2sEVvR2wtYWsLtva2go8Z0FXPTGJdPpBr7eRa-y_XVrC_dIedZtbcCkpIqUQU3FRwsGqmOZE3OtyAVzelDwGhKVOq4OXovZUl-aYvReu2gn7DrxumbrYM378V3u02Uwe1kldwuBwC93b9HYvX_wOLPXjC89htNOPtPmwtftzgG0qHFv5tGfl37v8Ipw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGJiQuiG8KAxWJG1S0-WgacXqgTdOT4AKTdovy4QCH9aG9Nw3-e5w0fejBOHBoD00qRbYT27H9M8BLTAgtHF2j6CBohCOH1QamGqt0cIqUTvTpauDDx_7kVCzP5NkesLkWJiftZ0jLfEzP2WFv1qRoUjEYk03qja6aqxtwkKDaSbYPFovlp-X2ZiXFrkSnS4VMy4drft7RQhms_zoL8-9EyT-ipVkJHd-B28V6rBfTeu_CHo734ObUT_LnfXh79MOe544PNZ47pDMl1GRjruvSjaf2uYdDuf-rU9JHbQsqyQM4PT76_P6kKd0RGi-02DS-Qyd7pXSUA_FBWXIuBh0tJ5XkNHPeKvREbB2VC11k0Ydgg-Ohj5acCOQPYX9cjfgYavQ9csvoCUII22rnUPbeoqQ3E0MFr2Zqme8TCIbJwWs-mIm2hmhrMm3NVQXvEkG3MxOAdf6wuvhiCkON1BqlVaFt0QmJTkvnB25j23nB2ygqOJzZYcquWhtOxii5h5zpCl5sh2k_pCCHHXF1mecQIRRZSRU8mri3XUmq8iVN3VUw7PB1Z6m7I-O3rxlzu0uwQZ1gFbyeReD3uv5Niyf_N_0p3GJJSlvVsO4Q9jcXl_iMjJ6Ne16k_Bf4Kv9V
  priority: 102
  providerName: Springer Nature
Title Examining embedded lies through computational text analysis
URI https://link.springer.com/article/10.1038/s41598-025-11327-w
https://www.ncbi.nlm.nih.gov/pubmed/40691231
https://www.proquest.com/docview/3231998329
https://www.proquest.com/docview/3232177554
https://pubmed.ncbi.nlm.nih.gov/PMC12280142
https://doaj.org/article/599e5a7d00eb45eb95bc83af01c430f4
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuFW9SyipI3MBq4kcciwParraqVqJCQKW9WX6lcGi2dLcq_HvGjner5XVIItk-ODNjz8v-BuB1iAgtLFgicSMg3KLDajyVxEjlrUSl07kYGvhw2pyc8dlczHPAbZmPVa73xLRR-4WLMfJDhoYIugaMqveX30msGhWzq7mExl3YjdBlUarlXG5iLDGLxWuV78pUrD1cor6Kd8qoILHEuiQ3W_oowfb_zdb888jkb3nTpI6OH8BetiPL8cD4h3An9I_g3lBZ8udjeDf9YS5S7YcyXNiAu4sv0dpclrkuT-lSNYccCSzj8Y_SZHySJ3B2PP0yOSG5TgJxXPEVcXWwopFSdaJFjkiDbkarOsNQOVlFrTMyOCS76qT1dUc7573xlvmmM-hOBPYUdvpFH55DGVwTmKH4eM65qZS1QTTOBIFvytsC3qyppS8HOAyd0tis1QNtNdJWJ9rqmwKOIkE3IyOUdWpYXJ3rvDK0UCoII31VBctFsEpY1zLTVbXjrOp4AQdrdui8vpb6VhoKeLXpxpUR0x2mD4vrNAYJIdFeKuDZwL3NTOJ9X9TZdQHtFl-3prrd03_7mtC36wggVHNawNu1CNzO69-02P__b7yA-zRKZSUJrQ9gZ3V1HV6iubOyoyTTI9gdj2efZ_g9mp5-_IStk2YySiGEX4QUBME
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcbKBAkOIHVxI84FkKIR6stfZxaaW_GrwCHZkt3q6V_it_I2Em2Wl63HpJDHEWT8Xjms8eeD-B5iBVaWLBEoiMg3OKE1XgqiZHKW4lBp3FxaeDgsBod809jMV6Bn8NZmLitcvCJyVH7iYtr5FsMgQhODRhVb0-_k8gaFbOrA4VGZxZ74WKOU7bpm92P2L8vKN3ZPvowIj2rAHFc8RlxZbCiklI1okb5pUFQXqvGMHTlVlHrjAwOhVSNtL5saOO8N94yXzUGwXdg-N1rcB0DbxEne3IsF2s6MWvGS9WfzSlYvTXF-BjPsFFBIqW7JPOl-JdoAv6Gbf_covlbnjaFv53bcKvHrfm7ztDuwEpo78KNjsny4h683v5hThLXRB5ObEBv5nNEt9O85wHKXWKP6Fce87jdJDd9PZT7cHwlGnwAq-2kDRuQB1cFZihennNuCmVtEJUzQeCd8jqDl4O29GlXfkOntDmrdadbjbrVSbd6nsH7qNDFm7F0dnowOfui-5GohVJBGOmLIlguglXCupqZpigdZ0XDM9gcukP343mqL60vg2eLZhyJMb1i2jA5T--gIiTiswzWu95bSBLPFyNGKDOol_p1SdTllvbb11Ttu4wFi0pOM3g1mMClXP_WxcP__8ZTuDk6OtjX-7uHe49gjUYLLSSh5Saszs7Ow2OEWjP7JNl3Dp-vekD9AhAAPzY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4g28SOOhRCidFcthVWFqNSb8Ssth2ZLd6ulf41fx9hJtlpetx42h00UOZ9nxp899nwAz32o0EK9yQQGgowZnLBqR0SmhXRG4KBT27A08GlSbu-zDwf8YA1-9mdhwrbKPibGQO2mNqyRDykSEZwaUCKHdbctYm9r_PbkexYUpEKmtZfTaE1k158vcPo2e7OzhX39gpDx6Mv77axTGMgsk2ye2cIbXgoha17htwiNBL2StaYY1o0kxmrhLTZY1sK4oia1dU47Q11ZayTinuJ7r8C6CLOiAaxvjiZ7n5crPCGHxgrZndTJaTWc4WgZTrQRngWBd5EtVkbDKBrwN6b754bN37K2cTAc34QbHYtN37VmdwvWfHMbrra6lud34PXohz6OyhOpPzYeY5tLkevO0k4VKLVRS6Jbh0wDyqnuqqPchf1LwfAeDJpp4x9A6m3pqSb4c4wxnUtjPC-t9hyvhFUJvOzRUidtMQ4Vk-i0Ui22CrFVEVu1SGAzALp8MhTSjn9MTw9V55eKS-m5Fi7PvWHcG8mNraiu88IymtcsgY2-O1Tn3TN1YYsJPFveRr8MyRbd-OlZfAaBEMjWErjf9t6yJeG0MTKGIoFqpV9Xmrp6p_l2FGt_F6F8UcFIAq96E7ho17-xePj_z3gK19CZ1Medye4juE6CgeYiI8UGDOanZ_4x8q65edIZeApfL9unfgEe2kTR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+embedded+lies+through+computational+text+analysis&rft.jtitle=Scientific+reports&rft.au=Loconte%2C+Riccardo&rft.au=Kleinberg%2C+Bennett&rft.date=2025-07-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-11327-w&rft_id=info%3Apmid%2F40691231&rft.externalDocID=PMC12280142
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon