A programmable magnetic digital microfluidic platform integrated with electrochemical detection system

Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 11; no. 1; pp. 82 - 12
Main Authors Zhao, Yong, Jiang, Shuyue, Cai, Gaozhe, Wang, Lihua, Zhao, Jianlong, Feng, Shilun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.05.2025
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS 2 @CeO 2 /PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01–0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM −1 ·cm −2 ), and excellent recovery rate (88.1–113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
AbstractList Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS 2 @CeO 2 /PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01–0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM −1 ·cm −2 ), and excellent recovery rate (88.1–113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS @CeO /PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01-0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM ·cm ), and excellent recovery rate (88.1-113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS2@CeO2/PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01-0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM-1·cm-2), and excellent recovery rate (88.1-113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS2@CeO2/PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01-0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM-1·cm-2), and excellent recovery rate (88.1-113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS2@CeO2/PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01–0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM−1·cm−2), and excellent recovery rate (88.1–113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
Abstract Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets. However, most DMF systems usually rely on complex electrode fabrication and high driving voltages. Sensor integration in DMF systems is also quite rare. In this study, a programmable magnetic digital microfluidic (PMDMF) platform integrated with electrochemical detection system was proposed. It enables non-contact, flexible droplet manipulation without complex processes and high voltages, meeting the requirements of automated electrochemical detection. The platform includes a magnetic control system, a microfluidic chip, and an electrochemical detection system. The magnetic control system consists of a microcoil array circuit board, a N52 permanent magnet, and an Arduino control module. N52 magnets generate localized magnetic fields to drive droplet movement, while the Arduino module enables programmable control for precise manipulation. The maximum average velocity of the droplet is about 3.9 cm/s. The microfluidic chip was fabricated using 3D printing and the superhydrophobic surface of chip was fabricated by spray coating. The electrochemical detection system consists of the MoS2@CeO2/PVA working electrode, Ag/AgCl reference electrode, and carbon counter electrode. To evaluate the practical value of the integrated platform, glucose in sweat was automatically and accurately detected. The proposed platform has a wide linear detection range (0.01–0.25 mM), a lower LOD (6.5 μM), a superior sensitivity (7833.54 μA·mM−1·cm−2), and excellent recovery rate (88.1–113.5%). It has an extensive potential for future application in the fields of medical diagnostics and point-of-care testing.
ArticleNumber 82
Author Feng, Shilun
Jiang, Shuyue
Zhao, Yong
Wang, Lihua
Zhao, Jianlong
Cai, Gaozhe
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, School of Graduate Study, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Shuyue
  surname: Jiang
  fullname: Jiang, Shuyue
  organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
– sequence: 3
  givenname: Gaozhe
  surname: Cai
  fullname: Cai, Gaozhe
  email: caigaozhe@shu.edu.cn
  organization: School of Microelectronics, Shanghai University
– sequence: 4
  givenname: Lihua
  surname: Wang
  fullname: Wang, Lihua
  email: wanglihua@shu.edu.cn
  organization: Institute of Materiobiology, College of Science, Shanghai University
– sequence: 5
  givenname: Jianlong
  surname: Zhao
  fullname: Zhao, Jianlong
  organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai Frontier Innovation Research Institute
– sequence: 6
  givenname: Shilun
  orcidid: 0000-0002-2560-2417
  surname: Feng
  fullname: Feng, Shilun
  email: shilun.feng@mail.sim.ac.cn
  organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40355456$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNUREvpH2CBIrFhExg_8vAKVRXQSpXYwNpy7Emurxz7YvtS9d_j25Q-WLCyNf7O8dhzXldHPnisqrcEPhJgw6fECeuHBmjbAAjCm-5FdUKhbZueM370ZH9cnaW0BQDSs15A-6o65sDalrfdSTWd17sY5qiWRY0O60XNHrPVtbGzzcrVi9UxTG5vTSnunMpTiEttfcYiymjqG5s3NTrUOQa9wcIXlcFcCjb4Ot2mjMub6uWkXMKz-_W0-vn1y4-Ly-b6-7eri_PrRnPBczMSI4hRqtMMe6oJ5QhCd0a0ehKaUq5gZEDYqDVjVE9U84m1nAwCiRpHxU6rq9XXBLWVu2gXFW9lUFbeFUKcpYrleQ6loD2fCKGqF4YPqMeJ91wP3ahFP5DRFK_Pq9duPy5oNPoclXtm-vzE242cw29JKHSiG9ri8OHeIYZfe0xZLjZpdE55DPskGQXGgA-DKOj7f9Bt2Edf_upAcQBW5l2od09beujl7zwLQFegDC2liNMDQkAeciPX3MiSG3mXG3kQsVWUCuxnjI93_0f1B4Q_xv8
Cites_doi 10.1002/elps.202100088
10.1039/C5LC00462D
10.1038/s41378-022-00475-y
10.1038/nature05058
10.1021/acssensors.9b01286
10.1016/j.bios.2021.113684
10.1093/nsr/nwac164
10.1039/C4CS00369A
10.1016/j.sna.2016.04.004
10.1007/s10404-007-0161-8
10.1039/C7LC00006E
10.1039/D3RA01817B
10.1039/D2LC01153K
10.3390/bios12050324
10.1016/j.aca.2024.342398
10.1002/pat.3190
10.1038/s41467-021-27879-0
10.1002/adma.200802244
10.1371/journal.pone.0238581
10.1021/acsami.2c20543
10.1016/j.heliyon.2023.e23721
10.1021/acssensors.4c01248
10.1039/D0CS00268B
10.1002/adma.201300383
10.1021/acs.langmuir.1c00329
10.1021/acs.analchem.8b05375
10.1038/s43586-022-00109-7
10.1039/D2LC00756H
10.1016/j.aca.2023.341077
10.1021/acsami.0c08179
10.1016/j.mtchem.2023.101638
10.1021/acssensors.0c02446
10.1038/s41586-022-05408-3
10.1126/sciadv.aay5808
10.1039/C9LC01126A
10.1038/s41467-021-27503-1
10.1021/acsami.6b09017
10.3390/bios10110166
10.1146/annurev-anchem-062011-143028
10.1021/acssensors.9b01057
10.1039/C7LC00025A
10.1038/s41378-021-00276-9
10.1039/D2MA00819J
10.1021/acsnano.3c07360
10.1016/j.bios.2018.08.061
10.1016/j.snb.2005.12.053
10.1126/science.1165719
10.1039/b819818g
10.1016/j.foodchem.2022.133630
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s41378-025-00914-6
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 12
ExternalDocumentID oai_doaj_org_article_9274f112a79d48ecbf474c86bc9781bd
PMC12069685
40355456
10_1038_s41378_025_00914_6
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62401555
  funderid: https://doi.org/10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: XTCX-KJ-2024-038
  funderid: https://doi.org/10.13039/501100003399
– fundername: The equipment research and development projects of the Chinese Academy of Sciences (PTYQ2024YZ0010)
– fundername: Postdoctoral Fellowship Program of CPSF under Grant Number GZC20232838
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 62401555
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: XTCX-KJ-2024-038
GroupedDBID 0R~
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
AASML
ABJCF
ABUWG
ACGFS
ADBBV
ADMLS
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
PQGLB
3V.
7XB
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-b1d91daa6c3e72c124e09c6d95cf9c224a0b3013bcc332cf2c4f354189e1abba3
IEDL.DBID 7X7
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:24:31 EDT 2025
Thu Aug 21 18:26:43 EDT 2025
Fri Jul 11 18:03:18 EDT 2025
Wed Aug 13 04:12:04 EDT 2025
Mon Jul 21 06:02:47 EDT 2025
Sun Jul 06 05:09:48 EDT 2025
Tue May 13 01:10:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-b1d91daa6c3e72c124e09c6d95cf9c224a0b3013bcc332cf2c4f354189e1abba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2560-2417
OpenAccessLink https://www.proquest.com/docview/3204003413?pq-origsite=%requestingapplication%
PMID 40355456
PQID 3204003413
PQPubID 2041946
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_9274f112a79d48ecbf474c86bc9781bd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12069685
proquest_miscellaneous_3203304889
proquest_journals_3204003413
pubmed_primary_40355456
crossref_primary_10_1038_s41378_025_00914_6
springer_journals_10_1038_s41378_025_00914_6
PublicationCentury 2000
PublicationDate 2025-05-12
PublicationDateYYYYMMDD 2025-05-12
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2025
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References A Li (914_CR9) 2020; 6
E Sardini (914_CR34) 2020; 10
Y Zhang (914_CR17) 2017; 17
X Wu (914_CR42) 2023; 13
X Xu (914_CR13) 2023; 23
X Li (914_CR24) 2020; 12
B Yang (914_CR31) 2023; 23
DG Rackus (914_CR36) 2015; 44
Z Liao (914_CR37) 2018; 121
I Frozanpoor (914_CR4) 2021; 37
S Jiang (914_CR45) 2023; 32
S Kalsi (914_CR16) 2015; 15
HS Lin (914_CR19) 2022; 611
S Hu (914_CR29) 2022; 12
K Choi (914_CR14) 2012; 5
P Kanitthamniyom (914_CR33) 2021; 7
R Malinowski (914_CR41) 2020; 49
B Fall (914_CR46) 2023; 5
K Seo (914_CR26) 2013; 24
KP Sharma (914_CR49) 2024; 10
F Wang (914_CR12) 2023; 10
H Cheng (914_CR8) 2021; 42
T Kremers (914_CR43) 2020; 15
PH Lu (914_CR22) 2020; 20
E Huang (914_CR20) 2021; 195
C Son (914_CR27) 2023; 17
H Wang (914_CR47) 2022; 396
Y Zhang (914_CR44) 2013; 25
AR Wheeler (914_CR7) 2008; 322
Z Long (914_CR40) 2009; 9
H Geng (914_CR6) 2017; 17
BV Dang (914_CR2) 2019; 4
U Lehmann (914_CR23) 2006; 117
J Hartmann (914_CR5) 2022; 13
J Zhang (914_CR21) 2021; 12
J Wang (914_CR50) 2022; 3
QF Li (914_CR48) 2023; 15
R Vinoth (914_CR38) 2021; 6
GM Whitesides (914_CR1) 2006; 442
P Giménez-Gómez (914_CR35) 2019; 4
RPS de Campos (914_CR39) 2019; 91
J Rufo (914_CR11) 2022; 2
GY Huang (914_CR10) 2017; 9
RB Fair (914_CR3) 2007; 3
M Abdelgawad (914_CR15) 2009; 21
DS Rocha (914_CR32) 2023; 1254
Y Zeng (914_CR28) 2024; 1298
X Hu (914_CR18) 2023; 9
S Li (914_CR30) 2024; 9
SK Saroj (914_CR25) 2016; 244
References_xml – volume: 42
  start-page: 2329
  year: 2021
  ident: 914_CR8
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100088
– volume: 15
  start-page: 3065
  year: 2015
  ident: 914_CR16
  publication-title: Lab Chip
  doi: 10.1039/C5LC00462D
– volume: 9
  start-page: 10
  year: 2023
  ident: 914_CR18
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00475-y
– volume: 442
  start-page: 368
  year: 2006
  ident: 914_CR1
  publication-title: Nature
  doi: 10.1038/nature05058
– volume: 4
  start-page: 3156
  year: 2019
  ident: 914_CR35
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01286
– volume: 195
  start-page: 113684
  year: 2021
  ident: 914_CR20
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113684
– volume: 10
  start-page: nwac164
  year: 2023
  ident: 914_CR12
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwac164
– volume: 44
  start-page: 5320
  year: 2015
  ident: 914_CR36
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00369A
– volume: 244
  start-page: 112
  year: 2016
  ident: 914_CR25
  publication-title: Sens. Actuat A-Phys.
  doi: 10.1016/j.sna.2016.04.004
– volume: 3
  start-page: 245
  year: 2007
  ident: 914_CR3
  publication-title: Microfluidics Nanofluidics
  doi: 10.1007/s10404-007-0161-8
– volume: 17
  start-page: 1060
  year: 2017
  ident: 914_CR6
  publication-title: Lab Chip
  doi: 10.1039/C7LC00006E
– volume: 13
  start-page: 16815
  year: 2023
  ident: 914_CR42
  publication-title: Rsc Adv.
  doi: 10.1039/D3RA01817B
– volume: 23
  start-page: 785
  year: 2023
  ident: 914_CR31
  publication-title: Lab chip
  doi: 10.1039/D2LC01153K
– volume: 12
  start-page: 324
  year: 2022
  ident: 914_CR29
  publication-title: Biosensors
  doi: 10.3390/bios12050324
– volume: 1298
  start-page: 342398
  year: 2024
  ident: 914_CR28
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2024.342398
– volume: 24
  start-page: 1075
  year: 2013
  ident: 914_CR26
  publication-title: Polym. Advan. Technol.
  doi: 10.1002/pat.3190
– volume: 13
  year: 2022
  ident: 914_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27879-0
– volume: 21
  start-page: 920
  year: 2009
  ident: 914_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802244
– volume: 15
  start-page: e0238581
  year: 2020
  ident: 914_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0238581
– volume: 15
  start-page: 13290
  year: 2023
  ident: 914_CR48
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.2c20543
– volume: 10
  year: 2024
  ident: 914_CR49
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e23721
– volume: 9
  start-page: 4256
  year: 2024
  ident: 914_CR30
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.4c01248
– volume: 49
  start-page: 7879
  year: 2020
  ident: 914_CR41
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00268B
– volume: 25
  start-page: 2903
  year: 2013
  ident: 914_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300383
– volume: 5
  start-page: 100136
  year: 2023
  ident: 914_CR46
  publication-title: Sens. Actuat Rep.
– volume: 37
  start-page: 6414
  year: 2021
  ident: 914_CR4
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c00329
– volume: 91
  start-page: 2506
  year: 2019
  ident: 914_CR39
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b05375
– volume: 2
  start-page: 30
  year: 2022
  ident: 914_CR11
  publication-title: Nat. Rev. Method Prim.
  doi: 10.1038/s43586-022-00109-7
– volume: 23
  start-page: 1169
  year: 2023
  ident: 914_CR13
  publication-title: Lab Chip
  doi: 10.1039/D2LC00756H
– volume: 1254
  start-page: 341077
  year: 2023
  ident: 914_CR32
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.341077
– volume: 12
  start-page: 37670
  year: 2020
  ident: 914_CR24
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08179
– volume: 32
  start-page: 101638
  year: 2023
  ident: 914_CR45
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2023.101638
– volume: 6
  start-page: 1174
  year: 2021
  ident: 914_CR38
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c02446
– volume: 611
  start-page: 570
  year: 2022
  ident: 914_CR19
  publication-title: Nature
  doi: 10.1038/s41586-022-05408-3
– volume: 6
  start-page: eaay5808
  year: 2020
  ident: 914_CR9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay5808
– volume: 20
  start-page: 789
  year: 2020
  ident: 914_CR22
  publication-title: Lab Chip
  doi: 10.1039/C9LC01126A
– volume: 12
  year: 2021
  ident: 914_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27503-1
– volume: 9
  start-page: 1155
  year: 2017
  ident: 914_CR10
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09017
– volume: 10
  start-page: 166
  year: 2020
  ident: 914_CR34
  publication-title: Biosensors
  doi: 10.3390/bios10110166
– volume: 5
  start-page: 413
  year: 2012
  ident: 914_CR14
  publication-title: Annu Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143028
– volume: 4
  start-page: 2181
  year: 2019
  ident: 914_CR2
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01057
– volume: 17
  start-page: 994
  year: 2017
  ident: 914_CR17
  publication-title: Lab Chip
  doi: 10.1039/C7LC00025A
– volume: 7
  start-page: 47
  year: 2021
  ident: 914_CR33
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00276-9
– volume: 3
  start-page: 8677
  year: 2022
  ident: 914_CR50
  publication-title: Mater. Adv.
  doi: 10.1039/D2MA00819J
– volume: 17
  start-page: 23702
  year: 2023
  ident: 914_CR27
  publication-title: Acs Nano
  doi: 10.1021/acsnano.3c07360
– volume: 121
  start-page: 272
  year: 2018
  ident: 914_CR37
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.061
– volume: 117
  start-page: 457
  year: 2006
  ident: 914_CR23
  publication-title: Sens. Actuat B: Chem.
  doi: 10.1016/j.snb.2005.12.053
– volume: 322
  start-page: 539
  year: 2008
  ident: 914_CR7
  publication-title: Science
  doi: 10.1126/science.1165719
– volume: 9
  start-page: 1567
  year: 2009
  ident: 914_CR40
  publication-title: Lab Chip
  doi: 10.1039/b819818g
– volume: 396
  start-page: 133630
  year: 2022
  ident: 914_CR47
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.133630
SSID ssj0001737905
ssib048324881
Score 2.3049848
Snippet Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating droplets....
Abstract Digital microfluidic (DMF) technology is widely used in bioanalysis and chemical reactions due to its accuracy and flexibility in manipulating...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms 639/166/987
639/638
Cerium oxides
Chemical reactions
Circuit boards
Control systems
Droplets
Electrochemical analysis
Electrodes
Electrons
Engineering
Hydrophobicity
Magnetic control
Microfluidics
Modules
Molybdenum disulfide
Permanent magnets
Silver chloride
Three dimensional printing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGdoQUbiBlbjZ-xjqVpVHDhRqTfLr5SVumlFs_-_M052u8tDXLjakTKah-ezPfOZkI99NDHFyJlRTjDA_y1z2OwjAY3z4joApbXK95s5v1BfL_Xl1lNfWBM20QNPijtysG3qARSEzmVlS4q96lSy8Adka4oZV1_IeVubqXq60klknpq7ZFppj-5gtUYyWaEZwAqumNnJRJWw_08o8_diyV9uTGsiOntGns4Ikh5Pku-TR2V4Tp5s8Qq-IP0xneuultgZRZfhasBmRZoXV_hICF1iGV5_vVpkGLy9DiNCV7qhjsgUj2fp_EROmjkFaC5jLdwa6MT__JJcnJ1-Pzln84MKLCmnRhZ5djyHYJIsnUiQ2kvrkslOp94lSOahjRDwMqYkpUi9SKqXWnHrCg8xBvmK7A03Q3lDqBFdtKroxHVS0YrIS4k6WUCTyqhcGvJprVx_O_Fm-HrfLa2fTOHBFL6awpuGfEH9b75Ezus6AJ7gZ0_w__KEhhyurefnQLzzUuAqham6IR820xBCeC8ShnKzqt_gqY61riGvJ2NvJFEtAjINEtodN9gRdXdmWPyoNN1ctMg8pBvyee0xD3L9XRdv_4cuDshjUV1dMy4Oyd74c1XeAXoa4_saKPcfdxe5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcoED4k1oQUbiBhbxM_axrKgqDpyo1JsVP7Ks1M1Wbfb_43GSbRfKgavtSCPPjOeLPfMNwMfOax-8Z1RLy2nG_zW1WOwjMhpnyTYZlJYs3x_67Fx-v1AXB8DnWpiStF8oLcsxPWeHfbnJhy1ywXJFMypgkuoH8BCp29GqF3pxe6_SCOScmupjamHu-XQvBhWq_vvw5d9pkn-8lZYQdPoUnkzYkZyM0j6Dg9Q_h8d3GAVfQHdCpoyrNdZEkXW77LFMkcTVEtuDkDUm4HWX21XMg1eX7YCglexIIyLBi1kyNccJE5sAiWkoKVs9GZmfX8L56befizM6tVKgQVo5UM-iZbFtdRCp4SEH9VTboKNVobMhh_G29tnVhQ9BCB46HmQnlGTGJtZ634pXcNhv-vQGiOaNNzKpwFSQ3nDPUvIqmAaVIWOq4NO8ue5qZMxw5aVbGDeqwmVVuKIKpyv4ivu_W4ls12Vgc710k_adzb_OXQaGbWOjNCn4TjYymGxlyNjlYwXHs_bc5II3TnA8nzBIV_BhN52dB19E2j5ttmUN3ucYYyt4PSp7J4msEYqpLKHZM4M9Ufdn-tWvQtDNeI2cQ6qCz7PF3Mr17714-3_Lj-ARL0atKOPHcDhcb9O7jJAG_764xG_ZPQzC
  priority: 102
  providerName: Springer Nature
Title A programmable magnetic digital microfluidic platform integrated with electrochemical detection system
URI https://link.springer.com/article/10.1038/s41378-025-00914-6
https://www.ncbi.nlm.nih.gov/pubmed/40355456
https://www.proquest.com/docview/3204003413
https://www.proquest.com/docview/3203304889
https://pubmed.ncbi.nlm.nih.gov/PMC12069685
https://doaj.org/article/9274f112a79d48ecbf474c86bc9781bd
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagvcAB8WahREbiBlbXj921TygNDVUEFaJUym21fmwaqdmEJvn_zDhOSnhd1pJtrbyesefb8fgbQt62trTOWs5KZQQD_J8zg5d9JKBxHkwFoDRG-Z6XZ5dqNC7GyeG2TGGV2z0xbtR-7tBHfiwFqhvuuR8WPxhmjcLT1ZRC4y45ROoyDOmqxjtzqkBb1ZYtPfpcKol8VJhvDpA7wwxb6R5NLvXxEt6NdLOiYAA8uGLlnq2KlP5_w6F_hlP-dqYaTdXwIXmQMCbtb5TiEbkTusfk_i_Mg09I26cpMmuGd6forJl0eJ2R-ukE04jQGQbqtdfrqYfKxXWzQnBLd-QSnqIDl6YkOi6xDlAfVjG0q6Mbhuin5HJ4-n1wxlLKBeaUUStmuTfcN03pZKiEA-MfcuNKbwrXGgfmvsktbAnSOielcK1wqpWF4toE3ljbyGfkoJt34QWhpaisVqFwvHDKamF5CLZwGvCmKpUPGXm3ndx6sWHWqOOJuNT1RhQ1iKKOoqjLjJzg_O96Iit2rJjfTOq0yGoDv9gtAMimMl7p4GyrKuU0aCMye1mfkaOt9Oq0VJf1rWJl5M2uGRYZnpw0XZivYx_0-2htMvJ8I-zdSFSOkK2AEeo9Ndgb6n5LN72KRN5c5MhNVGTk_VZjbsf177l4-f_PeEXuiajEBePiiBysbtbhNSCnle3F5QFPPfzUI4f9_uhihOXHL58voDw5Pf_6DVoH5aAXfRM_AYNSG64
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJuUAkaCE0SNH0nsA0LlsWxp6amVejPxI8tK3ey2uyvEn-I3MuMkW5bXrdc4ihzPN_Zne-YbQp7XtrDOWpYWUvMU-H-Wakz2EcDGWdAlkNIY5XtYDI_lp5P8ZIP86HNhMKyynxPjRO2nDs_IdwRHuOGc-2Z2lmLVKLxd7UtotLDYD9-_wZZt_nrvPdj3BeeDD0fvhmlXVSB1UstFapnXzFdV4UQouYP1LWTaFV7nrtYOVrQqs4B6YZ0TgruaO1mLXDKlA6usrQR89wq5KoXQ6FFq8LHHrwTvkL06ezzjKQXqX2F9O9gppFjRq8vbyYTamcO_oLwtz1MgOkymxdraGEsI_I33_hm--dsdblwaB7fIzY7T0t0WhLfJRmjukBu_KB3eJfUu7SLBJpirRSfVqMH0SerHIyxbQicYGFifLsceHs5OqwWSaboSs_AUD4xpV7THdSoH1IdFDCVraKtIfY8cX4ox7pPNZtqEh4QWvLRKhtyx3EmruGUh2Nwp4LeykD4k5GU_uGbWKnmYeAMvlGlNYcAUJprCFAl5i-O_ehNVuOOD6fnIdE5tNGzpayCsVam9VMHZWpbSKUA_KolZn5Dt3nqmmxrm5gLICXm2aganxpuaqgnTZXwHz5mU0gl50Bp71ROZIUXMoYdqDQZrXV1vacZfo3A44xlqIeUJedUj5qJf_x6Lrf__xlNybXj0-cAc7B3uPyLXeQR0njK-TTYX58vwGFjbwj6JrkLJl8v2zZ_OeFIe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG9SChgJTmBt_EhiHxAqlFVLUcWBSnsL8SPLSt3strsrxF_j1zHjJFuW161XO4psz4znsz3zDSHPa5tbZy1nuTKCAf5PmcFkHwlonAdTACiNUb7H-cGJ-jDKRlvkR58Lg2GV_Z4YN2o_c3hHPpAC1Q333EHdhUV82h--mZ8xrCCFL619OY1WRY7C929wfFu8PtwHWb8QYvj-87sD1lUYYE4ZtWSWe8N9VeVOhkI48HUhNS73JnO1ceDdqtSCBUjrnJTC1cKpWmaKaxN4ZW0l4b9XyNVCZhxtrBitXbkCS1E9U3u87ykkcmFhrTs4NTCs7tXl8KRSDxYwL6S6FRkD0MMVyzf8ZCwn8DcM_Gco52_vudFNDm-Rmx2-pXutQt4mW6G5Q278wnp4l9R7tIsKm2LeFp1W4wZTKamfjLGECZ1ikGB9upp4aJyfVksE1nRNbOEpXh7TroCP6xgPqA_LGFbW0Jad-h45uRRh3CfbzawJDwnNRWG1CpnjmVNWC8tDsJnTgHVVrnxIyMt-cct5y-pRxtd4qctWFCWIooyiKPOEvMX1X3-JjNyxYXY-LjsDLw0c72sAr1VhvNLB2VoVymmwBGQVsz4hu730ym6bWJQXSp2QZ-tuMHB8tamaMFvFb_DOSWuTkAetsNcjUSnCxQxGqDfUYGOomz3N5GskEeciRV6kLCGveo25GNe_12Ln_9N4Sq6BVZYfD4-PHpHrIupzxrjYJdvL81V4DABuaZ9ES6Hky2Wb5k9-uVZL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+programmable+magnetic+digital+microfluidic+platform+integrated+with+electrochemical+detection+system&rft.jtitle=Microsystems+%26+nanoengineering&rft.date=2025-05-12&rft.pub=Springer+Nature+B.V&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=11&rft.issue=1&rft.spage=82&rft_id=info:doi/10.1038%2Fs41378-025-00914-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon