A multi-subject and multi-session EEG dataset for modelling human visual object recognition
We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials pres...
Saved in:
Published in | Scientific data Vol. 12; no. 1; pp. 663 - 15 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions. |
---|---|
AbstractList | We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions. We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions. Abstract We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions. |
ArticleNumber | 663 |
Author | Xue, Shuning Liu, Jing Zhou, Jin Guo, Longteng Jin, Bu Wang, Changyong Jiang, Jie |
Author_xml | – sequence: 1 givenname: Shuning surname: Xue fullname: Xue, Shuning organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences – sequence: 2 givenname: Bu surname: Jin fullname: Jin, Bu organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences – sequence: 3 givenname: Jie surname: Jiang fullname: Jiang, Jie organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences – sequence: 4 givenname: Longteng surname: Guo fullname: Guo, Longteng organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences – sequence: 5 givenname: Jin surname: Zhou fullname: Zhou, Jin organization: Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center – sequence: 6 givenname: Changyong surname: Wang fullname: Wang, Changyong organization: Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center – sequence: 7 givenname: Jing surname: Liu fullname: Liu, Jing email: jliu@nlpr.ia.ac.cn organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40253381$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1O3TAQha2KqlDKC3RRReqmm7TjnyTOqkLoliIhsYFVF9bEdoKvEpvaCaJvX3MDFLpgZWv8nTOj43lP9nzwlpCPFL5S4PJbErRqmxJYVYKQgpd3b8gBg4qVQtR879l9nxyltAUAygVUDbwj-yLLOJf0gPw6LqZlnF2Zlm5r9VygN48Vm5ILvthsTguDMyY7F32IxRSMHUfnh-J6mdAXty4tOBZh1Uerw-DdnJUfyNsex2SPHs5DcvVjc3nyszy_OD07OT4vtWjFXHZU1JXuZd9J3VBTaYnQV1ZylNRIwWrJbAuSQ88NsJ5CLbuag-1aRKSM8UNytvqagFt1E92E8Y8K6NSuEOKgMM5Oj1b1GnVrGrA6h8ErkJpW1iCVnAoBDc9e31evm6WbrNHWzxHHF6YvX7y7VkO4VZQBtFw02eHLg0MMvxebZjW5pHNi6G1YkuK0ze04MMjo5__QbViiz1ntqFqCbO6pT89Heprl8RMzwFZAx5BStP0TQkHdL4tal0Vlgdoti7rLIr6KUob9YOO_3q-o_gLhmsEb |
Cites_doi | 10.3389/fninf.2019.00066 10.1016/j.bandl.2010.09.013 10.1038/s41597-023-02471-x 10.1016/j.neuroimage.2019.116083 10.1038/s41597-023-02458-8 10.1016/j.neuroimage.2013.10.027 10.1038/381520a0 10.1016/j.neuroimage.2022.119754 10.1109/TPAMI.2023.3263181 10.1016/j.patcog.2023.109915 10.1109/CVPR.2017.479 10.1038/nn.3635 10.1016/S0959-4388(03)00040-0 10.51628/001c.21174 10.1007/s11263-009-0275-4 10.1007/s10548-009-0121-6 10.1109/TBME.2020.2975614 10.1038/s41597-022-01509-w 10.1016/j.neuroimage.2019.04.050 10.1523/JNEUROSCI.0582-17.2017 10.1016/j.neuroimage.2018.12.046 10.1109/CVPR.2009.5206848 10.1109/CVPR46437.2021.00384 10.1146/annurev.neuro.27.070203.144220 10.1109/TPAMI.2020.2995909 10.1016/j.jenvp.2021.101744 10.1038/nn1608 10.1186/s12984-022-01059-7 10.1038/s41597-021-01102-7 10.1371/journal.pone.0135697 10.1371/journal.pone.0223792 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41597-025-04843-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_fcac9d70ec1343508c15eda183144073 PMC12009347 40253381 10_1038_s41597_025_04843_x |
Genre | Dataset Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Major Project (NO. 2023ZD0121201) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279 funderid: 501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U21B2043, 62206279 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ AASML ABUWG ACGFS ACSFO ADBBV ADRAZ AFKRA AGHDO ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M7P M~E NAO OK1 PGMZT PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-b1465cf8fb8c71d5c8a0f5e83a81d842682e90830f3d02f1068b630eb9aaa1223 |
IEDL.DBID | 7X7 |
ISSN | 2052-4463 |
IngestDate | Wed Aug 27 01:13:58 EDT 2025 Thu Aug 21 18:27:15 EDT 2025 Fri Jul 11 18:39:19 EDT 2025 Wed Aug 13 04:11:27 EDT 2025 Thu Apr 24 02:15:04 EDT 2025 Sun Jul 06 05:03:57 EDT 2025 Sun Apr 20 01:10:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-b1465cf8fb8c71d5c8a0f5e83a81d842682e90830f3d02f1068b630eb9aaa1223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.proquest.com/docview/3191680870?pq-origsite=%requestingapplication% |
PMID | 40253381 |
PQID | 3191680870 |
PQPubID | 2041912 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fcac9d70ec1343508c15eda183144073 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12009347 proquest_miscellaneous_3191833020 proquest_journals_3191680870 pubmed_primary_40253381 crossref_primary_10_1038_s41597_025_04843_x springer_journals_10_1038_s41597_025_04843_x |
PublicationCentury | 2000 |
PublicationDate | 2025-04-19 |
PublicationDateYYYYMMDD | 2025-04-19 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 4843_CR34 B Murphy (4843_CR14) 2011; 117 4843_CR32 S Kalantari (4843_CR17) 2022; 79 L Ma (4843_CR15) 2022; 19 MN Hebart (4843_CR23) 2019; 14 G Felsen (4843_CR5) 2005; 8 S Palazzo (4843_CR21) 2020; 43 T Brandman (4843_CR7) 2017; 37 AK Robinson (4843_CR30) 2019; 197 S Thorpe (4843_CR3) 1996; 381 M Everingham (4843_CR28) 2010; 88 4843_CR19 4843_CR18 Z Gong (4843_CR8) 2023; 10 K Grill-Spector (4843_CR4) 2004; 27 4843_CR26 4843_CR25 T Grootswagers (4843_CR11) 2022; 9 4843_CR20 M Xu (4843_CR13) 2020; 67 4843_CR22 QK Telesford (4843_CR9) 2023; 10 K Won (4843_CR12) 2022; 9 MT Chai (4843_CR16) 2019; 13 A Gramfort (4843_CR33) 2014; 86 K Grill-Spector (4843_CR2) 2003; 13 B Kaneshiro (4843_CR6) 2015; 10 AT Gifford (4843_CR10) 2022; 264 T Grootswagers (4843_CR29) 2019; 188 Z Ye (4843_CR24) 2024; 145 T Grootswagers (4843_CR31) 2019; 202 C Vidaurre (4843_CR35) 2010; 23 4843_CR27 RM Cichy (4843_CR1) 2014; 17 |
References_xml | – volume: 13 start-page: 66 year: 2019 ident: 4843_CR16 publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2019.00066 – ident: 4843_CR27 – volume: 117 start-page: 12 year: 2011 ident: 4843_CR14 publication-title: Brain and language doi: 10.1016/j.bandl.2010.09.013 – volume: 10 year: 2023 ident: 4843_CR8 publication-title: Scientific Data doi: 10.1038/s41597-023-02471-x – volume: 202 start-page: 116083 year: 2019 ident: 4843_CR31 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116083 – volume: 10 year: 2023 ident: 4843_CR9 publication-title: Scientific Data doi: 10.1038/s41597-023-02458-8 – volume: 86 start-page: 446 year: 2014 ident: 4843_CR33 publication-title: neuroimage doi: 10.1016/j.neuroimage.2013.10.027 – volume: 381 start-page: 520 year: 1996 ident: 4843_CR3 publication-title: nature doi: 10.1038/381520a0 – volume: 264 start-page: 119754 year: 2022 ident: 4843_CR10 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119754 – ident: 4843_CR25 doi: 10.1109/TPAMI.2023.3263181 – volume: 145 start-page: 109915 year: 2024 ident: 4843_CR24 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109915 – ident: 4843_CR20 doi: 10.1109/CVPR.2017.479 – ident: 4843_CR26 – volume: 17 start-page: 455 year: 2014 ident: 4843_CR1 publication-title: Nature neuroscience doi: 10.1038/nn.3635 – volume: 13 start-page: 159 year: 2003 ident: 4843_CR2 publication-title: Current opinion in neurobiology doi: 10.1016/S0959-4388(03)00040-0 – ident: 4843_CR32 doi: 10.51628/001c.21174 – volume: 88 start-page: 303 year: 2010 ident: 4843_CR28 publication-title: International journal of computer vision doi: 10.1007/s11263-009-0275-4 – volume: 23 start-page: 194 year: 2010 ident: 4843_CR35 publication-title: Brain topography doi: 10.1007/s10548-009-0121-6 – volume: 67 start-page: 3073 year: 2020 ident: 4843_CR13 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2020.2975614 – volume: 9 year: 2022 ident: 4843_CR12 publication-title: Scientific Data doi: 10.1038/s41597-022-01509-w – volume: 197 start-page: 224 year: 2019 ident: 4843_CR30 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.04.050 – volume: 37 start-page: 7700 year: 2017 ident: 4843_CR7 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0582-17.2017 – volume: 188 start-page: 668 year: 2019 ident: 4843_CR29 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.12.046 – ident: 4843_CR22 doi: 10.1109/CVPR.2009.5206848 – ident: 4843_CR18 doi: 10.1109/CVPR46437.2021.00384 – volume: 27 start-page: 649 year: 2004 ident: 4843_CR4 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.27.070203.144220 – ident: 4843_CR19 – volume: 43 start-page: 3833 year: 2020 ident: 4843_CR21 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2995909 – volume: 79 start-page: 101744 year: 2022 ident: 4843_CR17 publication-title: Journal of Environmental Psychology doi: 10.1016/j.jenvp.2021.101744 – volume: 8 start-page: 1643 year: 2005 ident: 4843_CR5 publication-title: Nature neuroscience doi: 10.1038/nn1608 – volume: 19 year: 2022 ident: 4843_CR15 publication-title: Journal of NeuroEngineering and Rehabilitation doi: 10.1186/s12984-022-01059-7 – ident: 4843_CR34 – volume: 9 year: 2022 ident: 4843_CR11 publication-title: Scientific Data doi: 10.1038/s41597-021-01102-7 – volume: 10 start-page: e0135697 year: 2015 ident: 4843_CR6 publication-title: Plos one doi: 10.1371/journal.pone.0135697 – volume: 14 start-page: e0223792 year: 2019 ident: 4843_CR23 publication-title: PloS one doi: 10.1371/journal.pone.0223792 |
SSID | ssj0001340570 |
Score | 2.3310738 |
Snippet | We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data... Abstract We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 663 |
SubjectTerms | 631/378/2613/2616 631/378/2649/1723 Algorithms Brain-Computer Interfaces Data Descriptor Datasets EEG Electroencephalography Humanities and Social Sciences Humans Machine Learning multidisciplinary Pattern recognition Pattern Recognition, Visual Science Science (multidisciplinary) Visual Perception |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTlxQaUubllauxAHUWtixkzhHQAuoUjmBhMTBsh1b5ZJFZLfi53dsZ7csH-qFa-Io1szY88YzfgOwa6Q3jZAlZW2QNHLn4D5YByoN6zCaMFWdiOd_nddnl_LnVXX1oNVXrAnL9MBZcAfBGdd2DfOOC3TtTDle-c6gJca0ZJN4PtHnPQim0umKiECEjbdkmFAHA3qqSDxaVhSNVgp6v-KJEmH_cyjzabHko4xpckQnb2BzRJDkMM98C9Z8_xa2xjU6kL2RSHr_HVwfklQvSIe5jcctxPTd4kmm4yCTySmJRaKDnxGEryQ1xok31Elq3kf-3Axz_Nk0f7-sNpr27-HyZHJxfEbHZgrUyVbOqMUtsXJBBatcw7vKKcNC5ZUwiFgV-mlV-hbxGAuiY2XASFHZWjBvW2MMRxCxDev9tPcfgQhljJBWSYzVZGlrE7jzNvgQ2dCaNhTwfSFYfZs5M3TKdQulsxo0qkEnNej7Ao6i7JcjI991eoBWoEcr0P-zggJ2FprT4yIcNO4uPHYWaVgB35avcfnEnIjp_XSexyghEDQX8CErejkTDK0RDCtegFoxgZWprr7pb34nim4ek05CNgX8WFjLv3m9LItPryGLz7BRZjOnvN2B9dnd3H9B5DSzX9Mi-QvH9xNc priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0heuGCgNISCpUrcQBRCyd2EudIV0tRJTiBhNSDZTs2cEnQZrfi5zN2kkVL6aFXfygjz3j8JjN-BjjSwumSi4yyygsauHPQDxaeCs1qjCZ0XkTi-avr4vJW_LrL79YgG-_CxKL9SGkZ3fRYHXbW4UETeEOznKLNCU4RN34I1O3BqifF5PW_Cg8QhA33YxiX70xdOYMiVf97-PLvMsk3udJ4BF1sweaAHcl5L-02rLlmB7aH3dmR44FC-uQj_D4nsVKQdgsTfrQQ3dRjS0_EQabTnySUh3ZuThC4kvgkTribTuKzfeTPY7fAj7X9_GWdUdvswu3F9GZySYdnFKgVlZhTg84wt156I22Z1rmVmvncSa4Rq0o8oWXmKkRizPOaZR5jRGkKzpyptNYpwodPsN60jdsDwqXWXBgpMEoTmSm0T60z3vnAg1ZWPoHTcWHVU8-WoWKWm0vVq0GhGlRUg3pO4EdY--XIwHQdG9rZvRo0r7zVtqpL5ixqliOctGnuao2eKKSlS57Awag5NWy_TqFfScObIiVL4NuyGzdOyIboxrWLfozkHOFyAp97RS8lwaAaYbBME5ArJrAi6mpP8_gQybnTkG7iokzg-2gtr3L9ey32_2_4F9jIeoOmaXUA6_PZwh0iOpqbr3E7vADE5gmd priority: 102 providerName: Springer Nature |
Title | A multi-subject and multi-session EEG dataset for modelling human visual object recognition |
URI | https://link.springer.com/article/10.1038/s41597-025-04843-x https://www.ncbi.nlm.nih.gov/pubmed/40253381 https://www.proquest.com/docview/3191680870 https://www.proquest.com/docview/3191833020 https://pubmed.ncbi.nlm.nih.gov/PMC12009347 https://doaj.org/article/fcac9d70ec1343508c15eda183144073 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be-GCKM_QsjISBxBYdWIncU5ou9pSrUSFgEorcbAcx4ZekrbZRf35jB1nV8vrFMlxFMczHn-emXwD8EoLq0suMsoqJ6jnzkE7WDgqNGvwNKHzIhDPfzwvzi7EYpkvo8Otj2mVo00MhrrpjPeRH6OqpL5MRMneX11TXzXKR1djCY27sO-py3xKV7kstz4W7uEIi__KMC6Pe9yvPP1ollNUXcHp7c5-FGj7_4Y1_0yZ_C1uGraj0wdwP-JIMh0EfwB3bPsQDuJK7cnrSCf95hF8m5KQNUj7de2dLkS3zdgykHKQ-fwD8amivV0RBLEklMfx_6mTUMKP_Lzs1_iybnh-k3PUtY_h4nT-dXZGY0kFakQlVrRGw5gbJ10tTZk2uZGaudxKrhG3StytZWYrRGXM8YZlDs-Lsi44s3WltU4RSjyBvbZr7TMgXGrNRS0FnthEVhfapcbWzjrPiVZWLoG348Sqq4E5Q4WIN5dqEINCMaggBnWbwImf-01Pz3odGrqb7youIuWMNlVTMmtQshyhpUlz22i0Sj5EXfIEjkbJqbgUe7VVnARebm7jIvKREd3abj30kZwjdE7g6SDozUjwgI2QWKYJyB0V2Bnq7p328kcg6k596ImLMoF3o7Zsx_XvuXj-_884hHvZoMA0rY5gb3Wzti8QGa3qSVD_CexPp4svC7yezM8_fcbWWTGbBG_DL-PQED8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZWsBIIIHAqhM7G-eAUAtbtrRdIdRKlXowjmPTXpLS7EL5U_xGxk6yq-V16zUPxfE8_I1n_A3AUy2szrhIKMudoJ47B_3g0FGhWYnRhE6HgXj-YDIcH4kPx-nxCvzsz8L4ssreJwZHXdbG75FvoqrEvk1Ext6cf6W-a5TPrvYtNFq12LM_vmPI1rzefYfyfZYkO6PDt2PadRWgRuRiSgv0Dalx0hXSZHGZGqmZS63kGqGbxAVLJjZHYMIcL1niMGSSxZAzW-Ra6zjxRAfo8lcFx1BmAKvbo8nHT4tdHe4BEOtO5zAuNxtcIT3haZJSNBbB6eXSChgaBfwN3f5ZpPlbpjYsgDs34UaHXMlWq2prsGKrW7DW-YaGPO8IrF_chpMtEuoUaTMr_DYP0VXZX2lpQMho9J744tTGTgnCZhIa8viT8SQ0DSTfzpoZfqxu359XOdXVHTi6kum-C4Oqrux9IFxqzUUhBcaIIimG2sXGFs46z8KW5S6Cl_3EqvOWq0OFHDuXqhWDQjGoIAZ1GcG2n_v5k55nO1yoL76ozmyVM9rkZcasQclyBLMmTm2p0Q_6pHjGI9joJac642_UQlUjeDK_jWbrczG6svWsfUZyjmA9gnutoOcjwZAeQbiMI5BLKrA01OU71dlpoAaPfbKLiyyCV722LMb177l48P_feAzXxocH-2p_d7K3DteTVplpnG_AYHoxsw8Rl02LR50xEPh81fb3Cw31SOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOUZKGAkkEBgrRM7a-eAUKG7tBQqDlRaiYNxHBt6SUqzC-Wv8esYO8multet1zwUx_PwN57xNwAPjXBGcpFRVnhBA3cO-sGxp8KwCqMJk48j8fy7w_HekXgzy2cb8HM4CxPKKgefGB111diwRz5CVUlDmwjJRr4vi3i_O31x8pWGDlIh0zq00-hU5MD9-I7hW_t8fxdl_SjLppMPr_Zo32GAWlGIOS3RT-TWK18qK9Mqt8ownzvFDcI4hYuXylyBIIV5XrHMY_ikyjFnriyMMWkWSA_Q_V-QPE-DjcmZXO3v8ACFWH9Oh3E1anGtDNSnWU7RbASnZ2trYWwZ8Dec-2e55m8527gUTq_A5R7Dkp1O6bZgw9VXYav3Ei153FNZP7kGH3dIrFik7aIMGz7E1NVwpSMEIZPJaxLKVFs3JwigSWzNE87Ik9g-kHw7bhf4saZ7f1nv1NTX4ehcJvsGbNZN7W4B4coYLkolMFoUWTk2PrWu9M4HPjZZ-ASeDhOrTzrWDh2z7VzpTgwaxaCjGPRZAi_D3C-fDIzb8UJz-ln3Bqy9NbaoJHMWJcsR1to0d5VBjxjS45InsD1ITvduoNUrpU3gwfI2GnDIypjaNYvuGcU5wvYEbnaCXo4Eg3uE4ypNQK2pwNpQ1-_Ux18iSXga0l5cyASeDdqyGte_5-L2_3_jPlxEq9Nv9w8P7sClrNNlmhbbsDk_Xbi7CNDm5b1oCQQ-nbfp_QLG1Uuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-subject+and+multi-session+EEG+dataset+for+modelling+human+visual+object+recognition&rft.jtitle=Scientific+data&rft.date=2025-04-19&rft.pub=Nature+Publishing+Group&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft.spage=663&rft_id=info:doi/10.1038%2Fs41597-025-04843-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |