A multi-subject and multi-session EEG dataset for modelling human visual object recognition

We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials pres...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 12; no. 1; pp. 663 - 15
Main Authors Xue, Shuning, Jin, Bu, Jiang, Jie, Guo, Longteng, Zhou, Jin, Wang, Changyong, Liu, Jing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.
AbstractList We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.
We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.
Abstract We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data was obtained during serial visual presentation experiments in two paradigms. Dataset of first paradigm consists of around 800,000 trials presenting stimulus sequences at 5 Hz. Dataset of second paradigm comprises around 40,000 trials displaying each image for 1 second. Each participant completed between 1 to 5 sessions on different days, and each session lasted for approximately 1.5 hours of EEG recording. The stimulus set used in the experiments included 10,000 images, with 500 images per class, manually selected from PASCAL and ImageNet image databases. The MSS dataset can be useful for various studies, including but not limited to (1) exploring the characteristics of EEG visual response, (2) comparing the differences in EEG response of different visual paradigms, and (3) designing machine learning algorithms for cross-subject and cross-session brain-computer interfaces (BCIs) using EEG data from multiple subjects and sessions.
ArticleNumber 663
Author Xue, Shuning
Liu, Jing
Zhou, Jin
Guo, Longteng
Jin, Bu
Wang, Changyong
Jiang, Jie
Author_xml – sequence: 1
  givenname: Shuning
  surname: Xue
  fullname: Xue, Shuning
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 2
  givenname: Bu
  surname: Jin
  fullname: Jin, Bu
  organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 3
  givenname: Jie
  surname: Jiang
  fullname: Jiang, Jie
  organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 4
  givenname: Longteng
  surname: Guo
  fullname: Guo, Longteng
  organization: Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
– sequence: 5
  givenname: Jin
  surname: Zhou
  fullname: Zhou, Jin
  organization: Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center
– sequence: 6
  givenname: Changyong
  surname: Wang
  fullname: Wang, Changyong
  organization: Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center
– sequence: 7
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  email: jliu@nlpr.ia.ac.cn
  organization: School of Artificial Intelligence, University of Chinese Academy of Sciences, Zidongtaichu Foundation Model Research Center, Institute of Automation, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40253381$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1O3TAQha2KqlDKC3RRReqmm7TjnyTOqkLoliIhsYFVF9bEdoKvEpvaCaJvX3MDFLpgZWv8nTOj43lP9nzwlpCPFL5S4PJbErRqmxJYVYKQgpd3b8gBg4qVQtR879l9nxyltAUAygVUDbwj-yLLOJf0gPw6LqZlnF2Zlm5r9VygN48Vm5ILvthsTguDMyY7F32IxRSMHUfnh-J6mdAXty4tOBZh1Uerw-DdnJUfyNsex2SPHs5DcvVjc3nyszy_OD07OT4vtWjFXHZU1JXuZd9J3VBTaYnQV1ZylNRIwWrJbAuSQ88NsJ5CLbuag-1aRKSM8UNytvqagFt1E92E8Y8K6NSuEOKgMM5Oj1b1GnVrGrA6h8ErkJpW1iCVnAoBDc9e31evm6WbrNHWzxHHF6YvX7y7VkO4VZQBtFw02eHLg0MMvxebZjW5pHNi6G1YkuK0ze04MMjo5__QbViiz1ntqFqCbO6pT89Heprl8RMzwFZAx5BStP0TQkHdL4tal0Vlgdoti7rLIr6KUob9YOO_3q-o_gLhmsEb
Cites_doi 10.3389/fninf.2019.00066
10.1016/j.bandl.2010.09.013
10.1038/s41597-023-02471-x
10.1016/j.neuroimage.2019.116083
10.1038/s41597-023-02458-8
10.1016/j.neuroimage.2013.10.027
10.1038/381520a0
10.1016/j.neuroimage.2022.119754
10.1109/TPAMI.2023.3263181
10.1016/j.patcog.2023.109915
10.1109/CVPR.2017.479
10.1038/nn.3635
10.1016/S0959-4388(03)00040-0
10.51628/001c.21174
10.1007/s11263-009-0275-4
10.1007/s10548-009-0121-6
10.1109/TBME.2020.2975614
10.1038/s41597-022-01509-w
10.1016/j.neuroimage.2019.04.050
10.1523/JNEUROSCI.0582-17.2017
10.1016/j.neuroimage.2018.12.046
10.1109/CVPR.2009.5206848
10.1109/CVPR46437.2021.00384
10.1146/annurev.neuro.27.070203.144220
10.1109/TPAMI.2020.2995909
10.1016/j.jenvp.2021.101744
10.1038/nn1608
10.1186/s12984-022-01059-7
10.1038/s41597-021-01102-7
10.1371/journal.pone.0135697
10.1371/journal.pone.0223792
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-025-04843-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 15
ExternalDocumentID oai_doaj_org_article_fcac9d70ec1343508c15eda183144073
PMC12009347
40253381
10_1038_s41597_025_04843_x
Genre Dataset
Journal Article
GrantInformation_xml – fundername: National Science and Technology Major Project (NO. 2023ZD0121201)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279; U21B2043, 62206279
  funderid: 501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U21B2043, 62206279
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
ACSFO
ADBBV
ADRAZ
AFKRA
AGHDO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M7P
M~E
NAO
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-b1465cf8fb8c71d5c8a0f5e83a81d842682e90830f3d02f1068b630eb9aaa1223
IEDL.DBID 7X7
ISSN 2052-4463
IngestDate Wed Aug 27 01:13:58 EDT 2025
Thu Aug 21 18:27:15 EDT 2025
Fri Jul 11 18:39:19 EDT 2025
Wed Aug 13 04:11:27 EDT 2025
Thu Apr 24 02:15:04 EDT 2025
Sun Jul 06 05:03:57 EDT 2025
Sun Apr 20 01:10:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-b1465cf8fb8c71d5c8a0f5e83a81d842682e90830f3d02f1068b630eb9aaa1223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.proquest.com/docview/3191680870?pq-origsite=%requestingapplication%
PMID 40253381
PQID 3191680870
PQPubID 2041912
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_fcac9d70ec1343508c15eda183144073
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12009347
proquest_miscellaneous_3191833020
proquest_journals_3191680870
pubmed_primary_40253381
crossref_primary_10_1038_s41597_025_04843_x
springer_journals_10_1038_s41597_025_04843_x
PublicationCentury 2000
PublicationDate 2025-04-19
PublicationDateYYYYMMDD 2025-04-19
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 4843_CR34
B Murphy (4843_CR14) 2011; 117
4843_CR32
S Kalantari (4843_CR17) 2022; 79
L Ma (4843_CR15) 2022; 19
MN Hebart (4843_CR23) 2019; 14
G Felsen (4843_CR5) 2005; 8
S Palazzo (4843_CR21) 2020; 43
T Brandman (4843_CR7) 2017; 37
AK Robinson (4843_CR30) 2019; 197
S Thorpe (4843_CR3) 1996; 381
M Everingham (4843_CR28) 2010; 88
4843_CR19
4843_CR18
Z Gong (4843_CR8) 2023; 10
K Grill-Spector (4843_CR4) 2004; 27
4843_CR26
4843_CR25
T Grootswagers (4843_CR11) 2022; 9
4843_CR20
M Xu (4843_CR13) 2020; 67
4843_CR22
QK Telesford (4843_CR9) 2023; 10
K Won (4843_CR12) 2022; 9
MT Chai (4843_CR16) 2019; 13
A Gramfort (4843_CR33) 2014; 86
K Grill-Spector (4843_CR2) 2003; 13
B Kaneshiro (4843_CR6) 2015; 10
AT Gifford (4843_CR10) 2022; 264
T Grootswagers (4843_CR29) 2019; 188
Z Ye (4843_CR24) 2024; 145
T Grootswagers (4843_CR31) 2019; 202
C Vidaurre (4843_CR35) 2010; 23
4843_CR27
RM Cichy (4843_CR1) 2014; 17
References_xml – volume: 13
  start-page: 66
  year: 2019
  ident: 4843_CR16
  publication-title: Frontiers in neuroinformatics
  doi: 10.3389/fninf.2019.00066
– ident: 4843_CR27
– volume: 117
  start-page: 12
  year: 2011
  ident: 4843_CR14
  publication-title: Brain and language
  doi: 10.1016/j.bandl.2010.09.013
– volume: 10
  year: 2023
  ident: 4843_CR8
  publication-title: Scientific Data
  doi: 10.1038/s41597-023-02471-x
– volume: 202
  start-page: 116083
  year: 2019
  ident: 4843_CR31
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116083
– volume: 10
  year: 2023
  ident: 4843_CR9
  publication-title: Scientific Data
  doi: 10.1038/s41597-023-02458-8
– volume: 86
  start-page: 446
  year: 2014
  ident: 4843_CR33
  publication-title: neuroimage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 381
  start-page: 520
  year: 1996
  ident: 4843_CR3
  publication-title: nature
  doi: 10.1038/381520a0
– volume: 264
  start-page: 119754
  year: 2022
  ident: 4843_CR10
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119754
– ident: 4843_CR25
  doi: 10.1109/TPAMI.2023.3263181
– volume: 145
  start-page: 109915
  year: 2024
  ident: 4843_CR24
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109915
– ident: 4843_CR20
  doi: 10.1109/CVPR.2017.479
– ident: 4843_CR26
– volume: 17
  start-page: 455
  year: 2014
  ident: 4843_CR1
  publication-title: Nature neuroscience
  doi: 10.1038/nn.3635
– volume: 13
  start-page: 159
  year: 2003
  ident: 4843_CR2
  publication-title: Current opinion in neurobiology
  doi: 10.1016/S0959-4388(03)00040-0
– ident: 4843_CR32
  doi: 10.51628/001c.21174
– volume: 88
  start-page: 303
  year: 2010
  ident: 4843_CR28
  publication-title: International journal of computer vision
  doi: 10.1007/s11263-009-0275-4
– volume: 23
  start-page: 194
  year: 2010
  ident: 4843_CR35
  publication-title: Brain topography
  doi: 10.1007/s10548-009-0121-6
– volume: 67
  start-page: 3073
  year: 2020
  ident: 4843_CR13
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2020.2975614
– volume: 9
  year: 2022
  ident: 4843_CR12
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01509-w
– volume: 197
  start-page: 224
  year: 2019
  ident: 4843_CR30
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.04.050
– volume: 37
  start-page: 7700
  year: 2017
  ident: 4843_CR7
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0582-17.2017
– volume: 188
  start-page: 668
  year: 2019
  ident: 4843_CR29
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.12.046
– ident: 4843_CR22
  doi: 10.1109/CVPR.2009.5206848
– ident: 4843_CR18
  doi: 10.1109/CVPR46437.2021.00384
– volume: 27
  start-page: 649
  year: 2004
  ident: 4843_CR4
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144220
– ident: 4843_CR19
– volume: 43
  start-page: 3833
  year: 2020
  ident: 4843_CR21
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2995909
– volume: 79
  start-page: 101744
  year: 2022
  ident: 4843_CR17
  publication-title: Journal of Environmental Psychology
  doi: 10.1016/j.jenvp.2021.101744
– volume: 8
  start-page: 1643
  year: 2005
  ident: 4843_CR5
  publication-title: Nature neuroscience
  doi: 10.1038/nn1608
– volume: 19
  year: 2022
  ident: 4843_CR15
  publication-title: Journal of NeuroEngineering and Rehabilitation
  doi: 10.1186/s12984-022-01059-7
– ident: 4843_CR34
– volume: 9
  year: 2022
  ident: 4843_CR11
  publication-title: Scientific Data
  doi: 10.1038/s41597-021-01102-7
– volume: 10
  start-page: e0135697
  year: 2015
  ident: 4843_CR6
  publication-title: Plos one
  doi: 10.1371/journal.pone.0135697
– volume: 14
  start-page: e0223792
  year: 2019
  ident: 4843_CR23
  publication-title: PloS one
  doi: 10.1371/journal.pone.0223792
SSID ssj0001340570
Score 2.3310738
Snippet We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants. The data...
Abstract We share a multi-subject and multi-session (MSS) dataset with 122-channel electroencephalographic (EEG) signals collected from 32 human participants....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 663
SubjectTerms 631/378/2613/2616
631/378/2649/1723
Algorithms
Brain-Computer Interfaces
Data Descriptor
Datasets
EEG
Electroencephalography
Humanities and Social Sciences
Humans
Machine Learning
multidisciplinary
Pattern recognition
Pattern Recognition, Visual
Science
Science (multidisciplinary)
Visual Perception
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hTlxQaUubllauxAHUWtixkzhHQAuoUjmBhMTBsh1b5ZJFZLfi53dsZ7csH-qFa-Io1szY88YzfgOwa6Q3jZAlZW2QNHLn4D5YByoN6zCaMFWdiOd_nddnl_LnVXX1oNVXrAnL9MBZcAfBGdd2DfOOC3TtTDle-c6gJca0ZJN4PtHnPQim0umKiECEjbdkmFAHA3qqSDxaVhSNVgp6v-KJEmH_cyjzabHko4xpckQnb2BzRJDkMM98C9Z8_xa2xjU6kL2RSHr_HVwfklQvSIe5jcctxPTd4kmm4yCTySmJRaKDnxGEryQ1xok31Elq3kf-3Axz_Nk0f7-sNpr27-HyZHJxfEbHZgrUyVbOqMUtsXJBBatcw7vKKcNC5ZUwiFgV-mlV-hbxGAuiY2XASFHZWjBvW2MMRxCxDev9tPcfgQhljJBWSYzVZGlrE7jzNvgQ2dCaNhTwfSFYfZs5M3TKdQulsxo0qkEnNej7Ao6i7JcjI991eoBWoEcr0P-zggJ2FprT4yIcNO4uPHYWaVgB35avcfnEnIjp_XSexyghEDQX8CErejkTDK0RDCtegFoxgZWprr7pb34nim4ek05CNgX8WFjLv3m9LItPryGLz7BRZjOnvN2B9dnd3H9B5DSzX9Mi-QvH9xNc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0heuGCgNISCpUrcQBRCyd2EudIV0tRJTiBhNSDZTs2cEnQZrfi5zN2kkVL6aFXfygjz3j8JjN-BjjSwumSi4yyygsauHPQDxaeCs1qjCZ0XkTi-avr4vJW_LrL79YgG-_CxKL9SGkZ3fRYHXbW4UETeEOznKLNCU4RN34I1O3BqifF5PW_Cg8QhA33YxiX70xdOYMiVf97-PLvMsk3udJ4BF1sweaAHcl5L-02rLlmB7aH3dmR44FC-uQj_D4nsVKQdgsTfrQQ3dRjS0_EQabTnySUh3ZuThC4kvgkTribTuKzfeTPY7fAj7X9_GWdUdvswu3F9GZySYdnFKgVlZhTg84wt156I22Z1rmVmvncSa4Rq0o8oWXmKkRizPOaZR5jRGkKzpyptNYpwodPsN60jdsDwqXWXBgpMEoTmSm0T60z3vnAg1ZWPoHTcWHVU8-WoWKWm0vVq0GhGlRUg3pO4EdY--XIwHQdG9rZvRo0r7zVtqpL5ixqliOctGnuao2eKKSlS57Awag5NWy_TqFfScObIiVL4NuyGzdOyIboxrWLfozkHOFyAp97RS8lwaAaYbBME5ArJrAi6mpP8_gQybnTkG7iokzg-2gtr3L9ey32_2_4F9jIeoOmaXUA6_PZwh0iOpqbr3E7vADE5gmd
  priority: 102
  providerName: Springer Nature
Title A multi-subject and multi-session EEG dataset for modelling human visual object recognition
URI https://link.springer.com/article/10.1038/s41597-025-04843-x
https://www.ncbi.nlm.nih.gov/pubmed/40253381
https://www.proquest.com/docview/3191680870
https://www.proquest.com/docview/3191833020
https://pubmed.ncbi.nlm.nih.gov/PMC12009347
https://doaj.org/article/fcac9d70ec1343508c15eda183144073
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be-GCKM_QsjISBxBYdWIncU5ou9pSrUSFgEorcbAcx4ZekrbZRf35jB1nV8vrFMlxFMczHn-emXwD8EoLq0suMsoqJ6jnzkE7WDgqNGvwNKHzIhDPfzwvzi7EYpkvo8Otj2mVo00MhrrpjPeRH6OqpL5MRMneX11TXzXKR1djCY27sO-py3xKV7kstz4W7uEIi__KMC6Pe9yvPP1ollNUXcHp7c5-FGj7_4Y1_0yZ_C1uGraj0wdwP-JIMh0EfwB3bPsQDuJK7cnrSCf95hF8m5KQNUj7de2dLkS3zdgykHKQ-fwD8amivV0RBLEklMfx_6mTUMKP_Lzs1_iybnh-k3PUtY_h4nT-dXZGY0kFakQlVrRGw5gbJ10tTZk2uZGaudxKrhG3StytZWYrRGXM8YZlDs-Lsi44s3WltU4RSjyBvbZr7TMgXGrNRS0FnthEVhfapcbWzjrPiVZWLoG348Sqq4E5Q4WIN5dqEINCMaggBnWbwImf-01Pz3odGrqb7youIuWMNlVTMmtQshyhpUlz22i0Sj5EXfIEjkbJqbgUe7VVnARebm7jIvKREd3abj30kZwjdE7g6SDozUjwgI2QWKYJyB0V2Bnq7p328kcg6k596ImLMoF3o7Zsx_XvuXj-_884hHvZoMA0rY5gb3Wzti8QGa3qSVD_CexPp4svC7yezM8_fcbWWTGbBG_DL-PQED8
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEOUZWsBIIIHAqhM7G-eAUAtbtrRdIdRKlXowjmPTXpLS7EL5U_xGxk6yq-V16zUPxfE8_I1n_A3AUy2szrhIKMudoJ47B_3g0FGhWYnRhE6HgXj-YDIcH4kPx-nxCvzsz8L4ssreJwZHXdbG75FvoqrEvk1Ext6cf6W-a5TPrvYtNFq12LM_vmPI1rzefYfyfZYkO6PDt2PadRWgRuRiSgv0Dalx0hXSZHGZGqmZS63kGqGbxAVLJjZHYMIcL1niMGSSxZAzW-Ra6zjxRAfo8lcFx1BmAKvbo8nHT4tdHe4BEOtO5zAuNxtcIT3haZJSNBbB6eXSChgaBfwN3f5ZpPlbpjYsgDs34UaHXMlWq2prsGKrW7DW-YaGPO8IrF_chpMtEuoUaTMr_DYP0VXZX2lpQMho9J744tTGTgnCZhIa8viT8SQ0DSTfzpoZfqxu359XOdXVHTi6kum-C4Oqrux9IFxqzUUhBcaIIimG2sXGFs46z8KW5S6Cl_3EqvOWq0OFHDuXqhWDQjGoIAZ1GcG2n_v5k55nO1yoL76ozmyVM9rkZcasQclyBLMmTm2p0Q_6pHjGI9joJac642_UQlUjeDK_jWbrczG6svWsfUZyjmA9gnutoOcjwZAeQbiMI5BLKrA01OU71dlpoAaPfbKLiyyCV722LMb177l48P_feAzXxocH-2p_d7K3DteTVplpnG_AYHoxsw8Rl02LR50xEPh81fb3Cw31SOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJcEOUZKGAkkEBgrRM7a-eAUKG7tBQqDlRaiYNxHBt6SUqzC-Wv8esYO8multet1zwUx_PwN57xNwAPjXBGcpFRVnhBA3cO-sGxp8KwCqMJk48j8fy7w_HekXgzy2cb8HM4CxPKKgefGB111diwRz5CVUlDmwjJRr4vi3i_O31x8pWGDlIh0zq00-hU5MD9-I7hW_t8fxdl_SjLppMPr_Zo32GAWlGIOS3RT-TWK18qK9Mqt8ownzvFDcI4hYuXylyBIIV5XrHMY_ikyjFnriyMMWkWSA_Q_V-QPE-DjcmZXO3v8ACFWH9Oh3E1anGtDNSnWU7RbASnZ2trYWwZ8Dec-2e55m8527gUTq_A5R7Dkp1O6bZgw9VXYav3Ei153FNZP7kGH3dIrFik7aIMGz7E1NVwpSMEIZPJaxLKVFs3JwigSWzNE87Ik9g-kHw7bhf4saZ7f1nv1NTX4ehcJvsGbNZN7W4B4coYLkolMFoUWTk2PrWu9M4HPjZZ-ASeDhOrTzrWDh2z7VzpTgwaxaCjGPRZAi_D3C-fDIzb8UJz-ln3Bqy9NbaoJHMWJcsR1to0d5VBjxjS45InsD1ITvduoNUrpU3gwfI2GnDIypjaNYvuGcU5wvYEbnaCXo4Eg3uE4ypNQK2pwNpQ1-_Ux18iSXga0l5cyASeDdqyGte_5-L2_3_jPlxEq9Nv9w8P7sClrNNlmhbbsDk_Xbi7CNDm5b1oCQQ-nbfp_QLG1Uuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-subject+and+multi-session+EEG+dataset+for+modelling+human+visual+object+recognition&rft.jtitle=Scientific+data&rft.date=2025-04-19&rft.pub=Nature+Publishing+Group&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft.spage=663&rft_id=info:doi/10.1038%2Fs41597-025-04843-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon