Enhanced RF analog linearity in metal gate modulated heterojunction based uniform TFET for label-free detection of dengue NS1 protein
This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 24026 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10
–17
A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10
12
representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g
m
) of 577 µS, cut-off frequency (f
T
) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V
-1
, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. |
---|---|
AbstractList | This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10–17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 –17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10 12 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g m ) of 577 µS, cut-off frequency (f T ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V -1 , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 –17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10 12 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g m ) of 577 µS, cut-off frequency (f T ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V -1 , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 10 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g ) of 577 µS, cut-off frequency (f ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10-17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10-17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. Abstract This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10–17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics. |
ArticleNumber | 24026 |
Author | T, Ranjith Kumar G, Lakshmi Priya |
Author_xml | – sequence: 1 givenname: Ranjith Kumar surname: T fullname: T, Ranjith Kumar organization: School of Electronics Engineering, Vellore Institute of Technology – sequence: 2 givenname: Lakshmi Priya orcidid: 0000-0003-2734-4914 surname: G fullname: G, Lakshmi Priya email: lakshmipriya.g@vit.ac.in organization: Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, School of Electronics Engineering, Vellore Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40617880$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhSNUREvpC7BAltiwCdiOHScrhKoWKlUgQVlbjj3J9ZWvfbGTSn0A3puhKaVlgTcej79z_DPzvDqIKUJVvWT0LaNN964IJvuuplzWtOt6Xssn1RGnQta84fzgQXxYnZSypTgk7wXrn1WHgrZMdR09qn6exY2JFhz5ek5MNCFNJPgIJvv5hvhIdjCbQCYzA9kltwQMHNnADDltl2hnnyIZTMHkEv2Y8o5cnZ9dEYxIMAOEeswAxKFgZdOIizgtQD5_Y2Sf0ww-vqiejiYUOLmbj6vvaHL6qb788vHi9MNlbUUv5toY6C1XQjDLqXLMDiNzHFOUDnwcpHJtq4yAsTdytFQ0HD_JyUY0pmGq7Zrj6mL1dcls9T77nck3OhmvbxMpT9rk2dsAWirRtr2THVDUU963w8AH3g5WgrS0R6_3q9d-GXbgLMQ5m_DI9PFO9Bs9pWvNOOed4gId3tw55PRjgTLrnS8WQjAR0lI01k4JpvDpiL7-B92mJWO5VqoRVDUtUq8eXun-Ln_KjQBfAZtTKRnGe4RR_but9NpWGttK37aVlihqVlFBOE6Q_579H9UvaGbO8Q |
Cites_doi | 10.1038/s41467-022-34415-1 10.1109/MC.2013.431 10.1007/s11664-020-08151-5 10.1109/TNANO.2020.3033966 10.1007/s00339-022-06081-z 10.1021/acsaelm.3c01862 10.1371/journal.pntd.0001199 10.1007/s12633-021-01030-6 10.1007/s00339-021-05153-w 10.1016/j.micrna.2025.208078 10.1016/j.micrna.2024.208060 10.1016/j.mseb.2024.117910 10.1109/TED.2007.900678 10.1016/j.micrna.2022.207374 10.3390/bios11070206 10.1142/S0217979221502386 10.1109/JPROC.1998.658762 10.1063/1.1627459 10.1109/MIC.2013.6757955 10.1109/JEDS.2014.2326622 10.1039/C5RA03301B 10.1021/acsomega.8b02081 10.1109/LED.2007.901273 10.1016/j.bbrc.2003.12.081 10.1016/j.mee.2007.04.038 10.1038/s41598-023-50723-y 10.1109/LED.2009.2021079 10.1007/s12633-023-02387-6 10.1038/srep16485 10.1109/TNANO.2006.869952 10.1016/j.mseb.2024.117450 10.1109/TED.2007.899389 10.1007/s10825-022-01919-4 10.1007/s10825-013-0450-2 10.1007/s12633-020-00404-6 10.1109/LED.2013.2283858 10.1007/s11051-024-06045-9 10.1109/TED.2019.2922232 10.1016/j.spmi.2017.03.059 10.1142/S0217979220502422 10.1039/D3NR01858J 10.1109/LED.2006.871855 10.1007/s12633-023-02755-2 10.1007/s12633-024-03010-y 10.1109/E3S.2017.8246169 10.1109/16.19942 10.1038/nnano.2007.180 10.1039/d4sd00262h 10.3389/fimmu.2022.852452 10.1186/1743-422X-7-361 10.1016/j.mseb.2023.116445 10.1109/TDEI.2024.3432088 10.1186/s11671-020-03429-3 10.1149/1945-7111/ad7bf1 10.4103/0255-0857.62484 10.1109/LED.2013.2264824 10.1109/TED.2019.2899206 10.1007/s12633-021-00981-0 10.1007/s12633-021-01162-9 10.1039/b907309b 10.1021/acssensors.5c00263 10.1007/s00542-022-05273-0 10.1109/TED.2021.3056632 10.1016/j.talanta.2021.122962 10.1002/adts.202400531 10.1088/1674-4926/36/3/034002 10.14419/ijet.v7i3.1.17076 10.1007/s10825-018-1136-6 10.1109/TDEI.2024.3497877 10.1007/s12633-023-02330-9 10.1002/jcla.70012 10.1049/el.2013.1397 10.1039/D3AY00756A 10.1007/s12633-021-01514-5 10.1109/JSEN.2020.3029535 10.1007/s11220-024-00516-y 10.1016/j.diagmicrobio.2013.12.019 10.1109/JPROC.1999.752522 10.1021/acssensors.2c01525 10.1016/j.mee.2020.111398 10.1109/TED.2018.2796848 10.3389/fpubh.2023.1205903 10.1007/s00339-024-07526-3 10.1109/LED.2014.2325058 10.3390/app10010126 10.1109/LED.2013.2253752 10.1149/2162-8777/acf071 10.1007/s42341-022-00419-3 10.1016/j.mssp.2024.108116 10.1016/j.micrna.2023.207629 10.1007/s11220-025-00558-w 10.1007/s12633-024-02964-3 10.1149/2.F05114if 10.1007/s10854-020-05064-1 10.1016/j.mee.2019.111043 10.1016/j.spmi.2016.10.057 10.1007/s12633-024-02873-5 10.1109/JSEN.2016.2633621 10.1021/acs.nanolett.9b05356 10.1016/j.micrna.2023.207582 10.3390/s19051013 10.1016/j.spmi.2017.06.018 10.1038/s41598-025-99817-9 10.1016/j.bios.2014.05.025 10.21272/jnep.14(4).04028 10.1109/5NANO53044.2022.9828882 10.1088/1742-6596/1797/1/012025 10.1007/s10854-022-08020-3 10.1007/s00339-019-2966-1 10.1371/journal.pone.0070005 10.1016/j.mtcomm.2022.104726 10.13005/bbra/2628 10.1007/s00339-023-07162-3 10.1007/s12633-023-02624-y |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-08892-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (subscription) Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2045-2322 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09 PMC12228724 40617880 10_1038_s41598_025_08892_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Vellore Institute of Technology, Chennai |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PPXIY PQGLB CGR CUY CVF ECM EIF NPM PJZUB 3V. 7XB 88A 8FK AARCD COVID K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-aae9c27441c207d1cbf1d29c200b2fb57d667a4ef9a5fc0432415d5343a317683 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Thu Aug 21 18:22:35 EDT 2025 Fri Jul 11 16:58:13 EDT 2025 Wed Aug 13 06:20:11 EDT 2025 Mon Jul 21 06:02:35 EDT 2025 Thu Jul 10 08:01:07 EDT 2025 Sun Jul 06 01:15:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dielectric cavities Gain bandwidth product Sensitivity Uniform TFET NS1 protein sensing Biosensor |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-aae9c27441c207d1cbf1d29c200b2fb57d667a4ef9a5fc0432415d5343a317683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2734-4914 |
OpenAccessLink | https://doaj.org/article/574669d58e03430296bb2b26bc5e5c09 |
PMID | 40617880 |
PQID | 3227340736 |
PQPubID | 2041939 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12228724 proquest_miscellaneous_3227417494 proquest_journals_3227340736 pubmed_primary_40617880 crossref_primary_10_1038_s41598_025_08892_5 springer_journals_10_1038_s41598_025_08892_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-05 |
PublicationDateYYYYMMDD | 2025-07-05 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JP Colinge (8892_CR6) 2007; 84 PK Asthana (8892_CR37) 2015; 5 B Ghosh (8892_CR34) 2013; 34 M Vadizadeh (8892_CR77) 2023; 292 SS Hegde (8892_CR66) 2022; 10 D Wang (8892_CR107) 2024; 13 M Vadizadeh (8892_CR58) 2018; 17 K Kumar (8892_CR46) 2023; 15 8892_CR15 BV Chandan (8892_CR45) 2019; 125 SR Fry (8892_CR120) 2011; 5 A Garg (8892_CR50) 2024; 16 H Bahrami (8892_CR73) 2024; 171 N Gupta (8892_CR65) 2012; 136 S Valasa (8892_CR25) 2024; 6 U Ragavendran (8892_CR36) 2018; 7 AA Chien (8892_CR2) 2013; 46 S Sharma (8892_CR42) 2024; 305 SRK Gorla (8892_CR97) 2025; 198 S Kanungo (8892_CR88) 2017; 17 BV Chandan (8892_CR55) 2024 VT Cam Duyen (8892_CR119) 2023; 15 N Kannan (8892_CR52) 2013; 34 H Lu (8892_CR9) 2014; 2 S Sharma (8892_CR80) 2021; 32 WY Choi (8892_CR8) 2007; 28 M Shaveisi (8892_CR78) 2024; 25 S Hosseini (8892_CR118) 2015; 5 HJ Lee (8892_CR103) 2014; 61 P Karmakar (8892_CR95) 2025; 5 GL Priya (8892_CR98) 2022; 128 NY Kim (8892_CR105) 2015; 5 A Mostefai (8892_CR62) 2022; 14 S Valasa (8892_CR33) 2024; 173 A Jiménez-Alberto (8892_CR90) 2013; 8 J Abdul Rashid (8892_CR111) 2018; 15 T Vairaperumal (8892_CR110) 2025 8892_CR30 K Boucart (8892_CR11) 2007; 54 P Rajendiran (8892_CR31) 2024; 26 H Xie (8892_CR44) 2020; 10 A Anam (8892_CR81) 2023; 181 S Dolai (8892_CR91) 2021; 21 MA Kabir (8892_CR67) 2021; 11 P Biswas (8892_CR117) 2022; 7 KM Choi (8892_CR12) 2013; 34 T Raja (8892_CR38) 2024; 130 B Shu (8892_CR92) 2022; 13 SA Poveda-cuevas (8892_CR93) 2018; 3 B Dewan (8892_CR99) 2025; 313 M Vadizadeh (8892_CR75) 2022; 21 RB Peesa (8892_CR85) 2022; 14 P Mehrotra (8892_CR104) 2019; 19 L Osorio (8892_CR121) 2010; 7 KK Young (8892_CR3) 1989; 36 V Shalini (8892_CR82) 2025; 8 C Jiang (8892_CR61) 2024; 130 LA Sánchez-Vargas (8892_CR123) 2014; 78 Q Zhang (8892_CR7) 2006; 27 S Singh (8892_CR49) 2020; 34 JH Kim (8892_CR22) 2019; 66 N Paras (8892_CR23) 2019; 216 Anju (8892_CR40) 2017; 109 T Trakoolwilaiwan (8892_CR115) 2023; 15 H Aghandeh (8892_CR39) 2017; 111 O Richard (8892_CR70) 2020; 233 K Kumar (8892_CR79) 2023; 15 H Im (8892_CR94) 2007; 2 8892_CR59 SB Rahi (8892_CR76) 2015; 36 8892_CR106 A Bhattacharyya (8892_CR53) 2020; 19 J Talukdar (8892_CR14) 2020 I Radu (8892_CR60) 2003; 94 T Ranjith Kumar (8892_CR63) 2024; 24 I Chahardah Cherik (8892_CR101) 2024; 14 8892_CR54 B Ghosh (8892_CR35) 2013; 12 S Valasa (8892_CR24) 2023; 179 8892_CR122 D Keighobadi (8892_CR13) 2019; 66 H Wang (8892_CR10) 2014; 35 M Fallahnejad (8892_CR74) 2022; 128 V Mohd (8892_CR18) 2024; 16 K Nigam (8892_CR48) 2022; 14 VD Wangkheirakpam (8892_CR86) 2022; 33 S Valasa (8892_CR32) 2025; 32 A Vanak (8892_CR43) 2023; 15 T Krishnamohan (8892_CR17) 2008; 67 F Mouffoki (8892_CR84) 2022; 33 D Misra (8892_CR68) 2011; 20 GE Moore (8892_CR1) 1998; 86 A Kaity (8892_CR56) 2021; 13 SN Rajaei (8892_CR113) 2025; 39 V Shalini (8892_CR96) 2025; 199 R Lett (8892_CR19) 2020 RH Dennard (8892_CR4) 1999; 87 M Vadizadeh (8892_CR72) 2021; 35 TSY Moh (8892_CR51) 2013; 49 M Vadizadeh (8892_CR71) 2021; 68 D Manasawi (8892_CR87) 2022 P Raut (8892_CR100) 2025; 26 X Duan (8892_CR57) 2018; 65 S-C Lai (8892_CR116) 2022; 13 ND Chien (8892_CR16) 2016; 100 S Sharma (8892_CR21) 2022; 14 Y Xuan (8892_CR69) 2007; 54 S Sharma (8892_CR41) 2022; 28 A Saeidi (8892_CR28) 2020; 20 P Prabakaran (8892_CR89) 2004; 314 V Mishra (8892_CR20) 2022; 14 ZX Chen (8892_CR29) 2009; 30 R Suvanasuthi (8892_CR114) 2022; 237 V Shalini (8892_CR83) 2023; 12 K Koppolu (8892_CR47) 2024 MR Hasan (8892_CR112) 2024; 4 D Gurre (8892_CR26) 2024 P Vimala (8892_CR102) 2025; 15 JY Song (8892_CR5) 2006; 5 S Datta (8892_CR64) 2010; 28 S Valasa (8892_CR27) 2022; 170 O Litvinova (8892_CR109) 2023; 11 PS Waggoner (8892_CR108) 2009; 9 |
References_xml | – volume: 13 start-page: 1 year: 2022 ident: 8892_CR92 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34415-1 – volume: 46 start-page: 48 year: 2013 ident: 8892_CR2 publication-title: Computer doi: 10.1109/MC.2013.431 – year: 2020 ident: 8892_CR14 publication-title: J. Electron. Mater. doi: 10.1007/s11664-020-08151-5 – volume: 19 start-page: 769 year: 2020 ident: 8892_CR53 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.3033966 – volume: 128 start-page: 1 year: 2022 ident: 8892_CR98 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-022-06081-z – volume: 6 start-page: 3206 year: 2024 ident: 8892_CR25 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c01862 – volume: 5 start-page: 1 year: 2011 ident: 8892_CR120 publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001199 – volume: 14 start-page: 2275 year: 2022 ident: 8892_CR20 publication-title: SILICON doi: 10.1007/s12633-021-01030-6 – volume: 128 start-page: 1 year: 2022 ident: 8892_CR74 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-021-05153-w – volume: 199 start-page: 208078 year: 2025 ident: 8892_CR96 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2025.208078 – volume: 198 start-page: 208060 year: 2025 ident: 8892_CR97 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2024.208060 – volume: 24 start-page: 103318 year: 2024 ident: 8892_CR63 publication-title: Res. Eng. – volume: 313 start-page: 117910 year: 2025 ident: 8892_CR99 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2024.117910 – volume: 54 start-page: 1811 year: 2007 ident: 8892_CR69 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.900678 – volume: 170 start-page: 207374 year: 2022 ident: 8892_CR27 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207374 – volume: 11 start-page: 1 year: 2021 ident: 8892_CR67 publication-title: Biosensors doi: 10.3390/bios11070206 – volume: 35 start-page: 2150238 year: 2021 ident: 8892_CR72 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979221502386 – volume: 86 start-page: 82 year: 1998 ident: 8892_CR1 publication-title: Proc. IEEE doi: 10.1109/JPROC.1998.658762 – volume: 94 start-page: 7820 year: 2003 ident: 8892_CR60 publication-title: J. Appl. Phys. doi: 10.1063/1.1627459 – ident: 8892_CR106 doi: 10.1109/MIC.2013.6757955 – volume: 2 start-page: 44 year: 2014 ident: 8892_CR9 publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2014.2326622 – volume: 5 start-page: 48779 year: 2015 ident: 8892_CR37 publication-title: RSC Adv. doi: 10.1039/C5RA03301B – volume: 3 start-page: 16212 year: 2018 ident: 8892_CR93 publication-title: ACS Omega doi: 10.1021/acsomega.8b02081 – volume: 28 start-page: 743 year: 2007 ident: 8892_CR8 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.901273 – volume: 314 start-page: 235 year: 2004 ident: 8892_CR89 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2003.12.081 – volume: 84 start-page: 2071 year: 2007 ident: 8892_CR6 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2007.04.038 – volume: 14 start-page: 1 year: 2024 ident: 8892_CR101 publication-title: Sci. Rep. doi: 10.1038/s41598-023-50723-y – volume: 30 start-page: 754 year: 2009 ident: 8892_CR29 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2009.2021079 – volume: 15 start-page: 4689 year: 2023 ident: 8892_CR46 publication-title: SILICON doi: 10.1007/s12633-023-02387-6 – volume: 5 start-page: 1 year: 2015 ident: 8892_CR118 publication-title: Sci. Rep. doi: 10.1038/srep16485 – volume: 5 start-page: 186 year: 2006 ident: 8892_CR5 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2006.869952 – volume: 305 start-page: 117450 year: 2024 ident: 8892_CR42 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2024.117450 – volume: 54 start-page: 1725 year: 2007 ident: 8892_CR11 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2007.899389 – volume: 21 start-page: 1127 year: 2022 ident: 8892_CR75 publication-title: J. Comput. Electron. doi: 10.1007/s10825-022-01919-4 – volume: 12 start-page: 428 year: 2013 ident: 8892_CR35 publication-title: J. Comput. Electron. doi: 10.1007/s10825-013-0450-2 – volume: 13 start-page: 9 year: 2021 ident: 8892_CR56 publication-title: SILICON doi: 10.1007/s12633-020-00404-6 – volume: 5 start-page: 1 year: 2025 ident: 8892_CR95 publication-title: Microsyst. Technol. – volume: 34 start-page: 1575 year: 2013 ident: 8892_CR52 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2283858 – volume: 26 start-page: 1 year: 2024 ident: 8892_CR31 publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-024-06045-9 – volume: 66 start-page: 3646 year: 2019 ident: 8892_CR13 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2922232 – volume: 67 start-page: 947 year: 2008 ident: 8892_CR17 publication-title: SIMULATION – volume: 109 start-page: 307 year: 2017 ident: 8892_CR40 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.03.059 – volume: 34 start-page: 1 year: 2020 ident: 8892_CR49 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979220502422 – volume: 15 start-page: 12915 year: 2023 ident: 8892_CR115 publication-title: Nanoscale doi: 10.1039/D3NR01858J – volume: 27 start-page: 297 year: 2006 ident: 8892_CR7 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2006.871855 – volume: 16 start-page: 1297 year: 2024 ident: 8892_CR18 publication-title: SILICON doi: 10.1007/s12633-023-02755-2 – year: 2024 ident: 8892_CR55 publication-title: SILICON doi: 10.1007/s12633-024-03010-y – ident: 8892_CR15 doi: 10.1109/E3S.2017.8246169 – volume: 36 start-page: 399 year: 1989 ident: 8892_CR3 publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.19942 – volume: 2 start-page: 430 year: 2007 ident: 8892_CR94 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.180 – volume: 4 start-page: 7 year: 2024 ident: 8892_CR112 publication-title: Sens. Diagn. doi: 10.1039/d4sd00262h – volume: 13 start-page: 852452 year: 2022 ident: 8892_CR116 publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.852452 – volume: 10 start-page: 100100 year: 2022 ident: 8892_CR66 publication-title: Biosens. Bioelectron. X – volume: 7 start-page: 1 year: 2010 ident: 8892_CR121 publication-title: Virol. J. doi: 10.1186/1743-422X-7-361 – volume: 292 start-page: 116445 year: 2023 ident: 8892_CR77 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2023.116445 – volume: 32 start-page: 769 year: 2025 ident: 8892_CR32 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2024.3432088 – year: 2020 ident: 8892_CR19 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-03429-3 – volume: 171 start-page: 097518 year: 2024 ident: 8892_CR73 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ad7bf1 – volume: 28 start-page: 107 year: 2010 ident: 8892_CR64 publication-title: Indian J. Med. Microbiol. doi: 10.4103/0255-0857.62484 – volume: 34 start-page: 942 year: 2013 ident: 8892_CR12 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2264824 – volume: 66 start-page: 1656 year: 2019 ident: 8892_CR22 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2019.2899206 – volume: 14 start-page: 1705 year: 2022 ident: 8892_CR85 publication-title: SILICON doi: 10.1007/s12633-021-00981-0 – volume: 14 start-page: 3963 year: 2022 ident: 8892_CR48 publication-title: SILICON doi: 10.1007/s12633-021-01162-9 – volume: 9 start-page: 3095 year: 2009 ident: 8892_CR108 publication-title: Lab Chip doi: 10.1039/b907309b – year: 2025 ident: 8892_CR110 publication-title: ACS Sens. doi: 10.1021/acssensors.5c00263 – volume: 28 start-page: 2659 year: 2022 ident: 8892_CR41 publication-title: Microsyst. Technol. doi: 10.1007/s00542-022-05273-0 – volume: 5 start-page: 1 year: 2015 ident: 8892_CR105 publication-title: Sci. Rep. – volume: 68 start-page: 1986 year: 2021 ident: 8892_CR71 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3056632 – volume: 237 start-page: 122962 year: 2022 ident: 8892_CR114 publication-title: Talanta doi: 10.1016/j.talanta.2021.122962 – volume: 8 start-page: 2400531 year: 2025 ident: 8892_CR82 publication-title: Adv. Theory Simulations doi: 10.1002/adts.202400531 – volume: 36 start-page: 3 year: 2015 ident: 8892_CR76 publication-title: J. Semicond. doi: 10.1088/1674-4926/36/3/034002 – volume: 7 start-page: 155 year: 2018 ident: 8892_CR36 publication-title: Int. J. Eng. Technol. doi: 10.14419/ijet.v7i3.1.17076 – volume: 17 start-page: 745 year: 2018 ident: 8892_CR58 publication-title: J. Comput. Electron. doi: 10.1007/s10825-018-1136-6 – year: 2024 ident: 8892_CR26 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2024.3497877 – volume: 15 start-page: 4137 year: 2023 ident: 8892_CR43 publication-title: SILICON doi: 10.1007/s12633-023-02330-9 – volume: 39 start-page: e70012 year: 2025 ident: 8892_CR113 publication-title: J. Clin. Lab. Anal. doi: 10.1002/jcla.70012 – volume: 49 start-page: 782 year: 2013 ident: 8892_CR51 publication-title: Electron. Lett. doi: 10.1049/el.2013.1397 – volume: 15 start-page: 3991 year: 2023 ident: 8892_CR119 publication-title: Anal. Methods doi: 10.1039/D3AY00756A – volume: 14 start-page: 7701 year: 2022 ident: 8892_CR21 publication-title: SILICON doi: 10.1007/s12633-021-01514-5 – ident: 8892_CR122 – volume: 21 start-page: 4122 year: 2021 ident: 8892_CR91 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3029535 – volume: 25 start-page: 1 year: 2024 ident: 8892_CR78 publication-title: Sens. Imaging doi: 10.1007/s11220-024-00516-y – volume: 13 start-page: 1 year: 2024 ident: 8892_CR107 publication-title: Foods – volume: 78 start-page: 368 year: 2014 ident: 8892_CR123 publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2013.12.019 – volume: 87 start-page: 668 year: 1999 ident: 8892_CR4 publication-title: Proc. IEEE doi: 10.1109/JPROC.1999.752522 – volume: 7 start-page: 3720 year: 2022 ident: 8892_CR117 publication-title: ACS Sens. doi: 10.1021/acssensors.2c01525 – volume: 233 start-page: 111398 year: 2020 ident: 8892_CR70 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2020.111398 – volume: 65 start-page: 1223 year: 2018 ident: 8892_CR57 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2796848 – volume: 11 start-page: 1205903 year: 2023 ident: 8892_CR109 publication-title: Front. Public Health doi: 10.3389/fpubh.2023.1205903 – volume: 130 start-page: 373 year: 2024 ident: 8892_CR38 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-024-07526-3 – volume: 35 start-page: 798 year: 2014 ident: 8892_CR10 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2014.2325058 – volume: 10 start-page: 126 year: 2020 ident: 8892_CR44 publication-title: Appl. Sci. doi: 10.3390/app10010126 – volume: 34 start-page: 584 year: 2013 ident: 8892_CR34 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2013.2253752 – volume: 12 start-page: 093003 year: 2023 ident: 8892_CR83 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2162-8777/acf071 – year: 2022 ident: 8892_CR87 publication-title: Trans. Electr. Electron. Mater. doi: 10.1007/s42341-022-00419-3 – volume: 136 start-page: 373 year: 2012 ident: 8892_CR65 publication-title: Indian J. Med. Res. – volume: 173 start-page: 108116 year: 2024 ident: 8892_CR33 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2024.108116 – volume: 181 start-page: 207629 year: 2023 ident: 8892_CR81 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2023.207629 – volume: 26 start-page: 1 year: 2025 ident: 8892_CR100 publication-title: Sens. Imaging doi: 10.1007/s11220-025-00558-w – year: 2024 ident: 8892_CR47 publication-title: SILICON doi: 10.1007/s12633-024-02964-3 – volume: 20 start-page: 47 issue: 4 year: 2011 ident: 8892_CR68 publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F05114if – volume: 32 start-page: 3155 year: 2021 ident: 8892_CR80 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-05064-1 – volume: 216 start-page: 111043 year: 2019 ident: 8892_CR23 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2019.111043 – volume: 100 start-page: 857 year: 2016 ident: 8892_CR16 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2016.10.057 – volume: 16 start-page: 2719 year: 2024 ident: 8892_CR50 publication-title: SILICON doi: 10.1007/s12633-024-02873-5 – volume: 17 start-page: 1399 year: 2017 ident: 8892_CR88 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2633621 – volume: 20 start-page: 3255 year: 2020 ident: 8892_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05356 – volume: 179 start-page: 207582 year: 2023 ident: 8892_CR24 publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2023.207582 – volume: 19 start-page: 1013 year: 2019 ident: 8892_CR104 publication-title: Sensors doi: 10.3390/s19051013 – volume: 111 start-page: 103 year: 2017 ident: 8892_CR39 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.06.018 – volume: 15 start-page: 1 year: 2025 ident: 8892_CR102 publication-title: Sci. Rep. doi: 10.1038/s41598-025-99817-9 – volume: 61 start-page: 448 year: 2014 ident: 8892_CR103 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.05.025 – volume: 14 start-page: 1 year: 2022 ident: 8892_CR62 publication-title: J. Nano Electron. Phys. doi: 10.21272/jnep.14(4).04028 – ident: 8892_CR30 doi: 10.1109/5NANO53044.2022.9828882 – ident: 8892_CR54 doi: 10.1088/1742-6596/1797/1/012025 – volume: 33 start-page: 10323 year: 2022 ident: 8892_CR86 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-022-08020-3 – volume: 125 start-page: 1 year: 2019 ident: 8892_CR45 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-019-2966-1 – volume: 8 start-page: 1 year: 2013 ident: 8892_CR90 publication-title: PLoS ONE doi: 10.1371/journal.pone.0070005 – volume: 33 start-page: 104726 year: 2022 ident: 8892_CR84 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104726 – volume: 15 start-page: 245 year: 2018 ident: 8892_CR111 publication-title: Biosci. Biotechnol. Res. Asia doi: 10.13005/bbra/2628 – volume: 130 start-page: 1 year: 2024 ident: 8892_CR61 publication-title: Appl. Phys. A Mater. Sci. Process. doi: 10.1007/s00339-023-07162-3 – ident: 8892_CR59 – volume: 15 start-page: 7837 year: 2023 ident: 8892_CR79 publication-title: SILICON doi: 10.1007/s12633-023-02624-y |
SSID | ssj0000529419 |
Score | 2.4513295 |
Snippet | This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel... Abstract This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 24026 |
SubjectTerms | 639/166/987 639/301/1005/1007 639/925/927 Accuracy Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensor Biosensors Dengue - diagnosis Dengue - virology Dengue fever Dengue Virus Dielectric cavities Efficiency Electrostatics Engineering Enzymes Gain bandwidth product Humanities and Social Sciences Humans Infectious diseases multidisciplinary NS1 protein NS1 protein sensing Plasma Proteins Science Science (multidisciplinary) Sensitivity Simulation Spike protein Transistors, Electronic Uniform TFET Vector-borne diseases Viral Nonstructural Proteins - analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCAkOCMproSAjcYOojh9xfEKAuqqQ6AFaaW9REo-7i1in7OPQH9D_zYyT3bK8bontRJPM2DOeGX_D2GtwVjSWklvzIDIdPGQu-DqT2uraKmNdAqv-fFIcn-lPEzMZHG7LIa1ysyamhdp3LfnID1HwrMLdhyreXfzIqGoURVeHEho32S2CLiOpthO79bFQFEvnbjgrI1R5uER9RWfKpMkovwf3YTv6KMH2_83W_DNl8re4aVJH4_vs3mBH8vc94x-wGxD32e2-suTlPrv7C87gQ3Z1FKcp0s-_jHkdyV_DybysqXIdn0U-B7TBOXnU-LzzVNELx04pU6b7hoqPmMdJ33m-jnSUa85Px0enHK84ShF8z8ICgHtYQT-2C3gTz9fAT77mPGFBzOIjdoYPfTzOhvoLWaudXmV1Da4lBMG8lcL6vG1C7iU2CdHI0Bjri8LWGoKrTWgTtl9uvFFa1WiVFKV6zPZiF-Ep4zIYm_tcAW64NaCNYRQokITcE0TZ6hF7s-FCddHDbFQpPK7KqudZhTyrEs8qM2IfiFHbkQSRnRq6xXk1zLjKWF0UzpsSBFIkpCuaRjayaFoDphVuxA42bK6GebusrqVsxF5tu3HGURiljtCt-zEaN3IOqX7SS8WWEjKPLC6JI1buyMsOqbs9cTZNqN45-eKsxJe-3YjWNV3__hfP_v8Zz9kdmaTdZsIcsL3VYg0v0IxaNS_TXPkJ0EMZiw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSIcP-L4uKCuqpXogbZSb1ESj7uLWAdtdw_8AP43M0520UI5cEvicTTyjD0znvFnxt6Cs6K1VNxaBJHr4CF3wTe51FY3VhnrElj157Py9FLPrszVAZPbszCpaD9BWqZlelsd9uEGDQ0dBpMmp8IcDKDusCOCakfdPppMZuez3c4K5a504cYTMkJVt3Tes0IJrP82D_PvQsk_sqXJCE0fsPuj98gnA78P2QHER-zucJ_kj8fs50mcp4w-_zLlTaR9GU5uZEM31PFF5EtAX5vTzhlf9p5u7kLaOVXE9F_RwJGQONk1zzeRjmwt-cX05ILjE0dtgW95WAFwD2sYaPuAL_F6A_zsvOAJ82ERn7BL7PTpNB_vWcg77fQ6bxpwHSEFFp0U1hddGwov8ZMQrQytsb4sbaMhuMaELmH4FcYbpVWD3kdZqafsMPYRnjMug7GFLxRgYK0BfQmjQIEkhJ4gqk5n7N123OvvA5xGndLgqqoHKdUopTpJqTYZ-0ii2VESFHb60K-u61E1amN1WTpvKhDIkZCubFvZyrLtDJhOuIwdbwVbj_PzpsZlzCqMZVWZsTe7ZpxZlC5pIvSbgUZjwOaQ62eDHuw4ITfI4tKXsWpPQ_ZY3W-Ji3lC7y5oz81K_On7rTL95uvfY_Hi_8hfsnsy6bvNhTlmh-vVBl6h-7RuX4_z5Rc7phRL priority: 102 providerName: Springer Nature |
Title | Enhanced RF analog linearity in metal gate modulated heterojunction based uniform TFET for label-free detection of dengue NS1 protein |
URI | https://link.springer.com/article/10.1038/s41598-025-08892-5 https://www.ncbi.nlm.nih.gov/pubmed/40617880 https://www.proquest.com/docview/3227340736 https://www.proquest.com/docview/3227417494 https://pubmed.ncbi.nlm.nih.gov/PMC12228724 https://doaj.org/article/574669d58e03430296bb2b26bc5e5c09 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvAUhmJG0QkfsTxsVu1WlWiQvuQeouceEyLqIN22wM_gP_N2G7Lloe4cEpiO9HIM87MeMbfEPIGtCpaFZJbS1fkwlnItbMmZ0IJo7hUOoJVf5hVp5diOpfzG6W-Qk5YggdOE4cOu6gqbWUNBRe8YLpqW9ayqu0kyC4d3UOdd8OZSqjeTItSb0_JFLx-f42aKpwmYzIPmT3ogR1oogjY_ycr8_dkyV8iplERTR6Q-1sLkg4T5Q_JLfCPyN1UU_LbY_J97Bcxqk_PJtT4sDdDgylpQpU6uvR0BWhv07B7Rle9DdW7cOwiZMX0n1HJBUbRoNss3fhwbGtFLybjC4p3FCUGvuTuCoBaWEMa2zt88J82QGfnJY24D0v_hFziS6PTfFtrIe-EFuvcGNBdQAssO1YoW3atKy3DpqJomWulslWljACnjXRdxPErpZXIEoMWSFXzp-TI9x6eE8qcVKUtOaBzLQDtCcmBAwsoPa6oO5GRt7t5b74mSI0mhsJ53SQuNcilJnKpkRk5CazZjwxw2LEBhaTZCknzLyHJyPGOsc12jV43-CtTHP1ZXmXk9b4bV1cImRgP_SaNEei0aaT6WZKDPSXBFFL4-8tIfSAhB6Qe9vjlIiJ4l2HfTTH86LudMP2k6-9z8eJ_zMVLco_FVaDyQh6To_XVBl6hYbVuB-S2mqsBuTMcTs-neD0Zzz6eYeuoGg3i-voBpbUhcg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEQIOCMo2UMBIcIKojpc4OSDE0tGUtnOAqTQ3N4ntziAmKbMI9Qfwd_iNvOdMpgzbrbcsTvSS99lv9XuEPHOZZoXG5NbYs0h666LM2zziUstcC6WzUKz6sJ_0juSHoRpukB_tXhhMq2zXxLBQ27pEH_kOAE8LsD5E8vr0a4RdozC62rbQaGCx786-gck2e7X3Hvj7nPPu7uBdL1p2FYhKmcl5lOcuK7EuXlxypm1cFj62HC4xVnBfKG2TROfS-SxXvgwV62JllZAiB1mbpALee4lcBsHL0NjTQ73y6WDUTMbZcm8OE-nODJ7FPWxcRZhPBHbfmvwLbQL-ptv-maL5W5w2iL_uTXJjqbfSNw3QbpENV22RK00ny7Mtcv2Xuoa3yffdahQyC-jHLs0r9A9RVGdz7JRHxxWdOND5KXrw6KS22EEMxo4wM6f-DIIWwUJRvlq6qHDr2IQO4CdTOKKAWvcl8lPnqHVz14ytPZxUJwtH-59iGmpPjKs75OhCOHOXbFZ15e4Tyr3SsY2FAwNfOtBplHDCcawU5Flayg550XLBnDZlPUwIx4vUNDwzwDMTeGZUh7xFRq1GYknucKGenpjlDDdKyyTJrEodA4oYz5Ki4AVPilI5VbKsQ7ZbNpvlOjEz56jukKer2zDDMWyTV65eNGMkGI4ZUH2vQcWKElTHNCzBHZKu4WWN1PU71XgUqojH6PvTHF76soXWOV3__hcP_v8ZT8jV3uDwwBzs9fcfkms8IF9HTG2Tzfl04R6BCjcvHod5Q8nxRU_Un8OvVaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxA8IBi3wgAjwRNETRw7jh8QYqzVxqCaxibtzUtiey2iyehFaD-AP8Wv4xwn6Si3t721iRud5nzH5-pzCHlulQxzicWtkQsD7owNlDNZwLjkmYyFVL5Z9cdhsnPE3x-L4zXyoz0Lg2WV7Z7oN2pTFRgj7wHwZAzeR5z0XFMWsb89eHP2NcAJUphpbcdp1BDZs-ffwH2bvd7dBl6_YGzQP3y3EzQTBoKCKz4PssyqAnvkRQULpYmK3EWGwaUwzJnLhTRJIjNuncqEK3z3ukgYEfM4A72bpDE89wpZl-gVdcj6Vn-4f7CM8GAOjUeqOakTxmlvBr_GE21MBFhdBF7gijb0QwP-Zun-WbD5W9bWK8PBLXKzsWLp2xp2t8maLTfI1Xqu5fkGufFLl8M75Hu_HPk6A3owoFmJ0SKKxm2Gc_PouKQTCx4AxXgenVQG54nB2hHW6VSfQe0idChqW0MXJR4km9BDeM0UPlHAsP0SuKm11Ni5rddWDr6UpwtLh58i6jtRjMu75OhSeHOPdMqqtA8IZU7IyESxBXefW7BwRGxjy7BvkAvTgnfJy5YL-qxu8qF9cj5Odc0zDTzTnmdadMkWMmq5Eht0-wvV9FQ38q6F5EmijEhtCBSFTCV5znKW5IWwoghVl2y2bNbNrjHTFxjvkmfL2yDvmMTJSlst6jUc3EgFVN-vUbGkBI0zCRtyl6QreFkhdfVOOR75nuIRRgIlg4e-aqF1Qde_38XD__-Np-QaCKn-sDvce0SuMw98GYRik3Tm04V9DPbcPH_SCA4lJ5ctqz8BsBNbPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+RF+analog+linearity+in+metal+gate+modulated+heterojunction+based+uniform+TFET+for+label-free+detection+of+dengue+NS1+protein&rft.jtitle=Scientific+reports&rft.au=Ranjith+Kumar+T&rft.au=Lakshmi+Priya+G&rft.date=2025-07-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1038%2Fs41598-025-08892-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |