Enhanced RF analog linearity in metal gate modulated heterojunction based uniform TFET for label-free detection of dengue NS1 protein

This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 24026 - 24
Main Authors T, Ranjith Kumar, G, Lakshmi Priya
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 –17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10 12 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g m ) of 577 µS, cut-off frequency (f T ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V -1 , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
AbstractList This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10–17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 –17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10 12 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g m ) of 577 µS, cut-off frequency (f T ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V -1 , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 –17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 10 12 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g m ) of 577 µS, cut-off frequency (f T ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V -1 , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 10 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (g ) of 577 µS, cut-off frequency (f ) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V , and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10-17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10-17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON-OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
Abstract This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel Field-Effect Transistors (A-SD-HJ-DD-UTFET) to achieve enhanced analog/RF, and linearity performance. The A-SD-HJ-DD-UTFET showcases an extremely low OFF current level of 8.124 × 10–17 A/μm which surpasses the symmetric HJ-DD-UTFET by 5,470 times and presents a high ON–OFF ratio of 2.83 × 1012 representing a 6,261 times improvement. This enhanced performance occurs because of structural asymmetry which makes it suitable for high-end RF and biosensing purposes while reaching a peak transconductance of 536 µS. For dengue NS1 protein detection (κ = 78.7), the TCAD-driven model of the proposed A-SD-HJ-DD-UTFET biosensor delivers a distinctive label-free detection method, achieving a peak transconductance (gm) of 577 µS, cut-off frequency (fT) of 193 GHz, Gain-Bandwidth Product (GBP) of 201 GHz, Transconductance Generation factor (TGF) of 155 V-1, and gain transconductance frequency product (GTFP) of 25.9 THz. These correspond to improvements of 51.4%, 13.5%, 26.4%, 96.4%, and 45.5%, respectively, over SARS-CoV spike protein detection (κ = 2). The A-SD-HJ-DD-UTFET biosensor also exhibits superior linearity performance during dengue NS1 protein detection through its desirable intercept points, minimal intermodulation distortion, and a well-maintained 1 dB compression point, affirming its potential as a high-speed, label-free RF biosensor for infectious disease Point of Care Testing (POCT) diagnostics.
ArticleNumber 24026
Author T, Ranjith Kumar
G, Lakshmi Priya
Author_xml – sequence: 1
  givenname: Ranjith Kumar
  surname: T
  fullname: T, Ranjith Kumar
  organization: School of Electronics Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: Lakshmi Priya
  orcidid: 0000-0003-2734-4914
  surname: G
  fullname: G, Lakshmi Priya
  email: lakshmipriya.g@vit.ac.in
  organization: Centre for Advanced Materials and Innovative Technologies, Vellore Institute of Technology, School of Electronics Engineering, Vellore Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40617880$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhSNUREvpC7BAltiwCdiOHScrhKoWKlUgQVlbjj3J9ZWvfbGTSn0A3puhKaVlgTcej79z_DPzvDqIKUJVvWT0LaNN964IJvuuplzWtOt6Xssn1RGnQta84fzgQXxYnZSypTgk7wXrn1WHgrZMdR09qn6exY2JFhz5ek5MNCFNJPgIJvv5hvhIdjCbQCYzA9kltwQMHNnADDltl2hnnyIZTMHkEv2Y8o5cnZ9dEYxIMAOEeswAxKFgZdOIizgtQD5_Y2Sf0ww-vqiejiYUOLmbj6vvaHL6qb788vHi9MNlbUUv5toY6C1XQjDLqXLMDiNzHFOUDnwcpHJtq4yAsTdytFQ0HD_JyUY0pmGq7Zrj6mL1dcls9T77nck3OhmvbxMpT9rk2dsAWirRtr2THVDUU963w8AH3g5WgrS0R6_3q9d-GXbgLMQ5m_DI9PFO9Bs9pWvNOOed4gId3tw55PRjgTLrnS8WQjAR0lI01k4JpvDpiL7-B92mJWO5VqoRVDUtUq8eXun-Ln_KjQBfAZtTKRnGe4RR_but9NpWGttK37aVlihqVlFBOE6Q_579H9UvaGbO8Q
Cites_doi 10.1038/s41467-022-34415-1
10.1109/MC.2013.431
10.1007/s11664-020-08151-5
10.1109/TNANO.2020.3033966
10.1007/s00339-022-06081-z
10.1021/acsaelm.3c01862
10.1371/journal.pntd.0001199
10.1007/s12633-021-01030-6
10.1007/s00339-021-05153-w
10.1016/j.micrna.2025.208078
10.1016/j.micrna.2024.208060
10.1016/j.mseb.2024.117910
10.1109/TED.2007.900678
10.1016/j.micrna.2022.207374
10.3390/bios11070206
10.1142/S0217979221502386
10.1109/JPROC.1998.658762
10.1063/1.1627459
10.1109/MIC.2013.6757955
10.1109/JEDS.2014.2326622
10.1039/C5RA03301B
10.1021/acsomega.8b02081
10.1109/LED.2007.901273
10.1016/j.bbrc.2003.12.081
10.1016/j.mee.2007.04.038
10.1038/s41598-023-50723-y
10.1109/LED.2009.2021079
10.1007/s12633-023-02387-6
10.1038/srep16485
10.1109/TNANO.2006.869952
10.1016/j.mseb.2024.117450
10.1109/TED.2007.899389
10.1007/s10825-022-01919-4
10.1007/s10825-013-0450-2
10.1007/s12633-020-00404-6
10.1109/LED.2013.2283858
10.1007/s11051-024-06045-9
10.1109/TED.2019.2922232
10.1016/j.spmi.2017.03.059
10.1142/S0217979220502422
10.1039/D3NR01858J
10.1109/LED.2006.871855
10.1007/s12633-023-02755-2
10.1007/s12633-024-03010-y
10.1109/E3S.2017.8246169
10.1109/16.19942
10.1038/nnano.2007.180
10.1039/d4sd00262h
10.3389/fimmu.2022.852452
10.1186/1743-422X-7-361
10.1016/j.mseb.2023.116445
10.1109/TDEI.2024.3432088
10.1186/s11671-020-03429-3
10.1149/1945-7111/ad7bf1
10.4103/0255-0857.62484
10.1109/LED.2013.2264824
10.1109/TED.2019.2899206
10.1007/s12633-021-00981-0
10.1007/s12633-021-01162-9
10.1039/b907309b
10.1021/acssensors.5c00263
10.1007/s00542-022-05273-0
10.1109/TED.2021.3056632
10.1016/j.talanta.2021.122962
10.1002/adts.202400531
10.1088/1674-4926/36/3/034002
10.14419/ijet.v7i3.1.17076
10.1007/s10825-018-1136-6
10.1109/TDEI.2024.3497877
10.1007/s12633-023-02330-9
10.1002/jcla.70012
10.1049/el.2013.1397
10.1039/D3AY00756A
10.1007/s12633-021-01514-5
10.1109/JSEN.2020.3029535
10.1007/s11220-024-00516-y
10.1016/j.diagmicrobio.2013.12.019
10.1109/JPROC.1999.752522
10.1021/acssensors.2c01525
10.1016/j.mee.2020.111398
10.1109/TED.2018.2796848
10.3389/fpubh.2023.1205903
10.1007/s00339-024-07526-3
10.1109/LED.2014.2325058
10.3390/app10010126
10.1109/LED.2013.2253752
10.1149/2162-8777/acf071
10.1007/s42341-022-00419-3
10.1016/j.mssp.2024.108116
10.1016/j.micrna.2023.207629
10.1007/s11220-025-00558-w
10.1007/s12633-024-02964-3
10.1149/2.F05114if
10.1007/s10854-020-05064-1
10.1016/j.mee.2019.111043
10.1016/j.spmi.2016.10.057
10.1007/s12633-024-02873-5
10.1109/JSEN.2016.2633621
10.1021/acs.nanolett.9b05356
10.1016/j.micrna.2023.207582
10.3390/s19051013
10.1016/j.spmi.2017.06.018
10.1038/s41598-025-99817-9
10.1016/j.bios.2014.05.025
10.21272/jnep.14(4).04028
10.1109/5NANO53044.2022.9828882
10.1088/1742-6596/1797/1/012025
10.1007/s10854-022-08020-3
10.1007/s00339-019-2966-1
10.1371/journal.pone.0070005
10.1016/j.mtcomm.2022.104726
10.13005/bbra/2628
10.1007/s00339-023-07162-3
10.1007/s12633-023-02624-y
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-08892-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2045-2322
EndPage 24
ExternalDocumentID oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09
PMC12228724
40617880
10_1038_s41598_025_08892_5
Genre Journal Article
GrantInformation_xml – fundername: Vellore Institute of Technology, Chennai
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
3V.
7XB
88A
8FK
AARCD
COVID
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-aae9c27441c207d1cbf1d29c200b2fb57d667a4ef9a5fc0432415d5343a317683
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:43 EDT 2025
Thu Aug 21 18:22:35 EDT 2025
Fri Jul 11 16:58:13 EDT 2025
Wed Aug 13 06:20:11 EDT 2025
Mon Jul 21 06:02:35 EDT 2025
Thu Jul 10 08:01:07 EDT 2025
Sun Jul 06 01:15:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dielectric cavities
Gain bandwidth product
Sensitivity
Uniform TFET
NS1 protein sensing
Biosensor
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-aae9c27441c207d1cbf1d29c200b2fb57d667a4ef9a5fc0432415d5343a317683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2734-4914
OpenAccessLink https://doaj.org/article/574669d58e03430296bb2b26bc5e5c09
PMID 40617880
PQID 3227340736
PQPubID 2041939
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12228724
proquest_miscellaneous_3227417494
proquest_journals_3227340736
pubmed_primary_40617880
crossref_primary_10_1038_s41598_025_08892_5
springer_journals_10_1038_s41598_025_08892_5
PublicationCentury 2000
PublicationDate 2025-07-05
PublicationDateYYYYMMDD 2025-07-05
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JP Colinge (8892_CR6) 2007; 84
PK Asthana (8892_CR37) 2015; 5
B Ghosh (8892_CR34) 2013; 34
M Vadizadeh (8892_CR77) 2023; 292
SS Hegde (8892_CR66) 2022; 10
D Wang (8892_CR107) 2024; 13
M Vadizadeh (8892_CR58) 2018; 17
K Kumar (8892_CR46) 2023; 15
8892_CR15
BV Chandan (8892_CR45) 2019; 125
SR Fry (8892_CR120) 2011; 5
A Garg (8892_CR50) 2024; 16
H Bahrami (8892_CR73) 2024; 171
N Gupta (8892_CR65) 2012; 136
S Valasa (8892_CR25) 2024; 6
U Ragavendran (8892_CR36) 2018; 7
AA Chien (8892_CR2) 2013; 46
S Sharma (8892_CR42) 2024; 305
SRK Gorla (8892_CR97) 2025; 198
S Kanungo (8892_CR88) 2017; 17
BV Chandan (8892_CR55) 2024
VT Cam Duyen (8892_CR119) 2023; 15
N Kannan (8892_CR52) 2013; 34
H Lu (8892_CR9) 2014; 2
S Sharma (8892_CR80) 2021; 32
WY Choi (8892_CR8) 2007; 28
M Shaveisi (8892_CR78) 2024; 25
S Hosseini (8892_CR118) 2015; 5
HJ Lee (8892_CR103) 2014; 61
P Karmakar (8892_CR95) 2025; 5
GL Priya (8892_CR98) 2022; 128
NY Kim (8892_CR105) 2015; 5
A Mostefai (8892_CR62) 2022; 14
S Valasa (8892_CR33) 2024; 173
A Jiménez-Alberto (8892_CR90) 2013; 8
J Abdul Rashid (8892_CR111) 2018; 15
T Vairaperumal (8892_CR110) 2025
8892_CR30
K Boucart (8892_CR11) 2007; 54
P Rajendiran (8892_CR31) 2024; 26
H Xie (8892_CR44) 2020; 10
A Anam (8892_CR81) 2023; 181
S Dolai (8892_CR91) 2021; 21
MA Kabir (8892_CR67) 2021; 11
P Biswas (8892_CR117) 2022; 7
KM Choi (8892_CR12) 2013; 34
T Raja (8892_CR38) 2024; 130
B Shu (8892_CR92) 2022; 13
SA Poveda-cuevas (8892_CR93) 2018; 3
B Dewan (8892_CR99) 2025; 313
M Vadizadeh (8892_CR75) 2022; 21
RB Peesa (8892_CR85) 2022; 14
P Mehrotra (8892_CR104) 2019; 19
L Osorio (8892_CR121) 2010; 7
KK Young (8892_CR3) 1989; 36
V Shalini (8892_CR82) 2025; 8
C Jiang (8892_CR61) 2024; 130
LA Sánchez-Vargas (8892_CR123) 2014; 78
Q Zhang (8892_CR7) 2006; 27
S Singh (8892_CR49) 2020; 34
JH Kim (8892_CR22) 2019; 66
N Paras (8892_CR23) 2019; 216
Anju (8892_CR40) 2017; 109
T Trakoolwilaiwan (8892_CR115) 2023; 15
H Aghandeh (8892_CR39) 2017; 111
O Richard (8892_CR70) 2020; 233
K Kumar (8892_CR79) 2023; 15
H Im (8892_CR94) 2007; 2
8892_CR59
SB Rahi (8892_CR76) 2015; 36
8892_CR106
A Bhattacharyya (8892_CR53) 2020; 19
J Talukdar (8892_CR14) 2020
I Radu (8892_CR60) 2003; 94
T Ranjith Kumar (8892_CR63) 2024; 24
I Chahardah Cherik (8892_CR101) 2024; 14
8892_CR54
B Ghosh (8892_CR35) 2013; 12
S Valasa (8892_CR24) 2023; 179
8892_CR122
D Keighobadi (8892_CR13) 2019; 66
H Wang (8892_CR10) 2014; 35
M Fallahnejad (8892_CR74) 2022; 128
V Mohd (8892_CR18) 2024; 16
K Nigam (8892_CR48) 2022; 14
VD Wangkheirakpam (8892_CR86) 2022; 33
S Valasa (8892_CR32) 2025; 32
A Vanak (8892_CR43) 2023; 15
T Krishnamohan (8892_CR17) 2008; 67
F Mouffoki (8892_CR84) 2022; 33
D Misra (8892_CR68) 2011; 20
GE Moore (8892_CR1) 1998; 86
A Kaity (8892_CR56) 2021; 13
SN Rajaei (8892_CR113) 2025; 39
V Shalini (8892_CR96) 2025; 199
R Lett (8892_CR19) 2020
RH Dennard (8892_CR4) 1999; 87
M Vadizadeh (8892_CR72) 2021; 35
TSY Moh (8892_CR51) 2013; 49
M Vadizadeh (8892_CR71) 2021; 68
D Manasawi (8892_CR87) 2022
P Raut (8892_CR100) 2025; 26
X Duan (8892_CR57) 2018; 65
S-C Lai (8892_CR116) 2022; 13
ND Chien (8892_CR16) 2016; 100
S Sharma (8892_CR21) 2022; 14
Y Xuan (8892_CR69) 2007; 54
S Sharma (8892_CR41) 2022; 28
A Saeidi (8892_CR28) 2020; 20
P Prabakaran (8892_CR89) 2004; 314
V Mishra (8892_CR20) 2022; 14
ZX Chen (8892_CR29) 2009; 30
R Suvanasuthi (8892_CR114) 2022; 237
V Shalini (8892_CR83) 2023; 12
K Koppolu (8892_CR47) 2024
MR Hasan (8892_CR112) 2024; 4
D Gurre (8892_CR26) 2024
P Vimala (8892_CR102) 2025; 15
JY Song (8892_CR5) 2006; 5
S Datta (8892_CR64) 2010; 28
S Valasa (8892_CR27) 2022; 170
O Litvinova (8892_CR109) 2023; 11
PS Waggoner (8892_CR108) 2009; 9
References_xml – volume: 13
  start-page: 1
  year: 2022
  ident: 8892_CR92
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34415-1
– volume: 46
  start-page: 48
  year: 2013
  ident: 8892_CR2
  publication-title: Computer
  doi: 10.1109/MC.2013.431
– year: 2020
  ident: 8892_CR14
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-020-08151-5
– volume: 19
  start-page: 769
  year: 2020
  ident: 8892_CR53
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.3033966
– volume: 128
  start-page: 1
  year: 2022
  ident: 8892_CR98
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-022-06081-z
– volume: 6
  start-page: 3206
  year: 2024
  ident: 8892_CR25
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c01862
– volume: 5
  start-page: 1
  year: 2011
  ident: 8892_CR120
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001199
– volume: 14
  start-page: 2275
  year: 2022
  ident: 8892_CR20
  publication-title: SILICON
  doi: 10.1007/s12633-021-01030-6
– volume: 128
  start-page: 1
  year: 2022
  ident: 8892_CR74
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-021-05153-w
– volume: 199
  start-page: 208078
  year: 2025
  ident: 8892_CR96
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2025.208078
– volume: 198
  start-page: 208060
  year: 2025
  ident: 8892_CR97
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2024.208060
– volume: 24
  start-page: 103318
  year: 2024
  ident: 8892_CR63
  publication-title: Res. Eng.
– volume: 313
  start-page: 117910
  year: 2025
  ident: 8892_CR99
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2024.117910
– volume: 54
  start-page: 1811
  year: 2007
  ident: 8892_CR69
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.900678
– volume: 170
  start-page: 207374
  year: 2022
  ident: 8892_CR27
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2022.207374
– volume: 11
  start-page: 1
  year: 2021
  ident: 8892_CR67
  publication-title: Biosensors
  doi: 10.3390/bios11070206
– volume: 35
  start-page: 2150238
  year: 2021
  ident: 8892_CR72
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979221502386
– volume: 86
  start-page: 82
  year: 1998
  ident: 8892_CR1
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.1998.658762
– volume: 94
  start-page: 7820
  year: 2003
  ident: 8892_CR60
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1627459
– ident: 8892_CR106
  doi: 10.1109/MIC.2013.6757955
– volume: 2
  start-page: 44
  year: 2014
  ident: 8892_CR9
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2014.2326622
– volume: 5
  start-page: 48779
  year: 2015
  ident: 8892_CR37
  publication-title: RSC Adv.
  doi: 10.1039/C5RA03301B
– volume: 3
  start-page: 16212
  year: 2018
  ident: 8892_CR93
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02081
– volume: 28
  start-page: 743
  year: 2007
  ident: 8892_CR8
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.901273
– volume: 314
  start-page: 235
  year: 2004
  ident: 8892_CR89
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2003.12.081
– volume: 84
  start-page: 2071
  year: 2007
  ident: 8892_CR6
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2007.04.038
– volume: 14
  start-page: 1
  year: 2024
  ident: 8892_CR101
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-50723-y
– volume: 30
  start-page: 754
  year: 2009
  ident: 8892_CR29
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2009.2021079
– volume: 15
  start-page: 4689
  year: 2023
  ident: 8892_CR46
  publication-title: SILICON
  doi: 10.1007/s12633-023-02387-6
– volume: 5
  start-page: 1
  year: 2015
  ident: 8892_CR118
  publication-title: Sci. Rep.
  doi: 10.1038/srep16485
– volume: 5
  start-page: 186
  year: 2006
  ident: 8892_CR5
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2006.869952
– volume: 305
  start-page: 117450
  year: 2024
  ident: 8892_CR42
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2024.117450
– volume: 54
  start-page: 1725
  year: 2007
  ident: 8892_CR11
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2007.899389
– volume: 21
  start-page: 1127
  year: 2022
  ident: 8892_CR75
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-022-01919-4
– volume: 12
  start-page: 428
  year: 2013
  ident: 8892_CR35
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-013-0450-2
– volume: 13
  start-page: 9
  year: 2021
  ident: 8892_CR56
  publication-title: SILICON
  doi: 10.1007/s12633-020-00404-6
– volume: 5
  start-page: 1
  year: 2025
  ident: 8892_CR95
  publication-title: Microsyst. Technol.
– volume: 34
  start-page: 1575
  year: 2013
  ident: 8892_CR52
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2283858
– volume: 26
  start-page: 1
  year: 2024
  ident: 8892_CR31
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-024-06045-9
– volume: 66
  start-page: 3646
  year: 2019
  ident: 8892_CR13
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2922232
– volume: 67
  start-page: 947
  year: 2008
  ident: 8892_CR17
  publication-title: SIMULATION
– volume: 109
  start-page: 307
  year: 2017
  ident: 8892_CR40
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.03.059
– volume: 34
  start-page: 1
  year: 2020
  ident: 8892_CR49
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979220502422
– volume: 15
  start-page: 12915
  year: 2023
  ident: 8892_CR115
  publication-title: Nanoscale
  doi: 10.1039/D3NR01858J
– volume: 27
  start-page: 297
  year: 2006
  ident: 8892_CR7
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2006.871855
– volume: 16
  start-page: 1297
  year: 2024
  ident: 8892_CR18
  publication-title: SILICON
  doi: 10.1007/s12633-023-02755-2
– year: 2024
  ident: 8892_CR55
  publication-title: SILICON
  doi: 10.1007/s12633-024-03010-y
– ident: 8892_CR15
  doi: 10.1109/E3S.2017.8246169
– volume: 36
  start-page: 399
  year: 1989
  ident: 8892_CR3
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/16.19942
– volume: 2
  start-page: 430
  year: 2007
  ident: 8892_CR94
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.180
– volume: 4
  start-page: 7
  year: 2024
  ident: 8892_CR112
  publication-title: Sens. Diagn.
  doi: 10.1039/d4sd00262h
– volume: 13
  start-page: 852452
  year: 2022
  ident: 8892_CR116
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.852452
– volume: 10
  start-page: 100100
  year: 2022
  ident: 8892_CR66
  publication-title: Biosens. Bioelectron. X
– volume: 7
  start-page: 1
  year: 2010
  ident: 8892_CR121
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-7-361
– volume: 292
  start-page: 116445
  year: 2023
  ident: 8892_CR77
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2023.116445
– volume: 32
  start-page: 769
  year: 2025
  ident: 8892_CR32
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2024.3432088
– year: 2020
  ident: 8892_CR19
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-03429-3
– volume: 171
  start-page: 097518
  year: 2024
  ident: 8892_CR73
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ad7bf1
– volume: 28
  start-page: 107
  year: 2010
  ident: 8892_CR64
  publication-title: Indian J. Med. Microbiol.
  doi: 10.4103/0255-0857.62484
– volume: 34
  start-page: 942
  year: 2013
  ident: 8892_CR12
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2264824
– volume: 66
  start-page: 1656
  year: 2019
  ident: 8892_CR22
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2899206
– volume: 14
  start-page: 1705
  year: 2022
  ident: 8892_CR85
  publication-title: SILICON
  doi: 10.1007/s12633-021-00981-0
– volume: 14
  start-page: 3963
  year: 2022
  ident: 8892_CR48
  publication-title: SILICON
  doi: 10.1007/s12633-021-01162-9
– volume: 9
  start-page: 3095
  year: 2009
  ident: 8892_CR108
  publication-title: Lab Chip
  doi: 10.1039/b907309b
– year: 2025
  ident: 8892_CR110
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.5c00263
– volume: 28
  start-page: 2659
  year: 2022
  ident: 8892_CR41
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-022-05273-0
– volume: 5
  start-page: 1
  year: 2015
  ident: 8892_CR105
  publication-title: Sci. Rep.
– volume: 68
  start-page: 1986
  year: 2021
  ident: 8892_CR71
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3056632
– volume: 237
  start-page: 122962
  year: 2022
  ident: 8892_CR114
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122962
– volume: 8
  start-page: 2400531
  year: 2025
  ident: 8892_CR82
  publication-title: Adv. Theory Simulations
  doi: 10.1002/adts.202400531
– volume: 36
  start-page: 3
  year: 2015
  ident: 8892_CR76
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/36/3/034002
– volume: 7
  start-page: 155
  year: 2018
  ident: 8892_CR36
  publication-title: Int. J. Eng. Technol.
  doi: 10.14419/ijet.v7i3.1.17076
– volume: 17
  start-page: 745
  year: 2018
  ident: 8892_CR58
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-018-1136-6
– year: 2024
  ident: 8892_CR26
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2024.3497877
– volume: 15
  start-page: 4137
  year: 2023
  ident: 8892_CR43
  publication-title: SILICON
  doi: 10.1007/s12633-023-02330-9
– volume: 39
  start-page: e70012
  year: 2025
  ident: 8892_CR113
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.70012
– volume: 49
  start-page: 782
  year: 2013
  ident: 8892_CR51
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.1397
– volume: 15
  start-page: 3991
  year: 2023
  ident: 8892_CR119
  publication-title: Anal. Methods
  doi: 10.1039/D3AY00756A
– volume: 14
  start-page: 7701
  year: 2022
  ident: 8892_CR21
  publication-title: SILICON
  doi: 10.1007/s12633-021-01514-5
– ident: 8892_CR122
– volume: 21
  start-page: 4122
  year: 2021
  ident: 8892_CR91
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3029535
– volume: 25
  start-page: 1
  year: 2024
  ident: 8892_CR78
  publication-title: Sens. Imaging
  doi: 10.1007/s11220-024-00516-y
– volume: 13
  start-page: 1
  year: 2024
  ident: 8892_CR107
  publication-title: Foods
– volume: 78
  start-page: 368
  year: 2014
  ident: 8892_CR123
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2013.12.019
– volume: 87
  start-page: 668
  year: 1999
  ident: 8892_CR4
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.1999.752522
– volume: 7
  start-page: 3720
  year: 2022
  ident: 8892_CR117
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.2c01525
– volume: 233
  start-page: 111398
  year: 2020
  ident: 8892_CR70
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2020.111398
– volume: 65
  start-page: 1223
  year: 2018
  ident: 8892_CR57
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2796848
– volume: 11
  start-page: 1205903
  year: 2023
  ident: 8892_CR109
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2023.1205903
– volume: 130
  start-page: 373
  year: 2024
  ident: 8892_CR38
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-024-07526-3
– volume: 35
  start-page: 798
  year: 2014
  ident: 8892_CR10
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2014.2325058
– volume: 10
  start-page: 126
  year: 2020
  ident: 8892_CR44
  publication-title: Appl. Sci.
  doi: 10.3390/app10010126
– volume: 34
  start-page: 584
  year: 2013
  ident: 8892_CR34
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2013.2253752
– volume: 12
  start-page: 093003
  year: 2023
  ident: 8892_CR83
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2162-8777/acf071
– year: 2022
  ident: 8892_CR87
  publication-title: Trans. Electr. Electron. Mater.
  doi: 10.1007/s42341-022-00419-3
– volume: 136
  start-page: 373
  year: 2012
  ident: 8892_CR65
  publication-title: Indian J. Med. Res.
– volume: 173
  start-page: 108116
  year: 2024
  ident: 8892_CR33
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2024.108116
– volume: 181
  start-page: 207629
  year: 2023
  ident: 8892_CR81
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2023.207629
– volume: 26
  start-page: 1
  year: 2025
  ident: 8892_CR100
  publication-title: Sens. Imaging
  doi: 10.1007/s11220-025-00558-w
– year: 2024
  ident: 8892_CR47
  publication-title: SILICON
  doi: 10.1007/s12633-024-02964-3
– volume: 20
  start-page: 47
  issue: 4
  year: 2011
  ident: 8892_CR68
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F05114if
– volume: 32
  start-page: 3155
  year: 2021
  ident: 8892_CR80
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-05064-1
– volume: 216
  start-page: 111043
  year: 2019
  ident: 8892_CR23
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2019.111043
– volume: 100
  start-page: 857
  year: 2016
  ident: 8892_CR16
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2016.10.057
– volume: 16
  start-page: 2719
  year: 2024
  ident: 8892_CR50
  publication-title: SILICON
  doi: 10.1007/s12633-024-02873-5
– volume: 17
  start-page: 1399
  year: 2017
  ident: 8892_CR88
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2633621
– volume: 20
  start-page: 3255
  year: 2020
  ident: 8892_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b05356
– volume: 179
  start-page: 207582
  year: 2023
  ident: 8892_CR24
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2023.207582
– volume: 19
  start-page: 1013
  year: 2019
  ident: 8892_CR104
  publication-title: Sensors
  doi: 10.3390/s19051013
– volume: 111
  start-page: 103
  year: 2017
  ident: 8892_CR39
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.06.018
– volume: 15
  start-page: 1
  year: 2025
  ident: 8892_CR102
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-025-99817-9
– volume: 61
  start-page: 448
  year: 2014
  ident: 8892_CR103
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.05.025
– volume: 14
  start-page: 1
  year: 2022
  ident: 8892_CR62
  publication-title: J. Nano Electron. Phys.
  doi: 10.21272/jnep.14(4).04028
– ident: 8892_CR30
  doi: 10.1109/5NANO53044.2022.9828882
– ident: 8892_CR54
  doi: 10.1088/1742-6596/1797/1/012025
– volume: 33
  start-page: 10323
  year: 2022
  ident: 8892_CR86
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-022-08020-3
– volume: 125
  start-page: 1
  year: 2019
  ident: 8892_CR45
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-019-2966-1
– volume: 8
  start-page: 1
  year: 2013
  ident: 8892_CR90
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0070005
– volume: 33
  start-page: 104726
  year: 2022
  ident: 8892_CR84
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104726
– volume: 15
  start-page: 245
  year: 2018
  ident: 8892_CR111
  publication-title: Biosci. Biotechnol. Res. Asia
  doi: 10.13005/bbra/2628
– volume: 130
  start-page: 1
  year: 2024
  ident: 8892_CR61
  publication-title: Appl. Phys. A Mater. Sci. Process.
  doi: 10.1007/s00339-023-07162-3
– ident: 8892_CR59
– volume: 15
  start-page: 7837
  year: 2023
  ident: 8892_CR79
  publication-title: SILICON
  doi: 10.1007/s12633-023-02624-y
SSID ssj0000529419
Score 2.4513295
Snippet This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel...
Abstract This work presents a comprehensive investigation of symmetric (HJ-DD-UTFET) and asymmetric Source Drain Heterojunction Dual Dielectric Uniform Tunnel...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 24026
SubjectTerms 639/166/987
639/301/1005/1007
639/925/927
Accuracy
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensor
Biosensors
Dengue - diagnosis
Dengue - virology
Dengue fever
Dengue Virus
Dielectric cavities
Efficiency
Electrostatics
Engineering
Enzymes
Gain bandwidth product
Humanities and Social Sciences
Humans
Infectious diseases
multidisciplinary
NS1 protein
NS1 protein sensing
Plasma
Proteins
Science
Science (multidisciplinary)
Sensitivity
Simulation
Spike protein
Transistors, Electronic
Uniform TFET
Vector-borne diseases
Viral Nonstructural Proteins - analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCAkOCMproSAjcYOojh9xfEKAuqqQ6AFaaW9REo-7i1in7OPQH9D_zYyT3bK8bontRJPM2DOeGX_D2GtwVjSWklvzIDIdPGQu-DqT2uraKmNdAqv-fFIcn-lPEzMZHG7LIa1ysyamhdp3LfnID1HwrMLdhyreXfzIqGoURVeHEho32S2CLiOpthO79bFQFEvnbjgrI1R5uER9RWfKpMkovwf3YTv6KMH2_83W_DNl8re4aVJH4_vs3mBH8vc94x-wGxD32e2-suTlPrv7C87gQ3Z1FKcp0s-_jHkdyV_DybysqXIdn0U-B7TBOXnU-LzzVNELx04pU6b7hoqPmMdJ33m-jnSUa85Px0enHK84ShF8z8ICgHtYQT-2C3gTz9fAT77mPGFBzOIjdoYPfTzOhvoLWaudXmV1Da4lBMG8lcL6vG1C7iU2CdHI0Bjri8LWGoKrTWgTtl9uvFFa1WiVFKV6zPZiF-Ep4zIYm_tcAW64NaCNYRQokITcE0TZ6hF7s-FCddHDbFQpPK7KqudZhTyrEs8qM2IfiFHbkQSRnRq6xXk1zLjKWF0UzpsSBFIkpCuaRjayaFoDphVuxA42bK6GebusrqVsxF5tu3HGURiljtCt-zEaN3IOqX7SS8WWEjKPLC6JI1buyMsOqbs9cTZNqN45-eKsxJe-3YjWNV3__hfP_v8Zz9kdmaTdZsIcsL3VYg0v0IxaNS_TXPkJ0EMZiw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDeBgozEDSIcP-L4uKCuqpXogbZSb1ESj7uLWAdtdw_8AP43M0520UI5cEvicTTyjD0znvFnxt6Cs6K1VNxaBJHr4CF3wTe51FY3VhnrElj157Py9FLPrszVAZPbszCpaD9BWqZlelsd9uEGDQ0dBpMmp8IcDKDusCOCakfdPppMZuez3c4K5a504cYTMkJVt3Tes0IJrP82D_PvQsk_sqXJCE0fsPuj98gnA78P2QHER-zucJ_kj8fs50mcp4w-_zLlTaR9GU5uZEM31PFF5EtAX5vTzhlf9p5u7kLaOVXE9F_RwJGQONk1zzeRjmwt-cX05ILjE0dtgW95WAFwD2sYaPuAL_F6A_zsvOAJ82ERn7BL7PTpNB_vWcg77fQ6bxpwHSEFFp0U1hddGwov8ZMQrQytsb4sbaMhuMaELmH4FcYbpVWD3kdZqafsMPYRnjMug7GFLxRgYK0BfQmjQIEkhJ4gqk5n7N123OvvA5xGndLgqqoHKdUopTpJqTYZ-0ii2VESFHb60K-u61E1amN1WTpvKhDIkZCubFvZyrLtDJhOuIwdbwVbj_PzpsZlzCqMZVWZsTe7ZpxZlC5pIvSbgUZjwOaQ62eDHuw4ITfI4tKXsWpPQ_ZY3W-Ji3lC7y5oz81K_On7rTL95uvfY_Hi_8hfsnsy6bvNhTlmh-vVBl6h-7RuX4_z5Rc7phRL
  priority: 102
  providerName: Springer Nature
Title Enhanced RF analog linearity in metal gate modulated heterojunction based uniform TFET for label-free detection of dengue NS1 protein
URI https://link.springer.com/article/10.1038/s41598-025-08892-5
https://www.ncbi.nlm.nih.gov/pubmed/40617880
https://www.proquest.com/docview/3227340736
https://www.proquest.com/docview/3227417494
https://pubmed.ncbi.nlm.nih.gov/PMC12228724
https://doaj.org/article/574669d58e03430296bb2b26bc5e5c09
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvAUhmJG0QkfsTxsVu1WlWiQvuQeouceEyLqIN22wM_gP_N2G7Lloe4cEpiO9HIM87MeMbfEPIGtCpaFZJbS1fkwlnItbMmZ0IJo7hUOoJVf5hVp5diOpfzG6W-Qk5YggdOE4cOu6gqbWUNBRe8YLpqW9ayqu0kyC4d3UOdd8OZSqjeTItSb0_JFLx-f42aKpwmYzIPmT3ogR1oogjY_ycr8_dkyV8iplERTR6Q-1sLkg4T5Q_JLfCPyN1UU_LbY_J97Bcxqk_PJtT4sDdDgylpQpU6uvR0BWhv07B7Rle9DdW7cOwiZMX0n1HJBUbRoNss3fhwbGtFLybjC4p3FCUGvuTuCoBaWEMa2zt88J82QGfnJY24D0v_hFziS6PTfFtrIe-EFuvcGNBdQAssO1YoW3atKy3DpqJomWulslWljACnjXRdxPErpZXIEoMWSFXzp-TI9x6eE8qcVKUtOaBzLQDtCcmBAwsoPa6oO5GRt7t5b74mSI0mhsJ53SQuNcilJnKpkRk5CazZjwxw2LEBhaTZCknzLyHJyPGOsc12jV43-CtTHP1ZXmXk9b4bV1cImRgP_SaNEei0aaT6WZKDPSXBFFL4-8tIfSAhB6Qe9vjlIiJ4l2HfTTH86LudMP2k6-9z8eJ_zMVLco_FVaDyQh6To_XVBl6hYbVuB-S2mqsBuTMcTs-neD0Zzz6eYeuoGg3i-voBpbUhcg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEQIOCMo2UMBIcIKojpc4OSDE0tGUtnOAqTQ3N4ntziAmKbMI9Qfwd_iNvOdMpgzbrbcsTvSS99lv9XuEPHOZZoXG5NbYs0h666LM2zziUstcC6WzUKz6sJ_0juSHoRpukB_tXhhMq2zXxLBQ27pEH_kOAE8LsD5E8vr0a4RdozC62rbQaGCx786-gck2e7X3Hvj7nPPu7uBdL1p2FYhKmcl5lOcuK7EuXlxypm1cFj62HC4xVnBfKG2TROfS-SxXvgwV62JllZAiB1mbpALee4lcBsHL0NjTQ73y6WDUTMbZcm8OE-nODJ7FPWxcRZhPBHbfmvwLbQL-ptv-maL5W5w2iL_uTXJjqbfSNw3QbpENV22RK00ny7Mtcv2Xuoa3yffdahQyC-jHLs0r9A9RVGdz7JRHxxWdOND5KXrw6KS22EEMxo4wM6f-DIIWwUJRvlq6qHDr2IQO4CdTOKKAWvcl8lPnqHVz14ytPZxUJwtH-59iGmpPjKs75OhCOHOXbFZ15e4Tyr3SsY2FAwNfOtBplHDCcawU5Flayg550XLBnDZlPUwIx4vUNDwzwDMTeGZUh7xFRq1GYknucKGenpjlDDdKyyTJrEodA4oYz5Ki4AVPilI5VbKsQ7ZbNpvlOjEz56jukKer2zDDMWyTV65eNGMkGI4ZUH2vQcWKElTHNCzBHZKu4WWN1PU71XgUqojH6PvTHF76soXWOV3__hcP_v8ZT8jV3uDwwBzs9fcfkms8IF9HTG2Tzfl04R6BCjcvHod5Q8nxRU_Un8OvVaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxA8IBi3wgAjwRNETRw7jh8QYqzVxqCaxibtzUtiey2iyehFaD-AP8Wv4xwn6Si3t721iRud5nzH5-pzCHlulQxzicWtkQsD7owNlDNZwLjkmYyFVL5Z9cdhsnPE3x-L4zXyoz0Lg2WV7Z7oN2pTFRgj7wHwZAzeR5z0XFMWsb89eHP2NcAJUphpbcdp1BDZs-ffwH2bvd7dBl6_YGzQP3y3EzQTBoKCKz4PssyqAnvkRQULpYmK3EWGwaUwzJnLhTRJIjNuncqEK3z3ukgYEfM4A72bpDE89wpZl-gVdcj6Vn-4f7CM8GAOjUeqOakTxmlvBr_GE21MBFhdBF7gijb0QwP-Zun-WbD5W9bWK8PBLXKzsWLp2xp2t8maLTfI1Xqu5fkGufFLl8M75Hu_HPk6A3owoFmJ0SKKxm2Gc_PouKQTCx4AxXgenVQG54nB2hHW6VSfQe0idChqW0MXJR4km9BDeM0UPlHAsP0SuKm11Ni5rddWDr6UpwtLh58i6jtRjMu75OhSeHOPdMqqtA8IZU7IyESxBXefW7BwRGxjy7BvkAvTgnfJy5YL-qxu8qF9cj5Odc0zDTzTnmdadMkWMmq5Eht0-wvV9FQ38q6F5EmijEhtCBSFTCV5znKW5IWwoghVl2y2bNbNrjHTFxjvkmfL2yDvmMTJSlst6jUc3EgFVN-vUbGkBI0zCRtyl6QreFkhdfVOOR75nuIRRgIlg4e-aqF1Qde_38XD__-Np-QaCKn-sDvce0SuMw98GYRik3Tm04V9DPbcPH_SCA4lJ5ctqz8BsBNbPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+RF+analog+linearity+in+metal+gate+modulated+heterojunction+based+uniform+TFET+for+label-free+detection+of+dengue+NS1+protein&rft.jtitle=Scientific+reports&rft.au=Ranjith+Kumar+T&rft.au=Lakshmi+Priya+G&rft.date=2025-07-05&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1038%2Fs41598-025-08892-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_574669d58e03430296bb2b26bc5e5c09
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon