A Dataset for Understanding Radiologist-Artificial Intelligence Collaboration

This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and...

Full description

Saved in:
Bibliographic Details
Published inScientific data Vol. 12; no. 1; pp. 739 - 7
Main Authors Moehring, Alex, Kutwal, Manasi, Huang, Ray, Banerjee, Oishi, Jacobi, Adam, Eber, Corey, Mendoza, Dexter, Chung, Mike, Dayan, Etan, Gupta, Yogesh, Bui, Tan D. T., Truong, Steven Q. H., Pareek, Anuj, Langlotz, Curtis P., Lungren, Matthew P., Agarwal, Nikhil, Rajpurkar, Pranav, Salz, Tobias
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.
AbstractList This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.
Abstract This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.
This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.
ArticleNumber 739
Author Jacobi, Adam
Moehring, Alex
Truong, Steven Q. H.
Huang, Ray
Eber, Corey
Chung, Mike
Langlotz, Curtis P.
Rajpurkar, Pranav
Pareek, Anuj
Bui, Tan D. T.
Lungren, Matthew P.
Kutwal, Manasi
Salz, Tobias
Mendoza, Dexter
Banerjee, Oishi
Agarwal, Nikhil
Dayan, Etan
Gupta, Yogesh
Author_xml – sequence: 1
  givenname: Alex
  surname: Moehring
  fullname: Moehring, Alex
  email: moehring@purdue.edu
  organization: Purdue University, Daniels School of Business
– sequence: 2
  givenname: Manasi
  surname: Kutwal
  fullname: Kutwal, Manasi
  organization: MIT Economics, Blueprint Labs
– sequence: 3
  givenname: Ray
  surname: Huang
  fullname: Huang, Ray
  organization: MIT Economics, Blueprint Labs
– sequence: 4
  givenname: Oishi
  surname: Banerjee
  fullname: Banerjee, Oishi
  organization: Harvard Medical School, Department of Biomedical Informatics
– sequence: 5
  givenname: Adam
  surname: Jacobi
  fullname: Jacobi, Adam
  organization: Mount Sinai Hospital
– sequence: 6
  givenname: Corey
  surname: Eber
  fullname: Eber, Corey
  organization: Mount Sinai Hospital
– sequence: 7
  givenname: Dexter
  surname: Mendoza
  fullname: Mendoza, Dexter
  organization: Mount Sinai Hospital
– sequence: 8
  givenname: Mike
  surname: Chung
  fullname: Chung, Mike
  organization: Mount Sinai Hospital
– sequence: 9
  givenname: Etan
  surname: Dayan
  fullname: Dayan, Etan
  organization: Mount Sinai Hospital
– sequence: 10
  givenname: Yogesh
  surname: Gupta
  fullname: Gupta, Yogesh
  organization: Temple Health
– sequence: 11
  givenname: Tan D. T.
  surname: Bui
  fullname: Bui, Tan D. T.
  organization: VinBrain
– sequence: 12
  givenname: Steven Q. H.
  surname: Truong
  fullname: Truong, Steven Q. H.
  organization: VinBrain
– sequence: 13
  givenname: Anuj
  surname: Pareek
  fullname: Pareek, Anuj
  organization: Stanford University, Center for Artificial Intelligence in Medicine & Imaging, Copenhagen University Hospital, Department of Radiology
– sequence: 14
  givenname: Curtis P.
  orcidid: 0000-0002-8972-8051
  surname: Langlotz
  fullname: Langlotz, Curtis P.
  organization: Stanford University, University Medical Line
– sequence: 15
  givenname: Matthew P.
  surname: Lungren
  fullname: Lungren, Matthew P.
  organization: Stanford University, Medical Center, UC San Francisco, Microsoft
– sequence: 16
  givenname: Nikhil
  surname: Agarwal
  fullname: Agarwal, Nikhil
  organization: MIT and NBER, Department of Economics
– sequence: 17
  givenname: Pranav
  orcidid: 0000-0002-8030-3727
  surname: Rajpurkar
  fullname: Rajpurkar, Pranav
  organization: Harvard Medical School, Department of Biomedical Informatics
– sequence: 18
  givenname: Tobias
  surname: Salz
  fullname: Salz, Tobias
  organization: MIT and NBER, Department of Economics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40319039$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuFDEQRS0URELID7BALbFh01B-ddsrNBpeIwUhIbK23H40HvXYwfYg8fd4MiEkLFhYtsqnbpXL9yk6iSk6hJ5jeI2BijeFYS7HHgjvgQNnPTxCZwQ46Rkb6Mm98ym6KGULAJgy4CM8QacMKJZA5Rn6vOre6aqLq51PubuK1uVSdbQhzt1XbUNa0hxK7Ve5Bh9M0Eu3idUtS5hdNK5bp2XRU8q6hhSfocdeL8Vd3O7n6OrD-2_rT_3ll4-b9eqyN0yy2uvRWC_YIPAAYhRMWt4WM9bKcSLEcI-FAa4ZcSAFc9hjRqUgGiQZhDf0HG2OujbprbrOYafzL5V0UDeBlGelW79mcYoK7vVgpZ_kxAY5CUPIxCnmgvNxGljTenvUut5PO2eNizXr5YHow5sYvqs5_VSYQHsNH5vCq1uFnH7sXalqF4ppI9LRpX1RlABQwrCAhr78B92mfY5tVgeK0gEoyEa9uN_SXS9_vq0B5AiYnErJzt8hGNTBHupoD9XsoW7soQ616TGpNDjOLv-t_Z-s3-7Xutk
Cites_doi 10.1001/jamanetworkopen.2023.36100
10.1371/journal.pmed.1002686
10.1177/20552076231186520
10.17605/OSF.IO/Z7APQ
10.3386/w31422
10.1056/CAT.21.0458
10.1038/s41597-019-0322-0
10.1001/jamanetworkopen.2020.22779
10.1148/ryai.2019190058
10.1038/s41551-022-00936-9
10.48550/arXiv.1705.02315
10.1609/aaai.v33i01.3301590
10.1148/radiol.2019191293
10.1016/S2589-7500(21)00106-0
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-025-05054-0
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 7
ExternalDocumentID oai_doaj_org_article_385fa6d9fb9b469b8c22b53158557b64
PMC12049457
40319039
10_1038_s41597_025_05054_0
Genre Dataset
Journal Article
GrantInformation_xml – fundername: Alfred P. Sloan Foundation
  funderid: 100000879
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
ACSFO
ADBBV
ADRAZ
AFKRA
AGHDO
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M7P
M~E
NAO
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-a7cdf846816087849d549d4cdd97b22c5f18c05a42e0984e1f143982a09268fc3
IEDL.DBID AAJSJ
ISSN 2052-4463
IngestDate Wed Aug 27 01:01:30 EDT 2025
Thu Aug 21 18:26:27 EDT 2025
Fri Jul 11 18:20:05 EDT 2025
Wed Aug 13 04:24:35 EDT 2025
Fri May 16 02:47:11 EDT 2025
Tue Jul 01 04:56:08 EDT 2025
Sun May 04 01:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-a7cdf846816087849d549d4cdd97b22c5f18c05a42e0984e1f143982a09268fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-8030-3727
0000-0002-8972-8051
OpenAccessLink https://www.nature.com/articles/s41597-025-05054-0
PMID 40319039
PQID 3203360309
PQPubID 2041912
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_385fa6d9fb9b469b8c22b53158557b64
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12049457
proquest_miscellaneous_3200324180
proquest_journals_3203360309
pubmed_primary_40319039
crossref_primary_10_1038_s41597_025_05054_0
springer_journals_10_1038_s41597_025_05054_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-03
PublicationDateYYYYMMDD 2025-05-03
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JT Wu (5054_CR8) 2020; 3
5054_CR6
5054_CR5
J Irvin (5054_CR13) 2019; 33
E Tiu (5054_CR11) 2022; 6
CP Langlotz (5054_CR4) 2019; 1
AE Johnson (5054_CR14) 2019; 6
J Huang (5054_CR7) 2023; 6
P Rajpurkar (5054_CR10) 2018; 15
5054_CR12
A Majkowska (5054_CR9) 2020; 294
JC Seah (5054_CR16) 2021; 3
5054_CR3
5054_CR15
5054_CR2
5054_CR1
References_xml – volume: 6
  start-page: e2336100
  year: 2023
  ident: 5054_CR7
  publication-title: JAMA Network Open
  doi: 10.1001/jamanetworkopen.2023.36100
– volume: 15
  start-page: 1
  year: 2018
  ident: 5054_CR10
  publication-title: PLOS Medicine
  doi: 10.1371/journal.pmed.1002686
– ident: 5054_CR2
  doi: 10.1177/20552076231186520
– ident: 5054_CR5
  doi: 10.17605/OSF.IO/Z7APQ
– ident: 5054_CR6
  doi: 10.3386/w31422
– ident: 5054_CR3
  doi: 10.1056/CAT.21.0458
– ident: 5054_CR12
– volume: 6
  year: 2019
  ident: 5054_CR14
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0322-0
– volume: 3
  start-page: e2022779
  year: 2020
  ident: 5054_CR8
  publication-title: JAMA Network Open
  doi: 10.1001/jamanetworkopen.2020.22779
– volume: 1
  start-page: e190058
  year: 2019
  ident: 5054_CR4
  publication-title: Radiology: Artificial Intelligence
  doi: 10.1148/ryai.2019190058
– volume: 6
  start-page: 1399
  year: 2022
  ident: 5054_CR11
  publication-title: Nature Biomedical Engineering
  doi: 10.1038/s41551-022-00936-9
– ident: 5054_CR15
  doi: 10.48550/arXiv.1705.02315
– volume: 33
  start-page: 590
  year: 2019
  ident: 5054_CR13
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v33i01.3301590
– volume: 294
  start-page: 421
  year: 2020
  ident: 5054_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2019191293
– volume: 3
  start-page: e496
  year: 2021
  ident: 5054_CR16
  publication-title: The Lancet Digital Health
  doi: 10.1016/S2589-7500(21)00106-0
– ident: 5054_CR1
SSID ssj0001340570
Score 2.3326545
Snippet This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data...
Abstract This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 739
SubjectTerms 692/700/139
692/700/1421/1770
692/700/3934
706/689/159
706/689/2788
Artificial Intelligence
Collaboration
Cooperative Behavior
Data Descriptor
Datasets
Decision making
Humanities and Social Sciences
Humans
Medical imaging
multidisciplinary
Radiography, Thoracic
Radiologists
Radiology
Science
Science (multidisciplinary)
Thorax
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp14QUCjhURmph6LWwrGdxD5ueWhbCQ6IlbhZfqq9BMSG_8_YyS7ZQtUL1ziORvN5NN9k7M8IfeHcRNWkIsdxQYARRyIZT-1Cr5rgkjxI3m1xXU9n4tdddTe66ivtCevlgXvHnXJZRVN7Fa2yUMpZ6RizsHCA5laNrbMSKOS8UTGV_67wRETocEqGcnk6h0yVhEdZRdLlbYLQlUyUBfvfYpmvN0v-1THNiehyE20MDBJPesu30Fpot9HWEKNz_HUQkj75iK4m-Nx0kKY6DNQUz8bnWPCN8fmkCsBM0rd6JQn8cyTRic_Gi2QHzS4vbs-mZLg-gTihREdM43wEeiHLmspGCuWhFvTCeUDBMuaqWEpHKyNYoEqKUEbgTkoyQxWrZXR8F623923YQxhqRg_zbJ3UXaAENAGgLG0MQQHjc75A3xau1A-9SobO3W0ude94DY7X2fGaFuhH8vbyzaRwnR8A7nrAXf8P9wIdLrDSQ9jNNWeU8zp1jQp0vByGgEldENOG-6f8DgUWWUqw41MP7dISkc50UQ6z5QroK6aujrR_fmdR7pIlpZ2qKdD3xfp4sevfvth_D18coA-sX9iE8kO03j0-hSPgSp39nMPiGcr0DPc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggWl6BgozEAQRWHdtJ7BMqLVVBggNipb1ZfgW4ZEs3_f_MON4X0F7jOHLmYX_jsb8h5JWUrjcdBjlBKgaIuGdaSEwXRtOlgPQg-bTF1_Z8pj7Pm3nZcFuWY5WrOTFP1HERcI_8SAouZYsJgfcXvxlWjcLsaimhcZvcQeoytOpu3m32WCTCEV7uynCpj5awXiH9qGgYlnBTjO-sR5m2_39Y898jk3_lTfNydHaf3Cs4kh5Pit8nt9JwQPaLpy7p60In_eYB-XJMT90Ii9VIAaDS2fZtFvrNxXxfBZTN8FsTnwT9tEXUSU-2TeUhmZ19_H5yzkoRBRaUUSNzXYg9gAxdt1x3WpkIEWFUIYIuvBCh6WsdeOOUSNxoleoeEJTRwnEjWt0H-YjsDYshPSEUIscI_XyLHC8QCLoECq19n5IB3BdiRd6uRGkvJq4Mm3PcUttJ8BYEb7PgLa_IB5T2-k3kuc4PFpc_bHEbK3XTuzaa3hsPgbzXQQgP0wYEOU3nW1WRw5WubHG-pd2YSkVerpvBbTAX4oa0uMrvcMCStYZxPJ5Uux6JwptdXEJvvaP0naHutgy_fmZq7log307TVeTdyj4247peFk9v_o1n5K6YTJZxeUj2xsur9Byw0OhfZIP_Axu7BOE
  priority: 102
  providerName: ProQuest
Title A Dataset for Understanding Radiologist-Artificial Intelligence Collaboration
URI https://link.springer.com/article/10.1038/s41597-025-05054-0
https://www.ncbi.nlm.nih.gov/pubmed/40319039
https://www.proquest.com/docview/3203360309
https://www.proquest.com/docview/3200324180
https://pubmed.ncbi.nlm.nih.gov/PMC12049457
https://doaj.org/article/385fa6d9fb9b469b8c22b53158557b64
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe-GCWp6BsjISBxBYOLaT2Mft0qqsRIUKK-3N8rNwyaJu-v87dpLtLpQDp0h-RKMZP77xeD4j9JZzE1WTnBzHBQFEHIlkPIULvWqCS_Qg-bbFRX2-EPNltdxDbMyFyZf2M6VlXqbH22Gf1rDRJN5QVpH09pog4KYfJKp2GNsH0-n8-_zuZIUnEEKHDBnK5T2dd3ahTNZ_H8L8-6LkH9HSvAmdHaJHA3rE017eI7QX2sfoaJifa_xuIJF-_wR9neLPpoMtqsMAS_FiO4cFXxqfs1TAxCT9q2eRwF-26DnxbHuAPEWLs9Mfs3MyPJ1AnFCiI6ZxPgK0kGVNZSOF8uAHeuE8WMAy5qpYSkcrI1igSopQRsBNSjJDFatldPwZ2m9XbXiBMPiLHvrZOjG7gPtnApixtDEEBWjP-QJ9GFWpf_cMGTpHtrnUveI1KF5nxWtaoJOk7U3LxG6dC1bXV3qwtuayiqb2KlplwX230jFmYbEA16ZqbC0KdDzaSg9Tbq05o5zXKWJUoDebapgsKQJi2rC6yW0oIMhSghzPe9NuJBEpn4ty6C13jL4j6m5N--tnJuQuWWLZqZoCfRzHx51c_9bFy_9r_go9ZP0QJpQfo_3u-ia8BkTU2Ql60CybyTAR4HtyevHtEkpn9WySTxluAZFgCGc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALojwDBYwEEgisOraT2AeESku1Sx8H1JX2ZhLbAS7Z0k2F-FP8RsZOsg9et17z0mQ89nzj8XwD8EyIstZFCHKskBQRcU0VFyFd6HThbaAHiactTvLRRH6YZtMN-DnUwoRjlcOaGBdqN7Nhj3xHcCZEHhICb8--0dA1KmRXhxYanVkc-h_fMWSbvxnv4_g-5_zg_eneiPZdBaiVWra0LKyr0euqNGeqUFI7DJGctA6Fqzi3WZ0qy7JScs-0kj6tEVJoxUumea5qK_C7V-AqOl4Wgr1iWiz3dESAP6yvzWFC7czRPwa6U57R0DJOUrbm_2KbgL9h2z-PaP6Wp43u7-Am3OhxK9ntDG0LNnxzC7b6lWFOXvT01S9vw_Eu2S9bdI4tQUBMJqvVM-Rj6WJ9DBoXDd_q-CvIeIUYlOytmuYdmFyKeu_CZjNr_H0gGKk6fK_KA6cMBp6lRwNKq9p7jTjTugReDao0Zx03h4k5daFMp3iDijdR8YYl8C5oe_Fk4NWOF2bnn00_TY1QWV3mTteVrmSuK2U5r3CZwqAqK6pcJrA9jJXpJ_vcLE0zgaeL2zhNQ-6lbPzsIj7DELumCuW41w3tQhIZKsmYwLfV2qCvibp-p_n6JVKBpzzw-2RFAq8H-1jK9W9dPPj_bzyBa6PT4yNzND45fAjXeWe-lIlt2GzPL_wjxGFt9TgaP4FPlz3bfgEXekBG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozpYCRQAJBtI7tJPYBobbbVZfCqqpYqTc3sR3oJVu6WyH-Gr-OsZPsg9et181Ds-NvPDMZzzcALzgvKpX7JMdwEWNEXMWScV8utCp3xtODhNMW4-xwIj6cpqcb8LPrhfHHKrs9MWzUdmr8N_I-Z5TzzBcE-lV7LOJ4MHx_8S32E6R8pbUbp9FA5Mj9-I7p2-zdaIBr_ZKx4cHn_cO4nTAQG6HEPC5yYyv0wDLJqMylUBbTJSuMRUFLxkxaJdLQtBDMUSWFSyoML5RkBVUsk5Xh-N4bsJn7rKgHm3sH4-OT5Rce7oMh2nbqUC77M_SWnvyUpbEfICdiuuYNw9CAv0W6fx7Y_K1qG5zh8A7cbqNYstvAbgs2XH0Xttp9YkZetWTWr-_Bp10yKOboKucEw2MyWe2lISeFDd0yCLXYv6thsyCjFZpQsr8K1PswuRYFP4BePa3dIyCYt1p8rsw8wwwqvHAIp6SsnFMYdRobwZtOlfqiYerQocLOpW4Ur1HxOihe0wj2vLYXd3qW7fDD9PKLbo1Wc5lWRWZVVapSZKqUhrESNy1MsdK8zEQEO91a6db0Z3oJ1AieLy6j0fpKTFG76VW4h2Ikm0iU42GztAtJhO8roxyflmuLvibq-pX6_GsgBk-YZ_tJ8wjedvhYyvVvXWz__288g5toafrjaHz0GG6xBr0x5TvQm19euScYlM3Lpy36CZxdt8H9Aq5EReE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dataset+for+Understanding+Radiologist-Artificial+Intelligence+Collaboration&rft.jtitle=Scientific+data&rft.au=Moehring%2C+Alex&rft.au=Kutwal%2C+Manasi&rft.au=Huang%2C+Ray&rft.au=Banerjee%2C+Oishi&rft.date=2025-05-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-025-05054-0&rft.externalDocID=10_1038_s41597_025_05054_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon