A Dataset for Understanding Radiologist-Artificial Intelligence Collaboration
This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and...
Saved in:
Published in | Scientific data Vol. 12; no. 1; pp. 739 - 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging. |
---|---|
AbstractList | This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging. Abstract This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging. This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging.This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data from 227 professional radiologists who assessed 324 historical cases under varying information conditions: with and without AI assistance, and with and without clinical history. Using a custom-designed interface, we collected probabilistic assessments for 104 thoracic pathologies using a comprehensive hierarchical reporting structure. This dataset is the largest known comparison of human-AI collaborative performance to either AI or humans alone in radiology, offering assessments across an extensive range of pathologies with rich metadata on radiologist characteristics and decision-making processes. Multiple experimental designs enable both within-subject and between-subject analyses. Researchers can leverage this dataset to investigate how radiologists incorporate AI assistance, factors influencing collaborative effectiveness, and impacts on diagnostic accuracy, speed, and confidence across different cases and pathologies. By enabling rigorous study of human-AI integration in clinical workflows, this dataset can inform AI tool development, implementation strategies, and ultimately improve patient care through optimized collaboration in medical imaging. |
ArticleNumber | 739 |
Author | Jacobi, Adam Moehring, Alex Truong, Steven Q. H. Huang, Ray Eber, Corey Chung, Mike Langlotz, Curtis P. Rajpurkar, Pranav Pareek, Anuj Bui, Tan D. T. Lungren, Matthew P. Kutwal, Manasi Salz, Tobias Mendoza, Dexter Banerjee, Oishi Agarwal, Nikhil Dayan, Etan Gupta, Yogesh |
Author_xml | – sequence: 1 givenname: Alex surname: Moehring fullname: Moehring, Alex email: moehring@purdue.edu organization: Purdue University, Daniels School of Business – sequence: 2 givenname: Manasi surname: Kutwal fullname: Kutwal, Manasi organization: MIT Economics, Blueprint Labs – sequence: 3 givenname: Ray surname: Huang fullname: Huang, Ray organization: MIT Economics, Blueprint Labs – sequence: 4 givenname: Oishi surname: Banerjee fullname: Banerjee, Oishi organization: Harvard Medical School, Department of Biomedical Informatics – sequence: 5 givenname: Adam surname: Jacobi fullname: Jacobi, Adam organization: Mount Sinai Hospital – sequence: 6 givenname: Corey surname: Eber fullname: Eber, Corey organization: Mount Sinai Hospital – sequence: 7 givenname: Dexter surname: Mendoza fullname: Mendoza, Dexter organization: Mount Sinai Hospital – sequence: 8 givenname: Mike surname: Chung fullname: Chung, Mike organization: Mount Sinai Hospital – sequence: 9 givenname: Etan surname: Dayan fullname: Dayan, Etan organization: Mount Sinai Hospital – sequence: 10 givenname: Yogesh surname: Gupta fullname: Gupta, Yogesh organization: Temple Health – sequence: 11 givenname: Tan D. T. surname: Bui fullname: Bui, Tan D. T. organization: VinBrain – sequence: 12 givenname: Steven Q. H. surname: Truong fullname: Truong, Steven Q. H. organization: VinBrain – sequence: 13 givenname: Anuj surname: Pareek fullname: Pareek, Anuj organization: Stanford University, Center for Artificial Intelligence in Medicine & Imaging, Copenhagen University Hospital, Department of Radiology – sequence: 14 givenname: Curtis P. orcidid: 0000-0002-8972-8051 surname: Langlotz fullname: Langlotz, Curtis P. organization: Stanford University, University Medical Line – sequence: 15 givenname: Matthew P. surname: Lungren fullname: Lungren, Matthew P. organization: Stanford University, Medical Center, UC San Francisco, Microsoft – sequence: 16 givenname: Nikhil surname: Agarwal fullname: Agarwal, Nikhil organization: MIT and NBER, Department of Economics – sequence: 17 givenname: Pranav orcidid: 0000-0002-8030-3727 surname: Rajpurkar fullname: Rajpurkar, Pranav organization: Harvard Medical School, Department of Biomedical Informatics – sequence: 18 givenname: Tobias surname: Salz fullname: Salz, Tobias organization: MIT and NBER, Department of Economics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40319039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuFDEQRS0URELID7BALbFh01B-ddsrNBpeIwUhIbK23H40HvXYwfYg8fd4MiEkLFhYtsqnbpXL9yk6iSk6hJ5jeI2BijeFYS7HHgjvgQNnPTxCZwQ46Rkb6Mm98ym6KGULAJgy4CM8QacMKJZA5Rn6vOre6aqLq51PubuK1uVSdbQhzt1XbUNa0hxK7Ve5Bh9M0Eu3idUtS5hdNK5bp2XRU8q6hhSfocdeL8Vd3O7n6OrD-2_rT_3ll4-b9eqyN0yy2uvRWC_YIPAAYhRMWt4WM9bKcSLEcI-FAa4ZcSAFc9hjRqUgGiQZhDf0HG2OujbprbrOYafzL5V0UDeBlGelW79mcYoK7vVgpZ_kxAY5CUPIxCnmgvNxGljTenvUut5PO2eNizXr5YHow5sYvqs5_VSYQHsNH5vCq1uFnH7sXalqF4ppI9LRpX1RlABQwrCAhr78B92mfY5tVgeK0gEoyEa9uN_SXS9_vq0B5AiYnErJzt8hGNTBHupoD9XsoW7soQ616TGpNDjOLv-t_Z-s3-7Xutk |
Cites_doi | 10.1001/jamanetworkopen.2023.36100 10.1371/journal.pmed.1002686 10.1177/20552076231186520 10.17605/OSF.IO/Z7APQ 10.3386/w31422 10.1056/CAT.21.0458 10.1038/s41597-019-0322-0 10.1001/jamanetworkopen.2020.22779 10.1148/ryai.2019190058 10.1038/s41551-022-00936-9 10.48550/arXiv.1705.02315 10.1609/aaai.v33i01.3301590 10.1148/radiol.2019191293 10.1016/S2589-7500(21)00106-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41597-025-05054-0 |
DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2052-4463 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_385fa6d9fb9b469b8c22b53158557b64 PMC12049457 40319039 10_1038_s41597_025_05054_0 |
Genre | Dataset Journal Article |
GrantInformation_xml | – fundername: Alfred P. Sloan Foundation funderid: 100000879 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ AASML ABUWG ACGFS ACSFO ADBBV ADRAZ AFKRA AGHDO ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M7P M~E NAO OK1 PGMZT PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. M48 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-a7cdf846816087849d549d4cdd97b22c5f18c05a42e0984e1f143982a09268fc3 |
IEDL.DBID | AAJSJ |
ISSN | 2052-4463 |
IngestDate | Wed Aug 27 01:01:30 EDT 2025 Thu Aug 21 18:26:27 EDT 2025 Fri Jul 11 18:20:05 EDT 2025 Wed Aug 13 04:24:35 EDT 2025 Fri May 16 02:47:11 EDT 2025 Tue Jul 01 04:56:08 EDT 2025 Sun May 04 01:10:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-a7cdf846816087849d549d4cdd97b22c5f18c05a42e0984e1f143982a09268fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-8030-3727 0000-0002-8972-8051 |
OpenAccessLink | https://www.nature.com/articles/s41597-025-05054-0 |
PMID | 40319039 |
PQID | 3203360309 |
PQPubID | 2041912 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_385fa6d9fb9b469b8c22b53158557b64 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12049457 proquest_miscellaneous_3200324180 proquest_journals_3203360309 pubmed_primary_40319039 crossref_primary_10_1038_s41597_025_05054_0 springer_journals_10_1038_s41597_025_05054_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-03 |
PublicationDateYYYYMMDD | 2025-05-03 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific data |
PublicationTitleAbbrev | Sci Data |
PublicationTitleAlternate | Sci Data |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JT Wu (5054_CR8) 2020; 3 5054_CR6 5054_CR5 J Irvin (5054_CR13) 2019; 33 E Tiu (5054_CR11) 2022; 6 CP Langlotz (5054_CR4) 2019; 1 AE Johnson (5054_CR14) 2019; 6 J Huang (5054_CR7) 2023; 6 P Rajpurkar (5054_CR10) 2018; 15 5054_CR12 A Majkowska (5054_CR9) 2020; 294 JC Seah (5054_CR16) 2021; 3 5054_CR3 5054_CR15 5054_CR2 5054_CR1 |
References_xml | – volume: 6 start-page: e2336100 year: 2023 ident: 5054_CR7 publication-title: JAMA Network Open doi: 10.1001/jamanetworkopen.2023.36100 – volume: 15 start-page: 1 year: 2018 ident: 5054_CR10 publication-title: PLOS Medicine doi: 10.1371/journal.pmed.1002686 – ident: 5054_CR2 doi: 10.1177/20552076231186520 – ident: 5054_CR5 doi: 10.17605/OSF.IO/Z7APQ – ident: 5054_CR6 doi: 10.3386/w31422 – ident: 5054_CR3 doi: 10.1056/CAT.21.0458 – ident: 5054_CR12 – volume: 6 year: 2019 ident: 5054_CR14 publication-title: Scientific Data doi: 10.1038/s41597-019-0322-0 – volume: 3 start-page: e2022779 year: 2020 ident: 5054_CR8 publication-title: JAMA Network Open doi: 10.1001/jamanetworkopen.2020.22779 – volume: 1 start-page: e190058 year: 2019 ident: 5054_CR4 publication-title: Radiology: Artificial Intelligence doi: 10.1148/ryai.2019190058 – volume: 6 start-page: 1399 year: 2022 ident: 5054_CR11 publication-title: Nature Biomedical Engineering doi: 10.1038/s41551-022-00936-9 – ident: 5054_CR15 doi: 10.48550/arXiv.1705.02315 – volume: 33 start-page: 590 year: 2019 ident: 5054_CR13 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v33i01.3301590 – volume: 294 start-page: 421 year: 2020 ident: 5054_CR9 publication-title: Radiology doi: 10.1148/radiol.2019191293 – volume: 3 start-page: e496 year: 2021 ident: 5054_CR16 publication-title: The Lancet Digital Health doi: 10.1016/S2589-7500(21)00106-0 – ident: 5054_CR1 |
SSID | ssj0001340570 |
Score | 2.3326545 |
Snippet | This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally generated data... Abstract This dataset, Collab-CXR, provides a unique resource to study human-AI collaboration in chest X-ray interpretation. We present experimentally... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 739 |
SubjectTerms | 692/700/139 692/700/1421/1770 692/700/3934 706/689/159 706/689/2788 Artificial Intelligence Collaboration Cooperative Behavior Data Descriptor Datasets Decision making Humanities and Social Sciences Humans Medical imaging multidisciplinary Radiography, Thoracic Radiologists Radiology Science Science (multidisciplinary) Thorax |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp14QUCjhURmph6LWwrGdxD5ueWhbCQ6IlbhZfqq9BMSG_8_YyS7ZQtUL1ziORvN5NN9k7M8IfeHcRNWkIsdxQYARRyIZT-1Cr5rgkjxI3m1xXU9n4tdddTe66ivtCevlgXvHnXJZRVN7Fa2yUMpZ6RizsHCA5laNrbMSKOS8UTGV_67wRETocEqGcnk6h0yVhEdZRdLlbYLQlUyUBfvfYpmvN0v-1THNiehyE20MDBJPesu30Fpot9HWEKNz_HUQkj75iK4m-Nx0kKY6DNQUz8bnWPCN8fmkCsBM0rd6JQn8cyTRic_Gi2QHzS4vbs-mZLg-gTihREdM43wEeiHLmspGCuWhFvTCeUDBMuaqWEpHKyNYoEqKUEbgTkoyQxWrZXR8F623923YQxhqRg_zbJ3UXaAENAGgLG0MQQHjc75A3xau1A-9SobO3W0ude94DY7X2fGaFuhH8vbyzaRwnR8A7nrAXf8P9wIdLrDSQ9jNNWeU8zp1jQp0vByGgEldENOG-6f8DgUWWUqw41MP7dISkc50UQ6z5QroK6aujrR_fmdR7pIlpZ2qKdD3xfp4sevfvth_D18coA-sX9iE8kO03j0-hSPgSp39nMPiGcr0DPc priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggWl6BgozEAQRWHdtJ7BMqLVVBggNipb1ZfgW4ZEs3_f_MON4X0F7jOHLmYX_jsb8h5JWUrjcdBjlBKgaIuGdaSEwXRtOlgPQg-bTF1_Z8pj7Pm3nZcFuWY5WrOTFP1HERcI_8SAouZYsJgfcXvxlWjcLsaimhcZvcQeoytOpu3m32WCTCEV7uynCpj5awXiH9qGgYlnBTjO-sR5m2_39Y898jk3_lTfNydHaf3Cs4kh5Pit8nt9JwQPaLpy7p60In_eYB-XJMT90Ii9VIAaDS2fZtFvrNxXxfBZTN8FsTnwT9tEXUSU-2TeUhmZ19_H5yzkoRBRaUUSNzXYg9gAxdt1x3WpkIEWFUIYIuvBCh6WsdeOOUSNxoleoeEJTRwnEjWt0H-YjsDYshPSEUIscI_XyLHC8QCLoECq19n5IB3BdiRd6uRGkvJq4Mm3PcUttJ8BYEb7PgLa_IB5T2-k3kuc4PFpc_bHEbK3XTuzaa3hsPgbzXQQgP0wYEOU3nW1WRw5WubHG-pd2YSkVerpvBbTAX4oa0uMrvcMCStYZxPJ5Uux6JwptdXEJvvaP0naHutgy_fmZq7log307TVeTdyj4247peFk9v_o1n5K6YTJZxeUj2xsur9Byw0OhfZIP_Axu7BOE priority: 102 providerName: ProQuest |
Title | A Dataset for Understanding Radiologist-Artificial Intelligence Collaboration |
URI | https://link.springer.com/article/10.1038/s41597-025-05054-0 https://www.ncbi.nlm.nih.gov/pubmed/40319039 https://www.proquest.com/docview/3203360309 https://www.proquest.com/docview/3200324180 https://pubmed.ncbi.nlm.nih.gov/PMC12049457 https://doaj.org/article/385fa6d9fb9b469b8c22b53158557b64 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKe-GCWp6BsjISBxBYOLaT2Mft0qqsRIUKK-3N8rNwyaJu-v87dpLtLpQDp0h-RKMZP77xeD4j9JZzE1WTnBzHBQFEHIlkPIULvWqCS_Qg-bbFRX2-EPNltdxDbMyFyZf2M6VlXqbH22Gf1rDRJN5QVpH09pog4KYfJKp2GNsH0-n8-_zuZIUnEEKHDBnK5T2dd3ahTNZ_H8L8-6LkH9HSvAmdHaJHA3rE017eI7QX2sfoaJifa_xuIJF-_wR9neLPpoMtqsMAS_FiO4cFXxqfs1TAxCT9q2eRwF-26DnxbHuAPEWLs9Mfs3MyPJ1AnFCiI6ZxPgK0kGVNZSOF8uAHeuE8WMAy5qpYSkcrI1igSopQRsBNSjJDFatldPwZ2m9XbXiBMPiLHvrZOjG7gPtnApixtDEEBWjP-QJ9GFWpf_cMGTpHtrnUveI1KF5nxWtaoJOk7U3LxG6dC1bXV3qwtuayiqb2KlplwX230jFmYbEA16ZqbC0KdDzaSg9Tbq05o5zXKWJUoDebapgsKQJi2rC6yW0oIMhSghzPe9NuJBEpn4ty6C13jL4j6m5N--tnJuQuWWLZqZoCfRzHx51c_9bFy_9r_go9ZP0QJpQfo_3u-ia8BkTU2Ql60CybyTAR4HtyevHtEkpn9WySTxluAZFgCGc |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALojwDBYwEEgisOraT2AeESku1Sx8H1JX2ZhLbAS7Z0k2F-FP8RsZOsg9et17z0mQ89nzj8XwD8EyIstZFCHKskBQRcU0VFyFd6HThbaAHiactTvLRRH6YZtMN-DnUwoRjlcOaGBdqN7Nhj3xHcCZEHhICb8--0dA1KmRXhxYanVkc-h_fMWSbvxnv4_g-5_zg_eneiPZdBaiVWra0LKyr0euqNGeqUFI7DJGctA6Fqzi3WZ0qy7JScs-0kj6tEVJoxUumea5qK_C7V-AqOl4Wgr1iWiz3dESAP6yvzWFC7czRPwa6U57R0DJOUrbm_2KbgL9h2z-PaP6Wp43u7-Am3OhxK9ntDG0LNnxzC7b6lWFOXvT01S9vw_Eu2S9bdI4tQUBMJqvVM-Rj6WJ9DBoXDd_q-CvIeIUYlOytmuYdmFyKeu_CZjNr_H0gGKk6fK_KA6cMBp6lRwNKq9p7jTjTugReDao0Zx03h4k5daFMp3iDijdR8YYl8C5oe_Fk4NWOF2bnn00_TY1QWV3mTteVrmSuK2U5r3CZwqAqK6pcJrA9jJXpJ_vcLE0zgaeL2zhNQ-6lbPzsIj7DELumCuW41w3tQhIZKsmYwLfV2qCvibp-p_n6JVKBpzzw-2RFAq8H-1jK9W9dPPj_bzyBa6PT4yNzND45fAjXeWe-lIlt2GzPL_wjxGFt9TgaP4FPlz3bfgEXekBG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IMozpYCRQAJBtI7tJPYBobbbVZfCqqpYqTc3sR3oJVu6WyH-Gr-OsZPsg9et181Ds-NvPDMZzzcALzgvKpX7JMdwEWNEXMWScV8utCp3xtODhNMW4-xwIj6cpqcb8LPrhfHHKrs9MWzUdmr8N_I-Z5TzzBcE-lV7LOJ4MHx_8S32E6R8pbUbp9FA5Mj9-I7p2-zdaIBr_ZKx4cHn_cO4nTAQG6HEPC5yYyv0wDLJqMylUBbTJSuMRUFLxkxaJdLQtBDMUSWFSyoML5RkBVUsk5Xh-N4bsJn7rKgHm3sH4-OT5Rce7oMh2nbqUC77M_SWnvyUpbEfICdiuuYNw9CAv0W6fx7Y_K1qG5zh8A7cbqNYstvAbgs2XH0Xttp9YkZetWTWr-_Bp10yKOboKucEw2MyWe2lISeFDd0yCLXYv6thsyCjFZpQsr8K1PswuRYFP4BePa3dIyCYt1p8rsw8wwwqvHAIp6SsnFMYdRobwZtOlfqiYerQocLOpW4Ur1HxOihe0wj2vLYXd3qW7fDD9PKLbo1Wc5lWRWZVVapSZKqUhrESNy1MsdK8zEQEO91a6db0Z3oJ1AieLy6j0fpKTFG76VW4h2Ikm0iU42GztAtJhO8roxyflmuLvibq-pX6_GsgBk-YZ_tJ8wjedvhYyvVvXWz__288g5toafrjaHz0GG6xBr0x5TvQm19euScYlM3Lpy36CZxdt8H9Aq5EReE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dataset+for+Understanding+Radiologist-Artificial+Intelligence+Collaboration&rft.jtitle=Scientific+data&rft.au=Moehring%2C+Alex&rft.au=Kutwal%2C+Manasi&rft.au=Huang%2C+Ray&rft.au=Banerjee%2C+Oishi&rft.date=2025-05-03&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-025-05054-0&rft.externalDocID=10_1038_s41597_025_05054_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |