Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features
Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalm...
Saved in:
Published in | NPJ digital medicine Vol. 8; no. 1; pp. 188 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (
p
< 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries. |
---|---|
AbstractList | Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries. Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model ( p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries. Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries. Abstract Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries. |
ArticleNumber | 188 |
Author | Huang, Yunjian Chen, Xi Xu, Miaohong Wang, Dongni Liu, Lixue Lin, Haotian Shen, Lixia Dongye, Meimei Cao, Zizheng Tu, Zhenjun Wu, Xiaohang Lin, Duoru Zhou, Shengmei Kong, Lingyi Wang, Dongyu Wu, Yuxuan Huang, Yihong Hu, Weiling Lin, Zhenzhe Shi, Danli Wang, Zilian Lin, Xiaohong Zhang, Xulin Wang, Xun Chen, Shiyuan Zhao, Lanqin |
Author_xml | – sequence: 1 givenname: Yuxuan orcidid: 0000-0002-1945-3670 surname: Wu fullname: Wu, Yuxuan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 2 givenname: Lixia surname: Shen fullname: Shen, Lixia organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 3 givenname: Lanqin surname: Zhao fullname: Zhao, Lanqin organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 4 givenname: Xiaohong surname: Lin fullname: Lin, Xiaohong organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 5 givenname: Miaohong surname: Xu fullname: Xu, Miaohong organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 6 givenname: Zhenjun surname: Tu fullname: Tu, Zhenjun organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 7 givenname: Yihong surname: Huang fullname: Huang, Yihong organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 8 givenname: Lingyi surname: Kong fullname: Kong, Lingyi organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 9 givenname: Zhenzhe surname: Lin fullname: Lin, Zhenzhe organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 10 givenname: Duoru surname: Lin fullname: Lin, Duoru organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 11 givenname: Lixue surname: Liu fullname: Liu, Lixue organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 12 givenname: Xun surname: Wang fullname: Wang, Xun organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 13 givenname: Zizheng surname: Cao fullname: Cao, Zizheng organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 14 givenname: Xi surname: Chen fullname: Chen, Xi organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 15 givenname: Shengmei surname: Zhou fullname: Zhou, Shengmei organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 16 givenname: Weiling surname: Hu fullname: Hu, Weiling organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 17 givenname: Yunjian surname: Huang fullname: Huang, Yunjian organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 18 givenname: Shiyuan surname: Chen fullname: Chen, Shiyuan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 19 givenname: Meimei surname: Dongye fullname: Dongye, Meimei organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 20 givenname: Xulin surname: Zhang fullname: Zhang, Xulin organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 21 givenname: Dongni surname: Wang fullname: Wang, Dongni organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 22 givenname: Danli surname: Shi fullname: Shi, Danli organization: School of Optometry, The Hong Kong Polytechnic University, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Centre for Eye and Vision Research (CEVR) – sequence: 23 givenname: Zilian surname: Wang fullname: Wang, Zilian email: wangzil@mail.sysu.edu.cn organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 24 givenname: Xiaohang surname: Wu fullname: Wu, Xiaohang email: wxhang@mail2.sysu.edu.cn organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases – sequence: 25 givenname: Dongyu surname: Wang fullname: Wang, Dongyu email: wangdy28@mail.sysu.edu.cn organization: The First Affiliated Hospital, Sun Yat-sen University – sequence: 26 givenname: Haotian orcidid: 0000-0003-4672-9721 surname: Lin fullname: Lin, Haotian email: linht5@mail.sysu.edu.cn organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40188283$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhEvBXbOeEUMVHpQoucOBkTexJ8CprL3ay0v77eptSWg6c7LGfeWc8fp9XJyEGrKqXlLylhOt3WVAlZENY2xDaatbIJ9UZ451uJG_ZyYP9aXWR84YQwojQnZDPqlNBqNZM87Pq59cYfNhD9nusEdJ0qHcJnbezj6GOwzFCO8F2lz3UPhzjMUCwh3rJPox1wtkHmOoiYZcJUj0gzEvC_KJ6OsCU8eJuPa9-fPr4_fJLc_3t89Xlh-vGik7MDbQSO86dJUp3XJW3teAsEugZ9uj4QAV31ErNBsKlItL1fcF6aUExoTU_r65WXRdhY3bJbyEdTARvbg9iGg2k2dsJjXLWySILbauFbpUmbqCMHwt3HTooWu9Xrd3Sb7G0EeYE0yPRxzfB_zJj3BtKO1UGLorCmzuFFH8vmGez9dniNEHAuGTDqZZKcypVQV__g27iksosV0qqVnBWqFcPW7rv5c8XFoCtgE0x54TDPUKJOVrFrFYxxSrm1ipGliS-JuUChxHT39r_yboBpx_BTA |
Cites_doi | 10.1016/S2214-109X(14)70227-X 10.1002/uog.23645 10.1002/uog.19039 10.1016/S2589-7500(20)30288-0 10.1002/uog.22184 10.1038/s41746-024-01271-w 10.1117/1.JBO.21.6.066008 10.1097/AOG.0000000000003891 10.1038/s41586-022-04410-z 10.1016/j.ncl.2018.09.001 10.3390/jcm12020418 10.1097/WNO.0b013e31823920cb 10.1002/ijgo.12802 10.1038/s41551-020-00626-4 10.1016/S0140-6736(14)60696-6 10.1016/j.jri.2019.07.004 10.1038/s41551-021-00745-6 10.1038/s41591-025-03509-w 10.1002/uog.26105 10.1159/000341264 10.1002/uog.23528 10.1016/j.ajog.2020.08.045 10.1080/02713683.2024.2319755 10.1016/j.preghy.2021.10.006 10.1016/S2589-7500(22)00169-8 10.1001/jamanetworkopen.2021.8401 10.1016/j.atherosclerosis.2017.10.008 10.1016/j.preghy.2021.09.008 10.1136/bjo-2022-321781 10.1038/s41591-023-02510-5 10.1097/HJH.0000000000001380 10.1016/j.ajog.2019.09.041 10.1016/j.ajog.2024.02.299 10.1056/NEJMoa1704559 10.1016/j.ajo.2020.03.027 10.3389/fcvm.2022.823436 10.1038/s41572-023-00417-6 10.1016/j.ajogmf.2020.100100 10.1038/s41586-021-04249-w |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group Dec 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group Dec 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41746-025-01582-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection ProQuest Nursing and Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2398-6352 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_7dcd62eba558485780df123789399eda PMC11972394 40188283 10_1038_s41746_025_01582_6 |
Genre | Journal Article |
GeographicLocations | Hong Kong China China |
GeographicLocations_xml | – name: Hong Kong China – name: China |
GrantInformation_xml | – fundername: Sun Yat-Sen University Clinical Research 5010 Program grantid: 2022003 – fundername: the National Key Research and Development Program of China grantid: 2021YFC2700700 – fundername: National Natural Science Foundation of China grantid: 92368205 – fundername: Guangzhou Clinical Major Technology Project grantid: 2024P-ZD12 – fundername: Guangdong Provincial Natural Science Foundation for Progressive Young Scholars grantid: 2023A1515030170 – fundername: the Science and Technology Planning Projects of Guangdong Province grantid: 2018B010109008 |
GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ AASML ABUWG ACGFS ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EIHBH FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PHGZT PIMPY RNT RPM SNYQT UKHRP AAYXX CITATION PHGZM NPM PPXIY 3V. 7XB 8FK AARCD AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-a56e933dc0789371035adce0ab2ebed3f143d1c682f036706dbb371b6ca724883 |
IEDL.DBID | DOA |
ISSN | 2398-6352 |
IngestDate | Wed Aug 27 01:25:36 EDT 2025 Thu Aug 21 18:37:59 EDT 2025 Fri Jul 11 18:49:21 EDT 2025 Wed Aug 13 06:10:14 EDT 2025 Mon Jul 21 05:44:13 EDT 2025 Tue Jul 01 05:13:23 EDT 2025 Sun Apr 06 01:11:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-a56e933dc0789371035adce0ab2ebed3f143d1c682f036706dbb371b6ca724883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4672-9721 0000-0002-1945-3670 |
OpenAccessLink | https://doaj.org/article/7dcd62eba558485780df123789399eda |
PMID | 40188283 |
PQID | 3186675432 |
PQPubID | 5061815 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7dcd62eba558485780df123789399eda pubmedcentral_primary_oai_pubmedcentral_nih_gov_11972394 proquest_miscellaneous_3186783167 proquest_journals_3186675432 pubmed_primary_40188283 crossref_primary_10_1038_s41746_025_01582_6 springer_journals_10_1038_s41746_025_01582_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-05 |
PublicationDateYYYYMMDD | 2025-04-05 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ digital medicine |
PublicationTitleAbbrev | npj Digit. Med |
PublicationTitleAlternate | NPJ Digit Med |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | NJ Kassebaum (1582_CR4) 2014; 384 M De Borre (1582_CR12) 2023; 29 MN Moufarrej (1582_CR13) 2022; 602 CY Cheung (1582_CR22) 2020; 5 Y Li (1582_CR38) 2021; 26 Y Wu (1582_CR17) 2024; 108 DL Rolnik (1582_CR10) 2017; 377 S Yan (1582_CR31) 2024; 49 L Say (1582_CR3) 2014; 2 R Akolekar (1582_CR8) 2013; 33 W Xiao (1582_CR23) 2021; 3 M Sarno (1582_CR43) 2020; 56 I Sapantzoglou (1582_CR44) 2021; 57 DL Rolnik (1582_CR46) 2022; 226 RJ Tapp (1582_CR30) 2019; 74 1582_CR39 CS Lee (1582_CR24) 2019; 33 M Rasmussen (1582_CR14) 2022; 601 Z Manoochehri (1582_CR37) 2021; 19 LA Magee (1582_CR28) 2022; 27 A Khalil (1582_CR41) 2024; 231 P Chaemsaithong (1582_CR7) 2019; 221 A-S Melinte-Popescu (1582_CR40) 2023; 12 KA Ponto (1582_CR32) 2017; 35 J Chang (1582_CR19) 2020; 217 AC Staff (1582_CR35) 2019; 134–135 Y Yang (1582_CR6) 2021; 4 SB Wang (1582_CR15) 2018; 268 KB Digre (1582_CR26) 2011; 31 Hypertensive Disorders in Pregnancy Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. (1582_CR27) 2020; 55 E Dimitriadis (1582_CR1) 2023; 9 AL Gilbert (1582_CR25) 2019; 37 MY Tan (1582_CR5) 2018; 51 D Shi (1582_CR29) 2022; 9 1582_CR45 J Hu (1582_CR9) 2021; 58 Z Chu (1582_CR33) 2016; 21 WC Iao (1582_CR16) 2023; 13 M Adil (1582_CR42) 2025 K Zhang (1582_CR21) 2021; 5 CY Cheung (1582_CR20) 2022; 4 MA Brown (1582_CR2) 2018; 72 LC Poon (1582_CR11) 2019; 145 Z Ansbacher-Feldman (1582_CR36) 2022; 60 X Zhao (1582_CR18) 2024; 7 BA Corliss (1582_CR34) 2019; 26 |
References_xml | – volume: 2 start-page: e323 year: 2014 ident: 1582_CR3 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(14)70227-X – volume: 58 start-page: 529 year: 2021 ident: 1582_CR9 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.23645 – volume: 51 start-page: 743 year: 2018 ident: 1582_CR5 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.19039 – volume: 19 start-page: 959 year: 2021 ident: 1582_CR37 publication-title: Int. J. Reprod. Biomed. – volume: 72 start-page: 24 year: 2018 ident: 1582_CR2 publication-title: Hypertens. Dallas Tex. 1979 – volume: 3 start-page: e88 year: 2021 ident: 1582_CR23 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(20)30288-0 – volume: 56 start-page: 717 year: 2020 ident: 1582_CR43 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.22184 – volume: 7 start-page: 275 year: 2024 ident: 1582_CR18 publication-title: Npj Digit. Med. doi: 10.1038/s41746-024-01271-w – volume: 74 start-page: 1383 year: 2019 ident: 1582_CR30 publication-title: Hypertens. Dallas Tex. 1979 – volume: 21 start-page: 66008 year: 2016 ident: 1582_CR33 publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.21.6.066008 – volume: 55 start-page: 227 year: 2020 ident: 1582_CR27 publication-title: Zhonghua Fu Chan Ke Za Zhi – ident: 1582_CR45 doi: 10.1097/AOG.0000000000003891 – volume: 26 start-page: e12520 year: 2019 ident: 1582_CR34 publication-title: Microcirc. N. Y. N. 1994 – volume: 602 start-page: 689 year: 2022 ident: 1582_CR13 publication-title: Nature doi: 10.1038/s41586-022-04410-z – volume: 37 start-page: 85 year: 2019 ident: 1582_CR25 publication-title: Neurol. Clin. doi: 10.1016/j.ncl.2018.09.001 – volume: 13 start-page: 900 year: 2023 ident: 1582_CR16 publication-title: Diagn. Basel Switz. – volume: 12 start-page: 418 year: 2023 ident: 1582_CR40 publication-title: J. Clin. Med. doi: 10.3390/jcm12020418 – volume: 31 start-page: 381 year: 2011 ident: 1582_CR26 publication-title: J. North Am. Neuro-Ophthalmol. Soc. doi: 10.1097/WNO.0b013e31823920cb – volume: 145 start-page: 1 year: 2019 ident: 1582_CR11 publication-title: Int. J. Gynecol. Obstet. doi: 10.1002/ijgo.12802 – volume: 5 start-page: 498 year: 2020 ident: 1582_CR22 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-020-00626-4 – volume: 384 start-page: 980 year: 2014 ident: 1582_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(14)60696-6 – volume: 134–135 start-page: 1 year: 2019 ident: 1582_CR35 publication-title: J. Reprod. Immunol. doi: 10.1016/j.jri.2019.07.004 – volume: 5 start-page: 533 year: 2021 ident: 1582_CR21 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00745-6 – volume: 33 start-page: 1707 year: 2019 ident: 1582_CR24 publication-title: Eye Lond. Engl. – year: 2025 ident: 1582_CR42 publication-title: Nat. Med. doi: 10.1038/s41591-025-03509-w – volume: 60 start-page: 739 year: 2022 ident: 1582_CR36 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.26105 – volume: 33 start-page: 8 year: 2013 ident: 1582_CR8 publication-title: Fetal Diagn. Ther. doi: 10.1159/000341264 – volume: 57 start-page: 75 year: 2021 ident: 1582_CR44 publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.23528 – volume: 226 start-page: S1108 year: 2022 ident: 1582_CR46 publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2020.08.045 – volume: 49 start-page: 639 year: 2024 ident: 1582_CR31 publication-title: Curr. Eye Res. doi: 10.1080/02713683.2024.2319755 – volume: 26 start-page: 102 year: 2021 ident: 1582_CR38 publication-title: Pregnancy Hypertens. doi: 10.1016/j.preghy.2021.10.006 – volume: 4 start-page: e806 year: 2022 ident: 1582_CR20 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(22)00169-8 – volume: 4 start-page: e218401 year: 2021 ident: 1582_CR6 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2021.8401 – volume: 268 start-page: 215 year: 2018 ident: 1582_CR15 publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.10.008 – volume: 27 start-page: 148 year: 2022 ident: 1582_CR28 publication-title: Pregnancy Hypertens. doi: 10.1016/j.preghy.2021.09.008 – volume: 108 start-page: 117 year: 2024 ident: 1582_CR17 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo-2022-321781 – volume: 29 start-page: 2206 year: 2023 ident: 1582_CR12 publication-title: Nat. Med. doi: 10.1038/s41591-023-02510-5 – volume: 35 start-page: 1635 year: 2017 ident: 1582_CR32 publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000001380 – volume: 221 start-page: 650.e1 year: 2019 ident: 1582_CR7 publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2019.09.041 – volume: 231 start-page: 554.e1 year: 2024 ident: 1582_CR41 publication-title: Am. J. Obstet. Gynecol. doi: 10.1016/j.ajog.2024.02.299 – volume: 377 start-page: 613 year: 2017 ident: 1582_CR10 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1704559 – volume: 217 start-page: 121 year: 2020 ident: 1582_CR19 publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2020.03.027 – volume: 9 start-page: 823436 year: 2022 ident: 1582_CR29 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.823436 – volume: 9 start-page: 8 year: 2023 ident: 1582_CR1 publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-023-00417-6 – ident: 1582_CR39 doi: 10.1016/j.ajogmf.2020.100100 – volume: 601 start-page: 422 year: 2022 ident: 1582_CR14 publication-title: Nature doi: 10.1038/s41586-021-04249-w |
SSID | ssj0002048946 |
Score | 2.3011336 |
Snippet | Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction... Abstract Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 188 |
SubjectTerms | 692/53/2423 692/699/75/243/793 Artificial intelligence Biomarkers Biomedicine Biotechnology Clinical medicine Gestational age Hospitals Hypertension Kidney diseases Machine learning Medicine Medicine & Public Health Mortality Obstetrics Ophthalmology Overweight Preeclampsia Pregnancy Prenatal care Regression analysis Risk factors Womens health |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXxJtAQUbiBlaz8SPJCQGiqpDaE5WWk-VXlr0ky2aLxL9nxnG2Wl5Hx5Ziz4w9nz3jzwCvCYSrTgeunLNcooPlbeUFR2yqXadU8Au6KHx-oc8u5eelWuYDtzGnVc5rYlqow-DpjPxEEDNbraSo3m2-c3o1iqKr-QmNm3CLqMvIqutlvT9jIVLaVup8V6YUzckoEYFT1i1lrCkEl_rAHyXa_r9hzT9TJn-LmyZ3dHoP7mYcyd5Pir8PN2L_AG6f50j5Q_h6QeesPyxlp7NILMZss6VaUgQbOipFj-awGdeWrXsqr4h84yejVPgVo9uN9Ic5VZV1MXGAjo_g8vTTl49nPD-jwL1s5Y5bpWMrRPDELC8QUQhlcRyldRVqMIgOIVNYeN1UXUl0bjo4h82c9raucH6Lx3DUD318CiyESjsr62BRjE5ZK5wK2i4CekLnZV3Am1mYZjOxZZgU5RaNmURvUPQmid7oAj6QvPctiek6fRi2K5MnjqmDDxo7ahVCpQbXlzJ06G1pKG0bgy3geNaWydNvNNfGUsCrfTVOHIqG2D4OV1ObuiEigAKeTMrd9wQ3nbjzaEQBzYHaD7p6WNOvvyVy7ukdt1YW8Ha2kOt-_VsWz_4_jOdwp0pGK3mpjuFot72KLxAN7dzLZPK_AKzvCOI priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkKpeEFAoLg9tpd7AquN92D4GBEKR4EKR4LTal9NcnCgJSPz7zqztVCn00KO9a3n8za7nW-_MZ4DvRMJlrXwqrTWpwACbVrnjKXJTZWspvRtQofDtnbp5EKNH-bgBeV8LE5P2o6RlfE332WE_FgKpM6XLUqqZRFaoPsAWSbXj2N4aDkf3o9WXFZKirYTqKmQyXr5z8VoUimL97zHMt4mSf-2WxiB0vQPbHXtkw9beXdgIzR58vO32xz_D0x19XX0xlJPOAmkXs9mcWgl-Nq3pKDgcBLPFxLBJQ8djktx4ZZQAP2ZU00h36BNUWR0iTIt9eLi--nl5k3Y_T0idqMQyNVKFinPvSE-eI4_g0uBzZMbm6DfPayRKfuBUmdcZibgpby12s8qZIsdZzQ9gs5k24RCY97myRhTeIIxWGsOt9MoMPMY_60SRwFkPpp61Ghk67m3zUrfQa4ReR-i1SuCC8F71JH3reGI6H-vO37rwzis01EgkSCW-VTJfY4ylR6mq4E0Cx723dDfpFpqTeF8hBc8T-LZqxulCeyCmCdPntk9RUvl_Al9a564swaUmrjdKnkC55vY1U9dbmsmvKMnd_r2tEgmc9yPkj13_xuLr_3U_gk95HMQizeQxbC7nz-EEOdHSnnaT4DePLQf9 priority: 102 providerName: Springer Nature |
Title | Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features |
URI | https://link.springer.com/article/10.1038/s41746-025-01582-6 https://www.ncbi.nlm.nih.gov/pubmed/40188283 https://www.proquest.com/docview/3186675432 https://www.proquest.com/docview/3186783167 https://pubmed.ncbi.nlm.nih.gov/PMC11972394 https://doaj.org/article/7dcd62eba558485780df123789399eda |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7aFEovoe-oTc0WemtFZO1LOjomIRhiStuAe1r2pdQ9yCZ2Cv33nVnJbtwHueQkVrug1Te7mm81s98CvCMSLhsVcumczQU62LwuPc-RmyrXSBn8kDYKn0_V2YWYzOTsxlFflBPWyQN3wB3p4IMqo7MSXWWF46sIDX5tNfrZuo4hUSP0eTcWU99TeE1UtVD9LpmCV0crgdyb8m0pV00irVQ7nigJ9v-LZf6dLPlHxDQ5otPHsN8zSDbqev4E7sX2KTw872Pkz-DrlP6w_rCUl84i6Rez5RXVkgnYoqFS9DgQlqu5ZfOWypcku_GTURL8JaN9jfSETZIqa2JS_1w9h4vTky_js7w_QCH3ohbr3EoVa86DJ015jlyCS4vvUViHgMbAGyRLYehVVTYFCbmp4Bw2c8pbXeLM5i9gr1208QBYCKVyVuhgEUYnreVOBmWHAX2g80Jn8H4Dpll2Ohkmxbd5ZTroDUJvEvRGZXBMeG9bksZ1uoGWN73lzW2Wz-BwYy3TT7yV4STgp6XgZQZvt9U4ZSgOYtu4uO7a6IokADJ42Rl32xNcbuKao-IZVDtm3-nqbk07_5ZkubsT3GqRwYfNCPndr_9j8eousHgNj8o0tEVeyEPYW19dxzfIltZuAPf1TA_gwWg0-TzB6_HJ9OMnvDtW40GaNL8AghcWLA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkEviGcxFDASnMCq433YPiDEq0ppk1MrhdOyL4dc7DRJQf1T_EZm1naq8Lr1aO_K3p2Z3ZnZmf0G4AUZ4aKSLhHG6ISjgk3KzLIEbVNpKiGcHdBF4dFYDk_554mYbMHP_i4MpVX2e2LYqF1j6Yx8nxEyWy44y97OzxKqGkXR1b6ERisWR_7iB7psyzeHH5G_L7Ps4NPJh2HSVRVILC_5KtFCevTinSWgdYYKlgntrE-1yXBCjlVoQbiBlUVWpYRuJp0x2M1Iq_MMxZ3hd6_BdVS8KTl7-SRfn-kQCG7JZXc3J2XF_pKjxU9ZvpQhJ9CYlRv6L5QJ-Jtt-2eK5m9x2qD-Dm7Drc5ujd-1gnYHtnx9F26Musj8PfgypnPd75qy4WNPqMnxfEGtxPi4qejJWxS_-XKm41lNz1MC-7iIKfV-GtNtSvpDnxobVz5gji7vw-mVEPgBbNdN7R9C7Fwmjea500hGI7RmRjipBw41r7E8j-BVT0w1b9E5VIiqs0K1pFdIehVIr2QE74ne656ErB1eNIup6haqyp11EgeqBZpmBe5nqatQu9NUytI7HcFezy3VLfeluhTOCJ6vm3GhUvRF1745b_vkBQEPRLDbMnc9EnRy0dMpWATFBts3hrrZUs--BTDwtm5cySN43UvI5bj-TYtH_5_GM7g5PBkdq-PD8dFj2MmCAPMkFXuwvVqc-ydoia3M0yD-MXy96vX2Cxs4RWs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4IN64LWAkOIHB8T5sHzgEStSmNEKCSuW03ZdDLk6UpKD-IX4nM2s7KFAOHHp0duWMv5n1fOud_RbgOZFwUUmXCGN0wjHBJmVmWYLcVJpKCGf7tFH4ZCwPT_noTJxtwc9uL0wo2g-SluE13VWHvVlypM5ULkulZgJZoXw9d1VbTHnsL3_gVG359ugA_foiy4Yfvrw_TNrTBBLLS75KtJAeZ-_OksA6w8TKhHbWp9pk-CCOVcgcXN_KIqtSUjWTzhjsZqTVeYZhzvC-N2Ab-X2f92B7MBh9Hq2_5pD8bclluysnZcUVBm9kvnBAwFWs9u_izD9WaEPiG96GWy1jjQcNRndgy9d3YeekXZO_B1_H9EX3u6Y6-NiTXnI8X1AruTyeVXTlLQbefDnV8bSm6wnJfFzGVHQ_iWkfJf1DVxQbVz64ZnkfTq8F4gfQq2e1fwSxc5k0mudOI4xGaM2McFL3HeZcY3kewcsOTDVvdDlUWE9nhWqgVwi9CtArGcE7wnvdkzS1ww-zxUS1MaZyZ51EQ7VAUlbgmyx1FeZ1epSy9E5HsN95S7UDfakYCQbmgrMsgmfrZhyitO6iaz-7aPrkBUkORPCwce7aEpze4hynYBEUG27fMHWzpZ5-CzLgzYlxJY_gVRchv-36Nxa7_9f9Kex8Ohiqj0fj4z24mYV45kkq9qG3Wlz4x0jJVuZJOx5iOL_uIfgLgehFtw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+early+prediction+of+preeclampsia+in+pregnancy+using+retinal+vascular+features&rft.jtitle=NPJ+digital+medicine&rft.au=Yuxuan+Wu&rft.au=Lixia+Shen&rft.au=Lanqin+Zhao&rft.au=Xiaohong+Lin&rft.date=2025-04-05&rft.pub=Nature+Portfolio&rft.eissn=2398-6352&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41746-025-01582-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dcd62eba558485780df123789399eda |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon |