Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features

Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalm...

Full description

Saved in:
Bibliographic Details
Published inNPJ digital medicine Vol. 8; no. 1; pp. 188 - 9
Main Authors Wu, Yuxuan, Shen, Lixia, Zhao, Lanqin, Lin, Xiaohong, Xu, Miaohong, Tu, Zhenjun, Huang, Yihong, Kong, Lingyi, Lin, Zhenzhe, Lin, Duoru, Liu, Lixue, Wang, Xun, Cao, Zizheng, Chen, Xi, Zhou, Shengmei, Hu, Weiling, Huang, Yunjian, Chen, Shiyuan, Dongye, Meimei, Zhang, Xulin, Wang, Dongni, Shi, Danli, Wang, Zilian, Wu, Xiaohang, Wang, Dongyu, Lin, Haotian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model ( p  < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
AbstractList Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model ( p  < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83-0.90) for PE prediction and 0.91 (0.85-0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
Abstract Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction biomarkers are often invasive and expensive, hindering their widespread application. This study introduces PROMPT (Preeclampsia Risk factor + Ophthalmic data + Mean arterial pressure Prediction Test), an AI-driven model leveraging retinal photography for PE prediction, registered at ChiCTR (ChiCTR2100049850) in August 2021. Analyzing 1812 pregnancies before 14 gestational weeks, we extracted retinal parameters using a deep learning system. The PROMPT achieved an AUC of 0.87 (0.83–0.90) for PE prediction and 0.91 (0.85–0.97) for preterm PE prediction using machine learning, significantly outperforming the baseline model (p < 0.001). It also improved detection of severe adverse pregnancy outcomes from 35% to 41%. Economically, PROMPT was estimated to avert 1809 PE cases and saved over $50 million per 100,000 screenings. These results position PROMPT as a non-invasive and cost-effective tool for prenatal care, especially valuable in low- and middle-income countries.
ArticleNumber 188
Author Huang, Yunjian
Chen, Xi
Xu, Miaohong
Wang, Dongni
Liu, Lixue
Lin, Haotian
Shen, Lixia
Dongye, Meimei
Cao, Zizheng
Tu, Zhenjun
Wu, Xiaohang
Lin, Duoru
Zhou, Shengmei
Kong, Lingyi
Wang, Dongyu
Wu, Yuxuan
Huang, Yihong
Hu, Weiling
Lin, Zhenzhe
Shi, Danli
Wang, Zilian
Lin, Xiaohong
Zhang, Xulin
Wang, Xun
Chen, Shiyuan
Zhao, Lanqin
Author_xml – sequence: 1
  givenname: Yuxuan
  orcidid: 0000-0002-1945-3670
  surname: Wu
  fullname: Wu, Yuxuan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 2
  givenname: Lixia
  surname: Shen
  fullname: Shen, Lixia
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 3
  givenname: Lanqin
  surname: Zhao
  fullname: Zhao, Lanqin
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 4
  givenname: Xiaohong
  surname: Lin
  fullname: Lin, Xiaohong
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 5
  givenname: Miaohong
  surname: Xu
  fullname: Xu, Miaohong
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 6
  givenname: Zhenjun
  surname: Tu
  fullname: Tu, Zhenjun
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 7
  givenname: Yihong
  surname: Huang
  fullname: Huang, Yihong
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 8
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 9
  givenname: Zhenzhe
  surname: Lin
  fullname: Lin, Zhenzhe
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 10
  givenname: Duoru
  surname: Lin
  fullname: Lin, Duoru
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 11
  givenname: Lixue
  surname: Liu
  fullname: Liu, Lixue
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 12
  givenname: Xun
  surname: Wang
  fullname: Wang, Xun
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 13
  givenname: Zizheng
  surname: Cao
  fullname: Cao, Zizheng
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 14
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 15
  givenname: Shengmei
  surname: Zhou
  fullname: Zhou, Shengmei
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 16
  givenname: Weiling
  surname: Hu
  fullname: Hu, Weiling
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 17
  givenname: Yunjian
  surname: Huang
  fullname: Huang, Yunjian
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 18
  givenname: Shiyuan
  surname: Chen
  fullname: Chen, Shiyuan
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 19
  givenname: Meimei
  surname: Dongye
  fullname: Dongye, Meimei
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 20
  givenname: Xulin
  surname: Zhang
  fullname: Zhang, Xulin
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 21
  givenname: Dongni
  surname: Wang
  fullname: Wang, Dongni
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 22
  givenname: Danli
  surname: Shi
  fullname: Shi, Danli
  organization: School of Optometry, The Hong Kong Polytechnic University, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Centre for Eye and Vision Research (CEVR)
– sequence: 23
  givenname: Zilian
  surname: Wang
  fullname: Wang, Zilian
  email: wangzil@mail.sysu.edu.cn
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 24
  givenname: Xiaohang
  surname: Wu
  fullname: Wu, Xiaohang
  email: wxhang@mail2.sysu.edu.cn
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases
– sequence: 25
  givenname: Dongyu
  surname: Wang
  fullname: Wang, Dongyu
  email: wangdy28@mail.sysu.edu.cn
  organization: The First Affiliated Hospital, Sun Yat-sen University
– sequence: 26
  givenname: Haotian
  orcidid: 0000-0003-4672-9721
  surname: Lin
  fullname: Lin, Haotian
  email: linht5@mail.sysu.edu.cn
  organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Center for Precision Medicine and Department of Genetics and Biomedical Informatics, Zhongshan School of Medicine, Sun Yat-sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40188283$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBXbOeEUMVHpQoucOBkTexJ8CprL3ay0v77eptSWg6c7LGfeWc8fp9XJyEGrKqXlLylhOt3WVAlZENY2xDaatbIJ9UZ451uJG_ZyYP9aXWR84YQwojQnZDPqlNBqNZM87Pq59cYfNhD9nusEdJ0qHcJnbezj6GOwzFCO8F2lz3UPhzjMUCwh3rJPox1wtkHmOoiYZcJUj0gzEvC_KJ6OsCU8eJuPa9-fPr4_fJLc_3t89Xlh-vGik7MDbQSO86dJUp3XJW3teAsEugZ9uj4QAV31ErNBsKlItL1fcF6aUExoTU_r65WXRdhY3bJbyEdTARvbg9iGg2k2dsJjXLWySILbauFbpUmbqCMHwt3HTooWu9Xrd3Sb7G0EeYE0yPRxzfB_zJj3BtKO1UGLorCmzuFFH8vmGez9dniNEHAuGTDqZZKcypVQV__g27iksosV0qqVnBWqFcPW7rv5c8XFoCtgE0x54TDPUKJOVrFrFYxxSrm1ipGliS-JuUChxHT39r_yboBpx_BTA
Cites_doi 10.1016/S2214-109X(14)70227-X
10.1002/uog.23645
10.1002/uog.19039
10.1016/S2589-7500(20)30288-0
10.1002/uog.22184
10.1038/s41746-024-01271-w
10.1117/1.JBO.21.6.066008
10.1097/AOG.0000000000003891
10.1038/s41586-022-04410-z
10.1016/j.ncl.2018.09.001
10.3390/jcm12020418
10.1097/WNO.0b013e31823920cb
10.1002/ijgo.12802
10.1038/s41551-020-00626-4
10.1016/S0140-6736(14)60696-6
10.1016/j.jri.2019.07.004
10.1038/s41551-021-00745-6
10.1038/s41591-025-03509-w
10.1002/uog.26105
10.1159/000341264
10.1002/uog.23528
10.1016/j.ajog.2020.08.045
10.1080/02713683.2024.2319755
10.1016/j.preghy.2021.10.006
10.1016/S2589-7500(22)00169-8
10.1001/jamanetworkopen.2021.8401
10.1016/j.atherosclerosis.2017.10.008
10.1016/j.preghy.2021.09.008
10.1136/bjo-2022-321781
10.1038/s41591-023-02510-5
10.1097/HJH.0000000000001380
10.1016/j.ajog.2019.09.041
10.1016/j.ajog.2024.02.299
10.1056/NEJMoa1704559
10.1016/j.ajo.2020.03.027
10.3389/fcvm.2022.823436
10.1038/s41572-023-00417-6
10.1016/j.ajogmf.2020.100100
10.1038/s41586-021-04249-w
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group Dec 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-025-01582-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
ProQuest Nursing and Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 9
ExternalDocumentID oai_doaj_org_article_7dcd62eba558485780df123789399eda
PMC11972394
40188283
10_1038_s41746_025_01582_6
Genre Journal Article
GeographicLocations Hong Kong China
China
GeographicLocations_xml – name: Hong Kong China
– name: China
GrantInformation_xml – fundername: Sun Yat-Sen University Clinical Research 5010 Program
  grantid: 2022003
– fundername: the National Key Research and Development Program of China
  grantid: 2021YFC2700700
– fundername: National Natural Science Foundation of China
  grantid: 92368205
– fundername: Guangzhou Clinical Major Technology Project
  grantid: 2024P-ZD12
– fundername: Guangdong Provincial Natural Science Foundation for Progressive Young Scholars
  grantid: 2023A1515030170
– fundername: the Science and Technology Planning Projects of Guangdong Province
  grantid: 2018B010109008
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PHGZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
NPM
PPXIY
3V.
7XB
8FK
AARCD
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-a56e933dc0789371035adce0ab2ebed3f143d1c682f036706dbb371b6ca724883
IEDL.DBID DOA
ISSN 2398-6352
IngestDate Wed Aug 27 01:25:36 EDT 2025
Thu Aug 21 18:37:59 EDT 2025
Fri Jul 11 18:49:21 EDT 2025
Wed Aug 13 06:10:14 EDT 2025
Mon Jul 21 05:44:13 EDT 2025
Tue Jul 01 05:13:23 EDT 2025
Sun Apr 06 01:11:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-a56e933dc0789371035adce0ab2ebed3f143d1c682f036706dbb371b6ca724883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4672-9721
0000-0002-1945-3670
OpenAccessLink https://doaj.org/article/7dcd62eba558485780df123789399eda
PMID 40188283
PQID 3186675432
PQPubID 5061815
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_7dcd62eba558485780df123789399eda
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11972394
proquest_miscellaneous_3186783167
proquest_journals_3186675432
pubmed_primary_40188283
crossref_primary_10_1038_s41746_025_01582_6
springer_journals_10_1038_s41746_025_01582_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-05
PublicationDateYYYYMMDD 2025-04-05
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References NJ Kassebaum (1582_CR4) 2014; 384
M De Borre (1582_CR12) 2023; 29
MN Moufarrej (1582_CR13) 2022; 602
CY Cheung (1582_CR22) 2020; 5
Y Li (1582_CR38) 2021; 26
Y Wu (1582_CR17) 2024; 108
DL Rolnik (1582_CR10) 2017; 377
S Yan (1582_CR31) 2024; 49
L Say (1582_CR3) 2014; 2
R Akolekar (1582_CR8) 2013; 33
W Xiao (1582_CR23) 2021; 3
M Sarno (1582_CR43) 2020; 56
I Sapantzoglou (1582_CR44) 2021; 57
DL Rolnik (1582_CR46) 2022; 226
RJ Tapp (1582_CR30) 2019; 74
1582_CR39
CS Lee (1582_CR24) 2019; 33
M Rasmussen (1582_CR14) 2022; 601
Z Manoochehri (1582_CR37) 2021; 19
LA Magee (1582_CR28) 2022; 27
A Khalil (1582_CR41) 2024; 231
P Chaemsaithong (1582_CR7) 2019; 221
A-S Melinte-Popescu (1582_CR40) 2023; 12
KA Ponto (1582_CR32) 2017; 35
J Chang (1582_CR19) 2020; 217
AC Staff (1582_CR35) 2019; 134–135
Y Yang (1582_CR6) 2021; 4
SB Wang (1582_CR15) 2018; 268
KB Digre (1582_CR26) 2011; 31
Hypertensive Disorders in Pregnancy Subgroup, Chinese Society of Obstetrics and Gynecology, Chinese Medical Association. (1582_CR27) 2020; 55
E Dimitriadis (1582_CR1) 2023; 9
AL Gilbert (1582_CR25) 2019; 37
MY Tan (1582_CR5) 2018; 51
D Shi (1582_CR29) 2022; 9
1582_CR45
J Hu (1582_CR9) 2021; 58
Z Chu (1582_CR33) 2016; 21
WC Iao (1582_CR16) 2023; 13
M Adil (1582_CR42) 2025
K Zhang (1582_CR21) 2021; 5
CY Cheung (1582_CR20) 2022; 4
MA Brown (1582_CR2) 2018; 72
LC Poon (1582_CR11) 2019; 145
Z Ansbacher-Feldman (1582_CR36) 2022; 60
X Zhao (1582_CR18) 2024; 7
BA Corliss (1582_CR34) 2019; 26
References_xml – volume: 2
  start-page: e323
  year: 2014
  ident: 1582_CR3
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(14)70227-X
– volume: 58
  start-page: 529
  year: 2021
  ident: 1582_CR9
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.23645
– volume: 51
  start-page: 743
  year: 2018
  ident: 1582_CR5
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.19039
– volume: 19
  start-page: 959
  year: 2021
  ident: 1582_CR37
  publication-title: Int. J. Reprod. Biomed.
– volume: 72
  start-page: 24
  year: 2018
  ident: 1582_CR2
  publication-title: Hypertens. Dallas Tex. 1979
– volume: 3
  start-page: e88
  year: 2021
  ident: 1582_CR23
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(20)30288-0
– volume: 56
  start-page: 717
  year: 2020
  ident: 1582_CR43
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.22184
– volume: 7
  start-page: 275
  year: 2024
  ident: 1582_CR18
  publication-title: Npj Digit. Med.
  doi: 10.1038/s41746-024-01271-w
– volume: 74
  start-page: 1383
  year: 2019
  ident: 1582_CR30
  publication-title: Hypertens. Dallas Tex. 1979
– volume: 21
  start-page: 66008
  year: 2016
  ident: 1582_CR33
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.21.6.066008
– volume: 55
  start-page: 227
  year: 2020
  ident: 1582_CR27
  publication-title: Zhonghua Fu Chan Ke Za Zhi
– ident: 1582_CR45
  doi: 10.1097/AOG.0000000000003891
– volume: 26
  start-page: e12520
  year: 2019
  ident: 1582_CR34
  publication-title: Microcirc. N. Y. N. 1994
– volume: 602
  start-page: 689
  year: 2022
  ident: 1582_CR13
  publication-title: Nature
  doi: 10.1038/s41586-022-04410-z
– volume: 37
  start-page: 85
  year: 2019
  ident: 1582_CR25
  publication-title: Neurol. Clin.
  doi: 10.1016/j.ncl.2018.09.001
– volume: 13
  start-page: 900
  year: 2023
  ident: 1582_CR16
  publication-title: Diagn. Basel Switz.
– volume: 12
  start-page: 418
  year: 2023
  ident: 1582_CR40
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm12020418
– volume: 31
  start-page: 381
  year: 2011
  ident: 1582_CR26
  publication-title: J. North Am. Neuro-Ophthalmol. Soc.
  doi: 10.1097/WNO.0b013e31823920cb
– volume: 145
  start-page: 1
  year: 2019
  ident: 1582_CR11
  publication-title: Int. J. Gynecol. Obstet.
  doi: 10.1002/ijgo.12802
– volume: 5
  start-page: 498
  year: 2020
  ident: 1582_CR22
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-020-00626-4
– volume: 384
  start-page: 980
  year: 2014
  ident: 1582_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60696-6
– volume: 134–135
  start-page: 1
  year: 2019
  ident: 1582_CR35
  publication-title: J. Reprod. Immunol.
  doi: 10.1016/j.jri.2019.07.004
– volume: 5
  start-page: 533
  year: 2021
  ident: 1582_CR21
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00745-6
– volume: 33
  start-page: 1707
  year: 2019
  ident: 1582_CR24
  publication-title: Eye Lond. Engl.
– year: 2025
  ident: 1582_CR42
  publication-title: Nat. Med.
  doi: 10.1038/s41591-025-03509-w
– volume: 60
  start-page: 739
  year: 2022
  ident: 1582_CR36
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.26105
– volume: 33
  start-page: 8
  year: 2013
  ident: 1582_CR8
  publication-title: Fetal Diagn. Ther.
  doi: 10.1159/000341264
– volume: 57
  start-page: 75
  year: 2021
  ident: 1582_CR44
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.23528
– volume: 226
  start-page: S1108
  year: 2022
  ident: 1582_CR46
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2020.08.045
– volume: 49
  start-page: 639
  year: 2024
  ident: 1582_CR31
  publication-title: Curr. Eye Res.
  doi: 10.1080/02713683.2024.2319755
– volume: 26
  start-page: 102
  year: 2021
  ident: 1582_CR38
  publication-title: Pregnancy Hypertens.
  doi: 10.1016/j.preghy.2021.10.006
– volume: 4
  start-page: e806
  year: 2022
  ident: 1582_CR20
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(22)00169-8
– volume: 4
  start-page: e218401
  year: 2021
  ident: 1582_CR6
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2021.8401
– volume: 268
  start-page: 215
  year: 2018
  ident: 1582_CR15
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.10.008
– volume: 27
  start-page: 148
  year: 2022
  ident: 1582_CR28
  publication-title: Pregnancy Hypertens.
  doi: 10.1016/j.preghy.2021.09.008
– volume: 108
  start-page: 117
  year: 2024
  ident: 1582_CR17
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo-2022-321781
– volume: 29
  start-page: 2206
  year: 2023
  ident: 1582_CR12
  publication-title: Nat. Med.
  doi: 10.1038/s41591-023-02510-5
– volume: 35
  start-page: 1635
  year: 2017
  ident: 1582_CR32
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000001380
– volume: 221
  start-page: 650.e1
  year: 2019
  ident: 1582_CR7
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2019.09.041
– volume: 231
  start-page: 554.e1
  year: 2024
  ident: 1582_CR41
  publication-title: Am. J. Obstet. Gynecol.
  doi: 10.1016/j.ajog.2024.02.299
– volume: 377
  start-page: 613
  year: 2017
  ident: 1582_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1704559
– volume: 217
  start-page: 121
  year: 2020
  ident: 1582_CR19
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2020.03.027
– volume: 9
  start-page: 823436
  year: 2022
  ident: 1582_CR29
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.823436
– volume: 9
  start-page: 8
  year: 2023
  ident: 1582_CR1
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-023-00417-6
– ident: 1582_CR39
  doi: 10.1016/j.ajogmf.2020.100100
– volume: 601
  start-page: 422
  year: 2022
  ident: 1582_CR14
  publication-title: Nature
  doi: 10.1038/s41586-021-04249-w
SSID ssj0002048946
Score 2.3011336
Snippet Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction...
Abstract Preeclampsia (PE), a severe hypertensive disorder during pregnancy, significantly contributes to maternal and neonatal mortality. Existing prediction...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 188
SubjectTerms 692/53/2423
692/699/75/243/793
Artificial intelligence
Biomarkers
Biomedicine
Biotechnology
Clinical medicine
Gestational age
Hospitals
Hypertension
Kidney diseases
Machine learning
Medicine
Medicine & Public Health
Mortality
Obstetrics
Ophthalmology
Overweight
Preeclampsia
Pregnancy
Prenatal care
Regression analysis
Risk factors
Womens health
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAXxJtAQUbiBlaz8SPJCQGiqpDaE5WWk-VXlr0ky2aLxL9nxnG2Wl5Hx5Ziz4w9nz3jzwCvCYSrTgeunLNcooPlbeUFR2yqXadU8Au6KHx-oc8u5eelWuYDtzGnVc5rYlqow-DpjPxEEDNbraSo3m2-c3o1iqKr-QmNm3CLqMvIqutlvT9jIVLaVup8V6YUzckoEYFT1i1lrCkEl_rAHyXa_r9hzT9TJn-LmyZ3dHoP7mYcyd5Pir8PN2L_AG6f50j5Q_h6QeesPyxlp7NILMZss6VaUgQbOipFj-awGdeWrXsqr4h84yejVPgVo9uN9Ic5VZV1MXGAjo_g8vTTl49nPD-jwL1s5Y5bpWMrRPDELC8QUQhlcRyldRVqMIgOIVNYeN1UXUl0bjo4h82c9raucH6Lx3DUD318CiyESjsr62BRjE5ZK5wK2i4CekLnZV3Am1mYZjOxZZgU5RaNmURvUPQmid7oAj6QvPctiek6fRi2K5MnjqmDDxo7ahVCpQbXlzJ06G1pKG0bgy3geNaWydNvNNfGUsCrfTVOHIqG2D4OV1ObuiEigAKeTMrd9wQ3nbjzaEQBzYHaD7p6WNOvvyVy7ukdt1YW8Ha2kOt-_VsWz_4_jOdwp0pGK3mpjuFot72KLxAN7dzLZPK_AKzvCOI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkKpeEFAoLg9tpd7AquN92D4GBEKR4EKR4LTal9NcnCgJSPz7zqztVCn00KO9a3n8za7nW-_MZ4DvRMJlrXwqrTWpwACbVrnjKXJTZWspvRtQofDtnbp5EKNH-bgBeV8LE5P2o6RlfE332WE_FgKpM6XLUqqZRFaoPsAWSbXj2N4aDkf3o9WXFZKirYTqKmQyXr5z8VoUimL97zHMt4mSf-2WxiB0vQPbHXtkw9beXdgIzR58vO32xz_D0x19XX0xlJPOAmkXs9mcWgl-Nq3pKDgcBLPFxLBJQ8djktx4ZZQAP2ZU00h36BNUWR0iTIt9eLi--nl5k3Y_T0idqMQyNVKFinPvSE-eI4_g0uBzZMbm6DfPayRKfuBUmdcZibgpby12s8qZIsdZzQ9gs5k24RCY97myRhTeIIxWGsOt9MoMPMY_60SRwFkPpp61Ghk67m3zUrfQa4ReR-i1SuCC8F71JH3reGI6H-vO37rwzis01EgkSCW-VTJfY4ylR6mq4E0Cx723dDfpFpqTeF8hBc8T-LZqxulCeyCmCdPntk9RUvl_Al9a564swaUmrjdKnkC55vY1U9dbmsmvKMnd_r2tEgmc9yPkj13_xuLr_3U_gk95HMQizeQxbC7nz-EEOdHSnnaT4DePLQf9
  priority: 102
  providerName: Springer Nature
Title Noninvasive early prediction of preeclampsia in pregnancy using retinal vascular features
URI https://link.springer.com/article/10.1038/s41746-025-01582-6
https://www.ncbi.nlm.nih.gov/pubmed/40188283
https://www.proquest.com/docview/3186675432
https://www.proquest.com/docview/3186783167
https://pubmed.ncbi.nlm.nih.gov/PMC11972394
https://doaj.org/article/7dcd62eba558485780df123789399eda
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7aFEovoe-oTc0WemtFZO1LOjomIRhiStuAe1r2pdQ9yCZ2Cv33nVnJbtwHueQkVrug1Te7mm81s98CvCMSLhsVcumczQU62LwuPc-RmyrXSBn8kDYKn0_V2YWYzOTsxlFflBPWyQN3wB3p4IMqo7MSXWWF46sIDX5tNfrZuo4hUSP0eTcWU99TeE1UtVD9LpmCV0crgdyb8m0pV00irVQ7nigJ9v-LZf6dLPlHxDQ5otPHsN8zSDbqev4E7sX2KTw872Pkz-DrlP6w_rCUl84i6Rez5RXVkgnYoqFS9DgQlqu5ZfOWypcku_GTURL8JaN9jfSETZIqa2JS_1w9h4vTky_js7w_QCH3ohbr3EoVa86DJ015jlyCS4vvUViHgMbAGyRLYehVVTYFCbmp4Bw2c8pbXeLM5i9gr1208QBYCKVyVuhgEUYnreVOBmWHAX2g80Jn8H4Dpll2Ohkmxbd5ZTroDUJvEvRGZXBMeG9bksZ1uoGWN73lzW2Wz-BwYy3TT7yV4STgp6XgZQZvt9U4ZSgOYtu4uO7a6IokADJ42Rl32xNcbuKao-IZVDtm3-nqbk07_5ZkubsT3GqRwYfNCPndr_9j8eousHgNj8o0tEVeyEPYW19dxzfIltZuAPf1TA_gwWg0-TzB6_HJ9OMnvDtW40GaNL8AghcWLA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIkEviGcxFDASnMCq433YPiDEq0ppk1MrhdOyL4dc7DRJQf1T_EZm1naq8Lr1aO_K3p2Z3ZnZmf0G4AUZ4aKSLhHG6ISjgk3KzLIEbVNpKiGcHdBF4dFYDk_554mYbMHP_i4MpVX2e2LYqF1j6Yx8nxEyWy44y97OzxKqGkXR1b6ERisWR_7iB7psyzeHH5G_L7Ps4NPJh2HSVRVILC_5KtFCevTinSWgdYYKlgntrE-1yXBCjlVoQbiBlUVWpYRuJp0x2M1Iq_MMxZ3hd6_BdVS8KTl7-SRfn-kQCG7JZXc3J2XF_pKjxU9ZvpQhJ9CYlRv6L5QJ-Jtt-2eK5m9x2qD-Dm7Drc5ujd-1gnYHtnx9F26Musj8PfgypnPd75qy4WNPqMnxfEGtxPi4qejJWxS_-XKm41lNz1MC-7iIKfV-GtNtSvpDnxobVz5gji7vw-mVEPgBbNdN7R9C7Fwmjea500hGI7RmRjipBw41r7E8j-BVT0w1b9E5VIiqs0K1pFdIehVIr2QE74ne656ErB1eNIup6haqyp11EgeqBZpmBe5nqatQu9NUytI7HcFezy3VLfeluhTOCJ6vm3GhUvRF1745b_vkBQEPRLDbMnc9EnRy0dMpWATFBts3hrrZUs--BTDwtm5cySN43UvI5bj-TYtH_5_GM7g5PBkdq-PD8dFj2MmCAPMkFXuwvVqc-ydoia3M0yD-MXy96vX2Cxs4RWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4IN64LWAkOIHB8T5sHzgEStSmNEKCSuW03ZdDLk6UpKD-IX4nM2s7KFAOHHp0duWMv5n1fOud_RbgOZFwUUmXCGN0wjHBJmVmWYLcVJpKCGf7tFH4ZCwPT_noTJxtwc9uL0wo2g-SluE13VWHvVlypM5ULkulZgJZoXw9d1VbTHnsL3_gVG359ugA_foiy4Yfvrw_TNrTBBLLS75KtJAeZ-_OksA6w8TKhHbWp9pk-CCOVcgcXN_KIqtSUjWTzhjsZqTVeYZhzvC-N2Ab-X2f92B7MBh9Hq2_5pD8bclluysnZcUVBm9kvnBAwFWs9u_izD9WaEPiG96GWy1jjQcNRndgy9d3YeekXZO_B1_H9EX3u6Y6-NiTXnI8X1AruTyeVXTlLQbefDnV8bSm6wnJfFzGVHQ_iWkfJf1DVxQbVz64ZnkfTq8F4gfQq2e1fwSxc5k0mudOI4xGaM2McFL3HeZcY3kewcsOTDVvdDlUWE9nhWqgVwi9CtArGcE7wnvdkzS1ww-zxUS1MaZyZ51EQ7VAUlbgmyx1FeZ1epSy9E5HsN95S7UDfakYCQbmgrMsgmfrZhyitO6iaz-7aPrkBUkORPCwce7aEpze4hynYBEUG27fMHWzpZ5-CzLgzYlxJY_gVRchv-36Nxa7_9f9Kex8Ohiqj0fj4z24mYV45kkq9qG3Wlz4x0jJVuZJOx5iOL_uIfgLgehFtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noninvasive+early+prediction+of+preeclampsia+in+pregnancy+using+retinal+vascular+features&rft.jtitle=NPJ+digital+medicine&rft.au=Yuxuan+Wu&rft.au=Lixia+Shen&rft.au=Lanqin+Zhao&rft.au=Xiaohong+Lin&rft.date=2025-04-05&rft.pub=Nature+Portfolio&rft.eissn=2398-6352&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41746-025-01582-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dcd62eba558485780df123789399eda
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon