Distributionally robust hybrid energy management in smart mining using process-coupled primal-dual mirror descent

This study presents a process-centric hybrid energy management framework tailored for large-scale smart mining operations. The framework addresses three major challenges: (i) multi-source uncertainty propagation, (ii) cross-process energy coupling, and (iii) time-varying, safety-critical operational...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 26121 - 17
Main Authors Wang, Dawei, Li, Yifei, Gong, Cheng, Li, Tianle, Wang, Fang, Luo, Shanna, Li, Jun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a process-centric hybrid energy management framework tailored for large-scale smart mining operations. The framework addresses three major challenges: (i) multi-source uncertainty propagation, (ii) cross-process energy coupling, and (iii) time-varying, safety-critical operational constraints. The energy scheduling problem is formulated as a process-constrained, multi-period optimization under uncertainty, explicitly modeling the spatio-temporal correlations among renewable power generation, ventilation loads, dewatering demands, and blasting energy requirements. To tackle high-dimensional uncertainties with non-Gaussian distributions, a Wasserstein metric-based distributionally robust optimization (DRO) model is constructed. The ambiguity set is dynamically refined through adaptive scenario generation and clustering, capturing worst-case energy supply-demand mismatches. The objective function jointly minimizes total energy cost, carbon emissions, and process-specific operational risks, subject to nonlinear thermodynamic process constraints, piecewise convex ventilation characteristics, and interdependent hydraulic-ventilation-thermal (HVT) processes. Mining safety regulations are integrated via chance constraints, embedding safety-critical margins related to pressure, airflow, and gas concentration. To alleviate the computational burden caused by nested risk formulations, a Primal-Dual Reformulated Distributionally Robust Process Scheduling (PDR-DRPS) algorithm is proposed. This method recursively updates process-coupled dual variables, enabling fast convergence within joint physical-energy feasible subspaces. The proposed framework is validated using a synthetic open-pit mining benchmark incorporating real-world meteorological data, empirical process dynamics, and regulatory thresholds. Numerical results indicate a 25.4% reduction in operational costs, a 31.2% cut in carbon emissions, and consistent adherence to safety constraints within a 3% tolerance under all uncertainty scenarios. Sensitivity analysis further highlights that process inertia and time delays significantly amplify uncertainty propagation, underscoring the necessity of process-aware robust energy scheduling in safety-critical industrial systems. The framework offers a generalizable paradigm applicable to smart mining, tunnel construction, and underground industrial infrastructures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-025-11013-x