Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture
Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of l...
Saved in:
Published in | Journal of proteomics Vol. 91; pp. 466 - 477 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
08.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.
Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.
[Display omitted]
•SILAC analysis identifies multiple proteomic alterations in HGPS (progeria).•Mitochondrial dysfunction is a pathologic feature of HGPS.•Functional studies confirm mitochondrial defects in progeroid mouse models.•Statin+zoledronate ameliorate mitochondrial defects in HGPS mouse models. |
---|---|
AbstractList | Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmna(G609G/G609G) knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmnaᴳ⁶⁰⁹ᴳ/ᴳ⁶⁰⁹ᴳ knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. BIOLOGICAL SIGNIFICANCE: Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. [Display omitted] •SILAC analysis identifies multiple proteomic alterations in HGPS (progeria).•Mitochondrial dysfunction is a pathologic feature of HGPS.•Functional studies confirm mitochondrial defects in progeroid mouse models.•Statin+zoledronate ameliorate mitochondrial defects in HGPS mouse models. |
Author | Andrés, Vicente Cabezas-Sánchez, Pablo Acín-Perez, Rebeca López-Otín, Carlos Rivera-Torres, José Cámara, Carmen Luque-García, José L. Megias, Diego Osorio, Fernando G. Gonzalez-Gómez, Cristina Enríquez, José Antonio |
Author_xml | – sequence: 1 givenname: José surname: Rivera-Torres fullname: Rivera-Torres, José email: jrivera@cnic.es organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain – sequence: 2 givenname: Rebeca surname: Acín-Perez fullname: Acín-Perez, Rebeca organization: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain – sequence: 3 givenname: Pablo surname: Cabezas-Sánchez fullname: Cabezas-Sánchez, Pablo organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain – sequence: 4 givenname: Fernando G. surname: Osorio fullname: Osorio, Fernando G. organization: Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain – sequence: 5 givenname: Cristina surname: Gonzalez-Gómez fullname: Gonzalez-Gómez, Cristina organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain – sequence: 6 givenname: Diego surname: Megias fullname: Megias, Diego organization: Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain – sequence: 7 givenname: Carmen surname: Cámara fullname: Cámara, Carmen organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain – sequence: 8 givenname: Carlos surname: López-Otín fullname: López-Otín, Carlos organization: Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain – sequence: 9 givenname: José Antonio surname: Enríquez fullname: Enríquez, José Antonio organization: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain – sequence: 10 givenname: José L. surname: Luque-García fullname: Luque-García, José L. organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain – sequence: 11 givenname: Vicente surname: Andrés fullname: Andrés, Vicente email: vandres@cnic.es organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23969228$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9uFDEQh1coiPyBJ0AClzR32OvdtV1QoAiSSJEoILXltWfv5rRrH7Y36DregZqX40nw3SUNRahsyd9vZjzfeXXig4eqes3oklHWvd8sN9sY8rKmjC-pXFIqn1VnTIpuIQQXJ4d7s-CKqdPqPKUNpR0TSryoTmuuOlXX8qz6fePAZxzQmozBkzCQCXOw6-BdRDMSt0vD7O3hET25nrNdo0_B__n56wrHIURHyhgrKDRJu5IKE5C8jmFercmcYF8yZdOPQDCFHLZARtPDiH5FfmBeEzOhD8RYdGnfwcI4EjuPeY7wsno-mDHBq4fzorr7_Onb5fXi9svVzeXH24VtVJMXqmsd2BqkNdxALWXjagembWUrKe8UZ7SjRgpjbV_3_SAbxpRliiprOeMtv6jeHeuWn3yfIWU9YdoPYjyEOWnWiZqKmgn-f7RtmmKnkaqgbx7QuZ_A6W3EycSdftx-AdQRsDGkFGHQFvPBQ44GR82o3pvWG30wrfemNZW6mC5Z_k_2sfzTqbfH1GCCNquISd99LUBLKeWCia4QH44ElH3fI0SdLIK34DCCzdoFfLLDX2T30TM |
CitedBy_id | crossref_primary_10_1038_s41467_017_00322_z crossref_primary_10_3390_cells12020275 crossref_primary_10_3390_ijms18112350 crossref_primary_10_59368_agingbio_20230009 crossref_primary_10_1159_000357206 crossref_primary_10_1080_19491034_2016_1183848 crossref_primary_10_1089_ars_2020_8242 crossref_primary_10_3390_ijms22147474 crossref_primary_10_1111_acel_12584 crossref_primary_10_1134_S0026893322020091 crossref_primary_10_1016_j_ajhg_2017_09_017 crossref_primary_10_1002_iub_2585 crossref_primary_10_1080_19491034_2018_1460045 crossref_primary_10_1016_j_ceb_2015_05_007 crossref_primary_10_1111_acel_14143 crossref_primary_10_3390_antiox12101873 crossref_primary_10_1016_j_mad_2022_111757 crossref_primary_10_3390_cells11182784 crossref_primary_10_18632_aging_102941 crossref_primary_10_1080_19491034_2015_1050568 crossref_primary_10_1111_cge_13837 crossref_primary_10_1007_s11515_016_1435_x crossref_primary_10_1038_s41419_022_05168_y crossref_primary_10_1096_fj_202201252RR crossref_primary_10_1016_j_mad_2018_07_007 crossref_primary_10_1038_s41467_020_18146_9 crossref_primary_10_1016_j_cell_2016_05_017 crossref_primary_10_1111_acel_13200 crossref_primary_10_1111_acel_13203 crossref_primary_10_1016_j_mam_2019_100842 crossref_primary_10_3390_cells9020395 crossref_primary_10_1007_s11357_018_0030_2 crossref_primary_10_1186_s13287_015_0110_5 crossref_primary_10_1371_journal_pone_0168988 crossref_primary_10_1016_j_bbrc_2025_151506 crossref_primary_10_3390_ijms21197060 crossref_primary_10_1007_s00439_013_1402_4 crossref_primary_10_18632_aging_204835 crossref_primary_10_1016_j_mcpro_2023_100706 crossref_primary_10_1007_s11357_020_00167_3 crossref_primary_10_1126_sciadv_abo0322 crossref_primary_10_3390_ijms25179323 crossref_primary_10_1016_j_mehy_2015_06_003 crossref_primary_10_3389_fphys_2022_1007418 crossref_primary_10_3389_fragi_2023_1327833 crossref_primary_10_1016_j_arcmed_2023_06_002 crossref_primary_10_1042_CS20160488 crossref_primary_10_1038_s41419_020_2649_z crossref_primary_10_1021_jacsau_4c00988 crossref_primary_10_1038_s41598_020_63563_x crossref_primary_10_18632_aging_203910 crossref_primary_10_1016_j_arr_2015_10_002 crossref_primary_10_3390_ijms22137190 crossref_primary_10_3390_ijms20040847 crossref_primary_10_1016_j_mam_2022_101099 crossref_primary_10_1038_nrm_2017_68 crossref_primary_10_1016_j_ymeth_2020_04_005 crossref_primary_10_1080_19336918_2016_1247144 crossref_primary_10_3390_cells10113003 crossref_primary_10_1083_jcb_201412024 crossref_primary_10_1515_revneuro_2017_0051 crossref_primary_10_1097_MOL_0000000000000703 crossref_primary_10_3390_ph15080945 crossref_primary_10_1016_j_arr_2016_06_007 crossref_primary_10_15252_embj_2020107165 crossref_primary_10_1155_2018_1435934 crossref_primary_10_1111_imm_12471 crossref_primary_10_1242_dmm_024711 crossref_primary_10_18632_aging_203858 crossref_primary_10_1007_s11357_022_00694_1 crossref_primary_10_3390_ijms232315288 crossref_primary_10_1039_C4AN00627E crossref_primary_10_3390_jcm10214834 crossref_primary_10_1016_j_ebiom_2024_105476 crossref_primary_10_1002_alz_14044 crossref_primary_10_2174_1381612826666200716161610 crossref_primary_10_3390_ijms22147327 crossref_primary_10_1111_acel_12434 crossref_primary_10_1016_j_arr_2020_101073 crossref_primary_10_1089_ars_2017_7321 crossref_primary_10_3390_biology8020035 crossref_primary_10_1083_jcb_201706061 crossref_primary_10_1002_dneu_22673 crossref_primary_10_1111_exd_12484 crossref_primary_10_2147_TACG_S273525 crossref_primary_10_26508_lsa_202201501 crossref_primary_10_1097_MD_0000000000019022 crossref_primary_10_1016_j_mehy_2018_06_029 crossref_primary_10_15252_emmm_201809736 crossref_primary_10_3389_fphar_2019_01011 crossref_primary_10_1083_jcb_202307049 crossref_primary_10_1016_j_bbrc_2017_07_095 crossref_primary_10_1016_j_semcdb_2014_03_021 crossref_primary_10_1016_j_semcdb_2014_03_022 crossref_primary_10_1093_hmg_ddy332 crossref_primary_10_3390_antiox11020351 crossref_primary_10_1016_j_jacbts_2024_05_011 crossref_primary_10_15252_emmm_202012423 crossref_primary_10_1042_BST20170141 crossref_primary_10_1016_j_ceb_2016_12_005 crossref_primary_10_1097_HCO_0000000000001209 crossref_primary_10_1080_14728222_2022_2049756 crossref_primary_10_1093_nar_gkac741 |
Cites_doi | 10.1038/ng871 10.1152/physrev.00047.2005 10.1161/ATVBAHA.110.209460 10.1126/science.1084125 10.1074/jbc.275.15.11207 10.1101/cshperspect.a000547 10.2741/226 10.1074/jbc.R600033200 10.1038/nrm2894 10.1073/pnas.0807840105 10.1093/hmg/ddi159 10.1172/JCI43578 10.1126/scitranslmed.3002346 10.1073/pnas.89.21.10114 10.1038/nature09787 10.1016/S0091-679X(06)80007-5 10.1016/S0076-6879(96)64043-9 10.1093/hmg/ddh265 10.1038/nature01629 10.1016/j.mad.2009.11.006 10.1126/science.1124875 10.1038/nchembio.2007.38 10.1016/j.mad.2009.03.001 10.1172/JCI64125 10.1016/j.bbrc.2011.12.056 10.1016/j.celrep.2012.05.015 10.1146/annurev.genet.39.110304.095751 10.1038/nrg1906 10.1021/pr034035k 10.2741/2132 10.1093/hmg/ddr385 10.1074/mcp.M111.008094 10.1161/CIRCULATIONAHA.109.902056 10.1038/nature04019 10.1016/j.cmet.2011.11.012 10.1016/j.cell.2013.05.039 10.1038/nm1786 10.1161/CIRCULATIONAHA.112.000571 10.1016/S0091-679X(01)65006-4 10.1126/science.1127168 10.1073/pnas.1202529109 10.2741/216 10.1161/01.RES.0000251281.00845.18 10.1038/nrm3352 10.1038/ncpendmet0587 10.1073/pnas.1111780109 10.1161/CIRCRESAHA.112.268946 10.1038/ejhg.2008.270 10.1177/095952878606900127 10.1073/pnas.0611640104 10.1371/journal.pone.0001269 10.1038/377441a0 10.1083/jcb.200904124 10.1093/hmg/ddn120 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 |
DOI | 10.1016/j.jprot.2013.08.008 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1876-7737 |
EndPage | 477 |
ExternalDocumentID | 23969228 10_1016_j_jprot_2013_08_008 US201500037176 S187439191300448X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA HVGLF J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDF SDG SES SPC SPCBC SSK SSU SSZ T5K ~G- ABFNM ABPIF ABPTK ACNNM ADMUD EJD FBQ HZ~ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABJNI CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c494t-965dec2e8ca3ae2884d2dea55858036931060a87accb2bbf84119c1909cc31353 |
IEDL.DBID | .~1 |
ISSN | 1874-3919 |
IngestDate | Tue Aug 05 11:19:23 EDT 2025 Thu Jul 10 19:04:44 EDT 2025 Thu Jan 02 22:55:20 EST 2025 Tue Jul 01 01:42:00 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Wed Dec 27 19:11:20 EST 2023 Fri Feb 23 02:28:05 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular biology of aging p70S6K ATP5A1 ATP5C1 OXPHOS ATP5O ENO2 ATP5B Zmpste24 mTOR eIF4 eIF2 FpSDH HGPS Mitochondrial dysfunction Progerin SILAC ATP5F1 COX Lamin A CS MAF PKM Accelerated aging FTI ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1 cytochrome c oxidase pyruvate kinase, muscle ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit citrate synthase mammalian target of rapamycin enolase 2 stable isotope labeling with amino acids in cell culture ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide farnesyltransferase inhibitor Hutchinson–Gilford progeria syndrome zinc metalloproteinase STE24 homolog ribosomal protein S6 kinase, 70kDa, polypeptide 1 mouse adult fibroblast oxidative phosphorylation eukaryotic translation initiation factor 2 eukaryotic translation initiation factor 4 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit B1 flavoprotein subunit of succinate dehydrogenase |
Language | English |
License | 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-965dec2e8ca3ae2884d2dea55858036931060a87accb2bbf84119c1909cc31353 |
Notes | http://dx.doi.org/10.1016/j.jprot.2013.08.008 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://hdl.handle.net/10651/19843 |
PMID | 23969228 |
PQID | 1544016489 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1672072173 proquest_miscellaneous_1544016489 pubmed_primary_23969228 crossref_citationtrail_10_1016_j_jprot_2013_08_008 crossref_primary_10_1016_j_jprot_2013_08_008 fao_agris_US201500037176 elsevier_sciencedirect_doi_10_1016_j_jprot_2013_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-08 |
PublicationDateYYYYMMDD | 2013-10-08 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of proteomics |
PublicationTitleAlternate | J Proteomics |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | McClintock, Ratner, Lokuge, Owens, Gordon, Collins (bb0060) 2007; 2 Bratic, Larsson (bb0100) 2013; 123 Scaffidi, Misteli (bb0070) 2006; 312 Gonzalez, Pla, Perez-Sala, Andres (bb0040) 2011; 3 Pendas, Zhou, Cadinanos, Freije, Wang, Hultenby (bb0025) 2002; 31 Fong, Frost, Meta, Qiao, Yang, Coffinier (bb0185) 2006; 311 Nissan, Blondel, Navarro, Maury, Denis, Girard (bb0160) 2012; 2 Peinado, Quiros, Pulido, Marino, Martinez-Chantar, Vazquez-Martinez (bb0250) 2011; 10 Sahin, Colla, Liesa, Moslehi, Muller, Guo (bb0270) 2011; 470 Enriquez, Cabezas-Herrera, Bayona-Bafaluy, Attardi (bb0150) 2000; 275 Blasco (bb0265) 2007; 3 Cao, Capell, Erdos, Djabali, Collins (bb0075) 2007; 104 Hofhaus, Shakeley, Attardi (bb0135) 1996; 264 Brown, Beal, Keith, Chen, Shin, Schreiber (bb0215) 1995; 377 De Sandre-Giovannoli, Bernard, Cau, Navarro, Amiel, Boccaccio (bb0050) 2003; 300 Varela, Pereira, Ugalde, Navarro, Suarez, Cau (bb0190) 2008; 14 Monsalve, Borniquel, Valle, Lamas (bb0240) 2007; 12 Varela, Cadinanos, Pendas, Gutierrez-Fernandez, Folgueras, Sanchez (bb0120) 2005; 437 Dechat, Adam, Taimen, Shimi, Goldman (bb0015) 2010; 2 Lopez-Otin, Blasco, Partridge, Serrano, Kroemer (bb0095) 2013; 153 Lopez-Mejia, Vautrot, De Toledo, Behm-Ansmant, Bourgeois, Navarro (bb0155) 2011; 20 Young, Meta, Yang, Fong (bb0195) 2006; 281 Cao, Blair, Faddah, Kieckhaefer, Olive, Erdos (bb0085) 2011; 121 Osorio, Navarro, Cadinanos, Lopez-Mejia, Quiros, Bartoli (bb0125) 2011; 3 Olive, Harten, Mitchell, Beers, Djabali, Cao (bb0065) 2010; 30 Birch-Machin, Turnbull (bb0140) 2001; 65 Broers, Ramaekers, Bonne, Yaou, Hutchison (bb0030) 2006; 86 Gordon, Kleinman, Miller, Neuberg, Giobbie-Hurder, Gerhard-Herman (bb0200) 2012; 109 Mekhail, Moazed (bb0010) 2010; 11 Villa-Bellosta, Rivera-Torres, Osorio, Acin-Perez, Enriquez, Lopez-Otin (bb0235) 2013; 127 Decker, Chavez, Vulto, Lansdorp (bb0280) 2009; 130 Capell, Collins (bb0035) 2006; 7 Tevethia, Ozer (bb0130) 2001; 165 Cao, Graziotto, Blair, Mazzulli, Erdos, Krainc (bb0225) 2011; 3 Galluzzi, Kepp, Trojel-Hansen, Kroemer (bb0105) 2012; 111 Robinson, Karlsson, Weiss, Packer (bb0205) 2003; 2 Ahlqvist, Hamalainen, Yatsuga, Uutela, Terzioglu, Gotz (bb0255) 2012; 15 Viteri, Chung, Stadtman (bb0230) 2010; 131 Falutz (bb0245) 2007; 3 Allsopp, Vaziri, Patterson, Goldstein, Younglai, Futcher (bb0275) 1992; 89 Trigueros-Motos, Gonzalez, Rivera, Andres (bb0020) 2011; 3 Navarro, Cadinanos, De Sandre-Giovannoli, Bernard, Courrier, Boccaccio (bb0170) 2005; 14 Navarro, De Sandre-Giovannoli, Bernard, Boccaccio, Boyer, Genevieve (bb0175) 2004; 13 Jung, Coffinier, Choe, Beigneux, Davies, Yang (bb0165) 2012; 109 Marino, Ugalde, Salvador-Montoliu, Varela, Quiros, Cadinanos (bb0220) 2008; 17 Sahin, DePinho (bb0110) 2012; 13 Fuster, Andres (bb0260) 2006; 99 Wallace (bb0115) 2005; 39 Andres, Gonzalez (bb0005) 2009; 187 Rodriguez, Coppede, Sagelius, Eriksson (bb0080) 2009; 17 Eriksson, Brown, Gordon, Glynn, Singer, Scott (bb0055) 2003; 423 Hutchinson (bb0045) 1886; 69 Wang, Yang, Ju, Wang, Zhao, Jenkins (bb0210) 2012; 417 Capell, Olive, Erdos, Cao, Faddah, Tavarez (bb0180) 2008; 105 Vives-Bauza, Yang, Manfredi (bb0145) 2007; 80 Ragnauth, Warren, Liu, McNair, Tajsic, Figg (bb0090) 2010; 121 Broers (10.1016/j.jprot.2013.08.008_bb0030) 2006; 86 Nissan (10.1016/j.jprot.2013.08.008_bb0160) 2012; 2 Navarro (10.1016/j.jprot.2013.08.008_bb0170) 2005; 14 Andres (10.1016/j.jprot.2013.08.008_bb0005) 2009; 187 Peinado (10.1016/j.jprot.2013.08.008_bb0250) 2011; 10 Sahin (10.1016/j.jprot.2013.08.008_bb0270) 2011; 470 Pendas (10.1016/j.jprot.2013.08.008_bb0025) 2002; 31 Wallace (10.1016/j.jprot.2013.08.008_bb0115) 2005; 39 Decker (10.1016/j.jprot.2013.08.008_bb0280) 2009; 130 Enriquez (10.1016/j.jprot.2013.08.008_bb0150) 2000; 275 Capell (10.1016/j.jprot.2013.08.008_bb0180) 2008; 105 Dechat (10.1016/j.jprot.2013.08.008_bb0015) 2010; 2 Tevethia (10.1016/j.jprot.2013.08.008_bb0130) 2001; 165 Blasco (10.1016/j.jprot.2013.08.008_bb0265) 2007; 3 Villa-Bellosta (10.1016/j.jprot.2013.08.008_bb0235) 2013; 127 Marino (10.1016/j.jprot.2013.08.008_bb0220) 2008; 17 De Sandre-Giovannoli (10.1016/j.jprot.2013.08.008_bb0050) 2003; 300 Ragnauth (10.1016/j.jprot.2013.08.008_bb0090) 2010; 121 Monsalve (10.1016/j.jprot.2013.08.008_bb0240) 2007; 12 Fuster (10.1016/j.jprot.2013.08.008_bb0260) 2006; 99 Hofhaus (10.1016/j.jprot.2013.08.008_bb0135) 1996; 264 Vives-Bauza (10.1016/j.jprot.2013.08.008_bb0145) 2007; 80 Capell (10.1016/j.jprot.2013.08.008_bb0035) 2006; 7 Fong (10.1016/j.jprot.2013.08.008_bb0185) 2006; 311 Osorio (10.1016/j.jprot.2013.08.008_bb0125) 2011; 3 McClintock (10.1016/j.jprot.2013.08.008_bb0060) 2007; 2 Gonzalez (10.1016/j.jprot.2013.08.008_bb0040) 2011; 3 Allsopp (10.1016/j.jprot.2013.08.008_bb0275) 1992; 89 Rodriguez (10.1016/j.jprot.2013.08.008_bb0080) 2009; 17 Falutz (10.1016/j.jprot.2013.08.008_bb0245) 2007; 3 Navarro (10.1016/j.jprot.2013.08.008_bb0175) 2004; 13 Trigueros-Motos (10.1016/j.jprot.2013.08.008_bb0020) 2011; 3 Galluzzi (10.1016/j.jprot.2013.08.008_bb0105) 2012; 111 Jung (10.1016/j.jprot.2013.08.008_bb0165) 2012; 109 Eriksson (10.1016/j.jprot.2013.08.008_bb0055) 2003; 423 Lopez-Otin (10.1016/j.jprot.2013.08.008_bb0095) 2013; 153 Young (10.1016/j.jprot.2013.08.008_bb0195) 2006; 281 Brown (10.1016/j.jprot.2013.08.008_bb0215) 1995; 377 Bratic (10.1016/j.jprot.2013.08.008_bb0100) 2013; 123 Varela (10.1016/j.jprot.2013.08.008_bb0120) 2005; 437 Robinson (10.1016/j.jprot.2013.08.008_bb0205) 2003; 2 Gordon (10.1016/j.jprot.2013.08.008_bb0200) 2012; 109 Wang (10.1016/j.jprot.2013.08.008_bb0210) 2012; 417 Cao (10.1016/j.jprot.2013.08.008_bb0085) 2011; 121 Sahin (10.1016/j.jprot.2013.08.008_bb0110) 2012; 13 Ahlqvist (10.1016/j.jprot.2013.08.008_bb0255) 2012; 15 Olive (10.1016/j.jprot.2013.08.008_bb0065) 2010; 30 Cao (10.1016/j.jprot.2013.08.008_bb0225) 2011; 3 Varela (10.1016/j.jprot.2013.08.008_bb0190) 2008; 14 Mekhail (10.1016/j.jprot.2013.08.008_bb0010) 2010; 11 Cao (10.1016/j.jprot.2013.08.008_bb0075) 2007; 104 Hutchinson (10.1016/j.jprot.2013.08.008_bb0045) 1886; 69 Birch-Machin (10.1016/j.jprot.2013.08.008_bb0140) 2001; 65 Scaffidi (10.1016/j.jprot.2013.08.008_bb0070) 2006; 312 Viteri (10.1016/j.jprot.2013.08.008_bb0230) 2010; 131 Lopez-Mejia (10.1016/j.jprot.2013.08.008_bb0155) 2011; 20 |
References_xml | – volume: 121 start-page: 2833 year: 2011 end-page: 2844 ident: bb0085 article-title: Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts publication-title: J Clin Invest – volume: 14 start-page: 1503 year: 2005 end-page: 1513 ident: bb0170 article-title: Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors publication-title: Hum Mol Genet – volume: 2 start-page: 556 year: 2003 end-page: 557 ident: bb0205 article-title: Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation publication-title: J Proteome Res – volume: 127 start-page: 2442 year: 2013 end-page: 2451 ident: bb0235 article-title: Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment publication-title: Circulation – volume: 131 start-page: 2 year: 2010 end-page: 8 ident: bb0230 article-title: Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients publication-title: Mech Ageing Dev – volume: 30 start-page: 2301 year: 2010 end-page: 2309 ident: bb0065 article-title: Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging publication-title: Arterioscler Thromb Vasc Biol – volume: 165 start-page: 185 year: 2001 end-page: 199 ident: bb0130 article-title: SV40-mediated immortalization publication-title: Methods Mol Biol – volume: 12 start-page: 1131 year: 2007 end-page: 1153 ident: bb0240 article-title: Mitochondrial dysfunction in human pathologies publication-title: Front Biosci – volume: 123 start-page: 951 year: 2013 end-page: 957 ident: bb0100 article-title: The role of mitochondria in aging publication-title: J Clin Invest – volume: 10 start-page: M111008094 year: 2011 ident: bb0250 article-title: Proteomic profiling of adipose tissue from Zmpste24 publication-title: Mol Cell Proteomics – volume: 3 start-page: 1133 year: 2011 end-page: 1146 ident: bb0040 article-title: A-type lamins and Hutchinson–Gilford progeria syndrome: pathogenesis and therapy publication-title: Front Biosci (Schol Ed) – volume: 417 start-page: 1119 year: 2012 end-page: 1126 ident: bb0210 article-title: A proteomic study of Hutchinson–Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease publication-title: Biochem Biophys Res Commun – volume: 2 start-page: e1269 year: 2007 ident: bb0060 article-title: The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin publication-title: PLoS One – volume: 86 start-page: 967 year: 2006 end-page: 1008 ident: bb0030 article-title: Nuclear lamins: laminopathies and their role in premature ageing publication-title: Physiol Rev – volume: 31 start-page: 94 year: 2002 end-page: 99 ident: bb0025 article-title: Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice publication-title: Nat Genet – volume: 11 start-page: 317 year: 2010 end-page: 328 ident: bb0010 article-title: The nuclear envelope in genome organization, expression and stability publication-title: Nat Rev Mol Cell Biol – volume: 89 start-page: 10114 year: 1992 end-page: 10118 ident: bb0275 article-title: Telomere length predicts replicative capacity of human fibroblasts publication-title: Proc Natl Acad Sci U S A – volume: 111 start-page: 1198 year: 2012 end-page: 1207 ident: bb0105 article-title: Mitochondrial control of cellular life, stress, and death publication-title: Circ Res – volume: 3 start-page: 1285 year: 2011 end-page: 1297 ident: bb0020 article-title: Hutchinson–Gilford progeria syndrome, cardiovascular disease and oxidative stress publication-title: Front Biosci (Schol Ed) – volume: 2 start-page: a000547 year: 2010 ident: bb0015 article-title: Nuclear lamins publication-title: Cold Spring Harb Perspect Biol – volume: 423 start-page: 293 year: 2003 end-page: 298 ident: bb0055 article-title: Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome publication-title: Nature – volume: 15 start-page: 100 year: 2012 end-page: 109 ident: bb0255 article-title: Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice publication-title: Cell Metab – volume: 105 start-page: 15902 year: 2008 end-page: 15907 ident: bb0180 article-title: A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model publication-title: Proc Natl Acad Sci U S A – volume: 437 start-page: 564 year: 2005 end-page: 568 ident: bb0120 article-title: Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation publication-title: Nature – volume: 17 start-page: 928 year: 2009 end-page: 937 ident: bb0080 article-title: Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging publication-title: Eur J Hum Genet – volume: 80 start-page: 155 year: 2007 end-page: 171 ident: bb0145 article-title: Assay of mitochondrial ATP synthesis in animal cells and tissues publication-title: Methods Cell Biol – volume: 300 start-page: 2055 year: 2003 ident: bb0050 article-title: Lamin a truncation in Hutchinson–Gilford progeria publication-title: Science – volume: 99 start-page: 1167 year: 2006 end-page: 1180 ident: bb0260 article-title: Telomere biology and cardiovascular disease publication-title: Circ Res – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: bb0095 article-title: The hallmarks of aging publication-title: Cell – volume: 109 start-page: 16666 year: 2012 end-page: 16671 ident: bb0200 article-title: Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome publication-title: Proc Natl Acad Sci U S A – volume: 3 start-page: 89ra58 year: 2011 ident: bb0225 article-title: Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells publication-title: Sci Transl Med – volume: 13 start-page: 2493 year: 2004 end-page: 2503 ident: bb0175 article-title: Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy publication-title: Hum Mol Genet – volume: 3 start-page: 640 year: 2007 end-page: 649 ident: bb0265 article-title: Telomere length, stem cells and aging publication-title: Nat Chem Biol – volume: 109 start-page: E423 year: 2012 end-page: E431 ident: bb0165 article-title: Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 940 year: 2006 end-page: 952 ident: bb0035 article-title: Human laminopathies: nuclei gone genetically awry publication-title: Nat Rev Genet – volume: 377 start-page: 441 year: 1995 end-page: 446 ident: bb0215 article-title: Control of p70 s6 kinase by kinase activity of FRAP in vivo publication-title: Nature – volume: 470 start-page: 359 year: 2011 end-page: 365 ident: bb0270 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature – volume: 281 start-page: 39741 year: 2006 end-page: 39745 ident: bb0195 article-title: Prelamin A farnesylation and progeroid syndromes publication-title: J Biol Chem – volume: 3 start-page: 651 year: 2007 end-page: 661 ident: bb0245 article-title: Therapy insight: body-shape changes and metabolic complications associated with HIV and highly active antiretroviral therapy publication-title: Nat Clin Pract Endocrinol Metab – volume: 264 start-page: 476 year: 1996 end-page: 483 ident: bb0135 article-title: Use of polarography to detect respiration defects in cell cultures publication-title: Methods Enzymol – volume: 311 start-page: 1621 year: 2006 end-page: 1623 ident: bb0185 article-title: A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria publication-title: Science – volume: 3 start-page: 106ra7 year: 2011 ident: bb0125 article-title: Splicing-directed therapy in a new mouse model of human accelerated aging – volume: 65 start-page: 97 year: 2001 end-page: 117 ident: bb0140 article-title: Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues publication-title: Methods Cell Biol – volume: 121 start-page: 2200 year: 2010 end-page: 2210 ident: bb0090 article-title: Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging publication-title: Circulation – volume: 13 start-page: 397 year: 2012 end-page: 404 ident: bb0110 article-title: Axis of ageing: telomeres, p53 and mitochondria publication-title: Nat Rev Mol Cell Biol – volume: 39 start-page: 359 year: 2005 end-page: 407 ident: bb0115 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine publication-title: Annu Rev Genet – volume: 104 start-page: 4949 year: 2007 end-page: 4954 ident: bb0075 article-title: A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells publication-title: Proc Natl Acad Sci U S A – volume: 14 start-page: 767 year: 2008 end-page: 772 ident: bb0190 article-title: Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging publication-title: Nat Med – volume: 130 start-page: 377 year: 2009 end-page: 383 ident: bb0280 article-title: Telomere length in Hutchinson–Gilford progeria syndrome publication-title: Mech Ageing Dev – volume: 312 start-page: 1059 year: 2006 end-page: 1063 ident: bb0070 article-title: Lamin A-dependent nuclear defects in human aging publication-title: Science – volume: 187 start-page: 945 year: 2009 end-page: 957 ident: bb0005 article-title: Role of A-type lamins in signaling, transcription, and chromatin organization publication-title: J Cell Biol – volume: 275 start-page: 11207 year: 2000 end-page: 11215 ident: bb0150 article-title: Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells publication-title: J Biol Chem – volume: 20 start-page: 4540 year: 2011 end-page: 4555 ident: bb0155 article-title: A conserved splicing mechanism of the LMNA gene controls premature aging publication-title: Hum Mol Genet – volume: 69 start-page: 473 year: 1886 end-page: 477 ident: bb0045 article-title: Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six publication-title: Med Chir Transplant – volume: 17 start-page: 2196 year: 2008 end-page: 2211 ident: bb0220 article-title: Premature aging in mice activates a systemic metabolic response involving autophagy induction publication-title: Hum Mol Genet – volume: 2 start-page: 1 year: 2012 end-page: 9 ident: bb0160 article-title: Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA publication-title: Cell Rep – volume: 31 start-page: 94 year: 2002 ident: 10.1016/j.jprot.2013.08.008_bb0025 article-title: Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice publication-title: Nat Genet doi: 10.1038/ng871 – volume: 86 start-page: 967 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0030 article-title: Nuclear lamins: laminopathies and their role in premature ageing publication-title: Physiol Rev doi: 10.1152/physrev.00047.2005 – volume: 30 start-page: 2301 year: 2010 ident: 10.1016/j.jprot.2013.08.008_bb0065 article-title: Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.110.209460 – volume: 300 start-page: 2055 year: 2003 ident: 10.1016/j.jprot.2013.08.008_bb0050 article-title: Lamin a truncation in Hutchinson–Gilford progeria publication-title: Science doi: 10.1126/science.1084125 – volume: 275 start-page: 11207 year: 2000 ident: 10.1016/j.jprot.2013.08.008_bb0150 article-title: Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells publication-title: J Biol Chem doi: 10.1074/jbc.275.15.11207 – volume: 2 start-page: a000547 year: 2010 ident: 10.1016/j.jprot.2013.08.008_bb0015 article-title: Nuclear lamins publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a000547 – volume: 3 start-page: 1285 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0020 article-title: Hutchinson–Gilford progeria syndrome, cardiovascular disease and oxidative stress publication-title: Front Biosci (Schol Ed) doi: 10.2741/226 – volume: 281 start-page: 39741 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0195 article-title: Prelamin A farnesylation and progeroid syndromes publication-title: J Biol Chem doi: 10.1074/jbc.R600033200 – volume: 11 start-page: 317 year: 2010 ident: 10.1016/j.jprot.2013.08.008_bb0010 article-title: The nuclear envelope in genome organization, expression and stability publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2894 – volume: 105 start-page: 15902 year: 2008 ident: 10.1016/j.jprot.2013.08.008_bb0180 article-title: A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0807840105 – volume: 14 start-page: 1503 year: 2005 ident: 10.1016/j.jprot.2013.08.008_bb0170 article-title: Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors publication-title: Hum Mol Genet doi: 10.1093/hmg/ddi159 – volume: 121 start-page: 2833 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0085 article-title: Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts publication-title: J Clin Invest doi: 10.1172/JCI43578 – volume: 3 start-page: 89ra58 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0225 article-title: Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3002346 – volume: 89 start-page: 10114 year: 1992 ident: 10.1016/j.jprot.2013.08.008_bb0275 article-title: Telomere length predicts replicative capacity of human fibroblasts publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.21.10114 – volume: 470 start-page: 359 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0270 article-title: Telomere dysfunction induces metabolic and mitochondrial compromise publication-title: Nature doi: 10.1038/nature09787 – volume: 80 start-page: 155 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0145 article-title: Assay of mitochondrial ATP synthesis in animal cells and tissues publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(06)80007-5 – volume: 264 start-page: 476 year: 1996 ident: 10.1016/j.jprot.2013.08.008_bb0135 article-title: Use of polarography to detect respiration defects in cell cultures publication-title: Methods Enzymol doi: 10.1016/S0076-6879(96)64043-9 – volume: 13 start-page: 2493 year: 2004 ident: 10.1016/j.jprot.2013.08.008_bb0175 article-title: Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy publication-title: Hum Mol Genet doi: 10.1093/hmg/ddh265 – volume: 423 start-page: 293 year: 2003 ident: 10.1016/j.jprot.2013.08.008_bb0055 article-title: Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome publication-title: Nature doi: 10.1038/nature01629 – volume: 131 start-page: 2 year: 2010 ident: 10.1016/j.jprot.2013.08.008_bb0230 article-title: Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2009.11.006 – volume: 311 start-page: 1621 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0185 article-title: A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria publication-title: Science doi: 10.1126/science.1124875 – volume: 3 start-page: 640 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0265 article-title: Telomere length, stem cells and aging publication-title: Nat Chem Biol doi: 10.1038/nchembio.2007.38 – volume: 130 start-page: 377 year: 2009 ident: 10.1016/j.jprot.2013.08.008_bb0280 article-title: Telomere length in Hutchinson–Gilford progeria syndrome publication-title: Mech Ageing Dev doi: 10.1016/j.mad.2009.03.001 – volume: 123 start-page: 951 year: 2013 ident: 10.1016/j.jprot.2013.08.008_bb0100 article-title: The role of mitochondria in aging publication-title: J Clin Invest doi: 10.1172/JCI64125 – volume: 417 start-page: 1119 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0210 article-title: A proteomic study of Hutchinson–Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2011.12.056 – volume: 165 start-page: 185 year: 2001 ident: 10.1016/j.jprot.2013.08.008_bb0130 article-title: SV40-mediated immortalization publication-title: Methods Mol Biol – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0160 article-title: Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA publication-title: Cell Rep doi: 10.1016/j.celrep.2012.05.015 – volume: 39 start-page: 359 year: 2005 ident: 10.1016/j.jprot.2013.08.008_bb0115 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.39.110304.095751 – volume: 7 start-page: 940 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0035 article-title: Human laminopathies: nuclei gone genetically awry publication-title: Nat Rev Genet doi: 10.1038/nrg1906 – volume: 2 start-page: 556 year: 2003 ident: 10.1016/j.jprot.2013.08.008_bb0205 article-title: Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation publication-title: J Proteome Res doi: 10.1021/pr034035k – volume: 12 start-page: 1131 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0240 article-title: Mitochondrial dysfunction in human pathologies publication-title: Front Biosci doi: 10.2741/2132 – volume: 20 start-page: 4540 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0155 article-title: A conserved splicing mechanism of the LMNA gene controls premature aging publication-title: Hum Mol Genet doi: 10.1093/hmg/ddr385 – volume: 10 start-page: M111008094 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0250 article-title: Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M111.008094 – volume: 121 start-page: 2200 year: 2010 ident: 10.1016/j.jprot.2013.08.008_bb0090 article-title: Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.109.902056 – volume: 437 start-page: 564 year: 2005 ident: 10.1016/j.jprot.2013.08.008_bb0120 article-title: Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation publication-title: Nature doi: 10.1038/nature04019 – volume: 15 start-page: 100 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0255 article-title: Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice publication-title: Cell Metab doi: 10.1016/j.cmet.2011.11.012 – volume: 3 start-page: 106ra7 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0125 article-title: Splicing-directed therapy in a new mouse model of human accelerated aging – volume: 153 start-page: 1194 year: 2013 ident: 10.1016/j.jprot.2013.08.008_bb0095 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 14 start-page: 767 year: 2008 ident: 10.1016/j.jprot.2013.08.008_bb0190 article-title: Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging publication-title: Nat Med doi: 10.1038/nm1786 – volume: 127 start-page: 2442 year: 2013 ident: 10.1016/j.jprot.2013.08.008_bb0235 article-title: Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.000571 – volume: 65 start-page: 97 year: 2001 ident: 10.1016/j.jprot.2013.08.008_bb0140 article-title: Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues publication-title: Methods Cell Biol doi: 10.1016/S0091-679X(01)65006-4 – volume: 312 start-page: 1059 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0070 article-title: Lamin A-dependent nuclear defects in human aging publication-title: Science doi: 10.1126/science.1127168 – volume: 109 start-page: 16666 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0200 article-title: Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1202529109 – volume: 3 start-page: 1133 year: 2011 ident: 10.1016/j.jprot.2013.08.008_bb0040 article-title: A-type lamins and Hutchinson–Gilford progeria syndrome: pathogenesis and therapy publication-title: Front Biosci (Schol Ed) doi: 10.2741/216 – volume: 99 start-page: 1167 year: 2006 ident: 10.1016/j.jprot.2013.08.008_bb0260 article-title: Telomere biology and cardiovascular disease publication-title: Circ Res doi: 10.1161/01.RES.0000251281.00845.18 – volume: 13 start-page: 397 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0110 article-title: Axis of ageing: telomeres, p53 and mitochondria publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm3352 – volume: 3 start-page: 651 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0245 article-title: Therapy insight: body-shape changes and metabolic complications associated with HIV and highly active antiretroviral therapy publication-title: Nat Clin Pract Endocrinol Metab doi: 10.1038/ncpendmet0587 – volume: 109 start-page: E423 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0165 article-title: Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1111780109 – volume: 111 start-page: 1198 year: 2012 ident: 10.1016/j.jprot.2013.08.008_bb0105 article-title: Mitochondrial control of cellular life, stress, and death publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.268946 – volume: 17 start-page: 928 year: 2009 ident: 10.1016/j.jprot.2013.08.008_bb0080 article-title: Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2008.270 – volume: 69 start-page: 473 year: 1886 ident: 10.1016/j.jprot.2013.08.008_bb0045 article-title: Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six publication-title: Med Chir Transplant doi: 10.1177/095952878606900127 – volume: 104 start-page: 4949 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0075 article-title: A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0611640104 – volume: 2 start-page: e1269 year: 2007 ident: 10.1016/j.jprot.2013.08.008_bb0060 article-title: The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin publication-title: PLoS One doi: 10.1371/journal.pone.0001269 – volume: 377 start-page: 441 year: 1995 ident: 10.1016/j.jprot.2013.08.008_bb0215 article-title: Control of p70 s6 kinase by kinase activity of FRAP in vivo publication-title: Nature doi: 10.1038/377441a0 – volume: 187 start-page: 945 year: 2009 ident: 10.1016/j.jprot.2013.08.008_bb0005 article-title: Role of A-type lamins in signaling, transcription, and chromatin organization publication-title: J Cell Biol doi: 10.1083/jcb.200904124 – volume: 17 start-page: 2196 year: 2008 ident: 10.1016/j.jprot.2013.08.008_bb0220 article-title: Premature aging in mice activates a systemic metabolic response involving autophagy induction publication-title: Hum Mol Genet doi: 10.1093/hmg/ddn120 |
SSID | ssj0061797 ssib053392237 |
Score | 2.3968573 |
Snippet | Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of... Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 466 |
SubjectTerms | Accelerated aging Adenosine Triphosphate Adenosine Triphosphate - chemistry Adolescent adults amino acids Amino Acids - chemistry analogs & derivatives animal models Animals brain cell culture chemistry Child clinical trials Diphosphonates Diphosphonates - chemistry drugs Female fibroblasts Fibroblasts - metabolism Galactose Galactose - metabolism Gene Expression Regulation genes Glucose Glucose - chemistry glycolysis H-transporting ATP synthase Humans Hydroxymethylglutaryl-CoA Reductase Inhibitors Hydroxymethylglutaryl-CoA Reductase Inhibitors - chemistry Imidazoles Imidazoles - chemistry isotope labeling Lamin A Lamin Type A Male metabolism Methionine Methionine - analogs & derivatives Methionine - chemistry Mice Mitochondria Mitochondria - metabolism Mitochondria - pathology Mitochondrial dysfunction Molecular biology of aging mutants Mutation Nuclear Proteins Nuclear Proteins - chemistry oxidative phosphorylation Oxygen Consumption pathology patients point mutation Pravastatin Pravastatin - chemistry Progeria Progeria - metabolism Progerin Protein Precursors Protein Precursors - chemistry protein synthesis proteins proteome Proteomics senescence SILAC Skin Skin - metabolism stable isotopes toxicity Zoledronic Acid |
Title | Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture |
URI | https://dx.doi.org/10.1016/j.jprot.2013.08.008 https://www.ncbi.nlm.nih.gov/pubmed/23969228 https://www.proquest.com/docview/1544016489 https://www.proquest.com/docview/1672072173 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaW5cIFAQtsWVgZCXEiNLXTxD5WFUv52WrFUqk3y39ZZdUm1SY97AXxDpx5OZ6EGSephAQ9cIqS2InjGc-Mnc_fEPKKGZgkx9xFeixNlFhpI5kaHnluWOwty3mg2Difp7NF8nE5Xh6Qab8XBmGVne1vbXqw1t2VYdebw01RDC8xmxyXMN9A0qhELHEHe5Khlr_9toN5gINuE6xA4QhL98xDAeN1jWQIiO_igccTc0z-3TvdyXX17xg0-KKzB-R-F0TSSdvOh-TAl4_I0aSECfT6lr6mAdYZ1suPyM92K27erc3RKqdrGMVg9UqHykfdbY3OLdwsSjrbNgivhDD81_cf74sVgt8porhQVWlPcEC7_D50W3t8JMSYZuVpUVdNtfEUVCvsc6e4zEv1uigrqm3hanwD_iugLeOHf0wWZ---TmdRl5MhsolMGhDk2IEIvbCaa8-ESBxzXo9h1iHAGUqIFtNYi0xba5gxuUhGI2kh6pDWcsyx8YQcllXpjwmVwiVax9wYqxPuhIl96h13Iy4s2BE3IKyXhbIdYTnmzVipHpl2rYIAFQpQYTbNWAzIm12lTcvXsb942gtZ_aF2CjzK_orHoBJKX4EpVotLhgtHgf4wSwfkZa8nCsYqdqoufbWtFTIfIaWZkHvKpBlDzrqMD8jTVsl2H8K4TCVj4tn_tvqE3MOzFsP4nBw2N1v_AoKqxpyGUXNK7k6mXz5f4PHDp9kcrs4vzn8DDdgm8A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALohTo8ihGQpwIm7W9WftYVS0LtL20K-3N8iso1W6yItlDL4j_wJk_xy9hxklWqgR74Jo4L894Zux8_j5C3jILk-SU-8SMlU2EUy5RmeVJ4JalwbGcR4qNi8tsOhOf5-P5Djnp98IgrLKL_W1Mj9G6OzLsenO4KorhFarJcQXzDSSNEnK-S-4JGL4oY_Dh-wbnARm6VViB1gk276mHIsjrBtkQEODFI5Enikz-PT3t5qb6dxEak9HZI_KwqyLpcfui-2QnlI_JwXEJM-jlLX1HI64zLpgfkF_tXty8W5yjVU6XMIwh7JUevY_62xqzWzxZlHS6bhBfCXX47x8_PxYLRL9ThHGhr9Ke4YB2Aj90XQe8JRSZdhFoUVdNtQoUfCtudKe4zkvNsigralzha3wC_iygLeVHeEJmZ6fXJ9OkE2VInFCiAUuOPdgwSGe4CUxK4ZkPZgzTDgnZUEG5mKVGToxzllmbSzEaKQdlh3KOo8jGU7JXVmU4JFRJL4xJubXOCO6lTUMWPPcjLh0EEj8grLeFdh1jOQpnLHQPTbvR0YAaDahRTjOVA_J-c9GqJezY3jzrjazv-J2GlLL9wkNwCW2-QizWsyuGK0eR_3CSDcib3k80DFbsVFOGal1rpD5CTjOptrTJJgxJ6yZ8QJ61Trb5EMZVphiTz__3rV-T-9Pri3N9_unyywvyAM-0gMaXZK_5tg6voMJq7FEcQX8Abuwl3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mitochondrial+dysfunction+in+Hutchinson-Gilford+progeria+syndrome+through+use+of+stable+isotope+labeling+with+amino+acids+in+cell+culture&rft.jtitle=Journal+of+proteomics&rft.au=Rivera-Torres%2C+Jose&rft.au=Acin-Perez%2C+Rebeca&rft.au=Cabezas-Sanchez%2C+Pablo&rft.au=Osorio%2C+Fernando&rft.date=2013-10-08&rft.issn=1874-3919&rft.volume=91&rft.spage=466&rft.epage=477&rft_id=info:doi/10.1016%2Fj.jprot.2013.08.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-3919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-3919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-3919&client=summon |