Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture

Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of l...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteomics Vol. 91; pp. 466 - 477
Main Authors Rivera-Torres, José, Acín-Perez, Rebeca, Cabezas-Sánchez, Pablo, Osorio, Fernando G., Gonzalez-Gómez, Cristina, Megias, Diego, Cámara, Carmen, López-Otín, Carlos, Enríquez, José Antonio, Luque-García, José L., Andrés, Vicente
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 08.10.2013
Subjects
COX
CS
MAF
PKM
FTI
Online AccessGet full text

Cover

Loading…
Abstract Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. [Display omitted] •SILAC analysis identifies multiple proteomic alterations in HGPS (progeria).•Mitochondrial dysfunction is a pathologic feature of HGPS.•Functional studies confirm mitochondrial defects in progeroid mouse models.•Statin+zoledronate ameliorate mitochondrial defects in HGPS mouse models.
AbstractList Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmna(G609G/G609G) knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages.
Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmnaᴳ⁶⁰⁹ᴳ/ᴳ⁶⁰⁹ᴳ knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. BIOLOGICAL SIGNIFICANCE: Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.
Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (LmnaG609G/G609G knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson–Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging. [Display omitted] •SILAC analysis identifies multiple proteomic alterations in HGPS (progeria).•Mitochondrial dysfunction is a pathologic feature of HGPS.•Functional studies confirm mitochondrial defects in progeroid mouse models.•Statin+zoledronate ameliorate mitochondrial defects in HGPS mouse models.
Author Andrés, Vicente
Cabezas-Sánchez, Pablo
Acín-Perez, Rebeca
López-Otín, Carlos
Rivera-Torres, José
Cámara, Carmen
Luque-García, José L.
Megias, Diego
Osorio, Fernando G.
Gonzalez-Gómez, Cristina
Enríquez, José Antonio
Author_xml – sequence: 1
  givenname: José
  surname: Rivera-Torres
  fullname: Rivera-Torres, José
  email: jrivera@cnic.es
  organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
– sequence: 2
  givenname: Rebeca
  surname: Acín-Perez
  fullname: Acín-Perez, Rebeca
  organization: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
– sequence: 3
  givenname: Pablo
  surname: Cabezas-Sánchez
  fullname: Cabezas-Sánchez, Pablo
  organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
– sequence: 4
  givenname: Fernando G.
  surname: Osorio
  fullname: Osorio, Fernando G.
  organization: Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
– sequence: 5
  givenname: Cristina
  surname: Gonzalez-Gómez
  fullname: Gonzalez-Gómez, Cristina
  organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
– sequence: 6
  givenname: Diego
  surname: Megias
  fullname: Megias, Diego
  organization: Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
– sequence: 7
  givenname: Carmen
  surname: Cámara
  fullname: Cámara, Carmen
  organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
– sequence: 8
  givenname: Carlos
  surname: López-Otín
  fullname: López-Otín, Carlos
  organization: Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
– sequence: 9
  givenname: José Antonio
  surname: Enríquez
  fullname: Enríquez, José Antonio
  organization: Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
– sequence: 10
  givenname: José L.
  surname: Luque-García
  fullname: Luque-García, José L.
  organization: Department of Analytical Chemistry, School of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
– sequence: 11
  givenname: Vicente
  surname: Andrés
  fullname: Andrés, Vicente
  email: vandres@cnic.es
  organization: Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23969228$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9uFDEQh1coiPyBJ0AClzR32OvdtV1QoAiSSJEoILXltWfv5rRrH7Y36DregZqX40nw3SUNRahsyd9vZjzfeXXig4eqes3oklHWvd8sN9sY8rKmjC-pXFIqn1VnTIpuIQQXJ4d7s-CKqdPqPKUNpR0TSryoTmuuOlXX8qz6fePAZxzQmozBkzCQCXOw6-BdRDMSt0vD7O3hET25nrNdo0_B__n56wrHIURHyhgrKDRJu5IKE5C8jmFercmcYF8yZdOPQDCFHLZARtPDiH5FfmBeEzOhD8RYdGnfwcI4EjuPeY7wsno-mDHBq4fzorr7_Onb5fXi9svVzeXH24VtVJMXqmsd2BqkNdxALWXjagembWUrKe8UZ7SjRgpjbV_3_SAbxpRliiprOeMtv6jeHeuWn3yfIWU9YdoPYjyEOWnWiZqKmgn-f7RtmmKnkaqgbx7QuZ_A6W3EycSdftx-AdQRsDGkFGHQFvPBQ44GR82o3pvWG30wrfemNZW6mC5Z_k_2sfzTqbfH1GCCNquISd99LUBLKeWCia4QH44ElH3fI0SdLIK34DCCzdoFfLLDX2T30TM
CitedBy_id crossref_primary_10_1038_s41467_017_00322_z
crossref_primary_10_3390_cells12020275
crossref_primary_10_3390_ijms18112350
crossref_primary_10_59368_agingbio_20230009
crossref_primary_10_1159_000357206
crossref_primary_10_1080_19491034_2016_1183848
crossref_primary_10_1089_ars_2020_8242
crossref_primary_10_3390_ijms22147474
crossref_primary_10_1111_acel_12584
crossref_primary_10_1134_S0026893322020091
crossref_primary_10_1016_j_ajhg_2017_09_017
crossref_primary_10_1002_iub_2585
crossref_primary_10_1080_19491034_2018_1460045
crossref_primary_10_1016_j_ceb_2015_05_007
crossref_primary_10_1111_acel_14143
crossref_primary_10_3390_antiox12101873
crossref_primary_10_1016_j_mad_2022_111757
crossref_primary_10_3390_cells11182784
crossref_primary_10_18632_aging_102941
crossref_primary_10_1080_19491034_2015_1050568
crossref_primary_10_1111_cge_13837
crossref_primary_10_1007_s11515_016_1435_x
crossref_primary_10_1038_s41419_022_05168_y
crossref_primary_10_1096_fj_202201252RR
crossref_primary_10_1016_j_mad_2018_07_007
crossref_primary_10_1038_s41467_020_18146_9
crossref_primary_10_1016_j_cell_2016_05_017
crossref_primary_10_1111_acel_13200
crossref_primary_10_1111_acel_13203
crossref_primary_10_1016_j_mam_2019_100842
crossref_primary_10_3390_cells9020395
crossref_primary_10_1007_s11357_018_0030_2
crossref_primary_10_1186_s13287_015_0110_5
crossref_primary_10_1371_journal_pone_0168988
crossref_primary_10_1016_j_bbrc_2025_151506
crossref_primary_10_3390_ijms21197060
crossref_primary_10_1007_s00439_013_1402_4
crossref_primary_10_18632_aging_204835
crossref_primary_10_1016_j_mcpro_2023_100706
crossref_primary_10_1007_s11357_020_00167_3
crossref_primary_10_1126_sciadv_abo0322
crossref_primary_10_3390_ijms25179323
crossref_primary_10_1016_j_mehy_2015_06_003
crossref_primary_10_3389_fphys_2022_1007418
crossref_primary_10_3389_fragi_2023_1327833
crossref_primary_10_1016_j_arcmed_2023_06_002
crossref_primary_10_1042_CS20160488
crossref_primary_10_1038_s41419_020_2649_z
crossref_primary_10_1021_jacsau_4c00988
crossref_primary_10_1038_s41598_020_63563_x
crossref_primary_10_18632_aging_203910
crossref_primary_10_1016_j_arr_2015_10_002
crossref_primary_10_3390_ijms22137190
crossref_primary_10_3390_ijms20040847
crossref_primary_10_1016_j_mam_2022_101099
crossref_primary_10_1038_nrm_2017_68
crossref_primary_10_1016_j_ymeth_2020_04_005
crossref_primary_10_1080_19336918_2016_1247144
crossref_primary_10_3390_cells10113003
crossref_primary_10_1083_jcb_201412024
crossref_primary_10_1515_revneuro_2017_0051
crossref_primary_10_1097_MOL_0000000000000703
crossref_primary_10_3390_ph15080945
crossref_primary_10_1016_j_arr_2016_06_007
crossref_primary_10_15252_embj_2020107165
crossref_primary_10_1155_2018_1435934
crossref_primary_10_1111_imm_12471
crossref_primary_10_1242_dmm_024711
crossref_primary_10_18632_aging_203858
crossref_primary_10_1007_s11357_022_00694_1
crossref_primary_10_3390_ijms232315288
crossref_primary_10_1039_C4AN00627E
crossref_primary_10_3390_jcm10214834
crossref_primary_10_1016_j_ebiom_2024_105476
crossref_primary_10_1002_alz_14044
crossref_primary_10_2174_1381612826666200716161610
crossref_primary_10_3390_ijms22147327
crossref_primary_10_1111_acel_12434
crossref_primary_10_1016_j_arr_2020_101073
crossref_primary_10_1089_ars_2017_7321
crossref_primary_10_3390_biology8020035
crossref_primary_10_1083_jcb_201706061
crossref_primary_10_1002_dneu_22673
crossref_primary_10_1111_exd_12484
crossref_primary_10_2147_TACG_S273525
crossref_primary_10_26508_lsa_202201501
crossref_primary_10_1097_MD_0000000000019022
crossref_primary_10_1016_j_mehy_2018_06_029
crossref_primary_10_15252_emmm_201809736
crossref_primary_10_3389_fphar_2019_01011
crossref_primary_10_1083_jcb_202307049
crossref_primary_10_1016_j_bbrc_2017_07_095
crossref_primary_10_1016_j_semcdb_2014_03_021
crossref_primary_10_1016_j_semcdb_2014_03_022
crossref_primary_10_1093_hmg_ddy332
crossref_primary_10_3390_antiox11020351
crossref_primary_10_1016_j_jacbts_2024_05_011
crossref_primary_10_15252_emmm_202012423
crossref_primary_10_1042_BST20170141
crossref_primary_10_1016_j_ceb_2016_12_005
crossref_primary_10_1097_HCO_0000000000001209
crossref_primary_10_1080_14728222_2022_2049756
crossref_primary_10_1093_nar_gkac741
Cites_doi 10.1038/ng871
10.1152/physrev.00047.2005
10.1161/ATVBAHA.110.209460
10.1126/science.1084125
10.1074/jbc.275.15.11207
10.1101/cshperspect.a000547
10.2741/226
10.1074/jbc.R600033200
10.1038/nrm2894
10.1073/pnas.0807840105
10.1093/hmg/ddi159
10.1172/JCI43578
10.1126/scitranslmed.3002346
10.1073/pnas.89.21.10114
10.1038/nature09787
10.1016/S0091-679X(06)80007-5
10.1016/S0076-6879(96)64043-9
10.1093/hmg/ddh265
10.1038/nature01629
10.1016/j.mad.2009.11.006
10.1126/science.1124875
10.1038/nchembio.2007.38
10.1016/j.mad.2009.03.001
10.1172/JCI64125
10.1016/j.bbrc.2011.12.056
10.1016/j.celrep.2012.05.015
10.1146/annurev.genet.39.110304.095751
10.1038/nrg1906
10.1021/pr034035k
10.2741/2132
10.1093/hmg/ddr385
10.1074/mcp.M111.008094
10.1161/CIRCULATIONAHA.109.902056
10.1038/nature04019
10.1016/j.cmet.2011.11.012
10.1016/j.cell.2013.05.039
10.1038/nm1786
10.1161/CIRCULATIONAHA.112.000571
10.1016/S0091-679X(01)65006-4
10.1126/science.1127168
10.1073/pnas.1202529109
10.2741/216
10.1161/01.RES.0000251281.00845.18
10.1038/nrm3352
10.1038/ncpendmet0587
10.1073/pnas.1111780109
10.1161/CIRCRESAHA.112.268946
10.1038/ejhg.2008.270
10.1177/095952878606900127
10.1073/pnas.0611640104
10.1371/journal.pone.0001269
10.1038/377441a0
10.1083/jcb.200904124
10.1093/hmg/ddn120
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
L.6
DOI 10.1016/j.jprot.2013.08.008
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Engineering Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1876-7737
EndPage 477
ExternalDocumentID 23969228
10_1016_j_jprot_2013_08_008
US201500037176
S187439191300448X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HVGLF
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SDG
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
~G-
ABFNM
ABPIF
ABPTK
ACNNM
ADMUD
EJD
FBQ
HZ~
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABJNI
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c494t-965dec2e8ca3ae2884d2dea55858036931060a87accb2bbf84119c1909cc31353
IEDL.DBID .~1
ISSN 1874-3919
IngestDate Tue Aug 05 11:19:23 EDT 2025
Thu Jul 10 19:04:44 EDT 2025
Thu Jan 02 22:55:20 EST 2025
Tue Jul 01 01:42:00 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Wed Dec 27 19:11:20 EST 2023
Fri Feb 23 02:28:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Molecular biology of aging
p70S6K
ATP5A1
ATP5C1
OXPHOS
ATP5O
ENO2
ATP5B
Zmpste24
mTOR
eIF4
eIF2
FpSDH
HGPS
Mitochondrial dysfunction
Progerin
SILAC
ATP5F1
COX
Lamin A
CS
MAF
PKM
Accelerated aging
FTI
ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide
ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1
cytochrome c oxidase
pyruvate kinase, muscle
ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit
citrate synthase
mammalian target of rapamycin
enolase 2
stable isotope labeling with amino acids in cell culture
ATP synthase, H+ transporting, mitochondrial F1 complex, gamma polypeptide
farnesyltransferase inhibitor
Hutchinson–Gilford progeria syndrome
zinc metalloproteinase STE24 homolog
ribosomal protein S6 kinase, 70kDa, polypeptide 1
mouse adult fibroblast
oxidative phosphorylation
eukaryotic translation initiation factor 2
eukaryotic translation initiation factor 4
ATP synthase, H+ transporting, mitochondrial F0 complex, subunit B1
flavoprotein subunit of succinate dehydrogenase
Language English
License 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-965dec2e8ca3ae2884d2dea55858036931060a87accb2bbf84119c1909cc31353
Notes http://dx.doi.org/10.1016/j.jprot.2013.08.008
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://hdl.handle.net/10651/19843
PMID 23969228
PQID 1544016489
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_1672072173
proquest_miscellaneous_1544016489
pubmed_primary_23969228
crossref_citationtrail_10_1016_j_jprot_2013_08_008
crossref_primary_10_1016_j_jprot_2013_08_008
fao_agris_US201500037176
elsevier_sciencedirect_doi_10_1016_j_jprot_2013_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-08
PublicationDateYYYYMMDD 2013-10-08
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-08
  day: 08
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of proteomics
PublicationTitleAlternate J Proteomics
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References McClintock, Ratner, Lokuge, Owens, Gordon, Collins (bb0060) 2007; 2
Bratic, Larsson (bb0100) 2013; 123
Scaffidi, Misteli (bb0070) 2006; 312
Gonzalez, Pla, Perez-Sala, Andres (bb0040) 2011; 3
Pendas, Zhou, Cadinanos, Freije, Wang, Hultenby (bb0025) 2002; 31
Fong, Frost, Meta, Qiao, Yang, Coffinier (bb0185) 2006; 311
Nissan, Blondel, Navarro, Maury, Denis, Girard (bb0160) 2012; 2
Peinado, Quiros, Pulido, Marino, Martinez-Chantar, Vazquez-Martinez (bb0250) 2011; 10
Sahin, Colla, Liesa, Moslehi, Muller, Guo (bb0270) 2011; 470
Enriquez, Cabezas-Herrera, Bayona-Bafaluy, Attardi (bb0150) 2000; 275
Blasco (bb0265) 2007; 3
Cao, Capell, Erdos, Djabali, Collins (bb0075) 2007; 104
Hofhaus, Shakeley, Attardi (bb0135) 1996; 264
Brown, Beal, Keith, Chen, Shin, Schreiber (bb0215) 1995; 377
De Sandre-Giovannoli, Bernard, Cau, Navarro, Amiel, Boccaccio (bb0050) 2003; 300
Varela, Pereira, Ugalde, Navarro, Suarez, Cau (bb0190) 2008; 14
Monsalve, Borniquel, Valle, Lamas (bb0240) 2007; 12
Varela, Cadinanos, Pendas, Gutierrez-Fernandez, Folgueras, Sanchez (bb0120) 2005; 437
Dechat, Adam, Taimen, Shimi, Goldman (bb0015) 2010; 2
Lopez-Otin, Blasco, Partridge, Serrano, Kroemer (bb0095) 2013; 153
Lopez-Mejia, Vautrot, De Toledo, Behm-Ansmant, Bourgeois, Navarro (bb0155) 2011; 20
Young, Meta, Yang, Fong (bb0195) 2006; 281
Cao, Blair, Faddah, Kieckhaefer, Olive, Erdos (bb0085) 2011; 121
Osorio, Navarro, Cadinanos, Lopez-Mejia, Quiros, Bartoli (bb0125) 2011; 3
Olive, Harten, Mitchell, Beers, Djabali, Cao (bb0065) 2010; 30
Birch-Machin, Turnbull (bb0140) 2001; 65
Broers, Ramaekers, Bonne, Yaou, Hutchison (bb0030) 2006; 86
Gordon, Kleinman, Miller, Neuberg, Giobbie-Hurder, Gerhard-Herman (bb0200) 2012; 109
Mekhail, Moazed (bb0010) 2010; 11
Villa-Bellosta, Rivera-Torres, Osorio, Acin-Perez, Enriquez, Lopez-Otin (bb0235) 2013; 127
Decker, Chavez, Vulto, Lansdorp (bb0280) 2009; 130
Capell, Collins (bb0035) 2006; 7
Tevethia, Ozer (bb0130) 2001; 165
Cao, Graziotto, Blair, Mazzulli, Erdos, Krainc (bb0225) 2011; 3
Galluzzi, Kepp, Trojel-Hansen, Kroemer (bb0105) 2012; 111
Robinson, Karlsson, Weiss, Packer (bb0205) 2003; 2
Ahlqvist, Hamalainen, Yatsuga, Uutela, Terzioglu, Gotz (bb0255) 2012; 15
Viteri, Chung, Stadtman (bb0230) 2010; 131
Falutz (bb0245) 2007; 3
Allsopp, Vaziri, Patterson, Goldstein, Younglai, Futcher (bb0275) 1992; 89
Trigueros-Motos, Gonzalez, Rivera, Andres (bb0020) 2011; 3
Navarro, Cadinanos, De Sandre-Giovannoli, Bernard, Courrier, Boccaccio (bb0170) 2005; 14
Navarro, De Sandre-Giovannoli, Bernard, Boccaccio, Boyer, Genevieve (bb0175) 2004; 13
Jung, Coffinier, Choe, Beigneux, Davies, Yang (bb0165) 2012; 109
Marino, Ugalde, Salvador-Montoliu, Varela, Quiros, Cadinanos (bb0220) 2008; 17
Sahin, DePinho (bb0110) 2012; 13
Fuster, Andres (bb0260) 2006; 99
Wallace (bb0115) 2005; 39
Andres, Gonzalez (bb0005) 2009; 187
Rodriguez, Coppede, Sagelius, Eriksson (bb0080) 2009; 17
Eriksson, Brown, Gordon, Glynn, Singer, Scott (bb0055) 2003; 423
Hutchinson (bb0045) 1886; 69
Wang, Yang, Ju, Wang, Zhao, Jenkins (bb0210) 2012; 417
Capell, Olive, Erdos, Cao, Faddah, Tavarez (bb0180) 2008; 105
Vives-Bauza, Yang, Manfredi (bb0145) 2007; 80
Ragnauth, Warren, Liu, McNair, Tajsic, Figg (bb0090) 2010; 121
Broers (10.1016/j.jprot.2013.08.008_bb0030) 2006; 86
Nissan (10.1016/j.jprot.2013.08.008_bb0160) 2012; 2
Navarro (10.1016/j.jprot.2013.08.008_bb0170) 2005; 14
Andres (10.1016/j.jprot.2013.08.008_bb0005) 2009; 187
Peinado (10.1016/j.jprot.2013.08.008_bb0250) 2011; 10
Sahin (10.1016/j.jprot.2013.08.008_bb0270) 2011; 470
Pendas (10.1016/j.jprot.2013.08.008_bb0025) 2002; 31
Wallace (10.1016/j.jprot.2013.08.008_bb0115) 2005; 39
Decker (10.1016/j.jprot.2013.08.008_bb0280) 2009; 130
Enriquez (10.1016/j.jprot.2013.08.008_bb0150) 2000; 275
Capell (10.1016/j.jprot.2013.08.008_bb0180) 2008; 105
Dechat (10.1016/j.jprot.2013.08.008_bb0015) 2010; 2
Tevethia (10.1016/j.jprot.2013.08.008_bb0130) 2001; 165
Blasco (10.1016/j.jprot.2013.08.008_bb0265) 2007; 3
Villa-Bellosta (10.1016/j.jprot.2013.08.008_bb0235) 2013; 127
Marino (10.1016/j.jprot.2013.08.008_bb0220) 2008; 17
De Sandre-Giovannoli (10.1016/j.jprot.2013.08.008_bb0050) 2003; 300
Ragnauth (10.1016/j.jprot.2013.08.008_bb0090) 2010; 121
Monsalve (10.1016/j.jprot.2013.08.008_bb0240) 2007; 12
Fuster (10.1016/j.jprot.2013.08.008_bb0260) 2006; 99
Hofhaus (10.1016/j.jprot.2013.08.008_bb0135) 1996; 264
Vives-Bauza (10.1016/j.jprot.2013.08.008_bb0145) 2007; 80
Capell (10.1016/j.jprot.2013.08.008_bb0035) 2006; 7
Fong (10.1016/j.jprot.2013.08.008_bb0185) 2006; 311
Osorio (10.1016/j.jprot.2013.08.008_bb0125) 2011; 3
McClintock (10.1016/j.jprot.2013.08.008_bb0060) 2007; 2
Gonzalez (10.1016/j.jprot.2013.08.008_bb0040) 2011; 3
Allsopp (10.1016/j.jprot.2013.08.008_bb0275) 1992; 89
Rodriguez (10.1016/j.jprot.2013.08.008_bb0080) 2009; 17
Falutz (10.1016/j.jprot.2013.08.008_bb0245) 2007; 3
Navarro (10.1016/j.jprot.2013.08.008_bb0175) 2004; 13
Trigueros-Motos (10.1016/j.jprot.2013.08.008_bb0020) 2011; 3
Galluzzi (10.1016/j.jprot.2013.08.008_bb0105) 2012; 111
Jung (10.1016/j.jprot.2013.08.008_bb0165) 2012; 109
Eriksson (10.1016/j.jprot.2013.08.008_bb0055) 2003; 423
Lopez-Otin (10.1016/j.jprot.2013.08.008_bb0095) 2013; 153
Young (10.1016/j.jprot.2013.08.008_bb0195) 2006; 281
Brown (10.1016/j.jprot.2013.08.008_bb0215) 1995; 377
Bratic (10.1016/j.jprot.2013.08.008_bb0100) 2013; 123
Varela (10.1016/j.jprot.2013.08.008_bb0120) 2005; 437
Robinson (10.1016/j.jprot.2013.08.008_bb0205) 2003; 2
Gordon (10.1016/j.jprot.2013.08.008_bb0200) 2012; 109
Wang (10.1016/j.jprot.2013.08.008_bb0210) 2012; 417
Cao (10.1016/j.jprot.2013.08.008_bb0085) 2011; 121
Sahin (10.1016/j.jprot.2013.08.008_bb0110) 2012; 13
Ahlqvist (10.1016/j.jprot.2013.08.008_bb0255) 2012; 15
Olive (10.1016/j.jprot.2013.08.008_bb0065) 2010; 30
Cao (10.1016/j.jprot.2013.08.008_bb0225) 2011; 3
Varela (10.1016/j.jprot.2013.08.008_bb0190) 2008; 14
Mekhail (10.1016/j.jprot.2013.08.008_bb0010) 2010; 11
Cao (10.1016/j.jprot.2013.08.008_bb0075) 2007; 104
Hutchinson (10.1016/j.jprot.2013.08.008_bb0045) 1886; 69
Birch-Machin (10.1016/j.jprot.2013.08.008_bb0140) 2001; 65
Scaffidi (10.1016/j.jprot.2013.08.008_bb0070) 2006; 312
Viteri (10.1016/j.jprot.2013.08.008_bb0230) 2010; 131
Lopez-Mejia (10.1016/j.jprot.2013.08.008_bb0155) 2011; 20
References_xml – volume: 121
  start-page: 2833
  year: 2011
  end-page: 2844
  ident: bb0085
  article-title: Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts
  publication-title: J Clin Invest
– volume: 14
  start-page: 1503
  year: 2005
  end-page: 1513
  ident: bb0170
  article-title: Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors
  publication-title: Hum Mol Genet
– volume: 2
  start-page: 556
  year: 2003
  end-page: 557
  ident: bb0205
  article-title: Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation
  publication-title: J Proteome Res
– volume: 127
  start-page: 2442
  year: 2013
  end-page: 2451
  ident: bb0235
  article-title: Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment
  publication-title: Circulation
– volume: 131
  start-page: 2
  year: 2010
  end-page: 8
  ident: bb0230
  article-title: Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients
  publication-title: Mech Ageing Dev
– volume: 30
  start-page: 2301
  year: 2010
  end-page: 2309
  ident: bb0065
  article-title: Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 165
  start-page: 185
  year: 2001
  end-page: 199
  ident: bb0130
  article-title: SV40-mediated immortalization
  publication-title: Methods Mol Biol
– volume: 12
  start-page: 1131
  year: 2007
  end-page: 1153
  ident: bb0240
  article-title: Mitochondrial dysfunction in human pathologies
  publication-title: Front Biosci
– volume: 123
  start-page: 951
  year: 2013
  end-page: 957
  ident: bb0100
  article-title: The role of mitochondria in aging
  publication-title: J Clin Invest
– volume: 10
  start-page: M111008094
  year: 2011
  ident: bb0250
  article-title: Proteomic profiling of adipose tissue from Zmpste24
  publication-title: Mol Cell Proteomics
– volume: 3
  start-page: 1133
  year: 2011
  end-page: 1146
  ident: bb0040
  article-title: A-type lamins and Hutchinson–Gilford progeria syndrome: pathogenesis and therapy
  publication-title: Front Biosci (Schol Ed)
– volume: 417
  start-page: 1119
  year: 2012
  end-page: 1126
  ident: bb0210
  article-title: A proteomic study of Hutchinson–Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease
  publication-title: Biochem Biophys Res Commun
– volume: 2
  start-page: e1269
  year: 2007
  ident: bb0060
  article-title: The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin
  publication-title: PLoS One
– volume: 86
  start-page: 967
  year: 2006
  end-page: 1008
  ident: bb0030
  article-title: Nuclear lamins: laminopathies and their role in premature ageing
  publication-title: Physiol Rev
– volume: 31
  start-page: 94
  year: 2002
  end-page: 99
  ident: bb0025
  article-title: Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice
  publication-title: Nat Genet
– volume: 11
  start-page: 317
  year: 2010
  end-page: 328
  ident: bb0010
  article-title: The nuclear envelope in genome organization, expression and stability
  publication-title: Nat Rev Mol Cell Biol
– volume: 89
  start-page: 10114
  year: 1992
  end-page: 10118
  ident: bb0275
  article-title: Telomere length predicts replicative capacity of human fibroblasts
  publication-title: Proc Natl Acad Sci U S A
– volume: 111
  start-page: 1198
  year: 2012
  end-page: 1207
  ident: bb0105
  article-title: Mitochondrial control of cellular life, stress, and death
  publication-title: Circ Res
– volume: 3
  start-page: 1285
  year: 2011
  end-page: 1297
  ident: bb0020
  article-title: Hutchinson–Gilford progeria syndrome, cardiovascular disease and oxidative stress
  publication-title: Front Biosci (Schol Ed)
– volume: 2
  start-page: a000547
  year: 2010
  ident: bb0015
  article-title: Nuclear lamins
  publication-title: Cold Spring Harb Perspect Biol
– volume: 423
  start-page: 293
  year: 2003
  end-page: 298
  ident: bb0055
  article-title: Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome
  publication-title: Nature
– volume: 15
  start-page: 100
  year: 2012
  end-page: 109
  ident: bb0255
  article-title: Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice
  publication-title: Cell Metab
– volume: 105
  start-page: 15902
  year: 2008
  end-page: 15907
  ident: bb0180
  article-title: A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model
  publication-title: Proc Natl Acad Sci U S A
– volume: 437
  start-page: 564
  year: 2005
  end-page: 568
  ident: bb0120
  article-title: Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation
  publication-title: Nature
– volume: 17
  start-page: 928
  year: 2009
  end-page: 937
  ident: bb0080
  article-title: Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging
  publication-title: Eur J Hum Genet
– volume: 80
  start-page: 155
  year: 2007
  end-page: 171
  ident: bb0145
  article-title: Assay of mitochondrial ATP synthesis in animal cells and tissues
  publication-title: Methods Cell Biol
– volume: 300
  start-page: 2055
  year: 2003
  ident: bb0050
  article-title: Lamin a truncation in Hutchinson–Gilford progeria
  publication-title: Science
– volume: 99
  start-page: 1167
  year: 2006
  end-page: 1180
  ident: bb0260
  article-title: Telomere biology and cardiovascular disease
  publication-title: Circ Res
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  ident: bb0095
  article-title: The hallmarks of aging
  publication-title: Cell
– volume: 109
  start-page: 16666
  year: 2012
  end-page: 16671
  ident: bb0200
  article-title: Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome
  publication-title: Proc Natl Acad Sci U S A
– volume: 3
  start-page: 89ra58
  year: 2011
  ident: bb0225
  article-title: Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells
  publication-title: Sci Transl Med
– volume: 13
  start-page: 2493
  year: 2004
  end-page: 2503
  ident: bb0175
  article-title: Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy
  publication-title: Hum Mol Genet
– volume: 3
  start-page: 640
  year: 2007
  end-page: 649
  ident: bb0265
  article-title: Telomere length, stem cells and aging
  publication-title: Nat Chem Biol
– volume: 109
  start-page: E423
  year: 2012
  end-page: E431
  ident: bb0165
  article-title: Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 940
  year: 2006
  end-page: 952
  ident: bb0035
  article-title: Human laminopathies: nuclei gone genetically awry
  publication-title: Nat Rev Genet
– volume: 377
  start-page: 441
  year: 1995
  end-page: 446
  ident: bb0215
  article-title: Control of p70 s6 kinase by kinase activity of FRAP in vivo
  publication-title: Nature
– volume: 470
  start-page: 359
  year: 2011
  end-page: 365
  ident: bb0270
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature
– volume: 281
  start-page: 39741
  year: 2006
  end-page: 39745
  ident: bb0195
  article-title: Prelamin A farnesylation and progeroid syndromes
  publication-title: J Biol Chem
– volume: 3
  start-page: 651
  year: 2007
  end-page: 661
  ident: bb0245
  article-title: Therapy insight: body-shape changes and metabolic complications associated with HIV and highly active antiretroviral therapy
  publication-title: Nat Clin Pract Endocrinol Metab
– volume: 264
  start-page: 476
  year: 1996
  end-page: 483
  ident: bb0135
  article-title: Use of polarography to detect respiration defects in cell cultures
  publication-title: Methods Enzymol
– volume: 311
  start-page: 1621
  year: 2006
  end-page: 1623
  ident: bb0185
  article-title: A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria
  publication-title: Science
– volume: 3
  start-page: 106ra7
  year: 2011
  ident: bb0125
  article-title: Splicing-directed therapy in a new mouse model of human accelerated aging
– volume: 65
  start-page: 97
  year: 2001
  end-page: 117
  ident: bb0140
  article-title: Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues
  publication-title: Methods Cell Biol
– volume: 121
  start-page: 2200
  year: 2010
  end-page: 2210
  ident: bb0090
  article-title: Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging
  publication-title: Circulation
– volume: 13
  start-page: 397
  year: 2012
  end-page: 404
  ident: bb0110
  article-title: Axis of ageing: telomeres, p53 and mitochondria
  publication-title: Nat Rev Mol Cell Biol
– volume: 39
  start-page: 359
  year: 2005
  end-page: 407
  ident: bb0115
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu Rev Genet
– volume: 104
  start-page: 4949
  year: 2007
  end-page: 4954
  ident: bb0075
  article-title: A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 14
  start-page: 767
  year: 2008
  end-page: 772
  ident: bb0190
  article-title: Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging
  publication-title: Nat Med
– volume: 130
  start-page: 377
  year: 2009
  end-page: 383
  ident: bb0280
  article-title: Telomere length in Hutchinson–Gilford progeria syndrome
  publication-title: Mech Ageing Dev
– volume: 312
  start-page: 1059
  year: 2006
  end-page: 1063
  ident: bb0070
  article-title: Lamin A-dependent nuclear defects in human aging
  publication-title: Science
– volume: 187
  start-page: 945
  year: 2009
  end-page: 957
  ident: bb0005
  article-title: Role of A-type lamins in signaling, transcription, and chromatin organization
  publication-title: J Cell Biol
– volume: 275
  start-page: 11207
  year: 2000
  end-page: 11215
  ident: bb0150
  article-title: Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells
  publication-title: J Biol Chem
– volume: 20
  start-page: 4540
  year: 2011
  end-page: 4555
  ident: bb0155
  article-title: A conserved splicing mechanism of the LMNA gene controls premature aging
  publication-title: Hum Mol Genet
– volume: 69
  start-page: 473
  year: 1886
  end-page: 477
  ident: bb0045
  article-title: Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six
  publication-title: Med Chir Transplant
– volume: 17
  start-page: 2196
  year: 2008
  end-page: 2211
  ident: bb0220
  article-title: Premature aging in mice activates a systemic metabolic response involving autophagy induction
  publication-title: Hum Mol Genet
– volume: 2
  start-page: 1
  year: 2012
  end-page: 9
  ident: bb0160
  article-title: Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA
  publication-title: Cell Rep
– volume: 31
  start-page: 94
  year: 2002
  ident: 10.1016/j.jprot.2013.08.008_bb0025
  article-title: Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice
  publication-title: Nat Genet
  doi: 10.1038/ng871
– volume: 86
  start-page: 967
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0030
  article-title: Nuclear lamins: laminopathies and their role in premature ageing
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00047.2005
– volume: 30
  start-page: 2301
  year: 2010
  ident: 10.1016/j.jprot.2013.08.008_bb0065
  article-title: Cardiovascular pathology in Hutchinson–Gilford progeria: correlation with the vascular pathology of aging
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.110.209460
– volume: 300
  start-page: 2055
  year: 2003
  ident: 10.1016/j.jprot.2013.08.008_bb0050
  article-title: Lamin a truncation in Hutchinson–Gilford progeria
  publication-title: Science
  doi: 10.1126/science.1084125
– volume: 275
  start-page: 11207
  year: 2000
  ident: 10.1016/j.jprot.2013.08.008_bb0150
  article-title: Very rare complementation between mitochondria carrying different mitochondrial DNA mutations points to intrinsic genetic autonomy of the organelles in cultured human cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.275.15.11207
– volume: 2
  start-page: a000547
  year: 2010
  ident: 10.1016/j.jprot.2013.08.008_bb0015
  article-title: Nuclear lamins
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a000547
– volume: 3
  start-page: 1285
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0020
  article-title: Hutchinson–Gilford progeria syndrome, cardiovascular disease and oxidative stress
  publication-title: Front Biosci (Schol Ed)
  doi: 10.2741/226
– volume: 281
  start-page: 39741
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0195
  article-title: Prelamin A farnesylation and progeroid syndromes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R600033200
– volume: 11
  start-page: 317
  year: 2010
  ident: 10.1016/j.jprot.2013.08.008_bb0010
  article-title: The nuclear envelope in genome organization, expression and stability
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2894
– volume: 105
  start-page: 15902
  year: 2008
  ident: 10.1016/j.jprot.2013.08.008_bb0180
  article-title: A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0807840105
– volume: 14
  start-page: 1503
  year: 2005
  ident: 10.1016/j.jprot.2013.08.008_bb0170
  article-title: Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddi159
– volume: 121
  start-page: 2833
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0085
  article-title: Progerin and telomere dysfunction collaborate to trigger cellular senescence in normal human fibroblasts
  publication-title: J Clin Invest
  doi: 10.1172/JCI43578
– volume: 3
  start-page: 89ra58
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0225
  article-title: Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson–Gilford progeria syndrome cells
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3002346
– volume: 89
  start-page: 10114
  year: 1992
  ident: 10.1016/j.jprot.2013.08.008_bb0275
  article-title: Telomere length predicts replicative capacity of human fibroblasts
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.21.10114
– volume: 470
  start-page: 359
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0270
  article-title: Telomere dysfunction induces metabolic and mitochondrial compromise
  publication-title: Nature
  doi: 10.1038/nature09787
– volume: 80
  start-page: 155
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0145
  article-title: Assay of mitochondrial ATP synthesis in animal cells and tissues
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(06)80007-5
– volume: 264
  start-page: 476
  year: 1996
  ident: 10.1016/j.jprot.2013.08.008_bb0135
  article-title: Use of polarography to detect respiration defects in cell cultures
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(96)64043-9
– volume: 13
  start-page: 2493
  year: 2004
  ident: 10.1016/j.jprot.2013.08.008_bb0175
  article-title: Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddh265
– volume: 423
  start-page: 293
  year: 2003
  ident: 10.1016/j.jprot.2013.08.008_bb0055
  article-title: Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome
  publication-title: Nature
  doi: 10.1038/nature01629
– volume: 131
  start-page: 2
  year: 2010
  ident: 10.1016/j.jprot.2013.08.008_bb0230
  article-title: Effect of progerin on the accumulation of oxidized proteins in fibroblasts from Hutchinson Gilford progeria patients
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2009.11.006
– volume: 311
  start-page: 1621
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0185
  article-title: A protein farnesyltransferase inhibitor ameliorates disease in a mouse model of progeria
  publication-title: Science
  doi: 10.1126/science.1124875
– volume: 3
  start-page: 640
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0265
  article-title: Telomere length, stem cells and aging
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2007.38
– volume: 130
  start-page: 377
  year: 2009
  ident: 10.1016/j.jprot.2013.08.008_bb0280
  article-title: Telomere length in Hutchinson–Gilford progeria syndrome
  publication-title: Mech Ageing Dev
  doi: 10.1016/j.mad.2009.03.001
– volume: 123
  start-page: 951
  year: 2013
  ident: 10.1016/j.jprot.2013.08.008_bb0100
  article-title: The role of mitochondria in aging
  publication-title: J Clin Invest
  doi: 10.1172/JCI64125
– volume: 417
  start-page: 1119
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0210
  article-title: A proteomic study of Hutchinson–Gilford progeria syndrome: application of 2D-chromotography in a premature aging disease
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.12.056
– volume: 165
  start-page: 185
  year: 2001
  ident: 10.1016/j.jprot.2013.08.008_bb0130
  article-title: SV40-mediated immortalization
  publication-title: Methods Mol Biol
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0160
  article-title: Unique preservation of neural cells in Hutchinson–Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.05.015
– volume: 39
  start-page: 359
  year: 2005
  ident: 10.1016/j.jprot.2013.08.008_bb0115
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.39.110304.095751
– volume: 7
  start-page: 940
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0035
  article-title: Human laminopathies: nuclei gone genetically awry
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1906
– volume: 2
  start-page: 556
  year: 2003
  ident: 10.1016/j.jprot.2013.08.008_bb0205
  article-title: Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation
  publication-title: J Proteome Res
  doi: 10.1021/pr034035k
– volume: 12
  start-page: 1131
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0240
  article-title: Mitochondrial dysfunction in human pathologies
  publication-title: Front Biosci
  doi: 10.2741/2132
– volume: 20
  start-page: 4540
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0155
  article-title: A conserved splicing mechanism of the LMNA gene controls premature aging
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddr385
– volume: 10
  start-page: M111008094
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0250
  article-title: Proteomic profiling of adipose tissue from Zmpste24−/− mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M111.008094
– volume: 121
  start-page: 2200
  year: 2010
  ident: 10.1016/j.jprot.2013.08.008_bb0090
  article-title: Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.902056
– volume: 437
  start-page: 564
  year: 2005
  ident: 10.1016/j.jprot.2013.08.008_bb0120
  article-title: Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation
  publication-title: Nature
  doi: 10.1038/nature04019
– volume: 15
  start-page: 100
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0255
  article-title: Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2011.11.012
– volume: 3
  start-page: 106ra7
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0125
  article-title: Splicing-directed therapy in a new mouse model of human accelerated aging
– volume: 153
  start-page: 1194
  year: 2013
  ident: 10.1016/j.jprot.2013.08.008_bb0095
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 14
  start-page: 767
  year: 2008
  ident: 10.1016/j.jprot.2013.08.008_bb0190
  article-title: Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging
  publication-title: Nat Med
  doi: 10.1038/nm1786
– volume: 127
  start-page: 2442
  year: 2013
  ident: 10.1016/j.jprot.2013.08.008_bb0235
  article-title: Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.000571
– volume: 65
  start-page: 97
  year: 2001
  ident: 10.1016/j.jprot.2013.08.008_bb0140
  article-title: Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues
  publication-title: Methods Cell Biol
  doi: 10.1016/S0091-679X(01)65006-4
– volume: 312
  start-page: 1059
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0070
  article-title: Lamin A-dependent nuclear defects in human aging
  publication-title: Science
  doi: 10.1126/science.1127168
– volume: 109
  start-page: 16666
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0200
  article-title: Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1202529109
– volume: 3
  start-page: 1133
  year: 2011
  ident: 10.1016/j.jprot.2013.08.008_bb0040
  article-title: A-type lamins and Hutchinson–Gilford progeria syndrome: pathogenesis and therapy
  publication-title: Front Biosci (Schol Ed)
  doi: 10.2741/216
– volume: 99
  start-page: 1167
  year: 2006
  ident: 10.1016/j.jprot.2013.08.008_bb0260
  article-title: Telomere biology and cardiovascular disease
  publication-title: Circ Res
  doi: 10.1161/01.RES.0000251281.00845.18
– volume: 13
  start-page: 397
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0110
  article-title: Axis of ageing: telomeres, p53 and mitochondria
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm3352
– volume: 3
  start-page: 651
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0245
  article-title: Therapy insight: body-shape changes and metabolic complications associated with HIV and highly active antiretroviral therapy
  publication-title: Nat Clin Pract Endocrinol Metab
  doi: 10.1038/ncpendmet0587
– volume: 109
  start-page: E423
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0165
  article-title: Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1111780109
– volume: 111
  start-page: 1198
  year: 2012
  ident: 10.1016/j.jprot.2013.08.008_bb0105
  article-title: Mitochondrial control of cellular life, stress, and death
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.268946
– volume: 17
  start-page: 928
  year: 2009
  ident: 10.1016/j.jprot.2013.08.008_bb0080
  article-title: Increased expression of the Hutchinson–Gilford progeria syndrome truncated lamin A transcript during cell aging
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2008.270
– volume: 69
  start-page: 473
  year: 1886
  ident: 10.1016/j.jprot.2013.08.008_bb0045
  article-title: Congenital absence of hair and mammary glands with atrophic condition of the skin and its appendages, in a boy whose mother had been almost wholly bald from alopecia areata from the age of six
  publication-title: Med Chir Transplant
  doi: 10.1177/095952878606900127
– volume: 104
  start-page: 4949
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0075
  article-title: A lamin A protein isoform overexpressed in Hutchinson–Gilford progeria syndrome interferes with mitosis in progeria and normal cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0611640104
– volume: 2
  start-page: e1269
  year: 2007
  ident: 10.1016/j.jprot.2013.08.008_bb0060
  article-title: The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001269
– volume: 377
  start-page: 441
  year: 1995
  ident: 10.1016/j.jprot.2013.08.008_bb0215
  article-title: Control of p70 s6 kinase by kinase activity of FRAP in vivo
  publication-title: Nature
  doi: 10.1038/377441a0
– volume: 187
  start-page: 945
  year: 2009
  ident: 10.1016/j.jprot.2013.08.008_bb0005
  article-title: Role of A-type lamins in signaling, transcription, and chromatin organization
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200904124
– volume: 17
  start-page: 2196
  year: 2008
  ident: 10.1016/j.jprot.2013.08.008_bb0220
  article-title: Premature aging in mice activates a systemic metabolic response involving autophagy induction
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddn120
SSID ssj0061797
ssib053392237
Score 2.3968573
Snippet Hutchinson–Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of...
Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 466
SubjectTerms Accelerated aging
Adenosine Triphosphate
Adenosine Triphosphate - chemistry
Adolescent
adults
amino acids
Amino Acids - chemistry
analogs & derivatives
animal models
Animals
brain
cell culture
chemistry
Child
clinical trials
Diphosphonates
Diphosphonates - chemistry
drugs
Female
fibroblasts
Fibroblasts - metabolism
Galactose
Galactose - metabolism
Gene Expression Regulation
genes
Glucose
Glucose - chemistry
glycolysis
H-transporting ATP synthase
Humans
Hydroxymethylglutaryl-CoA Reductase Inhibitors
Hydroxymethylglutaryl-CoA Reductase Inhibitors - chemistry
Imidazoles
Imidazoles - chemistry
isotope labeling
Lamin A
Lamin Type A
Male
metabolism
Methionine
Methionine - analogs & derivatives
Methionine - chemistry
Mice
Mitochondria
Mitochondria - metabolism
Mitochondria - pathology
Mitochondrial dysfunction
Molecular biology of aging
mutants
Mutation
Nuclear Proteins
Nuclear Proteins - chemistry
oxidative phosphorylation
Oxygen Consumption
pathology
patients
point mutation
Pravastatin
Pravastatin - chemistry
Progeria
Progeria - metabolism
Progerin
Protein Precursors
Protein Precursors - chemistry
protein synthesis
proteins
proteome
Proteomics
senescence
SILAC
Skin
Skin - metabolism
stable isotopes
toxicity
Zoledronic Acid
Title Identification of mitochondrial dysfunction in Hutchinson–Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture
URI https://dx.doi.org/10.1016/j.jprot.2013.08.008
https://www.ncbi.nlm.nih.gov/pubmed/23969228
https://www.proquest.com/docview/1544016489
https://www.proquest.com/docview/1672072173
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELaW5cIFAQtsWVgZCXEiNLXTxD5WFUv52WrFUqk3y39ZZdUm1SY97AXxDpx5OZ6EGSephAQ9cIqS2InjGc-Mnc_fEPKKGZgkx9xFeixNlFhpI5kaHnluWOwty3mg2Difp7NF8nE5Xh6Qab8XBmGVne1vbXqw1t2VYdebw01RDC8xmxyXMN9A0qhELHEHe5Khlr_9toN5gINuE6xA4QhL98xDAeN1jWQIiO_igccTc0z-3TvdyXX17xg0-KKzB-R-F0TSSdvOh-TAl4_I0aSECfT6lr6mAdYZ1suPyM92K27erc3RKqdrGMVg9UqHykfdbY3OLdwsSjrbNgivhDD81_cf74sVgt8porhQVWlPcEC7_D50W3t8JMSYZuVpUVdNtfEUVCvsc6e4zEv1uigrqm3hanwD_iugLeOHf0wWZ---TmdRl5MhsolMGhDk2IEIvbCaa8-ESBxzXo9h1iHAGUqIFtNYi0xba5gxuUhGI2kh6pDWcsyx8YQcllXpjwmVwiVax9wYqxPuhIl96h13Iy4s2BE3IKyXhbIdYTnmzVipHpl2rYIAFQpQYTbNWAzIm12lTcvXsb942gtZ_aF2CjzK_orHoBJKX4EpVotLhgtHgf4wSwfkZa8nCsYqdqoufbWtFTIfIaWZkHvKpBlDzrqMD8jTVsl2H8K4TCVj4tn_tvqE3MOzFsP4nBw2N1v_AoKqxpyGUXNK7k6mXz5f4PHDp9kcrs4vzn8DDdgm8A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbacoALohTo8ihGQpwIm7W9WftYVS0LtL20K-3N8iso1W6yItlDL4j_wJk_xy9hxklWqgR74Jo4L894Zux8_j5C3jILk-SU-8SMlU2EUy5RmeVJ4JalwbGcR4qNi8tsOhOf5-P5Djnp98IgrLKL_W1Mj9G6OzLsenO4KorhFarJcQXzDSSNEnK-S-4JGL4oY_Dh-wbnARm6VViB1gk276mHIsjrBtkQEODFI5Enikz-PT3t5qb6dxEak9HZI_KwqyLpcfui-2QnlI_JwXEJM-jlLX1HI64zLpgfkF_tXty8W5yjVU6XMIwh7JUevY_62xqzWzxZlHS6bhBfCXX47x8_PxYLRL9ThHGhr9Ke4YB2Aj90XQe8JRSZdhFoUVdNtQoUfCtudKe4zkvNsigralzha3wC_iygLeVHeEJmZ6fXJ9OkE2VInFCiAUuOPdgwSGe4CUxK4ZkPZgzTDgnZUEG5mKVGToxzllmbSzEaKQdlh3KOo8jGU7JXVmU4JFRJL4xJubXOCO6lTUMWPPcjLh0EEj8grLeFdh1jOQpnLHQPTbvR0YAaDahRTjOVA_J-c9GqJezY3jzrjazv-J2GlLL9wkNwCW2-QizWsyuGK0eR_3CSDcib3k80DFbsVFOGal1rpD5CTjOptrTJJgxJ6yZ8QJ61Trb5EMZVphiTz__3rV-T-9Pri3N9_unyywvyAM-0gMaXZK_5tg6voMJq7FEcQX8Abuwl3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+mitochondrial+dysfunction+in+Hutchinson-Gilford+progeria+syndrome+through+use+of+stable+isotope+labeling+with+amino+acids+in+cell+culture&rft.jtitle=Journal+of+proteomics&rft.au=Rivera-Torres%2C+Jose&rft.au=Acin-Perez%2C+Rebeca&rft.au=Cabezas-Sanchez%2C+Pablo&rft.au=Osorio%2C+Fernando&rft.date=2013-10-08&rft.issn=1874-3919&rft.volume=91&rft.spage=466&rft.epage=477&rft_id=info:doi/10.1016%2Fj.jprot.2013.08.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-3919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-3919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-3919&client=summon