A long-lived charge-separated state of spiro compact electron donor-acceptor dyads based on rhodamine and naphthalenediimide chromophores
Spiro rhodamine (Rho)-naphthalenediimide ( NDI ) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3 CS state, not the 1 CS state, to prolong the CS state lifetime by the electron...
Saved in:
Published in | Chemical science (Cambridge) Vol. 13; no. 45; pp. 13426 - 13441 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
CAMBRIDGE
Royal Soc Chemistry
23.11.2022
Royal Society of Chemistry The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spiro rhodamine (Rho)-naphthalenediimide (
NDI
) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach,
i.e.
to form the
3
CS state, not the
1
CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of
3
CS → S
0
. The electron donor Rho (lactam form) is attached
via
three σ bonds, including two C-C and one N-N bonds (
Rho-NDI
), or an intervening phenylene, to the electron acceptor
NDI
(
Rho-Ph-NDI
and
Rho-PhMe-NDI
). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the
NDI
moiety (
3
NDI*), and then to form the CS state. For
Rho-NDI
in both non-polar and polar solvents, a long-lived
3
CS state (lifetime
τ
= 0.13 μs) and charge separation quantum yield (
Φ
CS
) up to 25% were observed, whereas for
Rho-Ph-NDI
(
τ
T
= 1.1 μs) and
Rho-PhMe-NDI
(
τ
T
= 2.0 μs), a low-lying
3
NDI* state was formed by charge recombination (CR) in
n
-hexane (HEX). In toluene (TOL), however, CS states were observed for
Rho-Ph-NDI
(0.37 μs) and
Rho-PhMe-NDI
(0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and
NDI
moieties for
Rho-NDI
was proved. Time-resolved EPR (TREPR) spectra detected two transient species including
NDI
-localized triplets (formed
via
SOC-ISC) and a
3
CS state. The CS state of
Rho-NDI
features the largest dipolar interaction (|
D
| = 184 MHz) compared to
Rho-Ph-NDI
(|
D
| = 39 MHz) and
Rho-PhMe-NDI
(|
D
| = 41 MHz) due to the smallest distance between Rho and
NDI
moieties. For
Rho-NDI
, the time-dependent
e
,
a
→
a
,
e
phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect.
Spiro compact rhodamine-naphthalenediimide electron donor-acceptor dyads show a long-lived charge separated state (lifetime: 0.72 μs) based on the electron spin control effect were reported. |
---|---|
AbstractList | Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor–acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3CS state, not the 1CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3CS → S0. The electron donor Rho (lactam form) is attached via three σ bonds, including two C–C and one N–N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (3NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3CS state (lifetime τ = 0.13 μs) and charge separation quantum yield (ΦCS) up to 25% were observed, whereas for Rho-Ph-NDI (τT = 1.1 μs) and Rho-PhMe-NDI (τT = 2.0 μs), a low-lying 3NDI* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3CS state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,a → a,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor–acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3 CS state, not the 1 CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3 CS → S 0 . The electron donor Rho (lactam form) is attached via three σ bonds, including two C–C and one N–N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety ( 3 NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3 CS state (lifetime τ = 0.13 μs) and charge separation quantum yield ( Φ CS ) up to 25% were observed, whereas for Rho-Ph-NDI ( τ T = 1.1 μs) and Rho-PhMe-NDI ( τ T = 2.0 μs), a low-lying 3 NDI* state was formed by charge recombination (CR) in n -hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3 CS state. The CS state of Rho-NDI features the largest dipolar interaction (| D | = 184 MHz) compared to Rho-Ph-NDI (| D | = 39 MHz) and Rho-PhMe-NDI (| D | = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e , a → a , e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro compact rhodamine-naphthalenediimide electron donor–acceptor dyads show a long-lived charge separated state (lifetime: 0.72 μs) based on the electron spin control effect were reported. Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, to form the CS state, not the CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of CS → S . The electron donor Rho (lactam form) is attached three σ bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety ( NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived CS state (lifetime = 0.13 μs) and charge separation quantum yield ( ) up to 25% were observed, whereas for Rho-Ph-NDI ( = 1.1 μs) and Rho-PhMe-NDI ( = 2.0 μs), a low-lying NDI* state was formed by charge recombination (CR) in -hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed SOC-ISC) and a CS state. The CS state of Rho-NDI features the largest dipolar interaction (| | = 184 MHz) compared to Rho-Ph-NDI (| | = 39 MHz) and Rho-PhMe-NDI (| | = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent , → , phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro rhodamine (Rho)-naphthalenediimide ( NDI ) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3 CS state, not the 1 CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3 CS → S 0 . The electron donor Rho (lactam form) is attached via three σ bonds, including two C-C and one N-N bonds ( Rho-NDI ), or an intervening phenylene, to the electron acceptor NDI ( Rho-Ph-NDI and Rho-PhMe-NDI ). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety ( 3 NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3 CS state (lifetime τ = 0.13 μs) and charge separation quantum yield ( Φ CS ) up to 25% were observed, whereas for Rho-Ph-NDI ( τ T = 1.1 μs) and Rho-PhMe-NDI ( τ T = 2.0 μs), a low-lying 3 NDI* state was formed by charge recombination (CR) in n -hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI -localized triplets (formed via SOC-ISC) and a 3 CS state. The CS state of Rho-NDI features the largest dipolar interaction (| D | = 184 MHz) compared to Rho-Ph-NDI (| D | = 39 MHz) and Rho-PhMe-NDI (| D | = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI , the time-dependent e , a → a , e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro compact rhodamine-naphthalenediimide electron donor-acceptor dyads show a long-lived charge separated state (lifetime: 0.72 μs) based on the electron spin control effect were reported. Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3CS state, not the 1CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3CS → S0. The electron donor Rho (lactam form) is attached via three σ bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (3NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3CS state (lifetime τ = 0.13 μs) and charge separation quantum yield (Φ CS) up to 25% were observed, whereas for Rho-Ph-NDI (τ T = 1.1 μs) and Rho-PhMe-NDI (τ T = 2.0 μs), a low-lying 3NDI* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3CS state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,a → a,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect.Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3CS state, not the 1CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3CS → S0. The electron donor Rho (lactam form) is attached via three σ bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (3NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3CS state (lifetime τ = 0.13 μs) and charge separation quantum yield (Φ CS) up to 25% were observed, whereas for Rho-Ph-NDI (τ T = 1.1 μs) and Rho-PhMe-NDI (τ T = 2.0 μs), a low-lying 3NDI* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3CS state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,a → a,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor–acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3 CS state, not the 1 CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3 CS → S 0 . The electron donor Rho (lactam form) is attached via three σ bonds, including two C–C and one N–N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety ( 3 NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3 CS state (lifetime τ = 0.13 μs) and charge separation quantum yield ( Φ CS ) up to 25% were observed, whereas for Rho-Ph-NDI ( τ T = 1.1 μs) and Rho-PhMe-NDI ( τ T = 2.0 μs), a low-lying 3 NDI* state was formed by charge recombination (CR) in n -hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 μs) and Rho-PhMe-NDI (0.63 μs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3 CS state. The CS state of Rho-NDI features the largest dipolar interaction (| D | = 184 MHz) compared to Rho-Ph-NDI (| D | = 39 MHz) and Rho-PhMe-NDI (| D | = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e , a → a , e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the (CS)-C-3 state, not the (CS)-C-1 state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of (CS)-C-3 -> S-0. The electron donor Rho (lactam form) is attached via three sigma bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (< 120 fs) occurred to generate an upper triplet state localized on the NDI moiety ((NDI)-N-3*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived (CS)-C-3 state (lifetime tau = 0.13 mu s) and charge separation quantum yield (phi(CS)) up to 25% were observed, whereas for Rho-Ph-NDI (tau(T) = 1.1 mu s) and Rho-PhMe-NDI (tau(T) = 2.0 mu s), a low-lying (NDI)-N-3* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 mu s) and Rho-PhMe-NDI (0.63 mu s). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a (CS)-C-3 state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,a & RARR; a,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect. |
Author | Jiang, Xiao Mohammed, Omar F Kurganskii, Ivan Zhao, Jianzhang Xiao, Xiao Maity, Partha Fedin, Matvey |
AuthorAffiliation | State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources 3A, and Novosibirsk State University SB RAS Institutskaya Str Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) School of Environmental Science and Technology School of Chemical Engineering King Abdullah University of Science and Technology (KAUST) College of Chemistry Division of Physical Sciences and Engineering International Tomography Center Frontiers Science Center for Smart Materials Xinjiang University State Key Laboratory of Fine Chemicals Dalian University of Technology |
AuthorAffiliation_xml | – name: State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources – name: Division of Physical Sciences and Engineering – name: School of Chemical Engineering – name: 3A, and Novosibirsk State University – name: College of Chemistry – name: Frontiers Science Center for Smart Materials – name: Xinjiang University – name: State Key Laboratory of Fine Chemicals – name: Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) – name: SB RAS Institutskaya Str – name: School of Environmental Science and Technology – name: Dalian University of Technology – name: King Abdullah University of Science and Technology (KAUST) – name: International Tomography Center |
Author_xml | – sequence: 1 givenname: Xiao surname: Xiao fullname: Xiao, Xiao – sequence: 2 givenname: Ivan surname: Kurganskii fullname: Kurganskii, Ivan – sequence: 3 givenname: Partha surname: Maity fullname: Maity, Partha – sequence: 4 givenname: Jianzhang surname: Zhao fullname: Zhao, Jianzhang – sequence: 5 givenname: Xiao surname: Jiang fullname: Jiang, Xiao – sequence: 6 givenname: Omar F surname: Mohammed fullname: Mohammed, Omar F – sequence: 7 givenname: Matvey surname: Fedin fullname: Fedin, Matvey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36507154$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAQxyNURB_0wh0UiUsFCvgd54JUbXlJlTgAZ8uPycZVYgc7W9SPwLfGZbcLVBzwZSzP7__32DPH1UGIAarqCUavMKLda0eyRYxw6R5URwQx3AhOu4P9nqDD6jTnK1QWpZiT9lF1SAVHLebsqPpxXo8xrJvRX4Or7aDTGpoMs056KQd5KaGOfZ1nn2Jt4zRru9Qwgl1SDLWLIaZGWwvzElPtbrTLtdG5SEs2DdHpyQeodXB10POwDHqEAM77yTso96U4xXmICfLj6mGvxwynu3hSfX339svqQ3P56f3H1fllY1nHlqajLTcCSYYZN8zhzhlqrHSEdVoy09G-dcIIwUD3CDODMKfauM5JQjDnhp5Ub7a-88ZM4CyEJelRzclPOt2oqL36OxP8oNbxWnVCEinbYnC2M0jx2wbyoiafLYyjDhA3WZGWUyGkJKygz--hV3GTQnleoWiHiBCtKNSzPyval3LXpQLILfAdTOyz9RAs7LHSWClR2wl222O88qVnPoZV3ISlSF_-v7TQaEvbFHNO0Cu7cys_4UeFkbodOnVBPq9-Dd1Fkby4J7kz_yf8dAunbPfc7wmmPwFygODf |
CitedBy_id | crossref_primary_10_1002_anie_202313936 crossref_primary_10_1039_D4SC00874J crossref_primary_10_1021_acs_jpcb_3c02723 crossref_primary_10_1002_ange_202313936 crossref_primary_10_1002_anie_202404140 crossref_primary_10_1039_D4SC02513J crossref_primary_10_1002_ange_202404140 crossref_primary_10_1039_D3NJ04711C crossref_primary_10_1039_D3CP03888B crossref_primary_10_1039_D4QO02267J crossref_primary_10_1039_D3CP04891H crossref_primary_10_1021_acs_jpcb_4c03145 crossref_primary_10_1021_acs_jpca_3c02161 crossref_primary_10_1002_chem_202403758 crossref_primary_10_1016_j_jorganchem_2023_123004 crossref_primary_10_1002_advs_202417179 crossref_primary_10_1016_j_biomaterials_2025_123218 crossref_primary_10_1002_adom_202402047 crossref_primary_10_1002_chem_202403542 |
Cites_doi | 10.1021/acsaem.7b00214 10.1246/bcsj.20210307 10.1021/ol403736m 10.1039/D0CP05783E 10.1021/jp063038s 10.1021/acs.jpca.5b03238 10.1201/9781420015195 10.1063/1.5145052 10.1016/j.jphotochemrev.2011.10.001 10.1002/anie.202003560 10.1021/ja1094815 10.1021/ic0505605 10.1002/chem.200900440 10.1246/cl.130062 10.1021/ja038656q 10.1021/acs.jpca.8b11828 10.1002/chem.202100611 10.1016/0009-2614(87)85162-X 10.1002/cphc.200500029 10.1039/D0DT03737K 10.1021/ja2055726 10.1021/ja038676s 10.1039/c9pp00399a 10.1039/C4CC00751D 10.1021/ja107382x 10.1039/C9OB02170A 10.1002/1439-7641(20010417)2:4<232::AID-CPHC232>3.0.CO;2-3 10.1021/acs.jpclett.5b00882 10.1039/a907807j 10.1021/ja9628415 10.1016/j.jmr.2005.08.013 10.1021/jp013453e 10.1039/C2CS35250H 10.1021/acs.jpcc.9b09335 10.1021/ja961919e 10.1021/ja960980g 10.1021/acs.jpcc.9b10812 10.1002/chem.200305308 10.1002/chem.202005296 10.1016/j.bbabio.2004.04.011 10.1016/j.jphotochemrev.2006.04.001 10.1021/jp509643q 10.1021/acs.jpcb.1c02071 10.1063/5.0023526 10.1021/ja000662o 10.1021/acs.inorgchem.8b00448 10.1002/anie.200352870 10.1039/C8CC08159J 10.1021/ja5040073 10.1039/c1cc13831f 10.1039/c39940000213 10.1021/ja303173n 10.1021/ja904241r 10.1002/cphc.201200106 10.1021/jp971620y 10.1039/C9TC04285G 10.1021/cr300503r 10.1021/ja303721j 10.1351/pac200779060981 10.1021/ja00135a040 10.1002/chem.202005285 10.1021/jo502554y 10.1021/ja004123v 10.1021/acscatal.8b02226 10.1021/accountsmr.1c00045 10.1021/jp212546w 10.1039/c2cs35203f 10.1021/ja2100577 10.1039/C7CP06952A 10.18637/jss.v049.i03 10.1002/anie.201509067 10.1021/jp4045012 10.1021/ja993959z 10.1002/chem.202200510 10.1021/jp063690n 10.1002/cphc.201000096 10.1039/b820744e 10.1039/c8cc08159j 10.1039/d0cp05783e 10.1039/c9ob02170a 10.1039/c7cp06952a 10.1039/d0dt03737k 10.1002/anie.202203758 10.1039/c4cc00751d 10.1039/c9tc04285g 10.1039/c2cs35250h 10.1016/B978-0-12-407754-6.00001-6 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2022 This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2022 – notice: This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry |
DBID | AAYXX CITATION 17B 1KM AHQBO BLEPL DTL EGQ NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d2sc04258d |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef Web of Science |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 13441 |
ExternalDocumentID | PMC9682887 36507154 000880796400001 10_1039_D2SC04258D d2sc04258d |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-15-2020-779 – fundername: Fundamental Research Funds for the Central Universities grantid: DUT22LAB610 – fundername: NSFC; National Natural Science Foundation of China (NSFC) grantid: U2001222 – fundername: Department of Education of the Xinjiang Uyghur Autonomous Region (Tian-Shan Chair Professor) – fundername: State Key Laboratory of Fine Chemicals – fundername: ; grantid: DUT22LAB610 – fundername: ; grantid: U2001222 – fundername: ; grantid: Unassigned – fundername: ; grantid: 075-15-2020-779 |
GroupedDBID | -JG 0-7 0R~ 705 7~J AAEMU AAGNR AAIWI AAJAE AAPBV ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CAG D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 R7C R7D RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 53G AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION PGMZT RAOCF 17B 1KM BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c494t-9375b6084145b4d19db3bc8d249a84b93f7d6b664eaf014b0153abd9d822155b3 |
ISICitedReferencesCount | 20 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000880796400001 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:38:37 EDT 2025 Fri Jul 11 08:07:46 EDT 2025 Fri Jul 25 04:57:38 EDT 2025 Thu Jan 02 22:53:32 EST 2025 Tue Jul 22 03:17:56 EDT 2025 Fri Aug 29 16:05:52 EDT 2025 Tue Jul 01 01:30:44 EDT 2025 Thu Apr 24 22:57:41 EDT 2025 Thu Nov 24 04:11:06 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | TRIPLET-STATES RECOMBINATION DESIGN ENERGY EXCITED-STATE TRANSITION-METAL-COMPLEXES DYNAMICS RADICAL-ION PAIRS DEPENDENCE PERYLENE |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c494t-9375b6084145b4d19db3bc8d249a84b93f7d6b664eaf014b0153abd9d822155b3 |
Notes | For ESI and crystallographic data in CIF or other electronic format see 2190442 https://doi.org/10.1039/d2sc04258d Electronic supplementary information (ESI) available: General experimental methods, synthesis of compounds, molecular structure characterization, X-ray crystallographic data, computational details and additional spectra. CCDC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-2319-5563 0000-0002-0293-7118 0000-0002-5405-6398 0000-0002-0537-5755 0000-0001-8500-1130 0000-0003-1423-8098 |
OpenAccessLink | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000880796400001 |
PMID | 36507154 |
PQID | 2739026676 |
PQPubID | 2047492 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1039_D2SC04258D pubmedcentral_primary_oai_pubmedcentral_nih_gov_9682887 proquest_journals_2739026676 crossref_citationtrail_10_1039_D2SC04258D rsc_primary_d2sc04258d proquest_miscellaneous_2753668824 pubmed_primary_36507154 webofscience_primary_000880796400001CitationCount webofscience_primary_000880796400001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-23 |
PublicationDateYYYYMMDD | 2022-11-23 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | CAMBRIDGE |
PublicationPlace_xml | – name: CAMBRIDGE – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAbbrev | CHEM SCI |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2022 |
Publisher | Royal Soc Chemistry Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Soc Chemistry – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Yushchenko (D2SC04258D/cit61/1) 2015; 6 Zhang (D2SC04258D/cit29/1) 2021; 50 Liu (D2SC04258D/cit39/1) 2020; 59 Hviid (D2SC04258D/cit37/1) 2001; 2 Chen (D2SC04258D/cit68/1) 2021; 27 Schuster (D2SC04258D/cit20/1) 2004; 126 Suzuki (D2SC04258D/cit25/1) 2009; 131 Guo (D2SC04258D/cit11/1) 2018; 8 Hu (D2SC04258D/cit42/1) 2021; 125 Ohkubo (D2SC04258D/cit17/1) 2004; 43 Imahori (D2SC04258D/cit22/1) 2001; 123 Hasharoni (D2SC04258D/cit76/1) 1996; 118 Karimata (D2SC04258D/cit19/1) 2014; 118 Imahori (D2SC04258D/cit23/1) 2004; 10 Cheng (D2SC04258D/cit43/1) 2018; 57 Zhang (D2SC04258D/cit55/1) 2021; 27 Zhang (D2SC04258D/cit52/1) 2022; 28 Higashino (D2SC04258D/cit18/1) 2016; 55 Turro (D2SC04258D/cit47/1) 2009 Song (D2SC04258D/cit10/1) 2020; 124 Chen (D2SC04258D/cit21/1) 2006; 110 Snellenburg (D2SC04258D/cit80/1) 2012; 49 Gibbons (D2SC04258D/cit40/1) 2020; 19 Golden (D2SC04258D/cit9/1) 2018; 1 Chakraborty (D2SC04258D/cit33/1) 2005; 44 Hou (D2SC04258D/cit67/1) 2020; 152 Luo (D2SC04258D/cit63/1) 2000; 122 van Dijk (D2SC04258D/cit36/1) 1996; 118 Guldi (D2SC04258D/cit4/1) 2000 Anglos (D2SC04258D/cit34/1) 1994 Verhoeven (D2SC04258D/cit1/1) 2006; 7 Zarrabi (D2SC04258D/cit5/1) 2021; 23 Colvin (D2SC04258D/cit32/1) 2013; 117 Guha (D2SC04258D/cit60/1) 2011; 133 Colvin (D2SC04258D/cit70/1) 2011; 133 van Stokkum (D2SC04258D/cit79/1) 2004; 1657 Hasharoni (D2SC04258D/cit75/1) 1995; 117 Lee (D2SC04258D/cit27/1) 2014; 136 Filatov (D2SC04258D/cit3/1) 2020; 18 Stoll (D2SC04258D/cit74/1) 2006; 178 Forbes (D2SC04258D/cit78/1) 2013; 47 Chen (D2SC04258D/cit56/1) 2019; 123 Matsuoka (D2SC04258D/cit57/1) 2022; 95 Ravelli (D2SC04258D/cit14/1) 2013; 42 Xiao (D2SC04258D/cit49/1) 2020; 153 Imahori (D2SC04258D/cit59/1) 1996; 118 Fukuju (D2SC04258D/cit72/1) 1997; 101 Imahori (D2SC04258D/cit16/1) 2021; 2 Wiederrecht (D2SC04258D/cit44/1) 2000; 122 Guha (D2SC04258D/cit64/1) 2010; 132 Fukuzumi (D2SC04258D/cit35/1) 2004; 126 Roznyatovskiy (D2SC04258D/cit66/1) 2014; 16 Dance (D2SC04258D/cit31/1) 2006; 110 Buckley (D2SC04258D/cit73/1) 1987; 135 Shi (D2SC04258D/cit15/1) 2012; 41 Carmieli (D2SC04258D/cit77/1) 2012; 134 Hou (D2SC04258D/cit24/1) 2019; 7 Geiβ (D2SC04258D/cit26/1) 2009 Hankache (D2SC04258D/cit30/1) 2011; 47 Verhoeven (D2SC04258D/cit2/1) 2005; 6 Colvin (D2SC04258D/cit71/1) 2012; 116 Murakami (D2SC04258D/cit38/1) 2010; 11 Yuan (D2SC04258D/cit54/1) 2012; 134 Marco Montalti (D2SC04258D/cit62/1) 2006 Ziessel (D2SC04258D/cit58/1) 2009; 15 Mori (D2SC04258D/cit45/1) 2002; 106 Wang (D2SC04258D/cit48/1) 2019; 55 Pearce (D2SC04258D/cit46/1) 2018; 20 Prier (D2SC04258D/cit12/1) 2013; 113 Chen (D2SC04258D/cit41/1) 2022 Guha (D2SC04258D/cit65/1) 2012; 134 Rehmat (D2SC04258D/cit69/1) 2021; 27 Karimata (D2SC04258D/cit28/1) 2013; 42 Suzuki (D2SC04258D/cit6/1) 2011; 12 Hari (D2SC04258D/cit13/1) 2014; 50 Cui (D2SC04258D/cit53/1) 2015; 80 Fukuzumi (D2SC04258D/cit7/1) 2007; 79 Sasaki (D2SC04258D/cit50/1) 2015; 119 Vauthey (D2SC04258D/cit8/1) 2012; 13 Tang (D2SC04258D/cit51/1) 2019; 123 Prier, CK (WOS:000321810600018) 2013; 113 Verhoeven, JW (WOS:000238705600004) 2006; 7 Zhang, X (WOS:000605666100004) 2021; 50 Geiss, B (WOS:000264254100015) 2009 Chen, X (WOS:000784253500001) 2022; 61 Yushchenko, O (WOS:000355894000018) 2015; 6 Ziessel, R (WOS:000268621300016) 2009; 15 Imahori, H (WOS:000222651700008) 2004; 10 Hasharoni, K (WOS:A1996VN85000025) 1996; 118 Mori, Y (WOS:000175488400002) 2002; 106 Shi, L (WOS:000310682900003) 2012; 41 Luo, C (WOS:000088320700002) 2000; 122 Guo, S (WOS:000444364800097) 2018; 8 Chen, KY (WOS:000241729200010) 2006; 110 Guha, S (WOS:000307699000027) 2012; 134 Hu, MY (WOS:000647271100022) 2021; 125 Colvin, MT (WOS:000321236700011) 2013; 117 Chen, KP (WOS:000463844300003) 2019; 123 Guha, S (WOS:000295911500010) 2011; 133 Lee, SH (WOS:000339228200045) 2014; 136 Suzuki, S (WOS:000299719500002) 2011; 12 Pearce, N (WOS:000419219700006) 2018; 20 Marco Montalti, A.C. (000880796400001.62) 2006 Hou, YQ (WOS:000521366800001) 2020; 152 Karimata, A (WOS:000345721500015) 2014; 118 Murakami, M (WOS:000281691100020) 2010; 11 Guha, S (WOS:000285429800011) 2010; 132 Rehmat, N (WOS:000621049400001) 2021; 27 Stoll, S (WOS:000234722700005) 2006; 178 Ohkubo, K (WOS:000189101500012) 2004; 43 Chakraborty, S (WOS:000232281900006) 2005; 44 Liu, DY (WOS:000530869900001) 2020; 59 Verhoeven, JW (WOS:000233399100003) 2005; 6 Sasaki, S (WOS:000355158500023) 2015; 119 Imahori, H (WOS:A1996VV33700010) 1996; 118 Colvin, MT (WOS:000287228500027) 2011; 133 Cheng, YK (WOS:000434491700028) 2018; 57 Yuan, L (WOS:000301084300092) 2012; 134 Higashino, T (WOS:000368069200028) 2016; 55 Roznyatovskiy, VV (WOS:000331163900014) 2014; 16 Xiao, X (WOS:000593963800007) 2020; 153 Matsuoka, H (WOS:000763581400006) 2022; 95 Guldi, DM (WOS:000085466500001) 2000 Zarrabi, N (WOS:000610150200019) 2021; 23 Wang, ZJ (WOS:000458546700032) 2019; 55 Snellenburg, JJ (WOS:000305989900001) 2012; 49 Zhang, XF (WOS:000611661500001) 2021; 27 Ravelli, D (WOS:000311968700008) 2013; 42 Schuster, DI (WOS:000221963600029) 2004; 126 Carmieli, R (WOS:000306297600035) 2012; 134 Fukuzumi, S (WOS:000188926600006) 2004; 126 Imahori, H (WOS:000677583500004) 2021; 2 Karimata, A (WOS:000323795800005) 2013; 42 Suzuki, S (WOS:000268644400020) 2009; 131 Frisch, M.J. (000880796400001.81) 2009 Hviid, L (WOS:000168289500005) 2001; 2 BUCKLEY, CD (WOS:A1987G946400025) 1987; 135 Imahori, H (WOS:000169835300018) 2001; 123 Hou, YQ (WOS:000490152800003) 2019; 7 Chen, KP (WOS:000642320500001) 2021; 27 Wiederrecht, GP (WOS:000090078900018) 2000; 122 ANGLOS, D (WOS:A1994MV12200033) 1994 Fukuzumi, S (WOS:000247222700004) 2007; 79 Song, HW (WOS:000507149600028) 2020; 124 Cui, XN (WOS:000347506400056) 2015; 80 Gibbons, DJ (WOS:000516590600001) 2020; 19 Hankache, J (WOS:000294433900057) 2011; 47 Turro, N.J. (000880796400001.47) 2009 van Stokkum, IHM (WOS:000222734200002) 2004; 1657 HASHARONI, K (WOS:A1995RM70000040) 1995; 117 Dance, ZEX (WOS:000242825400006) 2006; 110 vanDijk, SI (WOS:A1996VF37800028) 1996; 118 Zhang, X (WOS:000798824200001) 2022; 28 Colvin, MT (WOS:000300912000007) 2012; 116 Fukuju, T (WOS:A1997YB79500016) 1997; 101 Filatov, MA (WOS:000503874500001) 2020; 18 Forbes, MDE (WOS:000328867100002) 2013; 47 Vauthey, E (WOS:000304439600003) 2012; 13 Tang, GL (WOS:000503919500016) 2019; 123 Hari, DP (WOS:000337095500001) 2014; 50 Golden, JH (WOS:000458705200023) 2018; 1 |
References_xml | – issn: 2009 publication-title: Principles of molecular photochemistry: an introduction doi: Turro Ramamurthy Scaiano – issn: 2006 publication-title: Handbook of Photochemistry doi: Marco Montalti Prodi Teresa Gandolfi – issn: 2009 publication-title: Gaussian, Gaussian 09 (Revision A.01) doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox – volume: 1 start-page: 1083 year: 2018 ident: D2SC04258D/cit9/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00214 – volume: 95 start-page: 59 year: 2022 ident: D2SC04258D/cit57/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20210307 – volume: 16 start-page: 696 year: 2014 ident: D2SC04258D/cit66/1 publication-title: Org. Lett. doi: 10.1021/ol403736m – volume: 23 start-page: 960 year: 2021 ident: D2SC04258D/cit5/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05783E – volume: 110 start-page: 12136 year: 2006 ident: D2SC04258D/cit21/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp063038s – volume: 119 start-page: 4898 year: 2015 ident: D2SC04258D/cit50/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.5b03238 – volume-title: Handbook of Photochemistry year: 2006 ident: D2SC04258D/cit62/1 doi: 10.1201/9781420015195 – volume: 152 start-page: 114701 year: 2020 ident: D2SC04258D/cit67/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5145052 – volume: 12 start-page: 269 year: 2011 ident: D2SC04258D/cit6/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2011.10.001 – volume: 59 start-page: 11591 year: 2020 ident: D2SC04258D/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003560 – volume: 133 start-page: 1240 year: 2011 ident: D2SC04258D/cit70/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1094815 – volume: 44 start-page: 6865 year: 2005 ident: D2SC04258D/cit33/1 publication-title: Inorg. Chem. doi: 10.1021/ic0505605 – volume: 15 start-page: 7382 year: 2009 ident: D2SC04258D/cit58/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.200900440 – volume: 42 start-page: 794 year: 2013 ident: D2SC04258D/cit28/1 publication-title: Chem. Lett. doi: 10.1246/cl.130062 – volume: 126 start-page: 1600 year: 2004 ident: D2SC04258D/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038656q – volume: 123 start-page: 2503 year: 2019 ident: D2SC04258D/cit56/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.8b11828 – volume: 27 start-page: 7572 year: 2021 ident: D2SC04258D/cit68/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202100611 – volume: 135 start-page: 307 year: 1987 ident: D2SC04258D/cit73/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(87)85162-X – volume: 6 start-page: 2251 year: 2005 ident: D2SC04258D/cit2/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200500029 – volume: 50 start-page: 59 year: 2021 ident: D2SC04258D/cit29/1 publication-title: Dalton Trans. doi: 10.1039/D0DT03737K – volume: 133 start-page: 15256 year: 2011 ident: D2SC04258D/cit60/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2055726 – volume: 126 start-page: 7257 year: 2004 ident: D2SC04258D/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038676s – volume: 19 start-page: 136 year: 2020 ident: D2SC04258D/cit40/1 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c9pp00399a – volume: 50 start-page: 6688 year: 2014 ident: D2SC04258D/cit13/1 publication-title: Chem. Commun. doi: 10.1039/C4CC00751D – volume: 132 start-page: 17674 year: 2010 ident: D2SC04258D/cit64/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107382x – volume: 18 start-page: 10 year: 2020 ident: D2SC04258D/cit3/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB02170A – start-page: e202203758 year: 2022 ident: D2SC04258D/cit41/1 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 232 year: 2001 ident: D2SC04258D/cit37/1 publication-title: ChemPhysChem doi: 10.1002/1439-7641(20010417)2:4<232::AID-CPHC232>3.0.CO;2-3 – volume: 6 start-page: 2096 year: 2015 ident: D2SC04258D/cit61/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00882 – start-page: 321 year: 2000 ident: D2SC04258D/cit4/1 publication-title: Chem. Commun. doi: 10.1039/a907807j – volume: 118 start-page: 11771 year: 1996 ident: D2SC04258D/cit59/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9628415 – volume: 178 start-page: 42 year: 2006 ident: D2SC04258D/cit74/1 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2005.08.013 – volume: 106 start-page: 4453 year: 2002 ident: D2SC04258D/cit45/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp013453e – volume: 42 start-page: 97 year: 2013 ident: D2SC04258D/cit14/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35250H – volume: 123 start-page: 30171 year: 2019 ident: D2SC04258D/cit51/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b09335 – volume: 118 start-page: 10228 year: 1996 ident: D2SC04258D/cit76/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961919e – volume: 118 start-page: 8425 year: 1996 ident: D2SC04258D/cit36/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja960980g – volume: 124 start-page: 237 year: 2020 ident: D2SC04258D/cit10/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10812 – volume: 10 start-page: 3184 year: 2004 ident: D2SC04258D/cit23/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.200305308 – volume: 27 start-page: 3688 year: 2021 ident: D2SC04258D/cit55/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202005296 – volume: 1657 start-page: 82 year: 2004 ident: D2SC04258D/cit79/1 publication-title: Biochim. Biophys. Acta, Bioenerg. doi: 10.1016/j.bbabio.2004.04.011 – volume: 7 start-page: 40 year: 2006 ident: D2SC04258D/cit1/1 publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2006.04.001 – volume: 118 start-page: 11262 year: 2014 ident: D2SC04258D/cit19/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp509643q – volume: 125 start-page: 4187 year: 2021 ident: D2SC04258D/cit42/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.1c02071 – volume-title: Principles of molecular photochemistry: an introduction year: 2009 ident: D2SC04258D/cit47/1 – volume: 153 start-page: 184312 year: 2020 ident: D2SC04258D/cit49/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0023526 – volume: 122 start-page: 9715 year: 2000 ident: D2SC04258D/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja000662o – volume: 57 start-page: 6439 year: 2018 ident: D2SC04258D/cit43/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00448 – volume: 43 start-page: 853 year: 2004 ident: D2SC04258D/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352870 – volume: 55 start-page: 1510 year: 2019 ident: D2SC04258D/cit48/1 publication-title: Chem. Commun. doi: 10.1039/C8CC08159J – volume: 136 start-page: 10041 year: 2014 ident: D2SC04258D/cit27/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5040073 – volume: 47 start-page: 10145 year: 2011 ident: D2SC04258D/cit30/1 publication-title: Chem. Commun. doi: 10.1039/c1cc13831f – start-page: 213 year: 1994 ident: D2SC04258D/cit34/1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39940000213 – volume: 134 start-page: 13679 year: 2012 ident: D2SC04258D/cit65/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303173n – volume: 131 start-page: 10374 year: 2009 ident: D2SC04258D/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904241r – volume: 13 start-page: 2001 year: 2012 ident: D2SC04258D/cit8/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201200106 – volume: 101 start-page: 7783 year: 1997 ident: D2SC04258D/cit72/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp971620y – volume: 7 start-page: 12048 year: 2019 ident: D2SC04258D/cit24/1 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04285G – volume: 113 start-page: 5322 year: 2013 ident: D2SC04258D/cit12/1 publication-title: Chem. Rev. doi: 10.1021/cr300503r – volume: 134 start-page: 11251 year: 2012 ident: D2SC04258D/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303721j – volume: 79 start-page: 981 year: 2007 ident: D2SC04258D/cit7/1 publication-title: Pure Appl. Chem. doi: 10.1351/pac200779060981 – volume: 117 start-page: 8055 year: 1995 ident: D2SC04258D/cit75/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00135a040 – volume: 27 start-page: 5521 year: 2021 ident: D2SC04258D/cit69/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202005285 – volume: 80 start-page: 568 year: 2015 ident: D2SC04258D/cit53/1 publication-title: J. Org. Chem. doi: 10.1021/jo502554y – start-page: 1670 year: 2009 ident: D2SC04258D/cit26/1 publication-title: Chem. Commun. – volume: 123 start-page: 6617 year: 2001 ident: D2SC04258D/cit22/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja004123v – volume: 8 start-page: 8659 year: 2018 ident: D2SC04258D/cit11/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02226 – volume: 2 start-page: 501 year: 2021 ident: D2SC04258D/cit16/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00045 – volume: 47 start-page: 1 year: 2013 ident: D2SC04258D/cit78/1 publication-title: Adv. Phys. Org. Chem. – volume: 116 start-page: 1923 year: 2012 ident: D2SC04258D/cit71/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp212546w – volume: 41 start-page: 7687 year: 2012 ident: D2SC04258D/cit15/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35203f – volume: 134 start-page: 1305 year: 2012 ident: D2SC04258D/cit54/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2100577 – volume: 20 start-page: 752 year: 2018 ident: D2SC04258D/cit46/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06952A – volume: 49 start-page: 1 year: 2012 ident: D2SC04258D/cit80/1 publication-title: J. Stat. Software doi: 10.18637/jss.v049.i03 – volume: 55 start-page: 629 year: 2016 ident: D2SC04258D/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509067 – volume: 117 start-page: 5314 year: 2013 ident: D2SC04258D/cit32/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp4045012 – volume: 122 start-page: 6535 year: 2000 ident: D2SC04258D/cit63/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja993959z – volume: 28 start-page: e202200510 year: 2022 ident: D2SC04258D/cit52/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202200510 – volume: 110 start-page: 25163 year: 2006 ident: D2SC04258D/cit31/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp063690n – volume: 11 start-page: 2594 year: 2010 ident: D2SC04258D/cit38/1 publication-title: ChemPhysChem doi: 10.1002/cphc.201000096 – volume: 43 start-page: 853 year: 2004 ident: WOS:000189101500012 article-title: Production of an ultra-long-lived charge-separated state in a zinc chlorin-C60 dyad by one-step photoinduced electron transfer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200352870 – volume: 49 start-page: 1 year: 2012 ident: WOS:000305989900001 article-title: Glotaran: A Java-Based Graphical User Interface for the R Package TIMP publication-title: JOURNAL OF STATISTICAL SOFTWARE – volume: 41 start-page: 7687 year: 2012 ident: WOS:000310682900003 article-title: Photoredox functionalization of C-H bonds adjacent to a nitrogen atom publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35203f – volume: 47 start-page: 10145 year: 2011 ident: WOS:000294433900057 article-title: Microsecond charge recombination in a linear triarylamine-Ru(bpy)32+-anthraquinone triad publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c1cc13831f – volume: 153 start-page: ARTN 184312 year: 2020 ident: WOS:000593963800007 article-title: The effect of one-atom substitution on the photophysical properties and electron spin polarization: Intersystem crossing of compact orthogonal perylene/phenoxazine electron donor/acceptor dyad publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/5.0023526 – volume: 134 start-page: 1305 year: 2012 ident: WOS:000301084300092 article-title: Single Fluorescent Probe Responds to H2O2, NO, and H2O2/NO with Three Different Sets of Fluorescence Signals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja2100577 – volume: 10 start-page: 3184 year: 2004 ident: WOS:000222651700008 article-title: Long-lived charge-separated state generated in a ferrocene-meso,meso-linked porphyrin trimer-fullerene pentad with a high quantum yield publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200305308 – volume: 15 start-page: 7382 year: 2009 ident: WOS:000268621300016 article-title: Selective Triplet-State Formation during Charge Recombination in a Fullerene/Bodipy Molecular Dyad (Bodipy = Borondipyrromethene) publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.200900440 – volume: 136 start-page: 10041 year: 2014 ident: WOS:000339228200045 article-title: Design and Synthesis of Bipyridine Platinum(II) Bisalkynyl Fullerene Donor-Chromophore-Acceptor Triads with Ultrafast Charge Separation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja5040073 – volume: 2 start-page: 232 year: 2001 ident: WOS:000168289500005 article-title: Long-lived short-distance intramolecular charge separation via intermolecular triplet sensitisation publication-title: CHEMPHYSCHEM – volume: 7 start-page: 40 year: 2006 ident: WOS:000238705600004 article-title: On the role of spin correlation in the formation, decay, and detection of long-lived, intramolecular charge-transfer states publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS doi: 10.1016/j.jphotochemrev.2006.04.001 – volume: 110 start-page: 12136 year: 2006 ident: WOS:000241729200010 article-title: Tuning excited-state electron transfer from an adiabatic to nonadiabatic type in donor-bridge-acceptor systems and the associated energy-transfer process publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp063038s – volume: 118 start-page: 10228 year: 1996 ident: WOS:A1996VN85000025 article-title: Radical pair and triplet state dynamics of a photosynthetic reaction-center model embedded in isotropic media and liquid crystals publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 116 start-page: 1923 year: 2012 ident: WOS:000300912000007 article-title: Intersystem Crossing Involving Strongly Spin Exchange-Coupled Radical Ion Pairs in Donor-bridge-Acceptor Molecules publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp212546w – volume: 55 start-page: 629 year: 2016 ident: WOS:000368069200028 article-title: Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509067 – volume: 126 start-page: 1600 year: 2004 ident: WOS:000188926600006 article-title: Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja038656q – start-page: 1670 year: 2009 ident: WOS:000264254100015 article-title: A small cationic donor-acceptor iridium complex with a long-lived charge-separated state publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b820744e – volume: 135 start-page: 307 year: 1987 ident: WOS:A1987G946400025 article-title: ELECTRON-SPIN-RESONANCE OF SPIN-CORRELATED RADICAL PAIRS publication-title: CHEMICAL PHYSICS LETTERS – volume: 6 start-page: 2251 year: 2005 ident: WOS:000233399100003 article-title: Long-lived charge-transfer states in compact donor-acceptor dyads publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.200500029 – year: 2009 ident: 000880796400001.47 publication-title: Principles of molecular photochemistry: an introduction – volume: 42 start-page: 794 year: 2013 ident: WOS:000323795800005 article-title: Photoinduced Charge Separation of 10-Phenyl-10H-phenothiazine-2-Phenylanthraquinone Dyad Bridged by Bicyclo[2.2.2]octane publication-title: CHEMISTRY LETTERS doi: 10.1246/cl.130062 – volume: 55 start-page: 1510 year: 2019 ident: WOS:000458546700032 article-title: Increasing the anti-Stokes shift in TTA upconversion with photosensitizers showing red-shifted spin-allowed charge transfer absorption but a non-compromised triplet state energy level publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c8cc08159j – volume: 23 start-page: 960 year: 2021 ident: WOS:000610150200019 article-title: A charge transfer state induced by strong exciton coupling in a cofacial μ-oxo-bridged porphyrin heterodimer publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/d0cp05783e – volume: 132 start-page: 17674 year: 2010 ident: WOS:000285429800011 article-title: Fluoride Ion Sensing by an Anion-π Interaction publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja107382x – volume: 6 start-page: 2096 year: 2015 ident: WOS:000355894000018 article-title: Ultrafast Intersystem-Crossing Dynamics and Breakdown of the Kasha-Vavilov's Rule of Naphthalenediimides publication-title: JOURNAL OF PHYSICAL CHEMISTRY LETTERS doi: 10.1021/acs.jpclett.5b00882 – volume: 18 start-page: 10 year: 2020 ident: WOS:000503874500001 article-title: Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c9ob02170a – volume: 19 start-page: 136 year: 2020 ident: WOS:000516590600001 article-title: Making triplets from photo-generated charges: observations, mechanisms and theory publication-title: PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES doi: 10.1039/c9pp00399a – volume: 134 start-page: 13679 year: 2012 ident: WOS:000307699000027 article-title: Boundaries of Anion/Naphthalenediimide Interactions: From Anion-π Interactions to Anion-Induced Charge-Transfer and Electron-Transfer Phenomena publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja303173n – volume: 8 start-page: 8659 year: 2018 ident: WOS:000444364800097 article-title: Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production publication-title: ACS CATALYSIS doi: 10.1021/acscatal.8b02226 – volume: 20 start-page: 752 year: 2018 ident: WOS:000419219700006 article-title: Thionated naphthalene diimides: tuneable chromophores for applications in photoactive dyads publication-title: PHYSICAL CHEMISTRY CHEMICAL PHYSICS doi: 10.1039/c7cp06952a – volume: 11 start-page: 2594 year: 2010 ident: WOS:000281691100020 article-title: Photoinduced Electron Transfer in Photorobust Coumarins Linked with Electron Donors Affording Long Lifetimes of, Triplet Charge-Separated States publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.201000096 – year: 2009 ident: 000880796400001.81 publication-title: Gaussian – volume: 44 start-page: 6865 year: 2005 ident: WOS:000232281900006 article-title: Platinum chromophore-based systems for photoinduced charge separation: A molecular design approach for artificial photosynthesis publication-title: INORGANIC CHEMISTRY doi: 10.1021/ic0505605 – volume: 124 start-page: 237 year: 2020 ident: WOS:000507149600028 article-title: Distinct Excited-State Dynamics of Near-Orthogonal Perylenimide Dimer: Conformational Planarization versus Symmetry Breaking Charge Transfer publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.9b10812 – volume: 1657 start-page: 82 year: 2004 ident: WOS:000222734200002 article-title: Global and target analysis of time-resolved spectra publication-title: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS doi: 10.1016/j.bbabio.2004.04.011 – start-page: 321 year: 2000 ident: WOS:000085466500001 article-title: Fullerenes: three dimensional electron acceptor materials publication-title: CHEMICAL COMMUNICATIONS – volume: 27 start-page: 3688 year: 2021 ident: WOS:000611661500001 article-title: Cyclo-Ketal Xanthene Dyes: A New Class of Near-Infrared Fluorophores for Super-Resolution Imaging of Live Cells publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202005296 – volume: 119 start-page: 4898 year: 2015 ident: WOS:000355158500023 article-title: Directional Control of π-Conjugation Enabled by Distortion of the Donor Plane in Diarylaminoanthracenes: A Photophysical Study publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/acs.jpca.5b03238 – volume: 13 start-page: 2001 year: 2012 ident: WOS:000304439600003 article-title: Photoinduced Symmetry-Breaking Charge Separation publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.201200106 – volume: 27 start-page: 5521 year: 2021 ident: WOS:000621049400001 article-title: Spin-Orbit Charge-Transfer Intersystem Crossing in Anthracene-Perylenebisimide Compact Electron Donor-Acceptor Dyads and Triads and Photochemical Dianion Formation publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202005285 – start-page: 213 year: 1994 ident: WOS:A1994MV12200033 article-title: PHOTOINDUCED ELECTRON-TRANSFER AND LONG-LIVED CHARGE SEPARATION IN RIGID PEPTIDE ARCHITECTURES publication-title: JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS – volume: 50 start-page: 59 year: 2021 ident: WOS:000605666100004 article-title: Electron spin-controlled charge transfer and the resulting long-lived charge transfer state: from transition metal complexes to organic compounds publication-title: DALTON TRANSACTIONS doi: 10.1039/d0dt03737k – volume: 101 start-page: 7783 year: 1997 ident: WOS:A1997YB79500016 article-title: Singlet-born SCRP observed in the photolysis of tetraphenylhydrazine in an SDS micelle: Time dependence of the population of the spin states publication-title: JOURNAL OF PHYSICAL CHEMISTRY A – volume: 61 start-page: ARTN e202203758 year: 2022 ident: WOS:000784253500001 article-title: Long-Lived Charge-Transfer State in Spiro Compact Electron Donor-Acceptor Dyads Based on Pyromellitimide-Derived Rhodamine: Charge Transfer Dynamics and Electron Spin Polarization publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202203758 – volume: 178 start-page: 42 year: 2006 ident: WOS:000234722700005 article-title: EasySpin, a comprehensive software package for spectral simulation and analysis in EPR publication-title: JOURNAL OF MAGNETIC RESONANCE doi: 10.1016/j.jmr.2005.08.013 – volume: 134 start-page: 11251 year: 2012 ident: WOS:000306297600035 article-title: Structure and Dynamics of Photogenerated Triplet Radical Ion Pairs in DNA Hairpin Conjugates with Anthraquinone End Caps publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja303721j – volume: 95 start-page: 59 year: 2022 ident: WOS:000763581400006 article-title: Time-Resolved EPR and Theoretical Investigations of Naphthalene Diimide Spin Dynamics in the Excited State publication-title: BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN doi: 10.1246/bcsj.20210307 – volume: 125 start-page: 4187 year: 2021 ident: WOS:000647271100022 article-title: Spiro Rhodamine-Perylene Compact Electron Donor-Acceptor Dyads: Conformation Restriction, Charge Separation, and Spin-Orbit Charge Transfer Intersystem Crossing publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/acs.jpcb.1c02071 – volume: 28 start-page: ARTN e202200510 year: 2022 ident: WOS:000798824200001 article-title: Red Light-Emitting Thermally-Activated Delayed Fluorescence of Naphthalimide-Phenoxazine Electron Donor-Acceptor Dyad: Time-Resolved Optical and Magnetic Spectroscopic Studies publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202200510 – volume: 50 start-page: 6688 year: 2014 ident: WOS:000337095500001 article-title: Synthetic applications of eosin Y in photoredox catalysis publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc00751d – volume: 113 start-page: 5322 year: 2013 ident: WOS:000321810600018 article-title: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300503r – year: 2006 ident: 000880796400001.62 publication-title: Handbook of Photochemistry – volume: 117 start-page: 8055 year: 1995 ident: WOS:A1995RM70000040 article-title: MIMICRY OF THE RADICAL PAIR AND TRIPLET-STATES IN PHOTOSYNTHETIC REACTION CENTERS WITH A SYNTHETIC MODEL publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 27 start-page: 7572 year: 2021 ident: WOS:000642320500001 article-title: Intersystem Crossing and Electron Spin Selectivity in Anthracene-Naphthalimide Compact Electron Donor-Acceptor Dyads Showing Different Geometry and Electronic Coupling Magnitudes publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.202100611 – volume: 118 start-page: 8425 year: 1996 ident: WOS:A1996VF37800028 article-title: Long-lived triplet state charge separation in novel piperidine-bridged donor-acceptor systems publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 7 start-page: 12048 year: 2019 ident: WOS:000490152800003 article-title: Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads publication-title: JOURNAL OF MATERIALS CHEMISTRY C doi: 10.1039/c9tc04285g – volume: 16 start-page: 696 year: 2014 ident: WOS:000331163900014 article-title: Radical Anions of Trifluoromethylated Perylene and Naphthalene Imide and Diimide Electron Acceptors publication-title: ORGANIC LETTERS doi: 10.1021/ol403736m – volume: 123 start-page: 2503 year: 2019 ident: WOS:000463844300003 article-title: Anthracene-Naphthalenediimide Compact Electron Donor/Acceptor Dyads: Electronic Coupling, Electron Transfer, and Intersystem Crossing publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/acs.jpca.8b11828 – volume: 2 start-page: 501 year: 2021 ident: WOS:000677583500004 article-title: Manipulation of Charge-Transfer States by Molecular Design: Perspective from "Dynamic Exciton" publication-title: ACCOUNTS OF MATERIALS RESEARCH doi: 10.1021/accountsmr.1c00045 – volume: 133 start-page: 1240 year: 2011 ident: WOS:000287228500027 article-title: Magnetic Field-Induced Switching of the Radical-Pair Intersystem Crossing Mechanism in a Donor-Bridge-Acceptor Molecule for Artificial Photosynthesis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja1094815 – volume: 117 start-page: 5314 year: 2013 ident: WOS:000321236700011 article-title: Electron Spin Polarization Transfer from Photogenerated Spin-Correlated Radical Pairs to a Stable Radical Observer Spin publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp4045012 – volume: 110 start-page: 25163 year: 2006 ident: WOS:000242825400006 article-title: Time-resolved EPR studies of photogenerated radical ion pairs separated by p-phenylene oligomers and of triplet states resulting from charge recombination publication-title: JOURNAL OF PHYSICAL CHEMISTRY B doi: 10.1021/jp063690n – volume: 152 start-page: ARTN 114701 year: 2020 ident: WOS:000521366800001 article-title: Electronic coupling and spin-orbit charge transfer intersystem crossing (SOCT-ISC) in compact BDP-carbazole dyads with different mutual orientations of the electron donor and acceptor publication-title: JOURNAL OF CHEMICAL PHYSICS doi: 10.1063/1.5145052 – volume: 123 start-page: 6617 year: 2001 ident: WOS:000169835300018 article-title: Charge separation in a novel artificial photosynthetic reaction center lives 380 ms publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 57 start-page: 6439 year: 2018 ident: WOS:000434491700028 article-title: Alkynylplatinum(II) Terpyridine System Coupled with Rhodamine Derivative: Interplay of Aggregation, Deaggregation, and Ring-Opening Processes for Ratiometric Luminescence Sensing publication-title: INORGANIC CHEMISTRY doi: 10.1021/acs.inorgchem.8b00448 – volume: 1 start-page: 1083 year: 2018 ident: WOS:000458705200023 article-title: Symmetry-Breaking Charge Transfer in Boron Dipyridylmethene (DIPYR) Dimers publication-title: ACS APPLIED ENERGY MATERIALS doi: 10.1021/acsaem.7b00214 – volume: 80 start-page: 568 year: 2015 ident: WOS:000347506400056 article-title: Switching of the Triplet Excited State of Rhodamine/Naphthaleneimide Dyads: An Experimental and Theoretical Study publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo502554y – volume: 59 start-page: 11591 year: 2020 ident: WOS:000530869900001 article-title: Long-Lived Charge-Transfer State Induced by Spin-Orbit Charge Transfer Intersystem Crossing (SOCT-ISC) in a Compact Spiro Electron Donor/Acceptor Dyad publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.202003560 – volume: 12 start-page: 269 year: 2011 ident: WOS:000299719500002 article-title: Recent progress in controlling photophysical processes of donor-acceptor arrays involving perylene diimides and boron-dipyrromethenes publication-title: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS doi: 10.1016/j.jphotochemrev.2011.10.001 – volume: 126 start-page: 7257 year: 2004 ident: WOS:000221963600029 article-title: Design, synthesis, and photophysical studies of a porphyrin-fullerene dyad with parachute topology; Charge recombination in the Marcus inverted region publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja038676s – volume: 118 start-page: 11771 year: 1996 ident: WOS:A1996VV33700010 article-title: Linkage and solvent dependence of photoinduced electron transfer in zincporphyrin-C-60 dyads publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 123 start-page: 30171 year: 2019 ident: WOS:000503919500016 article-title: Red Thermally Activated Delayed Fluorescence and the Intersystem Crossing Mechanisms in Compact Naphthalimide-Phenothiazine Electron Donor/Acceptor Dyads publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/acs.jpcc.9b09335 – volume: 118 start-page: 11262 year: 2014 ident: WOS:000345721500015 article-title: Direct Observation of Hole Shift and Characterization of Spin States in Radical Ion Pairs Generated from Photoinduced Electron Transfer of (Phenothiazine)n Anthraquinone (n=1, 3) Dyads publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp509643q – volume: 42 start-page: 97 year: 2013 ident: WOS:000311968700008 article-title: Photoorganocatalysis. What for? publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c2cs35250h – volume: 106 start-page: 4453 year: 2002 ident: WOS:000175488400002 article-title: Spin effects on decay dynamics of charge-separated states generated by photoinduced electron transfer in zinc porphyrin-naphthalenediimide dyads publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp013453e – volume: 131 start-page: 10374 year: 2009 ident: WOS:000268644400020 article-title: Highly Efficient Photoproduction of Charge-Separated States in Donor-Acceptor-Linked Bis(acetylide) Platinum Complexes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja904241r – volume: 47 start-page: 1 year: 2013 ident: WOS:000328867100002 article-title: Time-Resolved Electron Paramagnetic Resonance Spectroscopy: History, Technique, and Application to Supramolecular and Macromolecular Chemistry publication-title: ADVANCES IN PHYSICAL ORGANIC CHEMISTRY, VOL 47 doi: 10.1016/B978-0-12-407754-6.00001-6 – volume: 122 start-page: 6535 year: 2000 ident: WOS:000088320700002 article-title: Sequential energy and electron transfer in an artificial reaction center: Formation of a long-lived charge-separated state publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja993959z – volume: 122 start-page: 9715 year: 2000 ident: WOS:000090078900018 article-title: Novel mechanism for triplet state formation in short distance covalently linked radical ion pairs publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja000662o – volume: 133 start-page: 15256 year: 2011 ident: WOS:000295911500010 article-title: Electronically Regulated Thermally and Light-Gated Electron Transfer from Anions to Naphthalenediimides publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja2055726 – volume: 79 start-page: 981 year: 2007 ident: WOS:000247222700004 article-title: New development of photoinduced electrontransfer catalytic systems publication-title: PURE AND APPLIED CHEMISTRY doi: 10.1351/pac200779060981 |
SSID | ssj0000331527 |
Score | 2.472245 |
Snippet | Spiro rhodamine (Rho)-naphthalenediimide (
NDI
) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state... Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor–acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state... Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13426 |
SubjectTerms | Amides Atomic energy levels Chemistry Chemistry, Multidisciplinary Chromophores Covalent bonds Electron paramagnetic resonance Electron spin Electrons Hexanes Physical Sciences Rhodamine Science & Technology Separation Spectra Time dependence Toluene |
Title | A long-lived charge-separated state of spiro compact electron donor-acceptor dyads based on rhodamine and naphthalenediimide chromophores |
URI | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000880796400001 https://www.ncbi.nlm.nih.gov/pubmed/36507154 https://www.proquest.com/docview/2739026676 https://www.proquest.com/docview/2753668824 https://pubmed.ncbi.nlm.nih.gov/PMC9682887 |
Volume | 13 |
WOS | 000880796400001 |
WOSCitedRecordID | wos000880796400001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eYAXxG0QGJMRe0FVIIkdL3mcOtCYBEKwocJLZcfOUmlLpjZDYv-Av8Cv5RwncVI6pMFL2tpHTpXz5VzscyFklykDmlRmfhDIxOex5H6aC-6zJNbGyFjsScwdfv9BHJ7wo0k8WVv7NYhauqzVq-zq2ryS_-EqjAFfMUv2HzjrFoUB-A78hStwGK434vH-6KwqT_0zkFh6ZGseGX9hbDVvGLC5QmgM4mF61USbZ_Woa3wz0lVZzX2ZYWBLNR_pH1IvRqjVNJ4gzItKy3O0QXFrvZQXRV2AMgGpPJudz7SB-2Ek30VRzdswxK7eQVeCoMsYwnPiLjNssPEwmUm7TYufgwOlU4mttG2MwbvvPXTfy7Z9wUd4DoXTJd-KZpEjQPkV7n0PdzHAAQ5Dv0k0boRdFPDQF3HUnNGY4VhT7MhJazZAJY8HsjdkPBIDRQ6_m5paK1oiYFhkVUeLDEVWontd6CIU-8l1shmBCwIydPPTl5PJV7eDFzDW9gR2f76rf8vS1_0CyxbPihuzGo27Pl9k19pB1uY5vkvutM4K3W-Qd4-smfI-uTXuegQ-ID_3aY9A-icCqUUgrXJqEUhbBNIOgXQZgdQikFoEUph1CKSAQLqKQDpE4ENy8vbN8fjQb5t7-BlPee2DWRwrESQ85LHiOky1YipLdMRTmXCVsnxPCyUENzIHN16B2cqk0qkGixZsYMW2yEZZleYxoYlM8jgPsbuaBsIsSZQyJgJbHazRPI488rJjwDRrK99jA5azqY3AYOn0IPo8tsw68MgLR3vR1Hu5lmq74-O0lQeLKTgCaRBhzLhHnrtpYAgewcnSVJdIEzMhwKvlHnnUsN3dhgn0zWKY2VsChCPASvDLM-WssBXhU5FEYC14ZAug4-h7CHpkd4gmR4EeQBJgNro95fNIeBOycfsMsWpG_eRv93xKbvcv-jbZqOeX5hkY8LXasRtfO-379BvjK_gS |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+long-lived+charge-separated+state+of+spiro+compact+electron+donor-acceptor+dyads+based+on+rhodamine+and+naphthalenediimide+chromophores&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Xiao%2C+Xiao&rft.au=Kurganskii%2C+Ivan&rft.au=Maity%2C+Partha&rft.au=Zhao%2C+Jianzhang&rft.date=2022-11-23&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=13&rft.issue=45&rft.spage=13426&rft.epage=13441&rft_id=info:doi/10.1039%2Fd2sc04258d&rft.externalDocID=d2sc04258d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |