Spin Seebeck in the weakly exchange-coupled Van der Waals antiferromagnet across the spin-flip transition
Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 3037 - 8 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS
4
. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition.
The authors find the magnon spin transport in CrSP
4
/Pt (Ta) can be effectively modulated through adjustments in temperature and applied magnetic field, particularly at the spin-flip field. |
---|---|
AbstractList | Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS
. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition. Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS4. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition.The authors find the magnon spin transport in CrSP4/Pt (Ta) can be effectively modulated through adjustments in temperature and applied magnetic field, particularly at the spin-flip field. Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS4. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition.Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS4. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition. Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS 4 . The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition. The authors find the magnon spin transport in CrSP 4 /Pt (Ta) can be effectively modulated through adjustments in temperature and applied magnetic field, particularly at the spin-flip field. Abstract Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces, which can be electrically detected through the inverse spin Hall effect when in contact with heavy metals. It offers fundamental insights into the magnetic properties of materials, including the magnetic phase transition, static magnetic order, and magnon excitations. The behavior of the spin Seebeck effect across the spin-flop transition has been extensively studied, whereas the spin Seebeck effect across the spin-flip transition remains poorly understood. Here, we demonstrate the spin Seebeck effect in a weakly exchange-coupled van der Waals antiferromagnet CrPS4. The spin Seebeck effect increases as the magnetic field increases before the spin-flip transition due to the enhancement of the thermal spin current as a function of the applied field. A peak of spin Seebeck effect is observed at the spin-flip field, which is related to the magnon mode edges across the spin-flip field. Our results extend spin Seebeck effect research to van der Waals antiferromagnets and demonstrate an enhancement of spin Seebeck effect at the spin-flip transition. |
ArticleNumber | 3037 |
Author | He, Xue Wu, Mingxing Giil, Hans Gløckner Shi, Wen Wang, Jicheng Yang, Jinbo Ding, Shilei Lin, Zhongchong Liang, Zhongyu Bhukta, Mona Hou, Yanglong Wu, Rui Kläui, Mathias Brataas, Arne |
Author_xml | – sequence: 1 givenname: Xue surname: He fullname: He, Xue organization: Spin-X Institute, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology – sequence: 2 givenname: Shilei orcidid: 0000-0002-5534-6901 surname: Ding fullname: Ding, Shilei email: shilei.ding@mat.ethz.ch organization: Department of Materials, ETH Zürich – sequence: 3 givenname: Hans Gløckner orcidid: 0009-0000-8869-768X surname: Giil fullname: Giil, Hans Gløckner organization: Center for Quantum Spintronics, Norwegian University of Science and Technology – sequence: 4 givenname: Jicheng surname: Wang fullname: Wang, Jicheng organization: Spin-X Institute, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology – sequence: 5 givenname: Mona orcidid: 0000-0001-7745-8560 surname: Bhukta fullname: Bhukta, Mona organization: Institute of Physics, Johannes Gutenberg-University Mainz – sequence: 6 givenname: Mingxing surname: Wu fullname: Wu, Mingxing organization: Department of Materials, ETH Zürich – sequence: 7 givenname: Wen surname: Shi fullname: Shi, Wen organization: Center for Electron Microscopy, South China University of Technology – sequence: 8 givenname: Zhongchong surname: Lin fullname: Lin, Zhongchong organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University – sequence: 9 givenname: Zhongyu orcidid: 0000-0002-7872-7571 surname: Liang fullname: Liang, Zhongyu organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University – sequence: 10 givenname: Jinbo orcidid: 0000-0003-3517-9701 surname: Yang fullname: Yang, Jinbo email: jbyang@pku.edu.cn organization: State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University – sequence: 11 givenname: Mathias orcidid: 0000-0002-4848-2569 surname: Kläui fullname: Kläui, Mathias organization: Center for Quantum Spintronics, Norwegian University of Science and Technology, Institute of Physics, Johannes Gutenberg-University Mainz – sequence: 12 givenname: Arne orcidid: 0000-0003-0867-6323 surname: Brataas fullname: Brataas, Arne organization: Center for Quantum Spintronics, Norwegian University of Science and Technology – sequence: 13 givenname: Yanglong surname: Hou fullname: Hou, Yanglong email: hou@sysu.edu.cn organization: School of Materials, Shenzhen Campus of Sun Yat-Sen University, School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University – sequence: 14 givenname: Rui orcidid: 0000-0003-2010-5961 surname: Wu fullname: Wu, Rui email: ruiwu001@scut.edu.cn organization: Spin-X Institute, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40155383$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNUREvpC7BAltiwCfgee4VQxaVSJRblsrQc52TG04wd7KTQt8cz6ZUF3vjY_v_Pxz7neXUQYoCqeknwW4KZepc54bKpMRW1UAzLmj2pjijmpCYNZQcP4sPqJOcNLoNpojh_Vh1yTIRgih1V_mL0AV0AtOAuUQmnNaDfYC-HawR_3NqGFdQuzuMAHfphA-ogoZ_WDhnZMPkeUopbuwowIetSzHkPyAVa94Mf0ZRsyH7yMbyonvbFBic383H1_dPHb6df6vOvn89OP5zXjms-1QqEkJb0WIPgVraaMqxkWVLRN13TWQ2SO9xwpZxkWjhHW6GgxSBl0wvOjquzhdtFuzFj8lubrk203uw3YloZmybvBjAd17Kj2NlGUt4Kp6XAWHFVQGB1gwvr_cIa53YLnYNQ3jM8gj4-CX5tVvHKEKIFY1oVwpsbQoq_ZsiT2frsYBhsgDhnw4hishFY7aSv_5Fu4pxC-audigqtGZVF9ephSne53Ja0COgi2JcjQX8nIdjsWscsrWNK65h965idiS2mXMSl5On-7v-4_gIcn8VI |
Cites_doi | 10.1103/PhysRevB.103.115415 10.1063/1.3507386 10.1038/nphys3465 10.1038/s41467-021-25494-7 10.1038/s41467-023-38172-7 10.1038/s41467-019-13121-5 10.1103/PhysRevB.100.224403 10.1103/PhysRevLett.125.217201 10.1103/PhysRevLett.122.217204 10.1103/PhysRevLett.114.186602 10.7567/JJAP.56.0802B5 10.1103/PhysRevLett.116.097204 10.1103/PhysRevB.105.L180408 10.1103/PhysRevB.93.014425 10.1088/0034-4885/79/4/046502 10.1088/0034-4885/76/3/036501 10.1002/adma.202001200 10.1038/s41586-018-0490-7 10.1103/PhysRevB.102.024408 10.1038/nmat2856 10.1103/PhysRevLett.119.056804 10.1103/PhysRevB.107.L180403 10.1103/PhysRevB.101.100407 10.1103/PhysRevB.110.174440 10.1103/PhysRevB.105.104417 10.1038/s41586-020-1950-4 10.1103/PhysRevApplied.17.064038 10.1021/acsnano.1c07860 10.1103/PhysRevLett.110.067207 10.1016/j.newton.2025.100018 10.1002/advs.202307034 10.1038/ncomms10452 10.1103/PhysRevApplied.16.024011 10.1021/acsnano.7b04679 10.7566/JPSJ.93.034702 10.1103/PhysRevB.110.224434 10.1088/1361-648X/ab9e2d 10.1103/PhysRevLett.117.207203 10.1103/PhysRevB.103.224433 10.1146/annurev-conmatphys-040721-014957 10.1103/PhysRevLett.133.036701 10.1002/adfm.202303781 10.1103/PhysRevB.106.224409 10.1038/nature07321 10.1016/j.jmmm.2020.166711 10.1063/1.4940948 10.3390/en13143606 10.1103/PhysRevB.90.224427 10.1103/PhysRevB.102.184416 10.1063/1.5109132 10.1103/PhysRevB.101.205407 10.1063/5.0096313 10.1103/PhysRevB.102.020408 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-58306-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_d496d20ca7624b5c9650084867fea970 PMC11953398 40155383 10_1038_s41467_025_58306_3 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AAYXX CITATION PHGZM SNYQT NPM PJZUB PPXIY PQGLB 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-8e556a1f09e54a6b923086f0925f7d7da9e64c07488c6395cc2b58eb0e667f543 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:50 EDT 2025 Thu Aug 21 18:35:49 EDT 2025 Fri Jul 11 18:52:35 EDT 2025 Sat Aug 23 14:55:24 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Tue Jul 01 05:16:36 EDT 2025 Sat Mar 29 01:22:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-8e556a1f09e54a6b923086f0925f7d7da9e64c07488c6395cc2b58eb0e667f543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7872-7571 0000-0002-4848-2569 0009-0000-8869-768X 0000-0003-3517-9701 0000-0002-5534-6901 0000-0003-2010-5961 0000-0003-0867-6323 0000-0001-7745-8560 |
OpenAccessLink | https://doaj.org/article/d496d20ca7624b5c9650084867fea970 |
PMID | 40155383 |
PQID | 3182599326 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d496d20ca7624b5c9650084867fea970 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11953398 proquest_miscellaneous_3183675088 proquest_journals_3182599326 pubmed_primary_40155383 crossref_primary_10_1038_s41467_025_58306_3 springer_journals_10_1038_s41467_025_58306_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-28 |
PublicationDateYYYYMMDD | 2025-03-28 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | T Kikkawa (58306_CR4) 2023; 14 58306_CR1 58306_CR32 R Ramos (58306_CR53) 2019; 10 DK de Wal (58306_CR51) 2023; 107 S Qi (58306_CR28) 2023; 14 A Akopyan (58306_CR17) 2020; 101 J Yang (58306_CR37) 2021; 16 R Lebrun (58306_CR44) 2018; 561 K Mallick (58306_CR9) 2019; 100 T Kikkawa (58306_CR48) 2013; 110 A Hirohata (58306_CR2) 2020; 509 S Ding (58306_CR35) 2020; 32 CO Avci (58306_CR42) 2014; 90 S Calder (58306_CR36) 2020; 102 SM Wu (58306_CR11) 2016; 116 K Gu (58306_CR39) 2024; 11 W Xing (58306_CR31) 2019; 9 SA Bender (58306_CR49) 2017; 119 K-i Uchida (58306_CR7) 2010; 97 SM Wu (58306_CR16) 2015; 114 T Kikkawa (58306_CR52) 2016; 117 DK de Wal (58306_CR29) 2024; 110 SM Rezende (58306_CR50) 2019; 126 J Lee (58306_CR33) 2017; 11 K Masuda (58306_CR22) 2024; 93 R Wu (58306_CR38) 2022; 17 W Xing (58306_CR54) 2020; 102 Y Yamamoto (58306_CR21) 2022; 105 F Feringa (58306_CR25) 2022; 106 T Liu (58306_CR26) 2020; 101 Y-C Lau (58306_CR47) 2017; 56 S Geprägs (58306_CR10) 2016; 7 QL Pei (58306_CR24) 2016; 119 Y Chen (58306_CR18) 2021; 12 K Behnia (58306_CR43) 2016; 79 R Luo (58306_CR46) 2022; 121 K Uchida (58306_CR5) 2008; 455 D Reitz (58306_CR45) 2020; 102 DK de Wal (58306_CR30) 2024; 110 K Jenni (58306_CR19) 2022; 105 I Gray (58306_CR13) 2019; 9 W Li (58306_CR41) 2023; 33 K Uchida (58306_CR6) 2010; 9 LJ Cornelissen (58306_CR8) 2015; 11 J Son (58306_CR40) 2021; 15 Y Peng (58306_CR34) 2020; 32 H Adachi (58306_CR3) 2013; 76 P Tang (58306_CR23) 2024; 133 X Tan (58306_CR27) 2021; 103 A Ross (58306_CR15) 2021; 103 SM Rezende (58306_CR20) 2016; 93 J Li (58306_CR55) 2020; 125 J Li (58306_CR14) 2020; 578 J Li (58306_CR12) 2019; 122 |
References_xml | – volume: 9 year: 2019 ident: 58306_CR31 publication-title: Phys. Rev. X – volume: 103 start-page: 115415 year: 2021 ident: 58306_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.115415 – volume: 9 start-page: 41016 year: 2019 ident: 58306_CR13 publication-title: Phys. Rev. X – volume: 97 start-page: 172505 year: 2010 ident: 58306_CR7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3507386 – volume: 11 start-page: 1022 year: 2015 ident: 58306_CR8 publication-title: Nat. Phys. doi: 10.1038/nphys3465 – volume: 12 year: 2021 ident: 58306_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25494-7 – volume: 14 year: 2023 ident: 58306_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38172-7 – volume: 10 year: 2019 ident: 58306_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13121-5 – volume: 100 start-page: 224403 year: 2019 ident: 58306_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.224403 – volume: 125 start-page: 217201 year: 2020 ident: 58306_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.217201 – volume: 122 start-page: 217204 year: 2019 ident: 58306_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.217204 – volume: 114 start-page: 186602 year: 2015 ident: 58306_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.186602 – volume: 56 start-page: 0802B0805 year: 2017 ident: 58306_CR47 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.0802B5 – volume: 116 start-page: 097204 year: 2016 ident: 58306_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.097204 – volume: 105 year: 2022 ident: 58306_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.L180408 – volume: 93 start-page: 014425 year: 2016 ident: 58306_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.014425 – volume: 79 start-page: 046502 year: 2016 ident: 58306_CR43 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/4/046502 – volume: 76 start-page: 036501 year: 2013 ident: 58306_CR3 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/3/036501 – volume: 32 start-page: 2001200 year: 2020 ident: 58306_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.202001200 – volume: 561 start-page: 222 year: 2018 ident: 58306_CR44 publication-title: Nature doi: 10.1038/s41586-018-0490-7 – volume: 102 year: 2020 ident: 58306_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.024408 – volume: 9 start-page: 894 year: 2010 ident: 58306_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat2856 – volume: 119 start-page: 056804 year: 2017 ident: 58306_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.056804 – volume: 107 year: 2023 ident: 58306_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.L180403 – volume: 101 year: 2020 ident: 58306_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.100407 – volume: 110 start-page: 174440 year: 2024 ident: 58306_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.174440 – volume: 105 start-page: 104417 year: 2022 ident: 58306_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.104417 – volume: 578 start-page: 70 year: 2020 ident: 58306_CR14 publication-title: Nature doi: 10.1038/s41586-020-1950-4 – volume: 17 start-page: 064038 year: 2022 ident: 58306_CR38 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.064038 – volume: 15 start-page: 16904 year: 2021 ident: 58306_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.1c07860 – volume: 110 start-page: 067207 year: 2013 ident: 58306_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.067207 – ident: 58306_CR32 doi: 10.1016/j.newton.2025.100018 – volume: 11 year: 2024 ident: 58306_CR39 publication-title: Adv. Sci. doi: 10.1002/advs.202307034 – volume: 7 year: 2016 ident: 58306_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms10452 – volume: 16 start-page: 024011 year: 2021 ident: 58306_CR37 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.024011 – volume: 11 start-page: 10935 year: 2017 ident: 58306_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.7b04679 – volume: 93 start-page: 034702 year: 2024 ident: 58306_CR22 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.93.034702 – volume: 110 start-page: 224434 year: 2024 ident: 58306_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.224434 – volume: 32 start-page: 405804 year: 2020 ident: 58306_CR35 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ab9e2d – volume: 117 start-page: 207203 year: 2016 ident: 58306_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.207203 – volume: 103 year: 2021 ident: 58306_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.224433 – volume: 14 start-page: 129 year: 2023 ident: 58306_CR4 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-040721-014957 – volume: 133 start-page: 036701 year: 2024 ident: 58306_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.036701 – volume: 33 start-page: 2303781 year: 2023 ident: 58306_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303781 – volume: 106 start-page: 224409 year: 2022 ident: 58306_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.224409 – volume: 455 start-page: 778 year: 2008 ident: 58306_CR5 publication-title: Nature doi: 10.1038/nature07321 – volume: 509 start-page: 166711 year: 2020 ident: 58306_CR2 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.166711 – volume: 119 year: 2016 ident: 58306_CR24 publication-title: J. Appl. Phys. doi: 10.1063/1.4940948 – ident: 58306_CR1 doi: 10.3390/en13143606 – volume: 90 year: 2014 ident: 58306_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.224427 – volume: 102 year: 2020 ident: 58306_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.184416 – volume: 126 start-page: 151101 year: 2019 ident: 58306_CR50 publication-title: J. Appl. Phys. doi: 10.1063/1.5109132 – volume: 101 year: 2020 ident: 58306_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.205407 – volume: 121 start-page: 102404 year: 2022 ident: 58306_CR46 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0096313 – volume: 102 start-page: 020408 year: 2020 ident: 58306_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.020408 |
SSID | ssj0000391844 |
Score | 2.4825191 |
Snippet | Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal interfaces,... Abstract Spin Seebeck effect refers to the creation of spin currents due to a temperature gradient in the magnetic materials or across magnet-normal metal... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3037 |
SubjectTerms | 140/133 142/126 147/143 639/301/119/1001 639/766/119/1001 Antiferromagnetism Electric contacts Hall effect Heavy metals Humanities and Social Sciences Magnetic fields Magnetic materials Magnetic properties Magnons Material properties multidisciplinary Phase transitions Science Science (multidisciplinary) Seebeck effect Spintronics Tantalum Temperature gradients |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCIkXxDcdAwWJN4jWa5ImeUKAmCYkeBmDe4uS1B2nHW3X6wn23-OkvZuOr7e2iSLXdpxfYscm5EVZhjwUJjCAmWDCO4920BlWeB_9WqVTVbzv_PFTeXwqPszlfDpwW01hlRubmAx11YZ4Rn6IuodIPaKN190Fi1Wjond1KqFxndyIqctiSJeaq-0ZS8x-roWY7srkXB-uRLIMsYar1DyGfe2sRylt_9-w5p8hk7_5TdNydHSH3J5wJH0zCv4uuQbNPXJzrCx5eZ8sTrpFQ08gMu-c4iPiPPoD3PnyksLP8bYvC-26W0JFv7iGVtDTrw51kboYPgR93353Zw0M1CXC0wArHJTVy0VHh7jEpWivB-T06P3nd8dsqqrAgjBiYBqkLN2szg1I4UqPCA-3NfhayFpVqnIGShEQWWgdEL7IEAovNfgcylLVUvCHZK9pG3hMaMClTCo347OghC-MlnVwRQ45ylmqCjLycsNb243JM2xyenNtR0lY7GiTJCzPyNvI_m3PmPg6fWj7MzvNI1sJU1ZFHhwaceFlMIgwY0kAJA2cUXlGDjbCs9NsXNkr3cnI820zzqPoHHENtOvUh-PmCY1uRh6Nst5SIlJ1JY0U6h0t2CF1t6VZfEu5uqNacm5w0Fcbhbmi69-82P__bzwht4qowzlnhT4ge0O_hqcIjgb_LM2AX8CvDJo priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJtAQUbiBhFZv2IfYUVVIcGlFHqzbGdSVt0mq2xWtP--YydZtFAO3PKYWCPPw58z4xlC3igVisBMyAFmIhfeefSDzuTM-xjXUq6s4nnnL1_V0Yn4fCpP9wibzsKkpP1U0jK56Sk77P1aJJOOzVel5jFf6xa5HUu3R62eq_n2v0qseK6FGM_HFFzf8OnOGpRK9d-EL_9Ok_wjVpqWoMP75N6IHemHgdsHZA-ah-TO0E3y6hFZHK8WDT2GOGHnFC8R29Ff4M6XVxQuhxO-eWg3qyVU9LtraAUd_eFQ_6iLKUPQde2FO2ugpy4xngZY46B5vVysaB-XtZTh9ZicHH76Nj_Kx04KeRBG9LkGKZWb1YUBKZzyiOpwK4O3TNZlVVbOgBIB0YTWASGLDIF5qcEXoFRZS8GfkP2mbeAZoQGXL1m6GZ-FUnhmtKyDYwUUKFtZVpCRt9Pc2tVQMMOmQDfXdpCERUKbJGF5Rj7G6d9SxmLX6UHbndlR-LYSRlWsCA4dt_AyGESVsQ0AsgbOlEVGDibh2dEC1xZ9Fe7sIjrNyOvta7SdGBBxDbSbRMNxw4SONiNPB1lvORGpo5JGDvWOFuywuvumWfxM9bljFT3ODQ76blKY33z9ey6e_x_5C3KXRZ0ueM70Adnvuw28RIDU-1fJIq4BJDIKWg priority: 102 providerName: Springer Nature |
Title | Spin Seebeck in the weakly exchange-coupled Van der Waals antiferromagnet across the spin-flip transition |
URI | https://link.springer.com/article/10.1038/s41467-025-58306-3 https://www.ncbi.nlm.nih.gov/pubmed/40155383 https://www.proquest.com/docview/3182599326 https://www.proquest.com/docview/3183675088 https://pubmed.ncbi.nlm.nih.gov/PMC11953398 https://doaj.org/article/d496d20ca7624b5c9650084867fea970 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvAUhmJG0Sbxu9jt9qyqsQKURZ6sxxnslRb0qpNBfvvGTtp2fIQFy55WtZoZjzzjTyeIeSVlD7zufEpQJ-nvHAF2kFn0rwowr6WdKoM553fncnTcz6eium1Vl8hJ6wtD9wy7qjkRpZ55h2uWl4IbxBShBrwUlXgjIrROvq8a8FUtMHMYOjCu1MyGdNHax5tQujeKjQLCV97nigW7P8Tyvw9WfKXHdPoiEb3yN0OQdJBS_l9cgPqB-R221Py6iGZTZazmk4gsO2S4iMiPPoN3OX8isL39pxv6heb5RxK-snVtIQV_exQC6kLiUOwWi2-uosaGuoi4XGCNU6aVvPZkjbBucU8r0fkfHTycXiadv0UUs8Nb1INQkjXrzIDgjtZILbDgAZfc1GpUpXOgOQeMYXWHoGL8D4vhIYiA4ncFpw9Jgf1ooanhHp0YkK5Put7xYvcaFF5l2eQoYSFKiEhr7e8tcu2bIaN291M21YSFgfaKAnLEnIc2L8bGUpexw-oCLZTBPsvRUjI4VZ4tluHa4sWC-O7gFET8nL3G1dQ2BZxNSw2cQzDsAnNbUKetLLeUcJjXyWNFOo9Ldgjdf9PPfsSq3SHWnqMGZz0zVZhftL1d148-x-8eE7u5EHTM5bm-pAcNKsNvEDw1BQ9clNNFV716G2P3BoMxpMx3o9Pzt5_wK9DOezFlfQDPrYZ7Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGzjp04B4R4LVv6uLSF3lzbmZRVlyTsZlX2T_EbGTvJVsvr1lseljXxfPNwZjxDyLMksZFlmQ0BBjzkRhvUgzoLmTEurpXoNHfnnXf3ktEh_3QkjtbIz_4sjEur7HWiV9R5Zd0_8k3EHnrqztt4XX8PXdcoF13tW2i0sNiGxRlu2Wavtt4jf58zNvxw8G4Udl0FQssz3oQShEj0oIgyEFwnBj0cdOvxlokizdNcZ5Bwi5ZVSovmW1jLjJBgIkiStBA8xnkvkcs8jjMnUXL4cflPx1Vbl5x3Z3OiWG7OuNdErmeskLFLM1uxf75NwN982z9TNH-L03rzN7xBrnd-K33TAu0mWYPyFrnSdrJc3Cbj_Xpc0n1wzDqleIl-JT0DfTpZUPjRni4ObTWvJ5DTz7qkOUzpF43Yp9qlK8F0Wn3TJyU0VHvC_QQznDQsJuOaNs6k-uyyO-TwQtb7LlkvqxLuE2rRdIpUD-KBTblhmRSF1SyCCHEl0hwC8qJfW1W3xTqUD7LHUrWcUDhQeU6oOCBv3fIvR7pC2_5BNT1RndyqnGdJziKr0WhwI2yGHq1rQYCkgc7SKCAbPfNUJ_0zdY7VgDxdvka5dcEYXUI192Ni3Kyhkg_IvZbXS0q47-YkkUK5goIVUlfflOOvvja4q-CHyMRJX_aAOafr32vx4P-f8YRcHR3s7qidrb3th-Qac3iO4pDJDbLeTOfwCB2zxjz20kDJ8UWL3y-YdEh0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYgXxM1CASPBE0Sb-IidB4SAsmopVEilsG-u40zKqkuy7KGyf41fx9hJtlqut77lsKyJ5_qcGc8Q8iRNXexY5iKAREQitznaQZtFLM99XCu1qvDnnT_spzuH4t1QDjfIz-4sjE-r7GxiMNRF7fw_8j7KHiJ1jzb6ZZsW8XF78HLyPfIdpHyktWun0YjIHixPcfs2e7G7jbx-ytjg7ac3O1HbYSByIhPzSIOUqU3KOAMpbJoj2kGIj7dMlqpQhc0gFQ69rNYOXbl0juVSQx5DmqpSCo7zXiAXFZeJ1zE1VKv_O77yuhaiPacTc92fiWCVfP9YqblPOVvzhaFlwN9w7p_pmr_FbIMrHFwjV1sMS181QnedbEB1g1xquloub5LRwWRU0QPwjDuheIkYk56CPRkvKfxoThpHrl5MxlDQz7aiBUzpF4t6QK1PXYLptP5mjyuYUxsIDxPMcNKoHI8mdO7da8g0u0UOz2W9b5PNqq7gLqEO3ahUNuGJUyJnmZalsyyGGGVMqgJ65Fm3tmbSFO4wIeDOtWk4YXCgCZwwvEde--VfjfRFt8ODenpsWh02hcjSgsXOogMRuXQZolvfjgBJA5upuEe2OuaZ1hLMzJnc9sjj1WvUYR-YsRXUizCG48YNDX6P3Gl4vaJEhM5OGinUa1KwRur6m2r0NdQJ99X8OM9w0uedwJzR9e-1uPf_z3hELqPimfe7-3v3yRXmxTnmEdNbZHM-XcADxGjz_GFQBkqOzlv7fgHbjUyh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+Seebeck+in+the+weakly+exchange-coupled+Van+der+Waals+antiferromagnet+across+the+spin-flip+transition&rft.jtitle=Nature+communications&rft.au=He%2C+Xue&rft.au=Ding%2C+Shilei&rft.au=Giil%2C+Hans+Gl%C3%B8ckner&rft.au=Wang%2C+Jicheng&rft.date=2025-03-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58306-3&rft_id=info%3Apmid%2F40155383&rft.externalDocID=PMC11953398 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |