High-performance polymer field-effect transistors: from the perspective of multi-level microstructures
The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective,...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 4; pp. 1193 - 125 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.12.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics.
The multi-level microstructures of conjugated polymers, including solution-state aggregation and crystal structures, are reviewed due to their influence on charge transport in polymer field-effect transistors. |
---|---|
AbstractList | The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics.
The multi-level microstructures of conjugated polymers, including solution-state aggregation and crystal structures, are reviewed due to their influence on charge transport in polymer field-effect transistors. The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics.The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics. The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics. |
Author | Wang, Jie-Yu Yao, Ze-Fan Pei, Jian |
AuthorAffiliation | College of Chemistry and Molecular Engineering Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing National Laboratory for Molecular Sciences (BNLMS) Center of Soft Matter Science and Engineering |
AuthorAffiliation_xml | – name: Peking University – name: Beijing National Laboratory for Molecular Sciences (BNLMS) – name: Center of Soft Matter Science and Engineering – name: Key Laboratory of Polymer Chemistry and Physics of Ministry of Education – name: College of Chemistry and Molecular Engineering |
Author_xml | – sequence: 1 givenname: Ze-Fan surname: Yao fullname: Yao, Ze-Fan – sequence: 2 givenname: Jie-Yu surname: Wang fullname: Wang, Jie-Yu – sequence: 3 givenname: Jian surname: Pei fullname: Pei, Jian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34163881$$D View this record in MEDLINE/PubMed |
BookMark | eNptks1rFTEUxYNU7IfduFcG3Igwmu9JuhDKq1qh4EJdhzRz05eSmYxJ5kH_e-f52qcWs7mB-7uHk5x7jA7GNAJCLwh-RzDT73tcHJZcd_YJOqKYk1YKpg_2d4oP0Wkpt3g5jBFBu2fokHEimVLkCPnLcLNuJ8g-5cGODpopxbsBcuMDxL4F78HVpmY7llBqyuWs8TkNTV0vKOQyLe2wgSb5ZphjDW2EDcRmCC6nUvPs6pyhPEdPvY0FTu_rCfrx6eP31WV79fXzl9X5Veu45rVV2lGlJemolVR7qRixjPekp4JIsD2IjmvKnPCSO869wgp3TnCBO3DX1rET9GGnO83XA_QOxsV5NFMOg813Jtlg_u2MYW1u0sYo0mki2CLw5l4gp58zlGqGUBzEaEdIczFUcK46jSlf0NeP0Ns053F5nqFcSSKFZlvBV3872lt5iGAB8A7YfljJ4I0L1daQtgZDNASbbdDmAn9b_Q76fBl5-2jkQfW_8MsdnIvbc3-2hv0C7NGzdw |
CitedBy_id | crossref_primary_10_1039_D2TC02679A crossref_primary_10_1021_jacs_2c00072 crossref_primary_10_1016_j_mtadv_2023_100360 crossref_primary_10_1002_adfm_202305494 crossref_primary_10_1002_anie_202200221 crossref_primary_10_1039_D3CP05313J crossref_primary_10_1021_acsami_2c18049 crossref_primary_10_1002_ange_202301863 crossref_primary_10_1021_acs_jpclett_1c03909 crossref_primary_10_1360_SSC_2021_0159 crossref_primary_10_1002_solr_202300136 crossref_primary_10_1016_j_microc_2022_108148 crossref_primary_10_1016_j_giant_2021_100064 crossref_primary_10_1039_D3YA00060E crossref_primary_10_1002_agt2_501 crossref_primary_10_1021_accountsmr_4c00134 crossref_primary_10_1002_adfm_202209195 crossref_primary_10_1002_pssr_202300223 crossref_primary_10_1021_acs_chemmater_3c02106 crossref_primary_10_1038_s41467_023_39133_w crossref_primary_10_1039_D2MH01344D crossref_primary_10_1021_acsami_4c16728 crossref_primary_10_1021_acs_macromol_1c00391 crossref_primary_10_3390_polym14214612 crossref_primary_10_1039_D2CS01027E crossref_primary_10_1002_advs_202305361 crossref_primary_10_1002_anie_202301863 crossref_primary_10_1002_pol_20230843 crossref_primary_10_1016_j_polymer_2022_124606 crossref_primary_10_1021_acsnano_4c12313 crossref_primary_10_1103_PhysRevE_109_024207 crossref_primary_10_1002_asia_202100749 crossref_primary_10_1021_acs_chemrev_2c00696 crossref_primary_10_1002_advs_202205381 crossref_primary_10_1021_acs_macromol_3c02547 crossref_primary_10_1021_acsapm_3c02649 crossref_primary_10_1021_acs_macromol_4c01183 crossref_primary_10_1039_D3TC02282J crossref_primary_10_1002_marc_202300288 crossref_primary_10_1002_smm2_1053 crossref_primary_10_1021_acsaelm_3c00373 crossref_primary_10_1021_acs_macromol_1c02329 crossref_primary_10_1016_j_cej_2024_153358 crossref_primary_10_1039_D3TC03518B crossref_primary_10_1016_j_nanoen_2022_107489 crossref_primary_10_1016_j_chaos_2024_115459 crossref_primary_10_1021_jacs_3c08143 crossref_primary_10_1002_ange_202200221 crossref_primary_10_1021_acsami_1c19708 crossref_primary_10_1039_D2TC03551K crossref_primary_10_1039_D4TC00148F crossref_primary_10_1002_smll_202306010 crossref_primary_10_1002_agt2_46 crossref_primary_10_1142_S1793604721500144 crossref_primary_10_1016_j_dyepig_2024_112536 crossref_primary_10_1038_s41428_021_00537_4 crossref_primary_10_1039_D1ME00134E crossref_primary_10_1016_j_progpolymsci_2022_101626 crossref_primary_10_3390_ma16072877 |
Cites_doi | 10.1002/adma.201801830 10.1021/cr900150b 10.1038/s41467-018-02852-6 10.1002/adma.201700930 10.1021/acsami.9b06568 10.1021/ma302463d 10.1002/adma.201500401 10.1021/ja00078a012 10.1021/jacs.5b10445 10.1002/adma.201305809 10.1002/adma.201806747 10.1002/adfm.201401822 10.1002/anie.202007589 10.1002/tcr.201800135 10.1039/C3MH00098B 10.1021/cr050140x 10.1038/s41467-020-15181-4 10.1038/nature21004 10.1002/adma.201606217 10.1021/ja412533d 10.1021/ja209328m 10.1021/ja1049324 10.1002/adma.201503803 10.1021/cr500225d 10.1088/1361-6633/ab0530 10.1038/s41570-019-0152-9 10.1063/1.117834 10.1021/ja107678m 10.1021/ma0602932 10.1002/adma.201502617 10.1021/ja311469y 10.1103/PhysRevLett.50.1934 10.1039/C2CS35394F 10.1038/nmat3722 10.1002/adma.202002748 10.1103/PhysRevLett.62.55 10.1016/j.progpolymsci.2013.07.009 10.1002/adma.201903104 10.1002/adma.201305910 10.1038/nature07727 10.1021/ja403667s 10.1002/adma.201305981 10.1021/ma060886c 10.1002/adma.201202689 10.1021/acs.accounts.7b00293 10.1021/cr100380z 10.1002/advs.201801566 10.1002/adma.201701072 10.1021/acs.chemmater.5b03266 10.1002/adma.201600541 10.1002/adma.201702115 10.1126/science.aab2750 10.31635/ccschem.019.201900056 10.1002/adma.201801079 10.1021/acs.chemrev.7b00084 10.1021/acs.macromol.0c00209 10.1016/S1369-7021(08)70055-5 10.1002/chem.202000220 10.1002/adma.201602660 10.1021/acs.macromol.8b01020 10.1002/(SICI)1521-4044(199808)49:8<439::AID-APOL439>3.0.CO;2-A 10.1063/1.97417 10.1016/j.chempr.2018.08.005 10.1021/ma501508j 10.1126/science.aav7057 10.1002/adma.201201795 10.1039/C7CS00490G 10.1016/S1369-7021(10)70080-8 10.1002/adma.202000063 10.1002/adma.201901400 10.1002/adma.201304346 10.1038/s41563-020-0647-2 10.1021/ja405112s 10.1002/aelm.201700559 10.1016/j.chempr.2020.05.012 10.1021/ar500021t 10.1002/anie.201905835 10.1021/cr0501543 10.1002/adma.201808256 10.1002/adma.202002329 10.1002/adma.201900871 10.1002/adma.201204296 10.1038/s41467-019-11629-4 10.1002/admt.202000390 10.1002/adfm.201904590 10.1126/sciadv.aas9543 10.1038/nmat5035 10.1038/nature13854 10.1002/aelm.201700474 10.1002/anie.201205075 10.1126/sciadv.aaz1042 10.1021/ja308211n 10.1038/ncomms6293 10.1021/cr3001109 10.1021/ja403949g 10.1002/anie.201205653 10.1038/ncomms3238 10.1021/cm4018776 10.1002/adfm.201807786 10.1021/acs.chemmater.6b03111 10.1002/adma.201900608 10.1038/44359 10.1038/s41557-018-0170-0 10.1021/acs.accounts.8b00069 10.1002/anie.201911311 10.1002/adts.201800016 10.1038/s41467-019-10519-z 10.1021/acsnano.5b01982 10.1038/nenergy.2015.27 10.1002/adma.201704630 10.1021/ja306844f |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc06497a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 125 |
ExternalDocumentID | PMC8179153 34163881 10_1039_D0SC06497A d0sc06497a |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: ; grantid: 21420102005; 21722201; 21790360 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c494t-89c2896172a629f6831a34d1d2516eade574923c5f64c44f80807c54507ecbac3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:31:21 EDT 2025 Tue Aug 05 10:03:14 EDT 2025 Fri Jul 25 06:51:02 EDT 2025 Mon Jul 21 05:40:30 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 03:46:47 EDT 2025 Sat Jan 08 03:51:57 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c494t-89c2896172a629f6831a34d1d2516eade574923c5f64c44f80807c54507ecbac3 |
Notes | Jian Pei has been working as a professor at Peking University since 2001. He received his undergraduate and Ph.D. degrees in chemistry from Peking University. He was a postdoctoral fellow at the National University of Singapore. From 1998 to 2000, he studied organic semiconductors with Alan J. Heeger at the University of California at Santa Barbara. His current interests focus on the design and synthesis of conjugated molecules and polymers as semiconducting and conducting materials, organic field-effect transistors and thermoelectrics, and the structure-property relationship of organic functional materials. Jie-Yu Wang is currently an associate professor of organic chemistry in CCME at Peking University. She received her Ph.D. degree in organic chemistry from Peking University in 2009. Her research interests relate to organic synthesis, supramolecular chemistry, and device fabrication of organic conjugated molecules and polymers. Ze-Fan Yao received his B.Sc. degree in 2016 in chemistry from the College of Chemistry and Molecular Engineering (CCME), Peking University. He started pursuing a Ph.D. degree in 2016 under the supervision of Prof. Jian Pei and Prof. Jie-Yu Wang at CCME. He is currently carrying out research on conjugated polymers and polymer-based field-effect transistors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5590-0768 0000-0002-2222-5361 |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc06497a |
PMID | 34163881 |
PQID | 2486165933 |
PQPubID | 2047492 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1039_D0SC06497A pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179153 proquest_journals_2486165933 rsc_primary_d0sc06497a proquest_miscellaneous_2544879024 crossref_primary_10_1039_D0SC06497A pubmed_primary_34163881 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201224 |
PublicationDateYYYYMMDD | 2020-12-24 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201224 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Bredas (D0SC06497A/cit50/1) 2014; 1 Lu (D0SC06497A/cit62/1) 2019; 58 Knaapila (D0SC06497A/cit91/1) 2006; 39 Liu (D0SC06497A/cit73/1) 2018; 30 Paterson (D0SC06497A/cit112/1) 2019; 31 Li (D0SC06497A/cit96/1) 2020; 59 Yan (D0SC06497A/cit5/1) 2009; 457 Gurney (D0SC06497A/cit25/1) 2019; 82 Huang (D0SC06497A/cit7/1) 2019; 50 Cao (D0SC06497A/cit100/1) 2019; 2 Jiang (D0SC06497A/cit10/1) 2019; 363 Wang (D0SC06497A/cit18/1) 2012; 112 Zhang (D0SC06497A/cit63/1) 2013; 135 Aime (D0SC06497A/cit37/1) 1989; 62 Kim (D0SC06497A/cit95/1) 2019; 29 Lee (D0SC06497A/cit66/1) 2013; 135 Zaumseil (D0SC06497A/cit11/1) 2007; 107 Chan (D0SC06497A/cit58/1) 1993; 115 Pei (D0SC06497A/cit82/1) 2020; 53 Xu (D0SC06497A/cit107/1) 2018; 30 Ma (D0SC06497A/cit115/1) 2020; 2 Park (D0SC06497A/cit108/1) 2020; 30 Yao (D0SC06497A/cit40/1) 2020; 59 Briseno (D0SC06497A/cit98/1) 2008; 11 Lee (D0SC06497A/cit109/1) 2017; 29 Sutton (D0SC06497A/cit36/1) 2016; 28 Kanimozhi (D0SC06497A/cit71/1) 2012; 134 Tripathi (D0SC06497A/cit81/1) 2019; 11 Li (D0SC06497A/cit89/1) 2019; 10 Sirringhaus (D0SC06497A/cit6/1) 1999; 401 Zeidell (D0SC06497A/cit105/1) 2020; 5 Fratini (D0SC06497A/cit31/1) 2020; 19 Grell (D0SC06497A/cit38/1) 1998; 49 Zheng (D0SC06497A/cit83/1) 2016; 28 Coropceanu (D0SC06497A/cit28/1) 2007; 107 Yang (D0SC06497A/cit56/1) 2017; 29 Yang (D0SC06497A/cit67/1) 2019 Franklin (D0SC06497A/cit8/1) 2015; 349 Onwubiko (D0SC06497A/cit60/1) 2018; 9 Körzdörfer (D0SC06497A/cit48/1) 2014; 47 Guo (D0SC06497A/cit17/1) 2014; 114 Koch (D0SC06497A/cit79/1) 2013; 38 Dou (D0SC06497A/cit69/1) 2014; 24 Yu (D0SC06497A/cit20/1) 2020; 26 Liu (D0SC06497A/cit94/1) 2014; 5 Randell (D0SC06497A/cit32/1) 2019; 19 Lei (D0SC06497A/cit64/1) 2012; 24 Giovannitti (D0SC06497A/cit75/1) 2016; 7 Viola (D0SC06497A/cit15/1) 2020; 32 Tsumura (D0SC06497A/cit45/1) 1986; 49 Kang (D0SC06497A/cit68/1) 2013; 135 Huang (D0SC06497A/cit21/1) 2017; 117 Hu (D0SC06497A/cit24/1) 2017; 50 Du (D0SC06497A/cit93/1) 2020 Dias (D0SC06497A/cit90/1) 2006; 39 Dudenko (D0SC06497A/cit103/1) 2012; 51 Sirringhaus (D0SC06497A/cit2/1) 2014; 26 Brédas (D0SC06497A/cit47/1) 2018; 1 Lei (D0SC06497A/cit55/1) 2014; 136 Kwon (D0SC06497A/cit111/1) 2019; 10 Ma (D0SC06497A/cit54/1) 2018; 51 Xiao (D0SC06497A/cit61/1) 2020; 32 Zhang (D0SC06497A/cit76/1) 2013; 4 Jackson (D0SC06497A/cit35/1) 2013; 135 Do (D0SC06497A/cit51/1) 2017; 29 Zhang (D0SC06497A/cit116/1) 2020; 6 Knaapila (D0SC06497A/cit92/1) 2013; 25 Perinot (D0SC06497A/cit14/1) 2019; 6 Li (D0SC06497A/cit41/1) 2016; 28 Venkateshvaran (D0SC06497A/cit78/1) 2014; 515 Lim (D0SC06497A/cit85/1) 1983; 50 Wang (D0SC06497A/cit97/1) 2018; 47 Bronstein (D0SC06497A/cit19/1) 2020; 4 Yao (D0SC06497A/cit106/1) 2019; 31 Himmelberger (D0SC06497A/cit80/1) 2014; 47 Xiao (D0SC06497A/cit101/1) 2015; 27 Gao (D0SC06497A/cit57/1) 2017; 29 Zhao (D0SC06497A/cit23/1) 2016; 1 McCulloch (D0SC06497A/cit86/1) 2013; 46 Rivnay (D0SC06497A/cit30/1) 2012; 112 Sun (D0SC06497A/cit52/1) 2014; 26 Kang (D0SC06497A/cit70/1) 2016; 138 Zhang (D0SC06497A/cit77/1) 2010; 132 Yang (D0SC06497A/cit4/1) 2018; 4 Noriega (D0SC06497A/cit29/1) 2013; 12 Li (D0SC06497A/cit53/1) 2014; 26 Sun (D0SC06497A/cit44/1) 2020; 6 Guo (D0SC06497A/cit59/1) 2011; 133 Kroon (D0SC06497A/cit72/1) 2017; 29 Zheng (D0SC06497A/cit26/1) 2017; 29 Bao (D0SC06497A/cit46/1) 1996; 69 Yi (D0SC06497A/cit3/1) 2015; 27 Hosono (D0SC06497A/cit88/1) 2019; 11 Park (D0SC06497A/cit114/1) 2019; 31 Lei (D0SC06497A/cit33/1) 2014; 26 Lim (D0SC06497A/cit42/1) 2010; 13 Rahimi (D0SC06497A/cit104/1) 2012; 51 Nielsen (D0SC06497A/cit16/1) 2013; 25 Moser (D0SC06497A/cit74/1) 2020 Friederich (D0SC06497A/cit22/1) 2019; 31 Warr (D0SC06497A/cit102/1) 2018; 4 Paterson (D0SC06497A/cit13/1) 2018; 30 Liu (D0SC06497A/cit34/1) 2018; 51 Adamo (D0SC06497A/cit49/1) 2013; 42 Dou (D0SC06497A/cit84/1) 2015; 27 Olivier (D0SC06497A/cit43/1) 2014; 26 Fan (D0SC06497A/cit87/1) 2019; 31 Nahid (D0SC06497A/cit27/1) 2018; 4 Mei (D0SC06497A/cit65/1) 2011; 133 Klauk (D0SC06497A/cit110/1) 2018; 4 Choi (D0SC06497A/cit12/1) 2018; 17 Someya (D0SC06497A/cit9/1) 2016; 540 Arias (D0SC06497A/cit1/1) 2010; 110 Steyrleuthner (D0SC06497A/cit39/1) 2012; 134 Kim (D0SC06497A/cit113/1) 2020; 11 Um (D0SC06497A/cit99/1) 2015; 9 |
References_xml | – volume: 30 start-page: 1801830 year: 2018 ident: D0SC06497A/cit107/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801830 – volume: 110 start-page: 3 year: 2010 ident: D0SC06497A/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr900150b – volume: 9 start-page: 416 year: 2018 ident: D0SC06497A/cit60/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02852-6 – volume: 29 start-page: 1700930 year: 2017 ident: D0SC06497A/cit72/1 publication-title: Adv. Mater. doi: 10.1002/adma.201700930 – volume: 11 start-page: 28088 year: 2019 ident: D0SC06497A/cit81/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b06568 – volume: 46 start-page: 1899 year: 2013 ident: D0SC06497A/cit86/1 publication-title: Macromolecules doi: 10.1021/ma302463d – volume: 27 start-page: 3589 year: 2015 ident: D0SC06497A/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.201500401 – volume: 115 start-page: 11735 year: 1993 ident: D0SC06497A/cit58/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00078a012 – volume: 138 start-page: 3679 year: 2016 ident: D0SC06497A/cit70/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10445 – volume: 26 start-page: 2119 year: 2014 ident: D0SC06497A/cit43/1 publication-title: Adv. Mater. doi: 10.1002/adma.201305809 – volume: 31 start-page: 1806747 year: 2019 ident: D0SC06497A/cit106/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806747 – volume: 24 start-page: 6270 year: 2014 ident: D0SC06497A/cit69/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401822 – volume: 59 start-page: 17467 year: 2020 ident: D0SC06497A/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202007589 – volume: 19 start-page: 973 year: 2019 ident: D0SC06497A/cit32/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201800135 – volume: 1 start-page: 17 year: 2014 ident: D0SC06497A/cit50/1 publication-title: Mater. Horiz. doi: 10.1039/C3MH00098B – volume: 107 start-page: 926 year: 2007 ident: D0SC06497A/cit28/1 publication-title: Chem. Rev. doi: 10.1021/cr050140x – volume: 11 start-page: 1520 year: 2020 ident: D0SC06497A/cit113/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15181-4 – volume: 540 start-page: 379 year: 2016 ident: D0SC06497A/cit9/1 publication-title: Nature doi: 10.1038/nature21004 – volume: 29 start-page: 1606217 year: 2017 ident: D0SC06497A/cit57/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606217 – volume: 136 start-page: 2135 year: 2014 ident: D0SC06497A/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja412533d – volume: 133 start-page: 20130 year: 2011 ident: D0SC06497A/cit65/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209328m – volume: 132 start-page: 11437 year: 2010 ident: D0SC06497A/cit77/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1049324 – volume: 27 start-page: 8051 year: 2015 ident: D0SC06497A/cit84/1 publication-title: Adv. Mater. doi: 10.1002/adma.201503803 – volume: 114 start-page: 8943 year: 2014 ident: D0SC06497A/cit17/1 publication-title: Chem. Rev. doi: 10.1021/cr500225d – volume: 82 start-page: 036601 year: 2019 ident: D0SC06497A/cit25/1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab0530 – volume: 4 start-page: 66 year: 2020 ident: D0SC06497A/cit19/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0152-9 – volume: 69 start-page: 4108 year: 1996 ident: D0SC06497A/cit46/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.117834 – volume: 133 start-page: 1405 year: 2011 ident: D0SC06497A/cit59/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107678m – volume: 39 start-page: 5854 year: 2006 ident: D0SC06497A/cit90/1 publication-title: Macromolecules doi: 10.1021/ma0602932 – volume: 27 start-page: 4963 year: 2015 ident: D0SC06497A/cit101/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502617 – volume: 135 start-page: 2338 year: 2013 ident: D0SC06497A/cit63/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311469y – volume: 50 start-page: 1934 year: 1983 ident: D0SC06497A/cit85/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1934 – volume: 42 start-page: 845 year: 2013 ident: D0SC06497A/cit49/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35394F – volume: 12 start-page: 1038 year: 2013 ident: D0SC06497A/cit29/1 publication-title: Nat. Mater. doi: 10.1038/nmat3722 – start-page: 2002748 year: 2020 ident: D0SC06497A/cit74/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002748 – volume: 62 start-page: 55 year: 1989 ident: D0SC06497A/cit37/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.55 – volume: 38 start-page: 1978 year: 2013 ident: D0SC06497A/cit79/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.07.009 – start-page: 1903104 year: 2019 ident: D0SC06497A/cit67/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903104 – volume: 26 start-page: 3304 year: 2014 ident: D0SC06497A/cit53/1 publication-title: Adv. Mater. doi: 10.1002/adma.201305910 – volume: 7 start-page: 1 year: 2016 ident: D0SC06497A/cit75/1 publication-title: Nat. Commun. – volume: 457 start-page: 679 year: 2009 ident: D0SC06497A/cit5/1 publication-title: Nature doi: 10.1038/nature07727 – volume: 135 start-page: 10475 year: 2013 ident: D0SC06497A/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403667s – volume: 26 start-page: 2636 year: 2014 ident: D0SC06497A/cit52/1 publication-title: Adv. Mater. doi: 10.1002/adma.201305981 – volume: 39 start-page: 6505 year: 2006 ident: D0SC06497A/cit91/1 publication-title: Macromolecules doi: 10.1021/ma060886c – volume: 24 start-page: 6457 year: 2012 ident: D0SC06497A/cit64/1 publication-title: Adv. Mater. doi: 10.1002/adma.201202689 – volume: 50 start-page: 2519 year: 2017 ident: D0SC06497A/cit24/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00293 – volume: 112 start-page: 2208 year: 2012 ident: D0SC06497A/cit18/1 publication-title: Chem. Rev. doi: 10.1021/cr100380z – volume: 6 start-page: 1801566 year: 2019 ident: D0SC06497A/cit14/1 publication-title: Adv. Sci. doi: 10.1002/advs.201801566 – volume: 29 start-page: 1701072 year: 2017 ident: D0SC06497A/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701072 – volume: 28 start-page: 3 year: 2016 ident: D0SC06497A/cit36/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03266 – volume: 28 start-page: 7213 year: 2016 ident: D0SC06497A/cit83/1 publication-title: Adv. Mater. doi: 10.1002/adma.201600541 – volume: 29 start-page: 1702115 year: 2017 ident: D0SC06497A/cit56/1 publication-title: Adv. Mater. doi: 10.1002/adma.201702115 – volume: 349 start-page: aab2750 year: 2015 ident: D0SC06497A/cit8/1 publication-title: Science doi: 10.1126/science.aab2750 – volume: 2 start-page: 632 year: 2020 ident: D0SC06497A/cit115/1 publication-title: CCS Chem. doi: 10.31635/ccschem.019.201900056 – volume: 30 start-page: 1801079 year: 2018 ident: D0SC06497A/cit13/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801079 – volume: 117 start-page: 10291 year: 2017 ident: D0SC06497A/cit21/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00084 – volume: 53 start-page: 4490 year: 2020 ident: D0SC06497A/cit82/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.0c00209 – volume: 11 start-page: 38 year: 2008 ident: D0SC06497A/cit98/1 publication-title: Mater. Today doi: 10.1016/S1369-7021(08)70055-5 – volume: 26 start-page: 16194 year: 2020 ident: D0SC06497A/cit20/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202000220 – volume: 28 start-page: 9430 year: 2016 ident: D0SC06497A/cit41/1 publication-title: Adv. Mater. doi: 10.1002/adma.201602660 – volume: 51 start-page: 6003 year: 2018 ident: D0SC06497A/cit54/1 publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01020 – volume: 49 start-page: 439 year: 1998 ident: D0SC06497A/cit38/1 publication-title: Acta Polym. doi: 10.1002/(SICI)1521-4044(199808)49:8<439::AID-APOL439>3.0.CO;2-A – volume: 49 start-page: 1210 year: 1986 ident: D0SC06497A/cit45/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.97417 – volume: 29 start-page: 1 year: 2017 ident: D0SC06497A/cit109/1 publication-title: Adv. Mater. – volume: 4 start-page: 2748 year: 2018 ident: D0SC06497A/cit4/1 publication-title: Chem doi: 10.1016/j.chempr.2018.08.005 – volume: 47 start-page: 7151 year: 2014 ident: D0SC06497A/cit80/1 publication-title: Macromolecules doi: 10.1021/ma501508j – volume: 363 start-page: 719 year: 2019 ident: D0SC06497A/cit10/1 publication-title: Science doi: 10.1126/science.aav7057 – volume: 2 start-page: e10064 year: 2019 ident: D0SC06497A/cit100/1 publication-title: Polym. Cryst. – volume: 25 start-page: 1859 year: 2013 ident: D0SC06497A/cit16/1 publication-title: Adv. Mater. doi: 10.1002/adma.201201795 – volume: 47 start-page: 422 year: 2018 ident: D0SC06497A/cit97/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00490G – volume: 13 start-page: 14 year: 2010 ident: D0SC06497A/cit42/1 publication-title: Mater. Today doi: 10.1016/S1369-7021(10)70080-8 – volume: 32 start-page: 2000063 year: 2020 ident: D0SC06497A/cit61/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000063 – volume: 31 start-page: 1901400 year: 2019 ident: D0SC06497A/cit114/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901400 – volume: 26 start-page: 1319 year: 2014 ident: D0SC06497A/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.201304346 – volume: 19 start-page: 491 year: 2020 ident: D0SC06497A/cit31/1 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0647-2 – volume: 135 start-page: 14896 year: 2013 ident: D0SC06497A/cit68/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405112s – volume: 4 start-page: 1700559 year: 2018 ident: D0SC06497A/cit27/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700559 – volume: 6 start-page: 1310 year: 2020 ident: D0SC06497A/cit44/1 publication-title: Chem doi: 10.1016/j.chempr.2020.05.012 – volume: 47 start-page: 3284 year: 2014 ident: D0SC06497A/cit48/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500021t – volume: 58 start-page: 11390 year: 2019 ident: D0SC06497A/cit62/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905835 – volume: 107 start-page: 1296 year: 2007 ident: D0SC06497A/cit11/1 publication-title: Chem. Rev. doi: 10.1021/cr0501543 – volume: 31 start-page: 1808256 year: 2019 ident: D0SC06497A/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.201808256 – volume: 32 start-page: 2002329 year: 2020 ident: D0SC06497A/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002329 – volume: 31 start-page: 1900871 year: 2019 ident: D0SC06497A/cit112/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900871 – volume: 25 start-page: 1090 year: 2013 ident: D0SC06497A/cit92/1 publication-title: Adv. Mater. doi: 10.1002/adma.201204296 – volume: 10 start-page: 3620 year: 2019 ident: D0SC06497A/cit111/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11629-4 – volume: 5 start-page: 2000390 year: 2020 ident: D0SC06497A/cit105/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000390 – volume: 30 start-page: 1904590 year: 2020 ident: D0SC06497A/cit108/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904590 – volume: 4 start-page: eaas9543 year: 2018 ident: D0SC06497A/cit102/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9543 – volume: 17 start-page: 2 year: 2018 ident: D0SC06497A/cit12/1 publication-title: Nat. Mater. doi: 10.1038/nmat5035 – volume: 515 start-page: 384 year: 2014 ident: D0SC06497A/cit78/1 publication-title: Nature doi: 10.1038/nature13854 – volume: 4 start-page: 1700474 year: 2018 ident: D0SC06497A/cit110/1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700474 – volume: 51 start-page: 11068 year: 2012 ident: D0SC06497A/cit103/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205075 – volume: 6 start-page: eaaz1042 year: 2020 ident: D0SC06497A/cit116/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz1042 – volume: 134 start-page: 16532 year: 2012 ident: D0SC06497A/cit71/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308211n – volume: 5 start-page: 5293 year: 2014 ident: D0SC06497A/cit94/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6293 – volume: 112 start-page: 5488 year: 2012 ident: D0SC06497A/cit30/1 publication-title: Chem. Rev. doi: 10.1021/cr3001109 – volume: 135 start-page: 9540 year: 2013 ident: D0SC06497A/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403949g – volume: 51 start-page: 11131 year: 2012 ident: D0SC06497A/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205653 – volume: 4 start-page: 2238 year: 2013 ident: D0SC06497A/cit76/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3238 – volume: 26 start-page: 594 year: 2014 ident: D0SC06497A/cit33/1 publication-title: Chem. Mater. doi: 10.1021/cm4018776 – volume: 29 start-page: 1807786 year: 2019 ident: D0SC06497A/cit95/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807786 – volume: 29 start-page: 346 year: 2017 ident: D0SC06497A/cit51/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b03111 – start-page: 1 year: 2020 ident: D0SC06497A/cit93/1 publication-title: Chem.–Eur. J. – volume: 31 start-page: 1900608 year: 2019 ident: D0SC06497A/cit87/1 publication-title: Adv. Mater. doi: 10.1002/adma.201900608 – volume: 401 start-page: 685 year: 1999 ident: D0SC06497A/cit6/1 publication-title: Nature doi: 10.1038/44359 – volume: 11 start-page: 109 year: 2019 ident: D0SC06497A/cit88/1 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0170-0 – volume: 51 start-page: 1422 year: 2018 ident: D0SC06497A/cit34/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00069 – volume: 59 start-page: 846 year: 2020 ident: D0SC06497A/cit96/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911311 – volume: 1 start-page: 1800016 year: 2018 ident: D0SC06497A/cit47/1 publication-title: Adv. Theory Simul. doi: 10.1002/adts.201800016 – volume: 10 start-page: 2867 year: 2019 ident: D0SC06497A/cit89/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10519-z – volume: 9 start-page: 5264 year: 2015 ident: D0SC06497A/cit99/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b01982 – volume: 1 start-page: 15027 year: 2016 ident: D0SC06497A/cit23/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.27 – volume: 50 start-page: 988 year: 2019 ident: D0SC06497A/cit7/1 publication-title: Acta Polym. Sin. – volume: 30 start-page: 1704630 year: 2018 ident: D0SC06497A/cit73/1 publication-title: Adv. Mater. doi: 10.1002/adma.201704630 – volume: 134 start-page: 18303 year: 2012 ident: D0SC06497A/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306844f |
SSID | ssj0000331527 |
Score | 2.5570478 |
SecondaryResourceType | review_article |
Snippet | The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1193 |
SubjectTerms | Charge transport Chemistry Crystal structure Field effect transistors Molecular structure Polymers Semiconductor devices Transistors Transport properties |
Title | High-performance polymer field-effect transistors: from the perspective of multi-level microstructures |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34163881 https://www.proquest.com/docview/2486165933 https://www.proquest.com/docview/2544879024 https://pubmed.ncbi.nlm.nih.gov/PMC8179153 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TYK9IG6DwJiC4AVNhiR2nIa3qTBNk4YQrNDyUiWOIyq1adXLA_wV_izH17jtHmAvUeVYserzxTk-_s53EHrN86KuU_DcRA5moILVuKSCYAHOeVEVTBSqWsPVJ3bRp5eDdNDp_PFYS-tV-Zb_vjGv5DZWhTawq8yS_Q_LuodCA_wG-8IVLAzXf7KxJGnguUf9n88mv6Zicap4aVhzNWQViGap1EAU_c0llMzbPEt1yi6phXgiSUSnU0nT09Ky64VhGVo5A6swYBOC5DGwTfzy4grDQgVhfwh83gLwu4lOX44FHq7bZXmsG01HE4RIFKEjaYOQEtI63GG5popLYirWtUtaEtEYszTRJzHCb9OSRm5NTjzsUW-BjWNdUNF8rONEJW3vfggiInVUq2jJwefKs8LvBHM9nypIEOWO6poxW7Lbn696XSndmpI9dJDAHgQW0YMv3_qDoQvhRYSYosDuf1kBXJK_a8c-RHfsQJvez86WZpeZu7ewhWiUw3N9H90zO5XwTMPuAeqI5iG666b7Eaq34Rca-IU-_EIPfu9DCb4QwBd64AtndeiBL9wC32PUP_943bvApmwH5jSnK9zNOezipWdcsCSvWZfEBaFVXIErzSQ_P82kKiBPa0Y5pbVUNs04ePJRJnhZcHKE9ptZI56iMGYsIpwIcDspTau4FJFIUl6XNcmqbkYD9MZO54gbTXtZWmUyUtwKko8-RF97ygpnAXrl-s61ksuNvY6tVUbmTV-OEtplMUtzQgL00t2G2ZaHa0UjZmvok1LY--fg8gboiTaiG8ZaP0DZhnldB6nxvnmnGf9UWu8GgwE6AiC4_i22nt36kc_RYfsmH6N9MKt4AQ72qjxRgakTA_e_qgLWjw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+polymer+field-effect+transistors%3A+from+the+perspective+of+multi-level+microstructures&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Yao%2C+Ze-Fan&rft.au=Wang%2C+Jie-Yu&rft.au=Pei%2C+Jian&rft.date=2020-12-24&rft.pub=The+Royal+Society+of+Chemistry&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=4&rft.spage=1193&rft.epage=1205&rft_id=info:doi/10.1039%2Fd0sc06497a&rft_id=info%3Apmid%2F34163881&rft.externalDocID=PMC8179153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |