Overview on the spatial-temporal characteristics of the ozone formation regime in China

Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science--processes & impacts Vol. 21; no. 6; pp. 916 - 929
Main Authors Lu, Haoxian, Lyu, Xiaopu, Cheng, Hairong, Ling, Zhenhao, Guo, Hai
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 19.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O 3 has increased substantially in China. O 3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O 3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O 3 and its precursors ( i.e. O 3 formation regime), built upon the previous reviews of the spatial-temporal variations of O 3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O 3 pollution, followed by implications for the control of O 3 pollution. This literature review indicates that O 3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O 3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO x -limited regime dominates rural/remote areas. From summer to winter, the O 3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O 3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12 th Five-Year-Plan. However, after the 12 th Five-Year-Plan, successful reduction of NO x slowed down this trend. Further effective control of VOCs is expected to achieve sustained O 3 attainment in the future. To timely solve the current O 3 pollution problem, precise control of O 3 precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs).
AbstractList Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O 3 has increased substantially in China. O 3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O 3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial–temporal variations of the relationship between O 3 and its precursors ( i.e. O 3 formation regime), built upon the previous reviews of the spatial–temporal variations of O 3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O 3 pollution, followed by implications for the control of O 3 pollution. This literature review indicates that O 3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O 3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO x -limited regime dominates rural/remote areas. From summer to winter, the O 3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O 3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12 th Five-Year-Plan. However, after the 12 th Five-Year-Plan, successful reduction of NO x slowed down this trend. Further effective control of VOCs is expected to achieve sustained O 3 attainment in the future. To timely solve the current O 3 pollution problem, precise control of O 3 precursors is proposed, together with the joint prevention and control of regional air pollution.
Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O 3 has increased substantially in China. O 3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O 3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O 3 and its precursors ( i.e. O 3 formation regime), built upon the previous reviews of the spatial-temporal variations of O 3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O 3 pollution, followed by implications for the control of O 3 pollution. This literature review indicates that O 3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O 3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO x -limited regime dominates rural/remote areas. From summer to winter, the O 3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O 3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12 th Five-Year-Plan. However, after the 12 th Five-Year-Plan, successful reduction of NO x slowed down this trend. Further effective control of VOCs is expected to achieve sustained O 3 attainment in the future. To timely solve the current O 3 pollution problem, precise control of O 3 precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs).
Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.
Ozone (O₃), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOₓ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O₃ has increased substantially in China. O₃ non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O₃ pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial–temporal variations of the relationship between O₃ and its precursors (i.e. O₃ formation regime), built upon the previous reviews of the spatial–temporal variations of O₃ and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O₃ pollution, followed by implications for the control of O₃ pollution. This literature review indicates that O₃ formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O₃ seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOₓ-limited regime dominates rural/remote areas. From summer to winter, the O₃ formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O₃ formation in China shifted toward increasing sensitivity to VOC emissions before the 12ᵗʰ Five-Year-Plan. However, after the 12ᵗʰ Five-Year-Plan, successful reduction of NOₓ slowed down this trend. Further effective control of VOCs is expected to achieve sustained O₃ attainment in the future. To timely solve the current O₃ pollution problem, precise control of O₃ precursors is proposed, together with the joint prevention and control of regional air pollution.
Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.
Author Guo, Hai
Cheng, Hairong
Lyu, Xiaopu
Ling, Zhenhao
Lu, Haoxian
AuthorAffiliation Department of Civil and Environmental Engineering
Air Quality Studies
The Hong Kong Polytechnic University
Sun Yat-sen University
Wuhan University
School of Resource and Environmental Sciences
School of Atmospheric Sciences
AuthorAffiliation_xml – sequence: 0
  name: School of Resource and Environmental Sciences
– sequence: 0
  name: The Hong Kong Polytechnic University
– sequence: 0
  name: School of Atmospheric Sciences
– sequence: 0
  name: Air Quality Studies
– sequence: 0
  name: Wuhan University
– sequence: 0
  name: Sun Yat-sen University
– sequence: 0
  name: Department of Civil and Environmental Engineering
Author_xml – sequence: 1
  givenname: Haoxian
  surname: Lu
  fullname: Lu, Haoxian
– sequence: 2
  givenname: Xiaopu
  surname: Lyu
  fullname: Lyu, Xiaopu
– sequence: 3
  givenname: Hairong
  surname: Cheng
  fullname: Cheng, Hairong
– sequence: 4
  givenname: Zhenhao
  surname: Ling
  fullname: Ling, Zhenhao
– sequence: 5
  givenname: Hai
  surname: Guo
  fullname: Guo, Hai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31089656$$D View this record in MEDLINE/PubMed
BookMark eNqN0s9PFTEQB_DGYOSHXLxrNvFCSBanv7btkTwRTTBcMB433e6sr2R3-2j7MPLXU98DTIgHTu3h8520M7NPduYwIyHvKJxQ4OaTMzgBgNH9K7LHQEKttJE7T3etdslhStfFgJZUy-YN2eUUtGlks0d-Xt5ivPX4uwpzlZdYpZXN3o51xmkVoh0rt7TRuozRp-xdqsKwceGuvKMaQpyKL9mIv_yElZ-rxdLP9i15Pdgx4eHDeUB-fDm7WnytLy7Pvy1OL2onjMi1VrIDZQ2nHcjBGOeo4JYrKXoDfSclRTuwvulQUmWFk13DGw5KomDIe8EPyNG27iqGmzWm3E4-ORxHO2NYp5YxRbUuRV9COQMmtdKFfnxGr8M6zuUjRQmmBVBgRX14UOtuwr5dRT_Z-Kd97G4BsAUuhpQiDq3zedOuHK0fWwrt3xm2C3P2fTPDzyVy_CzyWPW_-P0Wx-Se3L-F4Pd8sqOH
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_145392
crossref_primary_10_1021_acs_est_1c04201
crossref_primary_10_1038_s41598_024_60374_2
crossref_primary_10_1360_N072022_0216
crossref_primary_10_3390_atmos15050519
crossref_primary_10_1007_s11783_019_1160_1
crossref_primary_10_3390_toxics11110894
crossref_primary_10_1016_j_apr_2024_102185
crossref_primary_10_1016_j_ecoinf_2025_103024
crossref_primary_10_5194_acp_23_771_2023
crossref_primary_10_1016_j_atmosenv_2023_120320
crossref_primary_10_1016_j_atmosres_2022_106146
crossref_primary_10_1016_j_eiar_2021_106692
crossref_primary_10_1016_j_envint_2022_107369
crossref_primary_10_1016_j_aosl_2024_100490
crossref_primary_10_1016_j_scitotenv_2020_142886
crossref_primary_10_1021_acs_est_4c05656
crossref_primary_10_1029_2022JD038122
crossref_primary_10_1016_j_cclet_2022_108000
crossref_primary_10_1007_s12209_021_00308_5
crossref_primary_10_1016_j_atmosenv_2021_118553
crossref_primary_10_1016_j_uclim_2022_101143
crossref_primary_10_3390_atmos14010179
crossref_primary_10_1016_j_atmosenv_2023_119807
crossref_primary_10_1002_clen_202300188
crossref_primary_10_1016_j_scitotenv_2022_158119
crossref_primary_10_1016_j_hazadv_2022_100168
crossref_primary_10_3390_atmos10090501
crossref_primary_10_5194_acp_23_2649_2023
crossref_primary_10_1016_j_envres_2022_114386
crossref_primary_10_1016_j_jenvman_2024_122850
crossref_primary_10_1021_acs_est_1c00131
crossref_primary_10_1016_j_scitotenv_2021_149603
crossref_primary_10_3390_atmos12020184
crossref_primary_10_3934_environsci_2024020
crossref_primary_10_1007_s11356_020_09646_8
crossref_primary_10_1016_j_heliyon_2023_e20125
crossref_primary_10_1016_j_scitotenv_2020_141812
crossref_primary_10_5194_acp_22_10751_2022
crossref_primary_10_1016_j_envint_2022_107710
crossref_primary_10_1016_j_uclim_2023_101689
crossref_primary_10_3390_atmos11111262
crossref_primary_10_5194_gmd_14_4655_2021
crossref_primary_10_3390_pr11082240
crossref_primary_10_1016_j_scitotenv_2023_161472
crossref_primary_10_1016_j_ecoenv_2022_113851
crossref_primary_10_1016_j_scitotenv_2023_165033
crossref_primary_10_1016_j_envpol_2021_118249
crossref_primary_10_1016_j_chemosphere_2022_134187
crossref_primary_10_1016_j_scitotenv_2024_175900
crossref_primary_10_1038_s41598_022_26575_3
crossref_primary_10_1016_j_scitotenv_2023_168332
crossref_primary_10_3390_rs15194871
crossref_primary_10_1007_s11430_022_1070_y
crossref_primary_10_1016_j_apr_2024_102163
crossref_primary_10_1088_1748_9326_ac69fe
crossref_primary_10_1016_j_jes_2020_09_038
crossref_primary_10_1021_acs_est_4c01345
crossref_primary_10_1029_2022JD037296
crossref_primary_10_3390_atmos13040631
crossref_primary_10_1016_j_envpol_2020_114152
crossref_primary_10_1016_j_scitotenv_2023_163369
crossref_primary_10_1016_j_scitotenv_2023_167448
crossref_primary_10_1088_1748_9326_aca16a
crossref_primary_10_1016_j_scitotenv_2022_156312
crossref_primary_10_5814_j_issn_1674_764x_2024_01_018
crossref_primary_10_1016_j_scitotenv_2022_156998
crossref_primary_10_3390_atmos13020301
crossref_primary_10_1016_j_scitotenv_2021_145264
crossref_primary_10_1016_j_scitotenv_2024_177975
crossref_primary_10_1016_j_atmosenv_2023_119819
crossref_primary_10_1016_j_ecoenv_2025_118028
crossref_primary_10_1002_solr_202300238
crossref_primary_10_1080_09603123_2022_2047903
crossref_primary_10_5194_acp_20_13455_2020
crossref_primary_10_1021_acs_estlett_3c00266
crossref_primary_10_5194_acp_21_10689_2021
crossref_primary_10_1016_j_envpol_2023_122287
crossref_primary_10_1007_s11783_022_1544_5
crossref_primary_10_5194_acp_22_2351_2022
crossref_primary_10_3390_atmos11111205
crossref_primary_10_1007_s41810_024_00245_5
crossref_primary_10_3390_atmos14010147
crossref_primary_10_1016_j_atmosenv_2023_119936
crossref_primary_10_1016_j_envpol_2022_119254
crossref_primary_10_1016_j_scitotenv_2020_144031
crossref_primary_10_1029_2020GL087721
crossref_primary_10_1029_2020JD034317
crossref_primary_10_1088_1748_9326_abcee9
crossref_primary_10_1016_j_atmosenv_2023_119932
Cites_doi 10.1021/acs.estlett.8b00366
10.1016/j.scitotenv.2018.04.286
10.1016/S1001-0742(13)60381-2
10.1073/pnas.1812168116
10.1029/2011JD017340
10.1016/j.atmosenv.2009.11.032
10.5194/acp-12-7737-2012
10.1016/j.atmosenv.2008.05.045
10.1016/S1352-2310(99)00468-9
10.1016/j.proeps.2011.09.041
10.1029/2008JD010863
10.3109/10408444.2015.1031371
10.1021/cr5006815
10.5194/acp-9-6217-2009
10.5194/acp-12-10971-2012
10.1029/1999JD900371
10.4209/aaqr.2011.05.0061
10.1080/10473289.2004.10470939
10.1029/2004JD004914
10.1029/2009JD012714
10.1021/acs.est.6b03634
10.1016/j.scitotenv.2016.09.116
10.5194/acp-15-6625-2015
10.1002/2015JD023250
10.5194/acp-13-3881-2013
10.1016/S1352-2310(99)00478-1
10.1016/j.scitotenv.2015.09.093
10.1029/2006GL027689
10.1016/j.atmosenv.2013.06.045
10.1007/s11356-012-0970-5
10.3390/ijerph13121219
10.1016/j.jenvman.2014.09.032
10.1007/s11430-008-0088-2
10.1029/94JD02953
10.5194/acp-13-5813-2013
10.5194/acp-11-4657-2011
10.1016/j.scitotenv.2008.02.013
10.1016/j.atmosenv.2010.03.035
10.1016/j.jenvman.2007.12.008
10.1016/j.envpol.2016.07.072
10.1039/c2cs35181a
10.1007/s11356-009-0247-9
10.1007/s10874-006-9024-z
10.5194/acp-14-13175-2014
10.1029/2008JD010752
10.1016/j.envpol.2017.11.001
10.1016/j.chemosphere.2012.10.063
10.5194/acp-16-3969-2016
10.1016/j.atmosenv.2017.08.035
10.1016/j.atmosenv.2008.05.002
10.1016/j.envsci.2013.12.004
10.1016/j.atmosenv.2010.06.026
10.1007/s11356-015-5177-0
10.1016/j.atmosres.2015.10.006
10.5194/acp-9-7343-2009
10.5194/acp-11-5027-2011
10.5194/acp-8-2595-2008
10.1016/j.jes.2018.05.003
10.1504/IJSSOC.2013.054713
10.1021/acs.est.6b00345
10.1016/j.scitotenv.2016.10.081
10.1029/2009JD011898
10.3390/ijerph15071405
10.1007/s10661-015-4620-5
10.5194/acp-14-6089-2014
10.1016/j.atmosenv.2013.08.060
10.1016/S1352-2310(98)00345-8
10.5194/acp-10-4423-2010
10.1016/j.atmosres.2007.02.003
10.1038/s41598-017-03929-w
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7X8
7S9
L.6
DOI 10.1039/c9em00098d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
AGRICOLA
MEDLINE
Environment Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7895
EndPage 929
ExternalDocumentID 31089656
10_1039_C9EM00098D
c9em00098d
Genre Journal Article
Review
GeographicLocations China
Yangtze River
GeographicLocations_xml – name: China
– name: Yangtze River
GroupedDBID -JG
0-7
0R~
53G
705
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
PQQKQ
R7E
RAOCF
RCNCU
RPMJG
RRC
RSCEA
AAYXX
AFRZK
AKMSF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
C1K
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c494t-875b07a931b05f99cc143a3754d90db551eaf2d6be517a4c5b6363075e42e3d43
ISSN 2050-7887
2050-7895
IngestDate Fri Jul 11 04:42:50 EDT 2025
Fri Jul 11 03:00:40 EDT 2025
Mon Jun 30 11:45:59 EDT 2025
Mon Apr 07 02:14:19 EDT 2025
Tue Jul 01 02:26:53 EDT 2025
Thu Apr 24 22:52:39 EDT 2025
Tue Dec 17 21:00:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-875b07a931b05f99cc143a3754d90db551eaf2d6be517a4c5b6363075e42e3d43
Notes Prof. Hai Guo is a professor in the Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University. He received his B.Sc. degree in physical chemistry from Wuhan University, M.Sc. degree in environmental chemistry from Wuhan University, and Ph.D. degree in air quality research from Murdoch University, Australia. Prof. Guo's research interests include atmospheric chemistry, regional photochemical pollution, acidic ultrafine particles and organic aerosols. He has published more than 120 papers in high-quality international journals, and his current SCI h-index is 34. He is Editor of "Aerosol and Air Quality Research", and Editorial Board member of "Atmospheric Environment" and "Atmosphere".
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0568-9666
0000-0002-7996-7294
PMID 31089656
PQID 2242840102
PQPubID 105658
PageCount 14
ParticipantIDs proquest_miscellaneous_2271881434
proquest_miscellaneous_2232025878
proquest_journals_2242840102
crossref_citationtrail_10_1039_C9EM00098D
rsc_primary_c9em00098d
pubmed_primary_31089656
crossref_primary_10_1039_C9EM00098D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190619
PublicationDateYYYYMMDD 2019-06-19
PublicationDate_xml – month: 6
  year: 2019
  text: 20190619
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Environmental science--processes & impacts
PublicationTitleAlternate Environ Sci Process Impacts
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lu (C9EM00098D-(cit15)/*[position()=1]) 2018; 5
Ma (C9EM00098D-(cit66)/*[position()=1]) 2011; 32
Huang (C9EM00098D-(cit54)/*[position()=1]) 2005; 110
Ran (C9EM00098D-(cit34)/*[position()=1]) 2011; 11
Guo (C9EM00098D-(cit23)/*[position()=1]) 2017; 574
Russell (C9EM00098D-(cit27)/*[position()=1]) 2000; 34
Ling (C9EM00098D-(cit50)/*[position()=1]) 2014; 38
Lyu (C9EM00098D-(cit58)/*[position()=1]) 2016; 541
Han (C9EM00098D-(cit35)/*[position()=1]) 2018
Li (C9EM00098D-(cit45)/*[position()=1]) 2012; 12
Guo (C9EM00098D-(cit49)/*[position()=1]) 2009; 9
Bhatia (C9EM00098D-(cit3)/*[position()=1]) 2012
Aneja (C9EM00098D-(cit4)/*[position()=1]) 2004; 54
Lam (C9EM00098D-(cit51)/*[position()=1]) 2013; 81
Ran (C9EM00098D-(cit44)/*[position()=1]) 2009; 114
Sillman (C9EM00098D-(cit26)/*[position()=1]) 1999; 33
Liu (C9EM00098D-(cit61)/*[position()=1]) 2010; 44
Wu (C9EM00098D-(cit78)/*[position()=1]) 2015; 149
Tang (C9EM00098D-(cit29)/*[position()=1]) 2010; 44
Zhang (C9EM00098D-(cit72)/*[position()=1]) 2009; 114
Xu (C9EM00098D-(cit28)/*[position()=1]) 2008; 399
Jenkin (C9EM00098D-(cit25)/*[position()=1]) 2000; 34
Wang (C9EM00098D-(cit55)/*[position()=1]) 2018; 234
Wang (C9EM00098D-(cit7)/*[position()=1]) 2017; 575
Zou (C9EM00098D-(cit56)/*[position()=1]) 2015; 15
Zhang (C9EM00098D-(cit31)/*[position()=1]) 2014; 14
Wu (C9EM00098D-(cit6)/*[position()=1]) 2017; 51
Tan (C9EM00098D-(cit59)/*[position()=1]) 2018; 636
Xu (C9EM00098D-(cit43)/*[position()=1]) 2017; 168
Brown (C9EM00098D-(cit60)/*[position()=1]) 2012; 41
Wei (C9EM00098D-(cit33)/*[position()=1]) 2015; 187
Tonnesen (C9EM00098D-(cit71)/*[position()=1]) 2000; 105
Li (C9EM00098D-(cit20)/*[position()=1]) 2019; 116
Liu (C9EM00098D-(cit38)/*[position()=1]) 2012; 12
Jin (C9EM00098D-(cit76)/*[position()=1]) 2016; 13
Tang (C9EM00098D-(cit39)/*[position()=1]) 2008; 51
Liu (C9EM00098D-(cit69)/*[position()=1]) 2016; 218
Wang (C9EM00098D-(cit16)/*[position()=1]) 2009
Wang (C9EM00098D-(cit77)/*[position()=1]) 2014; 26
Geng (C9EM00098D-(cit40)/*[position()=1]) 2008; 42
Zong (C9EM00098D-(cit37)/*[position()=1]) 2018
Wang (C9EM00098D-(cit14)/*[position()=1]) 2017; 7
Steinfeld (C9EM00098D-(cit21)/*[position()=1]) 1998; 40
Jin (C9EM00098D-(cit62)/*[position()=1]) 2015; 120
Zhang (C9EM00098D-(cit48)/*[position()=1]) 2008; 42
He (C9EM00098D-(cit11)/*[position()=1]) 2012; 19
Xing (C9EM00098D-(cit79)/*[position()=1]) 2011; 11
Tu (C9EM00098D-(cit10)/*[position()=1]) 2007; 85
Han (C9EM00098D-(cit9)/*[position()=1]) 2013; 79
Zhou (C9EM00098D-(cit80)/*[position()=1]) 2013; 5
Chou (C9EM00098D-(cit32)/*[position()=1]) 2009; 114
Xue (C9EM00098D-(cit41)/*[position()=1]) 2014; 14
Altshuller (C9EM00098D-(cit22)/*[position()=1]) 1984
Sillman (C9EM00098D-(cit70)/*[position()=1]) 1995; 100
Xu (C9EM00098D-(cit65)/*[position()=1]) 2008; 8
Shao (C9EM00098D-(cit30)/*[position()=1]) 2009; 114
Wu (C9EM00098D-(cit63)/*[position()=1]) 2018; 38
Zhu (C9EM00098D-(cit73)/*[position()=1]) 2017; 16
Wang (C9EM00098D-(cit8)/*[position()=1]) 2006; 33
Diao (C9EM00098D-(cit24)/*[position()=1]) 2018; 15
Guo (C9EM00098D-(cit13)/*[position()=1]) 2013; 13
Lin (C9EM00098D-(cit18)/*[position()=1]) 2009; 114
Jia (C9EM00098D-(cit57)/*[position()=1]) 2016; 169
Wang (C9EM00098D-(cit19)/*[position()=1]) 2006; 54
Ou (C9EM00098D-(cit52)/*[position()=1]) 2016; 50
Ding (C9EM00098D-(cit46)/*[position()=1]) 2013; 13
Zheng (C9EM00098D-(cit68)/*[position()=1]) 2010; 44
Ogundele (C9EM00098D-(cit5)/*[position()=1]) 2011; 1
Lu (C9EM00098D-(cit36)/*[position()=1]) 2010; 115
Ma (C9EM00098D-(cit17)/*[position()=1]) 2016; 16
Xu (C9EM00098D-(cit67)/*[position()=1]) 2011; 2
Sousa (C9EM00098D-(cit2)/*[position()=1]) 2013; 90
Reddy (C9EM00098D-(cit64)/*[position()=1]) 2011; 11
Pusede (C9EM00098D-(cit74)/*[position()=1]) 2015; 115
Cheng (C9EM00098D-(cit12)/*[position()=1]) 2010; 17
Shao (C9EM00098D-(cit47)/*[position()=1]) 2009; 90
An (C9EM00098D-(cit42)/*[position()=1]) 2015; 22
Goodman (C9EM00098D-(cit1)/*[position()=1]) 2015; 45
Wang (C9EM00098D-(cit53)/*[position()=1]) 2010; 10
Li (C9EM00098D-(cit75)/*[position()=1]) 2012; 117
References_xml – issn: 1984
  publication-title: Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations
  doi: Altshuller
– issn: 2012
  publication-title: Impact of tropospheric ozone on crop growth and productivity-a review
  doi: Bhatia Tomer Kumar Singh Pathak
– volume: 16
  start-page: 64
  year: 2017
  ident: C9EM00098D-(cit73)/*[position()=1]
  publication-title: Huanjingbaohu
– volume: 5
  start-page: 487
  issue: 8
  year: 2018
  ident: C9EM00098D-(cit15)/*[position()=1]
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00366
– volume: 636
  start-page: 775
  year: 2018
  ident: C9EM00098D-(cit59)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.286
– volume: 26
  start-page: 13
  issue: 1
  year: 2014
  ident: C9EM00098D-(cit77)/*[position()=1]
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(13)60381-2
– volume: 116
  start-page: 422
  issue: 2
  year: 2019
  ident: C9EM00098D-(cit20)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1812168116
– volume: 117
  start-page: D15305
  issue: D15
  year: 2012
  ident: C9EM00098D-(cit75)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2011JD017340
– volume: 44
  start-page: 814
  issue: 6
  year: 2010
  ident: C9EM00098D-(cit68)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.11.032
– volume: 12
  start-page: 7737
  issue: 16
  year: 2012
  ident: C9EM00098D-(cit38)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-7737-2012
– volume: 42
  start-page: 6873
  issue: 29
  year: 2008
  ident: C9EM00098D-(cit40)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.045
– volume: 34
  start-page: 2283
  issue: 12–14
  year: 2000
  ident: C9EM00098D-(cit27)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00468-9
– volume: 2
  start-page: 255
  year: 2011
  ident: C9EM00098D-(cit67)/*[position()=1]
  publication-title: Procedia Earth Planet. Sci.
  doi: 10.1016/j.proeps.2011.09.041
– volume: 114
  start-page: D00G05
  issue: D2
  year: 2009
  ident: C9EM00098D-(cit30)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2008JD010863
– volume: 45
  start-page: 412
  issue: 5
  year: 2015
  ident: C9EM00098D-(cit1)/*[position()=1]
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408444.2015.1031371
– volume: 115
  start-page: 3898
  issue: 10
  year: 2015
  ident: C9EM00098D-(cit74)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr5006815
– start-page: 6217
  year: 2009
  ident: C9EM00098D-(cit16)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-6217-2009
– volume: 12
  start-page: 10971
  issue: 22
  year: 2012
  ident: C9EM00098D-(cit45)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-12-10971-2012
– volume: 105
  start-page: 9213
  issue: D7
  year: 2000
  ident: C9EM00098D-(cit71)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/1999JD900371
– volume: 11
  start-page: 895
  issue: 7
  year: 2011
  ident: C9EM00098D-(cit64)/*[position()=1]
  publication-title: Aerosol and Air Quality Resarch
  doi: 10.4209/aaqr.2011.05.0061
– volume: 54
  start-page: 681
  issue: 6
  year: 2004
  ident: C9EM00098D-(cit4)/*[position()=1]
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.1080/10473289.2004.10470939
– volume: 110
  start-page: D05301
  issue: D5
  year: 2005
  ident: C9EM00098D-(cit54)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2004JD004914
– volume: 115
  start-page: D07303
  issue: D7
  year: 2010
  ident: C9EM00098D-(cit36)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2009JD012714
– volume: 51
  start-page: 2574
  issue: 5
  year: 2017
  ident: C9EM00098D-(cit6)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03634
– volume: 574
  start-page: 1021
  year: 2017
  ident: C9EM00098D-(cit23)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.09.116
– volume: 15
  start-page: 6625
  issue: 12
  year: 2015
  ident: C9EM00098D-(cit56)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-6625-2015
– volume-title: Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations
  year: 1984
  ident: C9EM00098D-(cit22)/*[position()=1]
– volume: 38
  start-page: 1201
  issue: 4
  year: 2018
  ident: C9EM00098D-(cit63)/*[position()=1]
  publication-title: China Environ. Sci.
– volume: 120
  start-page: 7229
  issue: 14
  year: 2015
  ident: C9EM00098D-(cit62)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1002/2015JD023250
– volume: 13
  start-page: 3881
  issue: 8
  year: 2013
  ident: C9EM00098D-(cit13)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-3881-2013
– volume: 34
  start-page: 2499
  issue: 16
  year: 2000
  ident: C9EM00098D-(cit25)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(99)00478-1
– volume: 541
  start-page: 200
  year: 2016
  ident: C9EM00098D-(cit58)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.093
– volume: 33
  start-page: L21806
  issue: 21
  year: 2006
  ident: C9EM00098D-(cit8)/*[position()=1]
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027689
– volume: 79
  start-page: 209
  year: 2013
  ident: C9EM00098D-(cit9)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.06.045
– volume: 19
  start-page: 4016
  issue: 9
  year: 2012
  ident: C9EM00098D-(cit11)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-0970-5
– volume: 13
  start-page: 1219
  issue: 12
  year: 2016
  ident: C9EM00098D-(cit76)/*[position()=1]
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13121219
– volume: 149
  start-page: 27
  year: 2015
  ident: C9EM00098D-(cit78)/*[position()=1]
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.09.032
– volume: 114
  start-page: D00G14
  issue: D2
  year: 2009
  ident: C9EM00098D-(cit18)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
– volume: 51
  start-page: 1354
  issue: 9
  year: 2008
  ident: C9EM00098D-(cit39)/*[position()=1]
  publication-title: Sci. China, Ser. D: Earth Sci.
  doi: 10.1007/s11430-008-0088-2
– volume: 100
  start-page: 14175
  issue: D7
  year: 1995
  ident: C9EM00098D-(cit70)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/94JD02953
– volume: 13
  start-page: 5813
  issue: 11
  year: 2013
  ident: C9EM00098D-(cit46)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-5813-2013
– volume: 11
  start-page: 4657
  issue: 10
  year: 2011
  ident: C9EM00098D-(cit34)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-4657-2011
– volume: 399
  start-page: 147
  issue: 1–3
  year: 2008
  ident: C9EM00098D-(cit28)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.02.013
– volume: 44
  start-page: 2415
  issue: 20
  year: 2010
  ident: C9EM00098D-(cit61)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.03.035
– volume: 90
  start-page: 512
  issue: 1
  year: 2009
  ident: C9EM00098D-(cit47)/*[position()=1]
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2007.12.008
– volume-title: Impact of tropospheric ozone on crop growth and productivity-a review
  year: 2012
  ident: C9EM00098D-(cit3)/*[position()=1]
– volume: 218
  start-page: 757
  year: 2016
  ident: C9EM00098D-(cit69)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.07.072
– start-page: 1
  year: 2018
  ident: C9EM00098D-(cit35)/*[position()=1]
  publication-title: Atmos. Chem. Phys. Discuss.
– volume: 41
  start-page: 6405
  issue: 19
  year: 2012
  ident: C9EM00098D-(cit60)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35181a
– volume: 17
  start-page: 547
  issue: 3
  year: 2010
  ident: C9EM00098D-(cit12)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-009-0247-9
– volume: 54
  start-page: 255
  issue: 3
  year: 2006
  ident: C9EM00098D-(cit19)/*[position()=1]
  publication-title: J. Atmos. Chem.
  doi: 10.1007/s10874-006-9024-z
– volume: 40
  start-page: 26
  issue: 7
  year: 1998
  ident: C9EM00098D-(cit21)/*[position()=1]
  publication-title: Environment: Science and Policy for Sustainable Development
– volume: 14
  start-page: 13175
  issue: 23
  year: 2014
  ident: C9EM00098D-(cit41)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-13175-2014
– volume: 114
  start-page: D15301
  issue: D15
  year: 2009
  ident: C9EM00098D-(cit44)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2008JD010752
– volume: 234
  start-page: 155
  year: 2018
  ident: C9EM00098D-(cit55)/*[position()=1]
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.001
– volume: 90
  start-page: 2051
  issue: 7
  year: 2013
  ident: C9EM00098D-(cit2)/*[position()=1]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.10.063
– volume: 16
  start-page: 3969
  issue: 6
  year: 2016
  ident: C9EM00098D-(cit17)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-3969-2016
– volume: 114
  start-page: D00G01
  issue: D2
  year: 2009
  ident: C9EM00098D-(cit32)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
– volume: 168
  start-page: 112
  year: 2017
  ident: C9EM00098D-(cit43)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.08.035
– volume: 42
  start-page: 6203
  issue: 25
  year: 2008
  ident: C9EM00098D-(cit48)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.05.002
– volume: 38
  start-page: 180
  year: 2014
  ident: C9EM00098D-(cit50)/*[position()=1]
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2013.12.004
– volume: 44
  start-page: 3833
  issue: 31
  year: 2010
  ident: C9EM00098D-(cit29)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2010.06.026
– volume: 22
  start-page: 19607
  issue: 24
  year: 2015
  ident: C9EM00098D-(cit42)/*[position()=1]
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5177-0
– volume: 169
  start-page: 225
  year: 2016
  ident: C9EM00098D-(cit57)/*[position()=1]
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.10.006
– volume: 9
  start-page: 7343
  issue: 19
  year: 2009
  ident: C9EM00098D-(cit49)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-7343-2009
– volume: 32
  start-page: 924
  issue: 4
  year: 2011
  ident: C9EM00098D-(cit66)/*[position()=1]
  publication-title: Huanjing Kexue
– volume: 11
  start-page: 5027
  issue: 10
  year: 2011
  ident: C9EM00098D-(cit79)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-5027-2011
– volume: 8
  start-page: 2595
  issue: 10
  year: 2008
  ident: C9EM00098D-(cit65)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-8-2595-2008
– start-page: 261
  year: 2018
  ident: C9EM00098D-(cit37)/*[position()=1]
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.05.003
– volume: 5
  start-page: 232
  issue: 3
  year: 2013
  ident: C9EM00098D-(cit80)/*[position()=1]
  publication-title: Int. J. Sustainable Soc.
  doi: 10.1504/IJSSOC.2013.054713
– volume: 50
  start-page: 5720
  issue: 11
  year: 2016
  ident: C9EM00098D-(cit52)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00345
– volume: 1
  start-page: 474
  issue: 3
  year: 2011
  ident: C9EM00098D-(cit5)/*[position()=1]
  publication-title: Acad. Res. Int.
– volume: 575
  start-page: 1582
  year: 2017
  ident: C9EM00098D-(cit7)/*[position()=1]
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.081
– volume: 114
  start-page: D22304
  issue: D22
  year: 2009
  ident: C9EM00098D-(cit72)/*[position()=1]
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2009JD011898
– volume: 15
  start-page: 1405
  issue: 7
  year: 2018
  ident: C9EM00098D-(cit24)/*[position()=1]
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15071405
– volume: 187
  start-page: 377
  issue: 6
  year: 2015
  ident: C9EM00098D-(cit33)/*[position()=1]
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4620-5
– volume: 14
  start-page: 6089
  issue: 12
  year: 2014
  ident: C9EM00098D-(cit31)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-6089-2014
– volume: 81
  start-page: 166
  year: 2013
  ident: C9EM00098D-(cit51)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.08.060
– volume: 33
  start-page: 1821
  issue: 12
  year: 1999
  ident: C9EM00098D-(cit26)/*[position()=1]
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(98)00345-8
– volume: 10
  start-page: 4423
  issue: 9
  year: 2010
  ident: C9EM00098D-(cit53)/*[position()=1]
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-10-4423-2010
– volume: 85
  start-page: 310
  issue: 3–4
  year: 2007
  ident: C9EM00098D-(cit10)/*[position()=1]
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2007.02.003
– volume: 7
  start-page: 3651
  issue: 1
  year: 2017
  ident: C9EM00098D-(cit14)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03929-w
SSID ssj0000851856
Score 2.570745
SecondaryResourceType review_article
Snippet Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x )...
Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and...
Ozone (O₃), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOₓ) and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 916
SubjectTerms Air Pollutants - chemistry
Air pollution
Air Pollution - prevention & control
anthropogenic activities
China
cities
Economic development
Emissions
industrialization
Literature reviews
Metropolitan areas
mixing ratio
Nitrogen oxides
Nitrogen Oxides - chemistry
Organic compounds
Oxides
Ozone
Ozone - chemistry
Photochemical reactions
Photochemical smog
Photochemicals
pollutants
Pollution control
Precursors
river deltas
Rivers
Rural areas
Seasons
Smog
summer
Temporal variations
Urbanization
VOCs
Volatile organic compounds
Volatile Organic Compounds - chemistry
winter
Yangtze River
Title Overview on the spatial-temporal characteristics of the ozone formation regime in China
URI https://www.ncbi.nlm.nih.gov/pubmed/31089656
https://www.proquest.com/docview/2242840102
https://www.proquest.com/docview/2232025878
https://www.proquest.com/docview/2271881434
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4EHxG0QNpARvCBkSGLn4sdpFBXUwUsnKl4q23FgUpdUW4vGfj3HlzjZBQS8RJVtJanP53M-O-eC0EsFVsUYIpKzUhGWyowImVCiy1KlghextOXeDj7lk0P2cZ7Ne5cgG12ylm_U-bVxJf8jVWgDuZoo2X-QbLgpNMBvkC9cQcJw_SsZf_5hVrqJPHHOiqfGPVosic83tTRhvRfSMXuHgPa8bXQft_jaVGc4ttlDQjntcFrfB8J14ZNKE7Jy8QX2zDb3oZaBnU831qCJ9myAvelP2zo_Eu1q0zsVaKdrJsI85VsY7CutfIX-76IdHk2YaKiceAVoNVgaZ85d0RmbYZurrNmpYBck7aE21Kc8yQemmbvDkStaP6Ymaari-thQxrLqbVvwOOw7b6KtFLYU6Qht7Y1nH6bhRM6Qz9KW-w3v3eWzpfxtf4OLDObKtgRIyklXPMaSlNlddMfvLvCeg8o9dEM399HtQc7JB-hLBxrcNhjAgC-DBl8CDW5rO86CBgfQYAcafNRgC5qH6PD9eLY_Ib66BlGMszWYwUzGheA0kXFWc64UUGdhKiJXPK4kMGkt6rTKpc6SQjCVyZzmYBEyzVJNK0a30aiBBz9GWOdKAsehqkprVquaAyukBWVVkWRVzXiEXnUztlA-9bypgLJcWBcIyhf7fHxgZ_ddhF6EsSuXcOXaUbvdxC_8gjxdABsFsmWSJEboeegGdWm-gYlGtxszhqZA88ui_NMY-DMlzAaL0CMn1PAqsBsqOeyBIrQNUg7NPTqe_K5jB93q18guGq1PNvopENq1fOaR-As8CaHh
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+on+the+spatial-temporal+characteristics+of+the+ozone+formation+regime+in+China&rft.jtitle=Environmental+science--processes+%26+impacts&rft.au=Lu%2C+Haoxian&rft.au=Lyu%2C+Xiaopu&rft.au=Cheng%2C+Hairong&rft.au=Ling%2C+Zhenhao&rft.date=2019-06-19&rft.issn=2050-7887&rft.eissn=2050-7895&rft.volume=21&rft.issue=6&rft.spage=916&rft.epage=929&rft_id=info:doi/10.1039%2Fc9em00098d&rft.externalDocID=c9em00098d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7887&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7887&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7887&client=summon