Overview on the spatial-temporal characteristics of the ozone formation regime in China
Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the...
Saved in:
Published in | Environmental science--processes & impacts Vol. 21; no. 6; pp. 916 - 929 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
19.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ozone (O
3
), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO
x
) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O
3
has increased substantially in China. O
3
non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O
3
pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O
3
and its precursors (
i.e.
O
3
formation regime), built upon the previous reviews of the spatial-temporal variations of O
3
and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O
3
pollution, followed by implications for the control of O
3
pollution. This literature review indicates that O
3
formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O
3
seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO
x
-limited regime dominates rural/remote areas. From summer to winter, the O
3
formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O
3
formation in China shifted toward increasing sensitivity to VOC emissions before the 12
th
Five-Year-Plan. However, after the 12
th
Five-Year-Plan, successful reduction of NO
x
slowed down this trend. Further effective control of VOCs is expected to achieve sustained O
3
attainment in the future. To timely solve the current O
3
pollution problem, precise control of O
3
precursors is proposed, together with the joint prevention and control of regional air pollution.
Ozone (O
3
), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO
x
) and volatile organic compounds (VOCs). |
---|---|
AbstractList | Ozone (O
3
), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO
x
) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O
3
has increased substantially in China. O
3
non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O
3
pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial–temporal variations of the relationship between O
3
and its precursors (
i.e.
O
3
formation regime), built upon the previous reviews of the spatial–temporal variations of O
3
and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O
3
pollution, followed by implications for the control of O
3
pollution. This literature review indicates that O
3
formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O
3
seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO
x
-limited regime dominates rural/remote areas. From summer to winter, the O
3
formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O
3
formation in China shifted toward increasing sensitivity to VOC emissions before the 12
th
Five-Year-Plan. However, after the 12
th
Five-Year-Plan, successful reduction of NO
x
slowed down this trend. Further effective control of VOCs is expected to achieve sustained O
3
attainment in the future. To timely solve the current O
3
pollution problem, precise control of O
3
precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O 3 has increased substantially in China. O 3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O 3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O 3 and its precursors ( i.e. O 3 formation regime), built upon the previous reviews of the spatial-temporal variations of O 3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O 3 pollution, followed by implications for the control of O 3 pollution. This literature review indicates that O 3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O 3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NO x -limited regime dominates rural/remote areas. From summer to winter, the O 3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O 3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12 th Five-Year-Plan. However, after the 12 th Five-Year-Plan, successful reduction of NO x slowed down this trend. Further effective control of VOCs is expected to achieve sustained O 3 attainment in the future. To timely solve the current O 3 pollution problem, precise control of O 3 precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O 3 ), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO x ) and volatile organic compounds (VOCs). Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution.Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O₃), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOₓ) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O₃ has increased substantially in China. O₃ non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O₃ pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial–temporal variations of the relationship between O₃ and its precursors (i.e. O₃ formation regime), built upon the previous reviews of the spatial–temporal variations of O₃ and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O₃ pollution, followed by implications for the control of O₃ pollution. This literature review indicates that O₃ formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O₃ seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOₓ-limited regime dominates rural/remote areas. From summer to winter, the O₃ formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O₃ formation in China shifted toward increasing sensitivity to VOC emissions before the 12ᵗʰ Five-Year-Plan. However, after the 12ᵗʰ Five-Year-Plan, successful reduction of NOₓ slowed down this trend. Further effective control of VOCs is expected to achieve sustained O₃ attainment in the future. To timely solve the current O₃ pollution problem, precise control of O₃ precursors is proposed, together with the joint prevention and control of regional air pollution. Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). In the past few decades, with the rapid economic development, industrialization and urbanization, the mixing ratio of O3 has increased substantially in China. O3 non-attainment days have been frequently observed. Despite great efforts made in the past few years, it is still difficult to alleviate O3 pollution in China, due to its non-linear relationship with the precursors. In view of the severe situation in China, this study presents a comprehensive review on the spatial-temporal variations of the relationship between O3 and its precursors (i.e. O3 formation regime), built upon the previous reviews of the spatial-temporal variations of O3 and its precursor levels. Valuable findings from previous studies are laid out for a better understanding of O3 pollution, followed by implications for the control of O3 pollution. This literature review indicates that O3 formation in most areas of the North China Plain (NCP), Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions is in a VOC-limited regime during the high-O3 seasons due to dramatic emissions from human activities in cities. Outside these metropolitan areas, a NOx-limited regime dominates rural/remote areas. From summer to winter, the O3 formation regime over China shows a tendency to shift to a VOC-limited regime. Furthermore, O3 formation in China shifted toward increasing sensitivity to VOC emissions before the 12th Five-Year-Plan. However, after the 12th Five-Year-Plan, successful reduction of NOx slowed down this trend. Further effective control of VOCs is expected to achieve sustained O3 attainment in the future. To timely solve the current O3 pollution problem, precise control of O3 precursors is proposed, together with the joint prevention and control of regional air pollution. |
Author | Guo, Hai Cheng, Hairong Lyu, Xiaopu Ling, Zhenhao Lu, Haoxian |
AuthorAffiliation | Department of Civil and Environmental Engineering Air Quality Studies The Hong Kong Polytechnic University Sun Yat-sen University Wuhan University School of Resource and Environmental Sciences School of Atmospheric Sciences |
AuthorAffiliation_xml | – sequence: 0 name: School of Resource and Environmental Sciences – sequence: 0 name: The Hong Kong Polytechnic University – sequence: 0 name: School of Atmospheric Sciences – sequence: 0 name: Air Quality Studies – sequence: 0 name: Wuhan University – sequence: 0 name: Sun Yat-sen University – sequence: 0 name: Department of Civil and Environmental Engineering |
Author_xml | – sequence: 1 givenname: Haoxian surname: Lu fullname: Lu, Haoxian – sequence: 2 givenname: Xiaopu surname: Lyu fullname: Lyu, Xiaopu – sequence: 3 givenname: Hairong surname: Cheng fullname: Cheng, Hairong – sequence: 4 givenname: Zhenhao surname: Ling fullname: Ling, Zhenhao – sequence: 5 givenname: Hai surname: Guo fullname: Guo, Hai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31089656$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s9PFTEQB_DGYOSHXLxrNvFCSBanv7btkTwRTTBcMB433e6sr2R3-2j7MPLXU98DTIgHTu3h8520M7NPduYwIyHvKJxQ4OaTMzgBgNH9K7LHQEKttJE7T3etdslhStfFgJZUy-YN2eUUtGlks0d-Xt5ivPX4uwpzlZdYpZXN3o51xmkVoh0rt7TRuozRp-xdqsKwceGuvKMaQpyKL9mIv_yElZ-rxdLP9i15Pdgx4eHDeUB-fDm7WnytLy7Pvy1OL2onjMi1VrIDZQ2nHcjBGOeo4JYrKXoDfSclRTuwvulQUmWFk13DGw5KomDIe8EPyNG27iqGmzWm3E4-ORxHO2NYp5YxRbUuRV9COQMmtdKFfnxGr8M6zuUjRQmmBVBgRX14UOtuwr5dRT_Z-Kd97G4BsAUuhpQiDq3zedOuHK0fWwrt3xm2C3P2fTPDzyVy_CzyWPW_-P0Wx-Se3L-F4Pd8sqOH |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_145392 crossref_primary_10_1021_acs_est_1c04201 crossref_primary_10_1038_s41598_024_60374_2 crossref_primary_10_1360_N072022_0216 crossref_primary_10_3390_atmos15050519 crossref_primary_10_1007_s11783_019_1160_1 crossref_primary_10_3390_toxics11110894 crossref_primary_10_1016_j_apr_2024_102185 crossref_primary_10_1016_j_ecoinf_2025_103024 crossref_primary_10_5194_acp_23_771_2023 crossref_primary_10_1016_j_atmosenv_2023_120320 crossref_primary_10_1016_j_atmosres_2022_106146 crossref_primary_10_1016_j_eiar_2021_106692 crossref_primary_10_1016_j_envint_2022_107369 crossref_primary_10_1016_j_aosl_2024_100490 crossref_primary_10_1016_j_scitotenv_2020_142886 crossref_primary_10_1021_acs_est_4c05656 crossref_primary_10_1029_2022JD038122 crossref_primary_10_1016_j_cclet_2022_108000 crossref_primary_10_1007_s12209_021_00308_5 crossref_primary_10_1016_j_atmosenv_2021_118553 crossref_primary_10_1016_j_uclim_2022_101143 crossref_primary_10_3390_atmos14010179 crossref_primary_10_1016_j_atmosenv_2023_119807 crossref_primary_10_1002_clen_202300188 crossref_primary_10_1016_j_scitotenv_2022_158119 crossref_primary_10_1016_j_hazadv_2022_100168 crossref_primary_10_3390_atmos10090501 crossref_primary_10_5194_acp_23_2649_2023 crossref_primary_10_1016_j_envres_2022_114386 crossref_primary_10_1016_j_jenvman_2024_122850 crossref_primary_10_1021_acs_est_1c00131 crossref_primary_10_1016_j_scitotenv_2021_149603 crossref_primary_10_3390_atmos12020184 crossref_primary_10_3934_environsci_2024020 crossref_primary_10_1007_s11356_020_09646_8 crossref_primary_10_1016_j_heliyon_2023_e20125 crossref_primary_10_1016_j_scitotenv_2020_141812 crossref_primary_10_5194_acp_22_10751_2022 crossref_primary_10_1016_j_envint_2022_107710 crossref_primary_10_1016_j_uclim_2023_101689 crossref_primary_10_3390_atmos11111262 crossref_primary_10_5194_gmd_14_4655_2021 crossref_primary_10_3390_pr11082240 crossref_primary_10_1016_j_scitotenv_2023_161472 crossref_primary_10_1016_j_ecoenv_2022_113851 crossref_primary_10_1016_j_scitotenv_2023_165033 crossref_primary_10_1016_j_envpol_2021_118249 crossref_primary_10_1016_j_chemosphere_2022_134187 crossref_primary_10_1016_j_scitotenv_2024_175900 crossref_primary_10_1038_s41598_022_26575_3 crossref_primary_10_1016_j_scitotenv_2023_168332 crossref_primary_10_3390_rs15194871 crossref_primary_10_1007_s11430_022_1070_y crossref_primary_10_1016_j_apr_2024_102163 crossref_primary_10_1088_1748_9326_ac69fe crossref_primary_10_1016_j_jes_2020_09_038 crossref_primary_10_1021_acs_est_4c01345 crossref_primary_10_1029_2022JD037296 crossref_primary_10_3390_atmos13040631 crossref_primary_10_1016_j_envpol_2020_114152 crossref_primary_10_1016_j_scitotenv_2023_163369 crossref_primary_10_1016_j_scitotenv_2023_167448 crossref_primary_10_1088_1748_9326_aca16a crossref_primary_10_1016_j_scitotenv_2022_156312 crossref_primary_10_5814_j_issn_1674_764x_2024_01_018 crossref_primary_10_1016_j_scitotenv_2022_156998 crossref_primary_10_3390_atmos13020301 crossref_primary_10_1016_j_scitotenv_2021_145264 crossref_primary_10_1016_j_scitotenv_2024_177975 crossref_primary_10_1016_j_atmosenv_2023_119819 crossref_primary_10_1016_j_ecoenv_2025_118028 crossref_primary_10_1002_solr_202300238 crossref_primary_10_1080_09603123_2022_2047903 crossref_primary_10_5194_acp_20_13455_2020 crossref_primary_10_1021_acs_estlett_3c00266 crossref_primary_10_5194_acp_21_10689_2021 crossref_primary_10_1016_j_envpol_2023_122287 crossref_primary_10_1007_s11783_022_1544_5 crossref_primary_10_5194_acp_22_2351_2022 crossref_primary_10_3390_atmos11111205 crossref_primary_10_1007_s41810_024_00245_5 crossref_primary_10_3390_atmos14010147 crossref_primary_10_1016_j_atmosenv_2023_119936 crossref_primary_10_1016_j_envpol_2022_119254 crossref_primary_10_1016_j_scitotenv_2020_144031 crossref_primary_10_1029_2020GL087721 crossref_primary_10_1029_2020JD034317 crossref_primary_10_1088_1748_9326_abcee9 crossref_primary_10_1016_j_atmosenv_2023_119932 |
Cites_doi | 10.1021/acs.estlett.8b00366 10.1016/j.scitotenv.2018.04.286 10.1016/S1001-0742(13)60381-2 10.1073/pnas.1812168116 10.1029/2011JD017340 10.1016/j.atmosenv.2009.11.032 10.5194/acp-12-7737-2012 10.1016/j.atmosenv.2008.05.045 10.1016/S1352-2310(99)00468-9 10.1016/j.proeps.2011.09.041 10.1029/2008JD010863 10.3109/10408444.2015.1031371 10.1021/cr5006815 10.5194/acp-9-6217-2009 10.5194/acp-12-10971-2012 10.1029/1999JD900371 10.4209/aaqr.2011.05.0061 10.1080/10473289.2004.10470939 10.1029/2004JD004914 10.1029/2009JD012714 10.1021/acs.est.6b03634 10.1016/j.scitotenv.2016.09.116 10.5194/acp-15-6625-2015 10.1002/2015JD023250 10.5194/acp-13-3881-2013 10.1016/S1352-2310(99)00478-1 10.1016/j.scitotenv.2015.09.093 10.1029/2006GL027689 10.1016/j.atmosenv.2013.06.045 10.1007/s11356-012-0970-5 10.3390/ijerph13121219 10.1016/j.jenvman.2014.09.032 10.1007/s11430-008-0088-2 10.1029/94JD02953 10.5194/acp-13-5813-2013 10.5194/acp-11-4657-2011 10.1016/j.scitotenv.2008.02.013 10.1016/j.atmosenv.2010.03.035 10.1016/j.jenvman.2007.12.008 10.1016/j.envpol.2016.07.072 10.1039/c2cs35181a 10.1007/s11356-009-0247-9 10.1007/s10874-006-9024-z 10.5194/acp-14-13175-2014 10.1029/2008JD010752 10.1016/j.envpol.2017.11.001 10.1016/j.chemosphere.2012.10.063 10.5194/acp-16-3969-2016 10.1016/j.atmosenv.2017.08.035 10.1016/j.atmosenv.2008.05.002 10.1016/j.envsci.2013.12.004 10.1016/j.atmosenv.2010.06.026 10.1007/s11356-015-5177-0 10.1016/j.atmosres.2015.10.006 10.5194/acp-9-7343-2009 10.5194/acp-11-5027-2011 10.5194/acp-8-2595-2008 10.1016/j.jes.2018.05.003 10.1504/IJSSOC.2013.054713 10.1021/acs.est.6b00345 10.1016/j.scitotenv.2016.10.081 10.1029/2009JD011898 10.3390/ijerph15071405 10.1007/s10661-015-4620-5 10.5194/acp-14-6089-2014 10.1016/j.atmosenv.2013.08.060 10.1016/S1352-2310(98)00345-8 10.5194/acp-10-4423-2010 10.1016/j.atmosres.2007.02.003 10.1038/s41598-017-03929-w |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7X8 7S9 L.6 |
DOI | 10.1039/c9em00098d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE Environment Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7895 |
EndPage | 929 |
ExternalDocumentID | 31089656 10_1039_C9EM00098D c9em00098d |
Genre | Journal Article Review |
GeographicLocations | China Yangtze River |
GeographicLocations_xml | – name: China – name: Yangtze River |
GroupedDBID | -JG 0-7 0R~ 53G 705 AAEMU AAHBH AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- PQQKQ R7E RAOCF RCNCU RPMJG RRC RSCEA AAYXX AFRZK AKMSF CITATION CGR CUY CVF ECM EIF NPM 7ST C1K SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c494t-875b07a931b05f99cc143a3754d90db551eaf2d6be517a4c5b6363075e42e3d43 |
ISSN | 2050-7887 2050-7895 |
IngestDate | Fri Jul 11 04:42:50 EDT 2025 Fri Jul 11 03:00:40 EDT 2025 Mon Jun 30 11:45:59 EDT 2025 Mon Apr 07 02:14:19 EDT 2025 Tue Jul 01 02:26:53 EDT 2025 Thu Apr 24 22:52:39 EDT 2025 Tue Dec 17 21:00:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c494t-875b07a931b05f99cc143a3754d90db551eaf2d6be517a4c5b6363075e42e3d43 |
Notes | Prof. Hai Guo is a professor in the Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University. He received his B.Sc. degree in physical chemistry from Wuhan University, M.Sc. degree in environmental chemistry from Wuhan University, and Ph.D. degree in air quality research from Murdoch University, Australia. Prof. Guo's research interests include atmospheric chemistry, regional photochemical pollution, acidic ultrafine particles and organic aerosols. He has published more than 120 papers in high-quality international journals, and his current SCI h-index is 34. He is Editor of "Aerosol and Air Quality Research", and Editorial Board member of "Atmospheric Environment" and "Atmosphere". ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0568-9666 0000-0002-7996-7294 |
PMID | 31089656 |
PQID | 2242840102 |
PQPubID | 105658 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2271881434 proquest_miscellaneous_2232025878 proquest_journals_2242840102 crossref_citationtrail_10_1039_C9EM00098D rsc_primary_c9em00098d pubmed_primary_31089656 crossref_primary_10_1039_C9EM00098D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190619 |
PublicationDateYYYYMMDD | 2019-06-19 |
PublicationDate_xml | – month: 6 year: 2019 text: 20190619 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Environmental science--processes & impacts |
PublicationTitleAlternate | Environ Sci Process Impacts |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lu (C9EM00098D-(cit15)/*[position()=1]) 2018; 5 Ma (C9EM00098D-(cit66)/*[position()=1]) 2011; 32 Huang (C9EM00098D-(cit54)/*[position()=1]) 2005; 110 Ran (C9EM00098D-(cit34)/*[position()=1]) 2011; 11 Guo (C9EM00098D-(cit23)/*[position()=1]) 2017; 574 Russell (C9EM00098D-(cit27)/*[position()=1]) 2000; 34 Ling (C9EM00098D-(cit50)/*[position()=1]) 2014; 38 Lyu (C9EM00098D-(cit58)/*[position()=1]) 2016; 541 Han (C9EM00098D-(cit35)/*[position()=1]) 2018 Li (C9EM00098D-(cit45)/*[position()=1]) 2012; 12 Guo (C9EM00098D-(cit49)/*[position()=1]) 2009; 9 Bhatia (C9EM00098D-(cit3)/*[position()=1]) 2012 Aneja (C9EM00098D-(cit4)/*[position()=1]) 2004; 54 Lam (C9EM00098D-(cit51)/*[position()=1]) 2013; 81 Ran (C9EM00098D-(cit44)/*[position()=1]) 2009; 114 Sillman (C9EM00098D-(cit26)/*[position()=1]) 1999; 33 Liu (C9EM00098D-(cit61)/*[position()=1]) 2010; 44 Wu (C9EM00098D-(cit78)/*[position()=1]) 2015; 149 Tang (C9EM00098D-(cit29)/*[position()=1]) 2010; 44 Zhang (C9EM00098D-(cit72)/*[position()=1]) 2009; 114 Xu (C9EM00098D-(cit28)/*[position()=1]) 2008; 399 Jenkin (C9EM00098D-(cit25)/*[position()=1]) 2000; 34 Wang (C9EM00098D-(cit55)/*[position()=1]) 2018; 234 Wang (C9EM00098D-(cit7)/*[position()=1]) 2017; 575 Zou (C9EM00098D-(cit56)/*[position()=1]) 2015; 15 Zhang (C9EM00098D-(cit31)/*[position()=1]) 2014; 14 Wu (C9EM00098D-(cit6)/*[position()=1]) 2017; 51 Tan (C9EM00098D-(cit59)/*[position()=1]) 2018; 636 Xu (C9EM00098D-(cit43)/*[position()=1]) 2017; 168 Brown (C9EM00098D-(cit60)/*[position()=1]) 2012; 41 Wei (C9EM00098D-(cit33)/*[position()=1]) 2015; 187 Tonnesen (C9EM00098D-(cit71)/*[position()=1]) 2000; 105 Li (C9EM00098D-(cit20)/*[position()=1]) 2019; 116 Liu (C9EM00098D-(cit38)/*[position()=1]) 2012; 12 Jin (C9EM00098D-(cit76)/*[position()=1]) 2016; 13 Tang (C9EM00098D-(cit39)/*[position()=1]) 2008; 51 Liu (C9EM00098D-(cit69)/*[position()=1]) 2016; 218 Wang (C9EM00098D-(cit16)/*[position()=1]) 2009 Wang (C9EM00098D-(cit77)/*[position()=1]) 2014; 26 Geng (C9EM00098D-(cit40)/*[position()=1]) 2008; 42 Zong (C9EM00098D-(cit37)/*[position()=1]) 2018 Wang (C9EM00098D-(cit14)/*[position()=1]) 2017; 7 Steinfeld (C9EM00098D-(cit21)/*[position()=1]) 1998; 40 Jin (C9EM00098D-(cit62)/*[position()=1]) 2015; 120 Zhang (C9EM00098D-(cit48)/*[position()=1]) 2008; 42 He (C9EM00098D-(cit11)/*[position()=1]) 2012; 19 Xing (C9EM00098D-(cit79)/*[position()=1]) 2011; 11 Tu (C9EM00098D-(cit10)/*[position()=1]) 2007; 85 Han (C9EM00098D-(cit9)/*[position()=1]) 2013; 79 Zhou (C9EM00098D-(cit80)/*[position()=1]) 2013; 5 Chou (C9EM00098D-(cit32)/*[position()=1]) 2009; 114 Xue (C9EM00098D-(cit41)/*[position()=1]) 2014; 14 Altshuller (C9EM00098D-(cit22)/*[position()=1]) 1984 Sillman (C9EM00098D-(cit70)/*[position()=1]) 1995; 100 Xu (C9EM00098D-(cit65)/*[position()=1]) 2008; 8 Shao (C9EM00098D-(cit30)/*[position()=1]) 2009; 114 Wu (C9EM00098D-(cit63)/*[position()=1]) 2018; 38 Zhu (C9EM00098D-(cit73)/*[position()=1]) 2017; 16 Wang (C9EM00098D-(cit8)/*[position()=1]) 2006; 33 Diao (C9EM00098D-(cit24)/*[position()=1]) 2018; 15 Guo (C9EM00098D-(cit13)/*[position()=1]) 2013; 13 Lin (C9EM00098D-(cit18)/*[position()=1]) 2009; 114 Jia (C9EM00098D-(cit57)/*[position()=1]) 2016; 169 Wang (C9EM00098D-(cit19)/*[position()=1]) 2006; 54 Ou (C9EM00098D-(cit52)/*[position()=1]) 2016; 50 Ding (C9EM00098D-(cit46)/*[position()=1]) 2013; 13 Zheng (C9EM00098D-(cit68)/*[position()=1]) 2010; 44 Ogundele (C9EM00098D-(cit5)/*[position()=1]) 2011; 1 Lu (C9EM00098D-(cit36)/*[position()=1]) 2010; 115 Ma (C9EM00098D-(cit17)/*[position()=1]) 2016; 16 Xu (C9EM00098D-(cit67)/*[position()=1]) 2011; 2 Sousa (C9EM00098D-(cit2)/*[position()=1]) 2013; 90 Reddy (C9EM00098D-(cit64)/*[position()=1]) 2011; 11 Pusede (C9EM00098D-(cit74)/*[position()=1]) 2015; 115 Cheng (C9EM00098D-(cit12)/*[position()=1]) 2010; 17 Shao (C9EM00098D-(cit47)/*[position()=1]) 2009; 90 An (C9EM00098D-(cit42)/*[position()=1]) 2015; 22 Goodman (C9EM00098D-(cit1)/*[position()=1]) 2015; 45 Wang (C9EM00098D-(cit53)/*[position()=1]) 2010; 10 Li (C9EM00098D-(cit75)/*[position()=1]) 2012; 117 |
References_xml | – issn: 1984 publication-title: Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations doi: Altshuller – issn: 2012 publication-title: Impact of tropospheric ozone on crop growth and productivity-a review doi: Bhatia Tomer Kumar Singh Pathak – volume: 16 start-page: 64 year: 2017 ident: C9EM00098D-(cit73)/*[position()=1] publication-title: Huanjingbaohu – volume: 5 start-page: 487 issue: 8 year: 2018 ident: C9EM00098D-(cit15)/*[position()=1] publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00366 – volume: 636 start-page: 775 year: 2018 ident: C9EM00098D-(cit59)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.286 – volume: 26 start-page: 13 issue: 1 year: 2014 ident: C9EM00098D-(cit77)/*[position()=1] publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(13)60381-2 – volume: 116 start-page: 422 issue: 2 year: 2019 ident: C9EM00098D-(cit20)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1812168116 – volume: 117 start-page: D15305 issue: D15 year: 2012 ident: C9EM00098D-(cit75)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2011JD017340 – volume: 44 start-page: 814 issue: 6 year: 2010 ident: C9EM00098D-(cit68)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.11.032 – volume: 12 start-page: 7737 issue: 16 year: 2012 ident: C9EM00098D-(cit38)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-7737-2012 – volume: 42 start-page: 6873 issue: 29 year: 2008 ident: C9EM00098D-(cit40)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.045 – volume: 34 start-page: 2283 issue: 12–14 year: 2000 ident: C9EM00098D-(cit27)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00468-9 – volume: 2 start-page: 255 year: 2011 ident: C9EM00098D-(cit67)/*[position()=1] publication-title: Procedia Earth Planet. Sci. doi: 10.1016/j.proeps.2011.09.041 – volume: 114 start-page: D00G05 issue: D2 year: 2009 ident: C9EM00098D-(cit30)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2008JD010863 – volume: 45 start-page: 412 issue: 5 year: 2015 ident: C9EM00098D-(cit1)/*[position()=1] publication-title: Crit. Rev. Toxicol. doi: 10.3109/10408444.2015.1031371 – volume: 115 start-page: 3898 issue: 10 year: 2015 ident: C9EM00098D-(cit74)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr5006815 – start-page: 6217 year: 2009 ident: C9EM00098D-(cit16)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-6217-2009 – volume: 12 start-page: 10971 issue: 22 year: 2012 ident: C9EM00098D-(cit45)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-12-10971-2012 – volume: 105 start-page: 9213 issue: D7 year: 2000 ident: C9EM00098D-(cit71)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/1999JD900371 – volume: 11 start-page: 895 issue: 7 year: 2011 ident: C9EM00098D-(cit64)/*[position()=1] publication-title: Aerosol and Air Quality Resarch doi: 10.4209/aaqr.2011.05.0061 – volume: 54 start-page: 681 issue: 6 year: 2004 ident: C9EM00098D-(cit4)/*[position()=1] publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10473289.2004.10470939 – volume: 110 start-page: D05301 issue: D5 year: 2005 ident: C9EM00098D-(cit54)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2004JD004914 – volume: 115 start-page: D07303 issue: D7 year: 2010 ident: C9EM00098D-(cit36)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2009JD012714 – volume: 51 start-page: 2574 issue: 5 year: 2017 ident: C9EM00098D-(cit6)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03634 – volume: 574 start-page: 1021 year: 2017 ident: C9EM00098D-(cit23)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.09.116 – volume: 15 start-page: 6625 issue: 12 year: 2015 ident: C9EM00098D-(cit56)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-6625-2015 – volume-title: Assessment of the contribution of stratospheric ozone to ground-level ozone concentrations year: 1984 ident: C9EM00098D-(cit22)/*[position()=1] – volume: 38 start-page: 1201 issue: 4 year: 2018 ident: C9EM00098D-(cit63)/*[position()=1] publication-title: China Environ. Sci. – volume: 120 start-page: 7229 issue: 14 year: 2015 ident: C9EM00098D-(cit62)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1002/2015JD023250 – volume: 13 start-page: 3881 issue: 8 year: 2013 ident: C9EM00098D-(cit13)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-3881-2013 – volume: 34 start-page: 2499 issue: 16 year: 2000 ident: C9EM00098D-(cit25)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(99)00478-1 – volume: 541 start-page: 200 year: 2016 ident: C9EM00098D-(cit58)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.093 – volume: 33 start-page: L21806 issue: 21 year: 2006 ident: C9EM00098D-(cit8)/*[position()=1] publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027689 – volume: 79 start-page: 209 year: 2013 ident: C9EM00098D-(cit9)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.06.045 – volume: 19 start-page: 4016 issue: 9 year: 2012 ident: C9EM00098D-(cit11)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-0970-5 – volume: 13 start-page: 1219 issue: 12 year: 2016 ident: C9EM00098D-(cit76)/*[position()=1] publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph13121219 – volume: 149 start-page: 27 year: 2015 ident: C9EM00098D-(cit78)/*[position()=1] publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.09.032 – volume: 114 start-page: D00G14 issue: D2 year: 2009 ident: C9EM00098D-(cit18)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. – volume: 51 start-page: 1354 issue: 9 year: 2008 ident: C9EM00098D-(cit39)/*[position()=1] publication-title: Sci. China, Ser. D: Earth Sci. doi: 10.1007/s11430-008-0088-2 – volume: 100 start-page: 14175 issue: D7 year: 1995 ident: C9EM00098D-(cit70)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/94JD02953 – volume: 13 start-page: 5813 issue: 11 year: 2013 ident: C9EM00098D-(cit46)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-5813-2013 – volume: 11 start-page: 4657 issue: 10 year: 2011 ident: C9EM00098D-(cit34)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-4657-2011 – volume: 399 start-page: 147 issue: 1–3 year: 2008 ident: C9EM00098D-(cit28)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.02.013 – volume: 44 start-page: 2415 issue: 20 year: 2010 ident: C9EM00098D-(cit61)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.03.035 – volume: 90 start-page: 512 issue: 1 year: 2009 ident: C9EM00098D-(cit47)/*[position()=1] publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2007.12.008 – volume-title: Impact of tropospheric ozone on crop growth and productivity-a review year: 2012 ident: C9EM00098D-(cit3)/*[position()=1] – volume: 218 start-page: 757 year: 2016 ident: C9EM00098D-(cit69)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.07.072 – start-page: 1 year: 2018 ident: C9EM00098D-(cit35)/*[position()=1] publication-title: Atmos. Chem. Phys. Discuss. – volume: 41 start-page: 6405 issue: 19 year: 2012 ident: C9EM00098D-(cit60)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35181a – volume: 17 start-page: 547 issue: 3 year: 2010 ident: C9EM00098D-(cit12)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-009-0247-9 – volume: 54 start-page: 255 issue: 3 year: 2006 ident: C9EM00098D-(cit19)/*[position()=1] publication-title: J. Atmos. Chem. doi: 10.1007/s10874-006-9024-z – volume: 40 start-page: 26 issue: 7 year: 1998 ident: C9EM00098D-(cit21)/*[position()=1] publication-title: Environment: Science and Policy for Sustainable Development – volume: 14 start-page: 13175 issue: 23 year: 2014 ident: C9EM00098D-(cit41)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-13175-2014 – volume: 114 start-page: D15301 issue: D15 year: 2009 ident: C9EM00098D-(cit44)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2008JD010752 – volume: 234 start-page: 155 year: 2018 ident: C9EM00098D-(cit55)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.001 – volume: 90 start-page: 2051 issue: 7 year: 2013 ident: C9EM00098D-(cit2)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.10.063 – volume: 16 start-page: 3969 issue: 6 year: 2016 ident: C9EM00098D-(cit17)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-3969-2016 – volume: 114 start-page: D00G01 issue: D2 year: 2009 ident: C9EM00098D-(cit32)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. – volume: 168 start-page: 112 year: 2017 ident: C9EM00098D-(cit43)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.08.035 – volume: 42 start-page: 6203 issue: 25 year: 2008 ident: C9EM00098D-(cit48)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.05.002 – volume: 38 start-page: 180 year: 2014 ident: C9EM00098D-(cit50)/*[position()=1] publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2013.12.004 – volume: 44 start-page: 3833 issue: 31 year: 2010 ident: C9EM00098D-(cit29)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.06.026 – volume: 22 start-page: 19607 issue: 24 year: 2015 ident: C9EM00098D-(cit42)/*[position()=1] publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5177-0 – volume: 169 start-page: 225 year: 2016 ident: C9EM00098D-(cit57)/*[position()=1] publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.10.006 – volume: 9 start-page: 7343 issue: 19 year: 2009 ident: C9EM00098D-(cit49)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-7343-2009 – volume: 32 start-page: 924 issue: 4 year: 2011 ident: C9EM00098D-(cit66)/*[position()=1] publication-title: Huanjing Kexue – volume: 11 start-page: 5027 issue: 10 year: 2011 ident: C9EM00098D-(cit79)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-5027-2011 – volume: 8 start-page: 2595 issue: 10 year: 2008 ident: C9EM00098D-(cit65)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-8-2595-2008 – start-page: 261 year: 2018 ident: C9EM00098D-(cit37)/*[position()=1] publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.05.003 – volume: 5 start-page: 232 issue: 3 year: 2013 ident: C9EM00098D-(cit80)/*[position()=1] publication-title: Int. J. Sustainable Soc. doi: 10.1504/IJSSOC.2013.054713 – volume: 50 start-page: 5720 issue: 11 year: 2016 ident: C9EM00098D-(cit52)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00345 – volume: 1 start-page: 474 issue: 3 year: 2011 ident: C9EM00098D-(cit5)/*[position()=1] publication-title: Acad. Res. Int. – volume: 575 start-page: 1582 year: 2017 ident: C9EM00098D-(cit7)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.081 – volume: 114 start-page: D22304 issue: D22 year: 2009 ident: C9EM00098D-(cit72)/*[position()=1] publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2009JD011898 – volume: 15 start-page: 1405 issue: 7 year: 2018 ident: C9EM00098D-(cit24)/*[position()=1] publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15071405 – volume: 187 start-page: 377 issue: 6 year: 2015 ident: C9EM00098D-(cit33)/*[position()=1] publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4620-5 – volume: 14 start-page: 6089 issue: 12 year: 2014 ident: C9EM00098D-(cit31)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-6089-2014 – volume: 81 start-page: 166 year: 2013 ident: C9EM00098D-(cit51)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.08.060 – volume: 33 start-page: 1821 issue: 12 year: 1999 ident: C9EM00098D-(cit26)/*[position()=1] publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(98)00345-8 – volume: 10 start-page: 4423 issue: 9 year: 2010 ident: C9EM00098D-(cit53)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-10-4423-2010 – volume: 85 start-page: 310 issue: 3–4 year: 2007 ident: C9EM00098D-(cit10)/*[position()=1] publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2007.02.003 – volume: 7 start-page: 3651 issue: 1 year: 2017 ident: C9EM00098D-(cit14)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-03929-w |
SSID | ssj0000851856 |
Score | 2.570745 |
SecondaryResourceType | review_article |
Snippet | Ozone (O
3
), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NO
x
)... Ozone (O3), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOx) and... Ozone (O₃), a main component in photochemical smog, is a secondary pollutant formed through complex photochemical reactions involving nitrogen oxides (NOₓ) and... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 916 |
SubjectTerms | Air Pollutants - chemistry Air pollution Air Pollution - prevention & control anthropogenic activities China cities Economic development Emissions industrialization Literature reviews Metropolitan areas mixing ratio Nitrogen oxides Nitrogen Oxides - chemistry Organic compounds Oxides Ozone Ozone - chemistry Photochemical reactions Photochemical smog Photochemicals pollutants Pollution control Precursors river deltas Rivers Rural areas Seasons Smog summer Temporal variations Urbanization VOCs Volatile organic compounds Volatile Organic Compounds - chemistry winter Yangtze River |
Title | Overview on the spatial-temporal characteristics of the ozone formation regime in China |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31089656 https://www.proquest.com/docview/2242840102 https://www.proquest.com/docview/2232025878 https://www.proquest.com/docview/2271881434 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4EHxG0QNpARvCBkSGLn4sdpFBXUwUsnKl4q23FgUpdUW4vGfj3HlzjZBQS8RJVtJanP53M-O-eC0EsFVsUYIpKzUhGWyowImVCiy1KlghextOXeDj7lk0P2cZ7Ne5cgG12ylm_U-bVxJf8jVWgDuZoo2X-QbLgpNMBvkC9cQcJw_SsZf_5hVrqJPHHOiqfGPVosic83tTRhvRfSMXuHgPa8bXQft_jaVGc4ttlDQjntcFrfB8J14ZNKE7Jy8QX2zDb3oZaBnU831qCJ9myAvelP2zo_Eu1q0zsVaKdrJsI85VsY7CutfIX-76IdHk2YaKiceAVoNVgaZ85d0RmbYZurrNmpYBck7aE21Kc8yQemmbvDkStaP6Ymaari-thQxrLqbVvwOOw7b6KtFLYU6Qht7Y1nH6bhRM6Qz9KW-w3v3eWzpfxtf4OLDObKtgRIyklXPMaSlNlddMfvLvCeg8o9dEM399HtQc7JB-hLBxrcNhjAgC-DBl8CDW5rO86CBgfQYAcafNRgC5qH6PD9eLY_Ib66BlGMszWYwUzGheA0kXFWc64UUGdhKiJXPK4kMGkt6rTKpc6SQjCVyZzmYBEyzVJNK0a30aiBBz9GWOdKAsehqkprVquaAyukBWVVkWRVzXiEXnUztlA-9bypgLJcWBcIyhf7fHxgZ_ddhF6EsSuXcOXaUbvdxC_8gjxdABsFsmWSJEboeegGdWm-gYlGtxszhqZA88ui_NMY-DMlzAaL0CMn1PAqsBsqOeyBIrQNUg7NPTqe_K5jB93q18guGq1PNvopENq1fOaR-As8CaHh |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+on+the+spatial-temporal+characteristics+of+the+ozone+formation+regime+in+China&rft.jtitle=Environmental+science--processes+%26+impacts&rft.au=Lu%2C+Haoxian&rft.au=Lyu%2C+Xiaopu&rft.au=Cheng%2C+Hairong&rft.au=Ling%2C+Zhenhao&rft.date=2019-06-19&rft.issn=2050-7887&rft.eissn=2050-7895&rft.volume=21&rft.issue=6&rft.spage=916&rft.epage=929&rft_id=info:doi/10.1039%2Fc9em00098d&rft.externalDocID=c9em00098d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7887&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7887&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7887&client=summon |