Enhanced residual attention-based subject-specific network (ErAS-Net): facial expression-based pain classification with multiple attention mechanisms
The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotio...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 19425 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.06.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual’s facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection. |
---|---|
AbstractList | The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual's facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection. The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual's facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection.The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual's facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection. Abstract The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the significant challenges in automatic pain detection from facial expressions is the variability in how individuals express pain and other emotions through their facial deformations. This research aims to solve this issue by presenting ErAS-Net, an Enhanced Residual Attention-Based Subject-Specific Network that employs various attention mechanisms. Through transfer learning and multiple attention mechanisms, the proposed deep learning model is designed to mimic human perception of facial expressions, thereby enhancing its pain recognition ability and capturing the unique features of each individual’s facial expressions based on their specific patterns. The UNBC-McMaster Shoulder Pain dataset is used to demonstrate the effectiveness of the proposed deep learning algorithm, which achieves impressive values of 98.77% accuracy for binary classification and 94.21% for four-level pain intensity classification using tenfold cross-validation. Additionally, the model attained 89.83% accuracy for binary classification with the Leave-One-Subject-Out (LOSO) validation method. To further evaluate generalizability, a cross-dataset experiment was conducted using the BioVid Heat Pain Database, where ErAS-Net achieved 78.14% accuracy for binary pain detection on unseen data without fine-tuning. The fact that this finding supports the attention mechanism and human perception is why the proposed model proves to be a powerful and reliable tool for automatic pain detection. |
ArticleNumber | 19425 |
Author | Morsali, Mahdi Ghaffari, Aboozar |
Author_xml | – sequence: 1 givenname: Mahdi surname: Morsali fullname: Morsali, Mahdi organization: Department of Electrical Engineering, Iran University of Science and Technology – sequence: 2 givenname: Aboozar surname: Ghaffari fullname: Ghaffari, Aboozar email: aboozar_ghaffari@iust.ac.ir organization: Department of Electrical Engineering, Iran University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40461564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLUN_gAWKxKYsAvEridlUVTVApQoWwNpy7Juph8QOtsPAh_C_eGZKp2WBN7buPefch89TdOS8A4Se4-o1rmj7JjLMRVtWhJcV45yUm0fohORnSSghR_fex-g0xnWVDyeCYfEEHbOK1ZjX7AT9Xrob5TSYIkC0ZlZDoVICl6x3ZadiTsS5W4NOZZxA297qwkHa-PCtOFuGi8_lR0iv3ha90jZz4eeUdeKBPCnrCj2oHMtUtZUtNjbdFOM8JDsNcChXjKBzLzaO8Rl63KshwuntvUBf3y2_XH4orz-9v7q8uC41EyyVbU01KGFMq-u-4bgTugbSaK4aynvDm7qmvBZd16i6r1oOdUWx6DtQxpiuw3SBrva6xqu1nIIdVfglvbJyF_BhJVVIVg8gzbYYUVQ3eXkNFgIzzqhuK40bIF2ftc73WtPcjWB0Hiqo4YHow4yzN3Llf0hMMGWUiaxwdqsQ_PcZYpKjjRqGQTnwc5SUYM4bup1qgV7-A137Obi8qx2KCorZdrwX91u66-Xv92cA2QN08DEG6O8guJJbm8m9zWS2mdzZTG4yie5JMYPdCsKh9n9YfwALCNhA |
Cites_doi | 10.1109/FG.2018.00044 10.1016/j.asoc.2021.107780 10.3390/app10031115 10.1109/JTEHM.2021.3116867 10.1109/FG47880.2020.00139 10.1016/j.eswa.2020.113305 10.1109/FG.2011.5771462 10.1109/TII.2022.3233650 10.1109/TII.2024.3414489 10.1109/TIP.2016.2537215 10.1007/s10586-022-03552-z 10.1007/s00371-021-02056-y 10.3390/s21093273 10.1007/s11263-019-01191-3 10.1109/EMBC.2016.7590729 10.1109/FG47880.2020.00060 10.21203/rs.3.rs-2627259/v1 10.1038/s41598-022-21380-4 10.1016/j.jvcir.2015.09.007 10.1109/JSEN.2025.3540415 10.1109/TPAMI.2019.2958341 10.1109/JSEN.2023.3303389 10.1109/TIP.2021.3093397 10.1515/teme-2019-0024 10.1109/ISIVC54825.2022.9800746 10.1007/978-3-642-33191-6_36 10.1109/ICME.2013.6607608 10.1109/TII.2022.3145862 10.1109/EMBC53108.2024.10781616 10.1109/TIM.2021.3067611 10.1109/CVPR.2016.90 10.1109/ACCESS.2021.3101396 10.1109/FG.2017.87 10.1007/978-3-319-46487-9_6 10.1007/978-3-030-01234-2_1 10.1109/TCYB.2017.2662199 10.1109/ROBIO55434.2022.10011731 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-04552-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_d863c2a3c7404719914543c80c17e2bf PMC12134349 40461564 10_1038_s41598_025_04552_w |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 88A 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-863cea9dd8c6f751b9c6e27c5a735fd57663569bb7a6f085e60319fbeadddbb13 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:14:38 EDT 2025 Thu Aug 21 18:25:39 EDT 2025 Fri Jul 11 17:09:21 EDT 2025 Wed Aug 13 07:31:34 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Thu Jul 03 08:38:47 EDT 2025 Wed Jun 04 01:10:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Deep learning Attention mechanisms Facial deformation Transfer learning Facial expression Pain detection |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-863cea9dd8c6f751b9c6e27c5a735fd57663569bb7a6f085e60319fbeadddbb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/d863c2a3c7404719914543c80c17e2bf |
PMID | 40461564 |
PQID | 3215393141 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d863c2a3c7404719914543c80c17e2bf pubmedcentral_primary_oai_pubmedcentral_nih_gov_12134349 proquest_miscellaneous_3215573766 proquest_journals_3215393141 pubmed_primary_40461564 crossref_primary_10_1038_s41598_025_04552_w springer_journals_10_1038_s41598_025_04552_w |
PublicationCentury | 2000 |
PublicationDate | 2025-06-03 |
PublicationDateYYYYMMDD | 2025-06-03 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 4552_CR5 4552_CR4 4552_CR7 4552_CR6 4552_CR1 4552_CR3 4552_CR2 C-S Jiang (4552_CR13) 2023; 19 4552_CR36 4552_CR9 T Hassan (4552_CR8) 2021; 43 4552_CR39 4552_CR38 4552_CR15 C-S Jiang (4552_CR14) 2023; 23 4552_CR32 4552_CR30 P Casti (4552_CR25) 2021; 70 Y Guo (4552_CR24) 2016; 25 Y Huang (4552_CR29) 2022; 38 CS Jiang (4552_CR12) 2024 E Othman (4552_CR16) 2021; 21 Y Guo (4552_CR18) 2021; 9 PD Barua (4552_CR35) 2022 J Ortigoso-Narro (4552_CR41) 2025; 25 A Semwal (4552_CR21) 2021; 112 4552_CR22 A Ghosh (4552_CR23) 2023; 26 P Rodriguez (4552_CR27) 2022; 52 K Pikulkaew (4552_CR33) 2021; 9 G Bargshady (4552_CR26) 2020; 149 S El Morabit (4552_CR31) 2021; 10 A Martínez (4552_CR17) 2020; 10 J Wu (4552_CR40) 2023 M Tavakolian (4552_CR28) 2019; 127 4552_CR43 4552_CR20 4552_CR42 MD Putro (4552_CR11) 2022; 18 N Rathee (4552_CR34) 2015; 33 H Pedersen (4552_CR19) 2015 Z Zhao (4552_CR37) 2021; 30 K Weitz (4552_CR10) 2019; 86 |
References_xml | – ident: 4552_CR7 doi: 10.1109/FG.2018.00044 – volume: 112 year: 2021 ident: 4552_CR21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107780 – volume: 10 start-page: 1115 year: 2020 ident: 4552_CR17 publication-title: Appl. Sci. doi: 10.3390/app10031115 – volume: 9 start-page: 1 year: 2021 ident: 4552_CR18 publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2021.3116867 – ident: 4552_CR5 doi: 10.1109/FG47880.2020.00139 – volume: 149 start-page: 113305 year: 2020 ident: 4552_CR26 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113305 – ident: 4552_CR1 doi: 10.1109/FG.2011.5771462 – volume: 19 start-page: 9943 year: 2023 ident: 4552_CR13 publication-title: IEEE Trans. Ind. Inform doi: 10.1109/TII.2022.3233650 – year: 2024 ident: 4552_CR12 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3414489 – volume: 25 start-page: 1977 year: 2016 ident: 4552_CR24 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2537215 – volume: 26 start-page: 119 year: 2023 ident: 4552_CR23 publication-title: Cluster Comput. doi: 10.1007/s10586-022-03552-z – volume: 38 start-page: 871 year: 2022 ident: 4552_CR29 publication-title: Vis. Comput. doi: 10.1007/s00371-021-02056-y – ident: 4552_CR4 – volume: 21 start-page: 3273 year: 2021 ident: 4552_CR16 publication-title: Sensors doi: 10.3390/s21093273 – volume: 127 start-page: 1413 year: 2019 ident: 4552_CR28 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01191-3 – ident: 4552_CR30 doi: 10.1109/EMBC.2016.7590729 – ident: 4552_CR43 doi: 10.1109/FG47880.2020.00060 – start-page: 128 volume-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) year: 2015 ident: 4552_CR19 – year: 2023 ident: 4552_CR40 publication-title: J. Electron. Sci. Technol. doi: 10.21203/rs.3.rs-2627259/v1 – year: 2022 ident: 4552_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-022-21380-4 – volume: 33 start-page: 247 year: 2015 ident: 4552_CR34 publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2015.09.007 – volume: 25 start-page: 1 year: 2025 ident: 4552_CR41 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2025.3540415 – volume: 43 start-page: 1815 year: 2021 ident: 4552_CR8 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2958341 – volume: 23 start-page: 22093 year: 2023 ident: 4552_CR14 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2023.3303389 – volume: 30 start-page: 6544 year: 2021 ident: 4552_CR37 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2021.3093397 – volume: 86 start-page: 404 year: 2019 ident: 4552_CR10 publication-title: tm - Technisches Messen doi: 10.1515/teme-2019-0024 – ident: 4552_CR32 doi: 10.1109/ISIVC54825.2022.9800746 – ident: 4552_CR2 doi: 10.1007/978-3-642-33191-6_36 – ident: 4552_CR20 doi: 10.1109/ICME.2013.6607608 – volume: 18 start-page: 7665 year: 2022 ident: 4552_CR11 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3145862 – ident: 4552_CR15 – volume: 10 start-page: 1926 year: 2021 ident: 4552_CR31 publication-title: Electronics (Switzerland) – ident: 4552_CR42 doi: 10.1109/EMBC53108.2024.10781616 – ident: 4552_CR3 – volume: 70 start-page: 1 year: 2021 ident: 4552_CR25 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3067611 – ident: 4552_CR38 doi: 10.1109/CVPR.2016.90 – volume: 9 start-page: 109903 year: 2021 ident: 4552_CR33 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3101396 – ident: 4552_CR6 doi: 10.1109/FG.2017.87 – ident: 4552_CR36 doi: 10.1007/978-3-319-46487-9_6 – ident: 4552_CR39 doi: 10.1007/978-3-030-01234-2_1 – volume: 52 start-page: 3314 year: 2022 ident: 4552_CR27 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2662199 – ident: 4552_CR9 – ident: 4552_CR22 doi: 10.1109/ROBIO55434.2022.10011731 |
SSID | ssj0000529419 |
Score | 2.4486945 |
Snippet | The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One of the... Abstract The automatic detection of pain through the analysis of facial expressions is indeed one of the most critical challenges in the healthcare system. One... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 19425 |
SubjectTerms | 639/166/985 639/166/987 Accuracy Algorithms Attention Attention mechanisms Classification Deep Learning Facial deformation Facial Expression Humanities and Social Sciences Humans multidisciplinary Pain Pain - classification Pain - diagnosis Pain detection Pain Measurement - methods Pain perception Science Science (multidisciplinary) Transfer learning |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxAIHVJH4lXFBBW1VI9AKV9mb5lXYPzS6bXbX9IfxfZpxkV8vrGtuKk5nxjOfxDSGvtQ65gjFmY3BMxMBZXeWehSAVXJ-j4hb9HV9P1PGp-DKV08Hh1g1pleOZmA7qMPfoIz_goJt4zQtRfFz8YNg1CqOrQwuNm-QWQpchV-up3vhYMIolinqolcl5ddCBvsKaslIysGVkyS539FGC7f-brflnyuRvcdOkjo7ukbuDHUkPe8LfJzdi-4Dc7jtLXj8kPyfteYrtU7hOp3orikCaKbWRoeYKtFs79MEwrLXEfCHa9hnh9M1kefiNncTV2w-0sehSp_FqyJcdFy_srKUeLW9cmqhL0aVLxwTF7evoRcTq4ll30T0ip0eT75-P2dCBgXlRixWrFPfR1iFUXjVaFq72KpbaS6u5bALcVRDernZOW9WA8RaxZ3XdOGDPEJwr-GOy187b-JTQyqkoc6fhxgQWhdTWVh7OmihyK10hYkbejXQwix5ow6QAOa9MTzUDVDOJauYyI5-QVJuZCJKdHsyXZ2aQORNw-6XlXoscdDBYwkIK7oEVCx1L12RkfyS0GSS3M1s-y8irzTDIHAZSbBvn636O1HA0q4w86flisxOBCPZSiYxUOxyzs9XdkXZ2nnC9E7oeF3VG3o_Mtd3Xv__Fs_9_xnNyp0z8rljO98nearmOL8CQWrmXSVp-AeSPH3U priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHdTCjISBxBYJPEr4bagraqV6KVU6s3yK3QPzVabXZX-EP4vM06y1UI5cF3bymhn7Pk8j8-EvNU65ArGmI3BMREDZ3WVexaCVHB9jopbjHd8O1HHZ2J2Ls93SDn2wqSi_URpmY7psTrsUweOBpvBSskAhMiSXd8je0jVDra9N5nMTmebyArmrkRRDx0yOa_uWLzlhRJZ_10I8-9CyT-ypckJHT0iDwf0SCe9vI_JTmyfkPv9e5I3T8mvaXuRMvoULtGpy4oifWYqaGTorwLt1g4jLww7LLFKiLZ9HTh9N11OTtlJXL3_TBuLgXQafw5VsuPiKztvqUe8jUuTTikGculYlnj7OXoZsad43l12z8jZ0fT712M2vLvAvKjFilWK-2jrECqvGi0LV3sVS-2l1Vw2AW4oSGpXO6etagCyRXypum4cGGUIzhX8OdltF23cJ7RyKsrcabgnAY6Q2trKwwkTRW6lK0TMyIdRD-aqp9cwKS3OK9NrzYDWTNKauc7IF1TVZiZSY6cfFssfZjAVE1D80nKvRQ6eF_CvkIJ7MMBCx9I1GTkcFW2G_doZDsiH17wQRUbebIZhp2H6xLZxse7nSA0HssrIi94uNpII5K2XSmSk2rKYLVG3R9r5RWLzTpx6XNQZ-Tga161c__4vDv5v-kvyoEz2r1jOD8nuarmOrwBOrdzrYf_8BiOiHzY priority: 102 providerName: Springer Nature |
Title | Enhanced residual attention-based subject-specific network (ErAS-Net): facial expression-based pain classification with multiple attention mechanisms |
URI | https://link.springer.com/article/10.1038/s41598-025-04552-w https://www.ncbi.nlm.nih.gov/pubmed/40461564 https://www.proquest.com/docview/3215393141 https://www.proquest.com/docview/3215573766 https://pubmed.ncbi.nlm.nih.gov/PMC12134349 https://doaj.org/article/d863c2a3c7404719914543c80c17e2bf |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtSqGX0nfdposKPbS0Irb1snvbLBvCQpfSNLA3I1ky2UOcEO-S5ofk_3ZGsjfZPuilJ4Ml2UIz0nwjzXwi5J3WLlVQxox3lgnvOCuLtGbOSQXus1fc4H7Hl7k6PBazhVzcuuoLY8IiPXAcuD1XKF7nhtdapLCQApwRUvAavpdpn9sGV1-webecqcjqnZciK_ssmZQXex1YKswmyyUDFCNzdrlliQJh_59Q5u_Bkr-cmAZDdPCIPOwRJB3Hnj8md3z7hNyPd0pePSXX0_YknOpTcKRDphVFCs0Q1MjQZjnarS3uvjDMssRIIdrGWHD6fnoxPmJzv_rwmTYGN9Op_9FHyg6Nz82ypTVibmwa5EpxM5cOoYk3v6OnHvOKl91p94wcH0y_Tw5Zf_cCq0UpVgxH3ZvSuaJWjZaZLWvlc11Lo7lsHHgpSGxXWquNagC2ebytumwsKKZz1mb8Odlpz1r_ktDCKi9Tq8FXAiwhtTFFDauMF6mRNhM-IR8HOVTnkWKjCkfjvKii1CqQWhWkVl0mZB9FtamJ9NjhBShN1StN9S-lScjuIOiqn7NdxQH98JJnIkvI200xzDY8QjGtP1vHOlLDoqwS8iLqxaYnArnrpRIJKbY0Zqur2yXt8iQwegdePS7KhHwalOumX38fi1f_Yyxekwd5mBWKpXyX7Kwu1v4NAK2VHZG7eqFH5N54PDuawXN_Ov_6Dd5O1GQU5ttPxcwr4w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJFAAoHVJH4lSAgVaLWl7V5opb0FO3boHppd9qGlP4S_wW9kxkl2tbxuvcZx4mTGnm_ehDzT2sUKxpjxzjLhHWd5FpfMOalAffaKG7R3HPVV70R8GsjBBvnZ5cJgWGV3JoaD2o1KtJFvc5BNPOeJSN6NvzHsGoXe1a6FRsMWB_58ASrb9O3-R6Dv8zTd2z3-0GNtVwFWilzMWKZ46U3uXFaqSsvE5qXyqS6l0VxWDvA3lmzLrdVGVQBIPPZhzisLv9w5axMOz71ELoPgjVHZ0wO9tOmg10wkeZubE_NsewryEXPYUskAO8mULdbkX2gT8Dds-2eI5m9-2iD-9m6Q6y1upTsNo90kG76-Ra40nSzPb5Mfu_VpiCWgoL6H_C6KhTtDKCVDSenodG7R5sMwtxPjk2jdRKDTF7uTnc-s72cv39DKoAmf-u9tfG43eWyGNS0R6ePUwE0UTci0C4hcvY6eecxmHk7PpnfIyYXQ5i7ZrEe1v09oZpWXsdWgoQGCkdqYrISzzYvYSJsIH5FXHR2KcVPYowgOeZ4VDdUKoFoRqFYsIvIeSbW8E4tyhwujydei3eOFw-WnhpdaxCDzAXkLKXgJrJ9on9oqIlsdoYv2pJgWK76OyNPlMOxxdNyY2o_mzT1SgyhQEbnX8MVyJQIr5kslIpKtcczaUtdH6uFpqCMeqvlxkUfkdcdcq3X9-188-P9nPCFXe8dHh8Xhfv_gIbmWBt5XLOZbZHM2mftHAOJm9nHYOZR8ueit-gs9xl3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVCBeEDeGAosEEghWsb2HbSSEWpqopRBV0Ep9M7veNc1DnZBDoT-EP8OvY2ZtJwrXW1-9drzxzOx8cxPyNElsqGCNaWcNE85ylqVhwayVCsxnp7hGf8fHgdo7Fu9P5MkG-dnWwmBaZXsm-oPajgr0kXc56Cae8UhE3bJJizjc7b8df2M4QQojre04jZpFDtz5Asy36Zv9XaD1szju947e7bFmwgArRCZmLFW8cDqzNi1UmcjIZIVycVJInXBZWsDi2L4tMybRqgRw4nAmc1Ya-PzWGhNx-N1LZDNBq6hDNnd6g8NPSw8PxtBElDWVOiFPu1PQlljRFksGSErGbLGmDf3QgL8h3T8TNn-L2npl2L9OrjUolm7XbHeDbLjqJrlcz7U8v0V-9KpTn1lAwZj31V4U23j6xEqGetPS6dygB4hhpSdmK9Gqzkenz3uT7c9s4GYvXtNSo0Ofuu9Ntm778FgPK1og7sdHPW9RdCjTNj1y9Tp65rC2eTg9m94mxxdCnTukU40qd4_Q1CgnQ5OAvQZ4RiZapwWcdE6EWppIuIC8bOmQj-s2H7kPz_M0r6mWA9VyT7V8EZAdJNXyTmzR7S-MJl_zRuJzi9uPNS-AOwABAA4XUvACBCFKXGzKgGy1hM6bc2Oar7g8IE-WyyDxGMbRlRvN63tkAopBBeRuzRfLnQjsny-VCEi6xjFrW11fqYanvqu47-3HRRaQVy1zrfb1729x__9_4zG5AmKaf9gfHDwgV2PP-oqFfIt0ZpO5ewiIbmYeNaJDyZeLltZfSaJjaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+residual+attention-based+subject-specific+network+%28ErAS-Net%29%3A+facial+expression-based+pain+classification+with+multiple+attention+mechanisms&rft.jtitle=Scientific+reports&rft.au=Mahdi+Morsali&rft.au=Aboozar+Ghaffari&rft.date=2025-06-03&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1038%2Fs41598-025-04552-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d863c2a3c7404719914543c80c17e2bf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |