QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing t...
Saved in:
Published in | Organic & biomolecular chemistry Vol. 16; no. 24; pp. 4443 - 4455 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1477-0520 1477-0539 1477-0539 |
DOI | 10.1039/c8ob00066b |
Cover
Abstract | Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from
Mycobacterium tuberculosis
(
Mt
DHQ2) and
Helicobacter pylori
(
Hp
DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated
ab initio
single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in
Mt
DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than
Hp
DHQ2. Further, a water molecule, which is absent in
Mt
DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in
Hp
DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development. |
---|---|
AbstractList | Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development. Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development. Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. |
Author | Mulholland, Adrian J González-Bello, Concepción van der Kamp, Marc W Lence, Emilio |
AuthorAffiliation | Departamento de Química Orgánica Universidade de Santiago de Compostela University Walk University of Bristol School of Biochemistry Centre for Computational Chemistry Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) School of Chemistry |
AuthorAffiliation_xml | – sequence: 0 name: Centre for Computational Chemistry – sequence: 0 name: School of Biochemistry – sequence: 0 name: Universidade de Santiago de Compostela – sequence: 0 name: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) – sequence: 0 name: School of Chemistry – sequence: 0 name: University of Bristol – sequence: 0 name: Departamento de Química Orgánica – sequence: 0 name: University Walk – name: b Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain . Email: concepcion.gonzalez.bello@usc.es ; Tel: +34 881 815726 – name: a Centre for Computational Chemistry , School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , UK . Email: adrian.mulholland@bristol.ac.uk ; Tel: +44 117 9289097 – name: c School of Biochemistry , University of Bristol , University Walk , BS8 1TD Bristol , UK . Email: marc.vanderkamp@bristol.ac.uk ; Tel: +44 117 3312147 |
Author_xml | – sequence: 1 givenname: Emilio surname: Lence fullname: Lence, Emilio – sequence: 2 givenname: Marc W surname: van der Kamp fullname: van der Kamp, Marc W – sequence: 3 givenname: Concepción surname: González-Bello fullname: González-Bello, Concepción – sequence: 4 givenname: Adrian J surname: Mulholland fullname: Mulholland, Adrian J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29767194$$D View this record in MEDLINE/PubMed |
BookMark | eNptksuLFDEQxhtZcR968a4EvIgwbtKPPC6CO_gY2GER9BzSScXJ0p2MSXql_evN7OyOuniqQH71UV99dVod-eChqp4T_JbgRpxrHnqMMaX9o-qEtIwtcNeIo8O7xsfVaUrXGBPBaPukOq5LZUS0J1X-sj5fr1Fy4zSo7IJPyBnw2dkZ5Q0gAxni6LzyOaFgkVZZDXN2Gimd3Y3LMzLOWojgNSTUQ_4J4FGet4BWq9K-mU0MP6aikACB_zWPkJ5Wj60aEjy7q2fVt48fvi4_Ly6vPq2W7y8XuhVtXvCWYqxqC5xqxutOGGwpZcYWq4wozYwhRIPggI1otDamF5YyRkXHO9aL5qx6t9fdTv0IRhdfUQ1yG92o4iyDcvLfH-828nu4kRSTslleBF7fCew8QMpydEnDMCgPYUqyLuvnrCZNW9BXD9DrMEVf7BWqY01NOd0Jvvx7osMo94EUAO8BHUNKEazULt8GUwZ0gyRY7jKXS351cZv5RWl586DlXvW_8Is9HJM-cH8OqPkNIge4Mw |
CitedBy_id | crossref_primary_10_1002_cphc_202300596 crossref_primary_10_1186_s12896_021_00722_6 crossref_primary_10_1021_acs_jpcb_1c01862 crossref_primary_10_1080_07391102_2021_1898469 crossref_primary_10_3390_life13030722 crossref_primary_10_1039_D1CP05819C crossref_primary_10_1021_acs_jcim_3c00796 crossref_primary_10_1007_s12274_023_6311_9 crossref_primary_10_1016_j_csbj_2021_08_008 crossref_primary_10_7717_peerj_pchem_8 crossref_primary_10_1016_j_biotechadv_2021_107696 crossref_primary_10_1080_07391102_2022_2042389 crossref_primary_10_1016_j_chemphys_2021_111281 crossref_primary_10_1021_acs_joc_8b01559 crossref_primary_10_3390_catal11070807 |
Cites_doi | 10.1038/srep03561 10.1063/1.1569242 10.1042/bj3380195 10.1021/cb300493s 10.1002/cmdc.200900319 10.1002/cmdc.201000281 10.1002/jcc.10349 10.1016/S0021-9258(19)41150-2 10.1042/bj2650735 10.1021/jacs.6b00232 10.1002/jcc.540130812 10.1039/b925647d 10.1021/jm9010466 10.1042/bj3190333 10.1021/bi400215w 10.1039/C7SC04761D 10.1093/jac/dkv339 10.1016/0010-4655(95)00053-I 10.1039/c2ob07081b 10.1126/science.1176667 10.1021/ct800480d 10.1063/1.464397 10.2174/1568026614666140506114859 10.1038/nature17042 10.1038/nrmicro2693 10.1002/jcc.540110605 10.1016/S0969-2126(02)00747-5 10.1016/0014-5793(95)00083-L 10.1002/jcc.24866 10.1039/c2cs15297e 10.1111/febs.12158 10.1128/mBio.00301-10 10.1002/cmdc.201300013 10.1016/S0014-5793(02)03346-X 10.1063/1.445869 10.1002/jcc.540161104 10.1016/0021-9991(77)90098-5 10.1042/BJ20110002 10.1021/j100096a001 10.1039/C4CC06495J 10.1016/S1473-3099(16)30386-3 10.1002/jcc.20035 10.1021/ja304460j 10.1021/j100384a009 10.1021/jp000497z 10.1103/PhysRevB.58.7260 10.1093/nar/gki464 10.1039/C3SC53009D 10.1063/1.464913 10.1021/jm2006063 10.1042/BJ20131103 10.1039/b810099c 10.1021/jp9924124 10.1007/BF00484424 10.1021/ja044210d 10.1074/jbc.271.40.24492 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1039/c8ob00066b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biotechnology Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1477-0539 |
EndPage | 4455 |
ExternalDocumentID | PMC6011038 29767194 10_1039_C8OB00066B c8ob00066b |
Genre | Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L01386X/1 |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ VH6 VQA WH7 XSW YNT YZZ 0UZ 186 1TJ 3EH 53G 6TJ 71~ 9M8 AAYXX ACHDF ACRPL ADNMO AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANBJS ANLMG ASPBG AVWKF AZFZN BBWZM CAG CITATION COF EEHRC FEDTE HVGLF IDY J3G J3H L-8 MVM NDZJH R56 RCLXC ROL UQL XJT XOL ZCG CGR CUY CVF ECM EIF NPM 7QO 7T7 7TM 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c494t-84600a2fe86c78259d0f667df06671ac7dd11ce98e0d93ccddb9f677695857b93 |
ISSN | 1477-0520 1477-0539 |
IngestDate | Thu Aug 21 14:01:01 EDT 2025 Fri Jul 11 15:36:22 EDT 2025 Mon Jun 30 11:57:17 EDT 2025 Sat May 31 02:07:44 EDT 2025 Tue Jul 01 00:23:12 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Dec 17 20:58:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c494t-84600a2fe86c78259d0f667df06671ac7dd11ce98e0d93ccddb9f677695857b93 |
Notes | 10.1039/c8ob00066b Electronic supplementary information (ESI) available: Fig. S1-S5, Tables S1-S3 and extra details on umbrella sampling simulations. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-9489-9421 0000-0001-6439-553X 0000-0002-8060-3359 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6011038 |
PMID | 29767194 |
PQID | 2057326868 |
PQPubID | 2047497 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6011038 crossref_citationtrail_10_1039_C8OB00066B proquest_journals_2057326868 pubmed_primary_29767194 proquest_miscellaneous_2039872134 crossref_primary_10_1039_C8OB00066B rsc_primary_c8ob00066b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Organic & biomolecular chemistry |
PublicationTitleAlternate | Org Biomol Chem |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ryckaert (C8OB00066B-(cit46)/*[position()=1]) 1977; 23 C8OB00066B-(cit5)/*[position()=1] Aqvist (C8OB00066B-(cit43)/*[position()=1]) 1990; 94 Chudyk (C8OB00066B-(cit12)/*[position()=1]) 2014; 50 Gruden (C8OB00066B-(cit32)/*[position()=1]) 2017; 38 Prazeres (C8OB00066B-(cit34)/*[position()=1]) 2010; 53 Roszak (C8OB00066B-(cit28)/*[position()=1]) 2002; 10 Goff (C8OB00066B-(cit4)/*[position()=1]) 2017; 17 Wang (C8OB00066B-(cit41)/*[position()=1]) 2004; 25 Brown (C8OB00066B-(cit1)/*[position()=1]) 2016; 529 Lynch (C8OB00066B-(cit57)/*[position()=1]) 2000; 104 Jorgensen (C8OB00066B-(cit42)/*[position()=1]) 1983; 79 Roux (C8OB00066B-(cit52)/*[position()=1]) 1995; 91 Duan (C8OB00066B-(cit40)/*[position()=1]) 2003; 24 Reuter (C8OB00066B-(cit48)/*[position()=1]) 2000; 104 Stephens (C8OB00066B-(cit56)/*[position()=1]) 1994; 98 Evans (C8OB00066B-(cit30)/*[position()=2]) 2002; 530 Blomberg (C8OB00066B-(cit24)/*[position()=1]) 2009; 5 Abell (C8OB00066B-(cit16)/*[position()=1]) 1999; 1 Peón (C8OB00066B-(cit29)/*[position()=1]) 2010; 5 Case (C8OB00066B-(cit44)/*[position()=1]) 2012 Byrne (C8OB00066B-(cit13)/*[position()=1]) 2016; 138 Kostyanev (C8OB00066B-(cit6)/*[position()=1]) 2016; 71 C8OB00066B-(cit7)/*[position()=1] Blanco (C8OB00066B-(cit36)/*[position()=1]) 2012; 10 Kumar (C8OB00066B-(cit51)/*[position()=1]) 1995; 16 White (C8OB00066B-(cit19)/*[position()=1]) 1990; 265 Coderch (C8OB00066B-(cit25)/*[position()=1]) 2014; 458 Kumar (C8OB00066B-(cit50)/*[position()=1]) 1992; 13 van der Kamp (C8OB00066B-(cit11)/*[position()=1]) 2013; 52 Becke (C8OB00066B-(cit55)/*[position()=1]) 1993; 98 Hermann (C8OB00066B-(cit58)/*[position()=1]) 2005; 127 Darden (C8OB00066B-(cit45)/*[position()=1]) 1993; 98 Price (C8OB00066B-(cit22)/*[position()=1]) 1999; 338 Fonseca (C8OB00066B-(cit9)/*[position()=1]) 2012; 134 Grimme (C8OB00066B-(cit54)/*[position()=1]) 2003; 118 C8OB00066B-(cit18)/*[position()=1] van der Kamp (C8OB00066B-(cit15)/*[position()=1]) 2013; 280 Dias (C8OB00066B-(cit38)/*[position()=1]) 2011; 436 Field (C8OB00066B-(cit47)/*[position()=1]) 1990; 11 Prazeres (C8OB00066B-(cit33)/*[position()=1]) 2009; 4 Lamichhane (C8OB00066B-(cit17)/*[position()=1]) 2011; 2 Bush (C8OB00066B-(cit3)/*[position()=1]) 2011; 9 Harris (C8OB00066B-(cit23)/*[position()=1]) 1996; 319 Callegari (C8OB00066B-(cit63)/*[position()=1]) 2018; 9 Ranaghan (C8OB00066B-(cit14)/*[position()=1]) 2014; 5 Lence (C8OB00066B-(cit31)/*[position()=1]) 2013; 8 Hautala (C8OB00066B-(cit21)/*[position()=1]) 1975; 250 Bowman (C8OB00066B-(cit59)/*[position()=1]) 2008 Woods (C8OB00066B-(cit10)/*[position()=1]) 2013; 3 Tizón (C8OB00066B-(cit35)/*[position()=1]) 2011; 54 Fischbach (C8OB00066B-(cit2)/*[position()=1]) 2009; 325 Lonsdale (C8OB00066B-(cit60)/*[position()=1]) 2014; 14 C8OB00066B-(cit8)/*[position()=1] Elstner (C8OB00066B-(cit49)/*[position()=1]) 1998; 58 Lonsdale (C8OB00066B-(cit62)/*[position()=1]) 2010; 46 Gordon (C8OB00066B-(cit39)/*[position()=1]) 2005; 33 Hawkins (C8OB00066B-(cit20)/*[position()=1]) 1982; 20 Krell (C8OB00066B-(cit27)/*[position()=1]) 1996; 271 Lonsdale (C8OB00066B-(cit61)/*[position()=1]) 2012; 41 Peón (C8OB00066B-(cit37)/*[position()=1]) 2013; 8 Krell (C8OB00066B-(cit26)/*[position()=1]) 1995; 360 |
References_xml | – issn: 1999 issue: 1 volume-title: Enzymology and Molecular Biology of the Shikimate Pathway end-page: 573-607 publication-title: Comprehensive Natural Products Chemistry doi: Abell – issn: 2009 publication-title: Gaussian 09, Revision A.2 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox – issn: 2012 publication-title: AMBER 2012 doi: Case Berryman Betz Cerutti Cheatham, III Darden Duke Giese Gohlke Goetz Homeyer Izadi Janowski Kaus Kovalenko Lee LeGrand Li Luchko Luo Madej Merz Monard Needham Nguyen Nguyen Omelyan Onufriev Roe Roitberg Salomon-Ferrer Simmerling Smith Swails Walker Wang Wolf Wu York Kollman – volume: 3 start-page: 3561 year: 2013 ident: C8OB00066B-(cit10)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03561 – volume: 118 start-page: 9095 year: 2003 ident: C8OB00066B-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1569242 – volume: 338 start-page: 195 year: 1999 ident: C8OB00066B-(cit22)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/bj3380195 – volume: 8 start-page: 568 year: 2013 ident: C8OB00066B-(cit31)/*[position()=1] publication-title: ACS Chem. Biol. doi: 10.1021/cb300493s – volume: 4 start-page: 1980 year: 2009 ident: C8OB00066B-(cit33)/*[position()=1] publication-title: ChemMedChem doi: 10.1002/cmdc.200900319 – ident: C8OB00066B-(cit7)/*[position()=1] – volume: 5 start-page: 1726 year: 2010 ident: C8OB00066B-(cit29)/*[position()=1] publication-title: ChemMedChem doi: 10.1002/cmdc.201000281 – volume: 24 start-page: 1999 year: 2003 ident: C8OB00066B-(cit40)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.10349 – volume: 250 start-page: 6008 year: 1975 ident: C8OB00066B-(cit21)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)41150-2 – volume: 265 start-page: 735 year: 1990 ident: C8OB00066B-(cit19)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/bj2650735 – ident: C8OB00066B-(cit8)/*[position()=1] – volume: 138 start-page: 6095 year: 2016 ident: C8OB00066B-(cit13)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b00232 – volume: 13 start-page: 1011 year: 1992 ident: C8OB00066B-(cit50)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130812 – volume: 46 start-page: 2354 year: 2010 ident: C8OB00066B-(cit62)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b925647d – volume: 53 start-page: 191 year: 2010 ident: C8OB00066B-(cit34)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm9010466 – volume: 1 volume-title: Comprehensive Natural Products Chemistry year: 1999 ident: C8OB00066B-(cit16)/*[position()=1] – volume: 319 start-page: 333 year: 1996 ident: C8OB00066B-(cit23)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/bj3190333 – volume: 52 start-page: 2708 year: 2013 ident: C8OB00066B-(cit11)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi400215w – volume: 9 start-page: 2740 year: 2018 ident: C8OB00066B-(cit63)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC04761D – volume: 71 start-page: 290 year: 2016 ident: C8OB00066B-(cit6)/*[position()=1] publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkv339 – volume: 91 start-page: 275 year: 1995 ident: C8OB00066B-(cit52)/*[position()=1] publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(95)00053-I – volume: 10 start-page: 3662 year: 2012 ident: C8OB00066B-(cit36)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/c2ob07081b – volume: 325 start-page: 1089 year: 2009 ident: C8OB00066B-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1176667 – volume: 5 start-page: 1284 year: 2009 ident: C8OB00066B-(cit24)/*[position()=1] publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800480d – volume: 98 start-page: 10089 year: 1993 ident: C8OB00066B-(cit45)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 14 start-page: 1339 year: 2014 ident: C8OB00066B-(cit60)/*[position()=1] publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026614666140506114859 – volume: 529 start-page: 336 year: 2016 ident: C8OB00066B-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature17042 – volume: 9 start-page: 894 year: 2011 ident: C8OB00066B-(cit3)/*[position()=1] publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2693 – volume: 11 start-page: 700 year: 1990 ident: C8OB00066B-(cit47)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540110605 – volume: 10 start-page: 493 year: 2002 ident: C8OB00066B-(cit28)/*[position()=1] publication-title: Structure doi: 10.1016/S0969-2126(02)00747-5 – volume: 360 start-page: 93 year: 1995 ident: C8OB00066B-(cit26)/*[position()=1] publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)00083-L – volume: 38 start-page: 2171 year: 2017 ident: C8OB00066B-(cit32)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.24866 – volume: 41 start-page: 3025 year: 2012 ident: C8OB00066B-(cit61)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15297e – volume: 280 start-page: 3120 year: 2013 ident: C8OB00066B-(cit15)/*[position()=1] publication-title: FEBS J. doi: 10.1111/febs.12158 – volume: 2 start-page: e00301 year: 2011 ident: C8OB00066B-(cit17)/*[position()=1] publication-title: mBio doi: 10.1128/mBio.00301-10 – volume: 8 start-page: 740 year: 2013 ident: C8OB00066B-(cit37)/*[position()=1] publication-title: ChemMedChem doi: 10.1002/cmdc.201300013 – volume: 530 start-page: 24 year: 2002 ident: C8OB00066B-(cit30)/*[position()=2] publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03346-X – volume: 79 start-page: 926 year: 1983 ident: C8OB00066B-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 16 start-page: 1339 year: 1995 ident: C8OB00066B-(cit51)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.540161104 – volume: 23 start-page: 327 year: 1977 ident: C8OB00066B-(cit46)/*[position()=1] publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 – ident: C8OB00066B-(cit5)/*[position()=1] – volume: 436 start-page: 729 year: 2011 ident: C8OB00066B-(cit38)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/BJ20110002 – volume: 98 start-page: 11623 year: 1994 ident: C8OB00066B-(cit56)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume: 50 start-page: 14736 year: 2014 ident: C8OB00066B-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC06495J – volume: 17 start-page: e56 year: 2017 ident: C8OB00066B-(cit4)/*[position()=1] publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(16)30386-3 – volume: 25 start-page: 1157 year: 2004 ident: C8OB00066B-(cit41)/*[position()=1] publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 134 start-page: 18275 year: 2012 ident: C8OB00066B-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304460j – volume: 94 start-page: 8021 year: 1990 ident: C8OB00066B-(cit43)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100384a009 – volume-title: AMBER 2012 year: 2012 ident: C8OB00066B-(cit44)/*[position()=1] – volume: 104 start-page: 4811 year: 2000 ident: C8OB00066B-(cit57)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp000497z – volume: 58 start-page: 7260 year: 1998 ident: C8OB00066B-(cit49)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.58.7260 – ident: C8OB00066B-(cit18)/*[position()=1] – volume: 33 start-page: W368 year: 2005 ident: C8OB00066B-(cit39)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki464 – volume: 5 start-page: 2191 year: 2014 ident: C8OB00066B-(cit14)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C3SC53009D – volume: 98 start-page: 5648 year: 1993 ident: C8OB00066B-(cit55)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 54 start-page: 6063 year: 2011 ident: C8OB00066B-(cit35)/*[position()=1] publication-title: J. Med. Chem. doi: 10.1021/jm2006063 – volume: 458 start-page: 547 year: 2014 ident: C8OB00066B-(cit25)/*[position()=1] publication-title: Biochem. J. doi: 10.1042/BJ20131103 – start-page: 4425 year: 2008 ident: C8OB00066B-(cit59)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b810099c – volume: 104 start-page: 1720 year: 2000 ident: C8OB00066B-(cit48)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9924124 – volume: 20 start-page: 271 year: 1982 ident: C8OB00066B-(cit20)/*[position()=1] publication-title: Biochem. Genet. doi: 10.1007/BF00484424 – volume: 127 start-page: 4454 year: 2005 ident: C8OB00066B-(cit58)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044210d – volume: 271 start-page: 24492 year: 1996 ident: C8OB00066B-(cit27)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.40.24492 |
SSID | ssj0019764 |
Score | 2.3264081 |
Snippet | Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2... Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4443 |
SubjectTerms | Amino Acid Sequence Antibiotics Arginine - chemistry Aspartic Acid - chemistry Biocatalysis Catalysis Catalytic activity Catalytic Domain Chemistry Determinants Drug development Drug discovery Enzymes Helicobacter pylori Helicobacter pylori - enzymology Hydro-Lyases - chemistry Models, Chemical Molecular chains Molecular dynamics Molecular Dynamics Simulation Mycobacterium tuberculosis - enzymology Quantum mechanics Quantum Theory Residues Target recognition Tuberculosis Tyrosine - chemistry Water - chemistry |
Title | QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29767194 https://www.proquest.com/docview/2057326868 https://www.proquest.com/docview/2039872134 https://pubmed.ncbi.nlm.nih.gov/PMC6011038 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELdBYSAjeEFVtlxcO35cq6J1ENCkTuytSuxErdSmUy8P7f_jf3GOE6fpuofBS1T5kig5X-1j-zvfIeSLYHhYx2FZ0kkSh4WJB-Ng0HF0KmI3zoLQVxjgHP3klzfs6rZz22j8qbGW1qvkTG0fjCv5H6tCGdgVo2T_wbLVTaEAfoN94QoWhuujbHwdQd8oai8ns7XltE1M5G22MR6lvkd2MZs1G6PRqsq0ETZDCjKzLGnL7MsOBtB9vNE4dcAdlmk7zbcbGzBS-rNFKKcyAMJIfptst61sIrkd4ycv9uv7s8m0IH_Z8CmUs_gez-7K2CHV_n1W0YLm-dac5XvTdOt07UlRzwRbqglWdYN8h5rpGHFdbpbrBY5eV2f1nY29YZgJ4SBDp5il6mWF9FE1dvMaRn1WG4kZK-SfylmdsUIN-GDGcAMUXO2Fv7rG_dqdG1VcgHvTZUViNMf3gRzt-h6RY18Ir9Mkxxf94eBHdZwFPp-hN9jXsjq5gTzf9d73jA6WO4es3aOFTVJjnKHhc_KsXMXQiwKSL0gjzV-SJz1r81dkdR2dRxGtAZNaYFIAJq0Dk84zWgGTWmDSGjBpCUyKwKSDAd0HJi2B-ZrcfOsPe5dOmeDDUUyylQO-r-vGfpaGXIGn2pHazTgXOkPmtRcrobXnqVSGqatloJTWicy4EFzCIlckMjghzXyep28JlVzEsYuy-RKcTrhbhrk-NKxugpTF3G2Rr_bjjlSpfo9JWKajQzO2yOeq7V2h-fJgq1Nro1E5JixHPuqL-jzkYYt8qqrh2-MxXJyn8zW2CWQoUEmxRd4UJq0e4wNShCehRuwZu2qAavD7NflkbFThOXryATz3BGBRtVfhvFhXJO8e9VbvyVP8KxabjKekuVqs0w_gdq-SjyWo_wKdENsC |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QM%2FMM+simulations+identify+the+determinants+of+catalytic+activity+differences+between+type+II+dehydroquinase+enzymes&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Lence%2C+Emilio&rft.au=van+der+Kamp%2C+Marc+W.&rft.au=Gonz%C3%A1lez-Bello%2C+Concepci%C3%B3n&rft.au=Mulholland%2C+Adrian+J.&rft.date=2018&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=16&rft.issue=24&rft.spage=4443&rft.epage=4455&rft_id=info:doi/10.1039%2FC8OB00066B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8OB00066B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon |