QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes

Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing t...

Full description

Saved in:
Bibliographic Details
Published inOrganic & biomolecular chemistry Vol. 16; no. 24; pp. 4443 - 4455
Main Authors Lence, Emilio, van der Kamp, Marc W, González-Bello, Concepción, Mulholland, Adrian J
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 2018
Subjects
Online AccessGet full text
ISSN1477-0520
1477-0539
1477-0539
DOI10.1039/c8ob00066b

Cover

Abstract Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development.
AbstractList Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design. Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development.
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for antibiotic development. Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis ( Mt DHQ2) and Helicobacter pylori ( Hp DHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in Mt DHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than Hp DHQ2. Further, a water molecule, which is absent in Mt DHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in Hp DHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.
Author Mulholland, Adrian J
González-Bello, Concepción
van der Kamp, Marc W
Lence, Emilio
AuthorAffiliation Departamento de Química Orgánica
Universidade de Santiago de Compostela
University Walk
University of Bristol
School of Biochemistry
Centre for Computational Chemistry
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
School of Chemistry
AuthorAffiliation_xml – sequence: 0
  name: Centre for Computational Chemistry
– sequence: 0
  name: School of Biochemistry
– sequence: 0
  name: Universidade de Santiago de Compostela
– sequence: 0
  name: Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS)
– sequence: 0
  name: School of Chemistry
– sequence: 0
  name: University of Bristol
– sequence: 0
  name: Departamento de Química Orgánica
– sequence: 0
  name: University Walk
– name: b Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain . Email: concepcion.gonzalez.bello@usc.es ; Tel: +34 881 815726
– name: a Centre for Computational Chemistry , School of Chemistry , University of Bristol , Cantock's Close , BS8 1TS Bristol , UK . Email: adrian.mulholland@bristol.ac.uk ; Tel: +44 117 9289097
– name: c School of Biochemistry , University of Bristol , University Walk , BS8 1TD Bristol , UK . Email: marc.vanderkamp@bristol.ac.uk ; Tel: +44 117 3312147
Author_xml – sequence: 1
  givenname: Emilio
  surname: Lence
  fullname: Lence, Emilio
– sequence: 2
  givenname: Marc W
  surname: van der Kamp
  fullname: van der Kamp, Marc W
– sequence: 3
  givenname: Concepción
  surname: González-Bello
  fullname: González-Bello, Concepción
– sequence: 4
  givenname: Adrian J
  surname: Mulholland
  fullname: Mulholland, Adrian J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29767194$$D View this record in MEDLINE/PubMed
BookMark eNptksuLFDEQxhtZcR968a4EvIgwbtKPPC6CO_gY2GER9BzSScXJ0p2MSXql_evN7OyOuniqQH71UV99dVod-eChqp4T_JbgRpxrHnqMMaX9o-qEtIwtcNeIo8O7xsfVaUrXGBPBaPukOq5LZUS0J1X-sj5fr1Fy4zSo7IJPyBnw2dkZ5Q0gAxni6LzyOaFgkVZZDXN2Gimd3Y3LMzLOWojgNSTUQ_4J4FGet4BWq9K-mU0MP6aikACB_zWPkJ5Wj60aEjy7q2fVt48fvi4_Ly6vPq2W7y8XuhVtXvCWYqxqC5xqxutOGGwpZcYWq4wozYwhRIPggI1otDamF5YyRkXHO9aL5qx6t9fdTv0IRhdfUQ1yG92o4iyDcvLfH-828nu4kRSTslleBF7fCew8QMpydEnDMCgPYUqyLuvnrCZNW9BXD9DrMEVf7BWqY01NOd0Jvvx7osMo94EUAO8BHUNKEazULt8GUwZ0gyRY7jKXS351cZv5RWl586DlXvW_8Is9HJM-cH8OqPkNIge4Mw
CitedBy_id crossref_primary_10_1002_cphc_202300596
crossref_primary_10_1186_s12896_021_00722_6
crossref_primary_10_1021_acs_jpcb_1c01862
crossref_primary_10_1080_07391102_2021_1898469
crossref_primary_10_3390_life13030722
crossref_primary_10_1039_D1CP05819C
crossref_primary_10_1021_acs_jcim_3c00796
crossref_primary_10_1007_s12274_023_6311_9
crossref_primary_10_1016_j_csbj_2021_08_008
crossref_primary_10_7717_peerj_pchem_8
crossref_primary_10_1016_j_biotechadv_2021_107696
crossref_primary_10_1080_07391102_2022_2042389
crossref_primary_10_1016_j_chemphys_2021_111281
crossref_primary_10_1021_acs_joc_8b01559
crossref_primary_10_3390_catal11070807
Cites_doi 10.1038/srep03561
10.1063/1.1569242
10.1042/bj3380195
10.1021/cb300493s
10.1002/cmdc.200900319
10.1002/cmdc.201000281
10.1002/jcc.10349
10.1016/S0021-9258(19)41150-2
10.1042/bj2650735
10.1021/jacs.6b00232
10.1002/jcc.540130812
10.1039/b925647d
10.1021/jm9010466
10.1042/bj3190333
10.1021/bi400215w
10.1039/C7SC04761D
10.1093/jac/dkv339
10.1016/0010-4655(95)00053-I
10.1039/c2ob07081b
10.1126/science.1176667
10.1021/ct800480d
10.1063/1.464397
10.2174/1568026614666140506114859
10.1038/nature17042
10.1038/nrmicro2693
10.1002/jcc.540110605
10.1016/S0969-2126(02)00747-5
10.1016/0014-5793(95)00083-L
10.1002/jcc.24866
10.1039/c2cs15297e
10.1111/febs.12158
10.1128/mBio.00301-10
10.1002/cmdc.201300013
10.1016/S0014-5793(02)03346-X
10.1063/1.445869
10.1002/jcc.540161104
10.1016/0021-9991(77)90098-5
10.1042/BJ20110002
10.1021/j100096a001
10.1039/C4CC06495J
10.1016/S1473-3099(16)30386-3
10.1002/jcc.20035
10.1021/ja304460j
10.1021/j100384a009
10.1021/jp000497z
10.1103/PhysRevB.58.7260
10.1093/nar/gki464
10.1039/C3SC53009D
10.1063/1.464913
10.1021/jm2006063
10.1042/BJ20131103
10.1039/b810099c
10.1021/jp9924124
10.1007/BF00484424
10.1021/ja044210d
10.1074/jbc.271.40.24492
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1039/c8ob00066b
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Biotechnology Research Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-0539
EndPage 4455
ExternalDocumentID PMC6011038
29767194
10_1039_C8OB00066B
c8ob00066b
Genre Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L01386X/1
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
VH6
VQA
WH7
XSW
YNT
YZZ
0UZ
186
1TJ
3EH
53G
6TJ
71~
9M8
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANBJS
ANLMG
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
IDY
J3G
J3H
L-8
MVM
NDZJH
R56
RCLXC
ROL
UQL
XJT
XOL
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7T7
7TM
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c494t-84600a2fe86c78259d0f667df06671ac7dd11ce98e0d93ccddb9f677695857b93
ISSN 1477-0520
1477-0539
IngestDate Thu Aug 21 14:01:01 EDT 2025
Fri Jul 11 15:36:22 EDT 2025
Mon Jun 30 11:57:17 EDT 2025
Sat May 31 02:07:44 EDT 2025
Tue Jul 01 00:23:12 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Dec 17 20:58:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-84600a2fe86c78259d0f667df06671ac7dd11ce98e0d93ccddb9f677695857b93
Notes 10.1039/c8ob00066b
Electronic supplementary information (ESI) available: Fig. S1-S5, Tables S1-S3 and extra details on umbrella sampling simulations. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-9489-9421
0000-0001-6439-553X
0000-0002-8060-3359
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6011038
PMID 29767194
PQID 2057326868
PQPubID 2047497
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6011038
crossref_citationtrail_10_1039_C8OB00066B
proquest_journals_2057326868
pubmed_primary_29767194
proquest_miscellaneous_2039872134
crossref_primary_10_1039_C8OB00066B
rsc_primary_c8ob00066b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Organic & biomolecular chemistry
PublicationTitleAlternate Org Biomol Chem
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ryckaert (C8OB00066B-(cit46)/*[position()=1]) 1977; 23
C8OB00066B-(cit5)/*[position()=1]
Aqvist (C8OB00066B-(cit43)/*[position()=1]) 1990; 94
Chudyk (C8OB00066B-(cit12)/*[position()=1]) 2014; 50
Gruden (C8OB00066B-(cit32)/*[position()=1]) 2017; 38
Prazeres (C8OB00066B-(cit34)/*[position()=1]) 2010; 53
Roszak (C8OB00066B-(cit28)/*[position()=1]) 2002; 10
Goff (C8OB00066B-(cit4)/*[position()=1]) 2017; 17
Wang (C8OB00066B-(cit41)/*[position()=1]) 2004; 25
Brown (C8OB00066B-(cit1)/*[position()=1]) 2016; 529
Lynch (C8OB00066B-(cit57)/*[position()=1]) 2000; 104
Jorgensen (C8OB00066B-(cit42)/*[position()=1]) 1983; 79
Roux (C8OB00066B-(cit52)/*[position()=1]) 1995; 91
Duan (C8OB00066B-(cit40)/*[position()=1]) 2003; 24
Reuter (C8OB00066B-(cit48)/*[position()=1]) 2000; 104
Stephens (C8OB00066B-(cit56)/*[position()=1]) 1994; 98
Evans (C8OB00066B-(cit30)/*[position()=2]) 2002; 530
Blomberg (C8OB00066B-(cit24)/*[position()=1]) 2009; 5
Abell (C8OB00066B-(cit16)/*[position()=1]) 1999; 1
Peón (C8OB00066B-(cit29)/*[position()=1]) 2010; 5
Case (C8OB00066B-(cit44)/*[position()=1]) 2012
Byrne (C8OB00066B-(cit13)/*[position()=1]) 2016; 138
Kostyanev (C8OB00066B-(cit6)/*[position()=1]) 2016; 71
C8OB00066B-(cit7)/*[position()=1]
Blanco (C8OB00066B-(cit36)/*[position()=1]) 2012; 10
Kumar (C8OB00066B-(cit51)/*[position()=1]) 1995; 16
White (C8OB00066B-(cit19)/*[position()=1]) 1990; 265
Coderch (C8OB00066B-(cit25)/*[position()=1]) 2014; 458
Kumar (C8OB00066B-(cit50)/*[position()=1]) 1992; 13
van der Kamp (C8OB00066B-(cit11)/*[position()=1]) 2013; 52
Becke (C8OB00066B-(cit55)/*[position()=1]) 1993; 98
Hermann (C8OB00066B-(cit58)/*[position()=1]) 2005; 127
Darden (C8OB00066B-(cit45)/*[position()=1]) 1993; 98
Price (C8OB00066B-(cit22)/*[position()=1]) 1999; 338
Fonseca (C8OB00066B-(cit9)/*[position()=1]) 2012; 134
Grimme (C8OB00066B-(cit54)/*[position()=1]) 2003; 118
C8OB00066B-(cit18)/*[position()=1]
van der Kamp (C8OB00066B-(cit15)/*[position()=1]) 2013; 280
Dias (C8OB00066B-(cit38)/*[position()=1]) 2011; 436
Field (C8OB00066B-(cit47)/*[position()=1]) 1990; 11
Prazeres (C8OB00066B-(cit33)/*[position()=1]) 2009; 4
Lamichhane (C8OB00066B-(cit17)/*[position()=1]) 2011; 2
Bush (C8OB00066B-(cit3)/*[position()=1]) 2011; 9
Harris (C8OB00066B-(cit23)/*[position()=1]) 1996; 319
Callegari (C8OB00066B-(cit63)/*[position()=1]) 2018; 9
Ranaghan (C8OB00066B-(cit14)/*[position()=1]) 2014; 5
Lence (C8OB00066B-(cit31)/*[position()=1]) 2013; 8
Hautala (C8OB00066B-(cit21)/*[position()=1]) 1975; 250
Bowman (C8OB00066B-(cit59)/*[position()=1]) 2008
Woods (C8OB00066B-(cit10)/*[position()=1]) 2013; 3
Tizón (C8OB00066B-(cit35)/*[position()=1]) 2011; 54
Fischbach (C8OB00066B-(cit2)/*[position()=1]) 2009; 325
Lonsdale (C8OB00066B-(cit60)/*[position()=1]) 2014; 14
C8OB00066B-(cit8)/*[position()=1]
Elstner (C8OB00066B-(cit49)/*[position()=1]) 1998; 58
Lonsdale (C8OB00066B-(cit62)/*[position()=1]) 2010; 46
Gordon (C8OB00066B-(cit39)/*[position()=1]) 2005; 33
Hawkins (C8OB00066B-(cit20)/*[position()=1]) 1982; 20
Krell (C8OB00066B-(cit27)/*[position()=1]) 1996; 271
Lonsdale (C8OB00066B-(cit61)/*[position()=1]) 2012; 41
Peón (C8OB00066B-(cit37)/*[position()=1]) 2013; 8
Krell (C8OB00066B-(cit26)/*[position()=1]) 1995; 360
References_xml – issn: 1999
  issue: 1
  volume-title: Enzymology and Molecular Biology of the Shikimate Pathway
  end-page: 573-607
  publication-title: Comprehensive Natural Products Chemistry
  doi: Abell
– issn: 2009
  publication-title: Gaussian 09, Revision A.2
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Mennucci Petersson Nakatsuji Caricato Li Hratchian Izmaylov Bloino Zheng Sonnenberg Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Montgomery, Jr. Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Rega Millam Klene Knox Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Martin Morokuma Zakrzewski Voth Salvador Dannenberg Dapprich Daniels Farkas Foresman Ortiz Cioslowski Fox
– issn: 2012
  publication-title: AMBER 2012
  doi: Case Berryman Betz Cerutti Cheatham, III Darden Duke Giese Gohlke Goetz Homeyer Izadi Janowski Kaus Kovalenko Lee LeGrand Li Luchko Luo Madej Merz Monard Needham Nguyen Nguyen Omelyan Onufriev Roe Roitberg Salomon-Ferrer Simmerling Smith Swails Walker Wang Wolf Wu York Kollman
– volume: 3
  start-page: 3561
  year: 2013
  ident: C8OB00066B-(cit10)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03561
– volume: 118
  start-page: 9095
  year: 2003
  ident: C8OB00066B-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1569242
– volume: 338
  start-page: 195
  year: 1999
  ident: C8OB00066B-(cit22)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/bj3380195
– volume: 8
  start-page: 568
  year: 2013
  ident: C8OB00066B-(cit31)/*[position()=1]
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb300493s
– volume: 4
  start-page: 1980
  year: 2009
  ident: C8OB00066B-(cit33)/*[position()=1]
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200900319
– ident: C8OB00066B-(cit7)/*[position()=1]
– volume: 5
  start-page: 1726
  year: 2010
  ident: C8OB00066B-(cit29)/*[position()=1]
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201000281
– volume: 24
  start-page: 1999
  year: 2003
  ident: C8OB00066B-(cit40)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10349
– volume: 250
  start-page: 6008
  year: 1975
  ident: C8OB00066B-(cit21)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)41150-2
– volume: 265
  start-page: 735
  year: 1990
  ident: C8OB00066B-(cit19)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/bj2650735
– ident: C8OB00066B-(cit8)/*[position()=1]
– volume: 138
  start-page: 6095
  year: 2016
  ident: C8OB00066B-(cit13)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00232
– volume: 13
  start-page: 1011
  year: 1992
  ident: C8OB00066B-(cit50)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130812
– volume: 46
  start-page: 2354
  year: 2010
  ident: C8OB00066B-(cit62)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b925647d
– volume: 53
  start-page: 191
  year: 2010
  ident: C8OB00066B-(cit34)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9010466
– volume: 1
  volume-title: Comprehensive Natural Products Chemistry
  year: 1999
  ident: C8OB00066B-(cit16)/*[position()=1]
– volume: 319
  start-page: 333
  year: 1996
  ident: C8OB00066B-(cit23)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/bj3190333
– volume: 52
  start-page: 2708
  year: 2013
  ident: C8OB00066B-(cit11)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi400215w
– volume: 9
  start-page: 2740
  year: 2018
  ident: C8OB00066B-(cit63)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC04761D
– volume: 71
  start-page: 290
  year: 2016
  ident: C8OB00066B-(cit6)/*[position()=1]
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkv339
– volume: 91
  start-page: 275
  year: 1995
  ident: C8OB00066B-(cit52)/*[position()=1]
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(95)00053-I
– volume: 10
  start-page: 3662
  year: 2012
  ident: C8OB00066B-(cit36)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c2ob07081b
– volume: 325
  start-page: 1089
  year: 2009
  ident: C8OB00066B-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1176667
– volume: 5
  start-page: 1284
  year: 2009
  ident: C8OB00066B-(cit24)/*[position()=1]
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800480d
– volume: 98
  start-page: 10089
  year: 1993
  ident: C8OB00066B-(cit45)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 14
  start-page: 1339
  year: 2014
  ident: C8OB00066B-(cit60)/*[position()=1]
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026614666140506114859
– volume: 529
  start-page: 336
  year: 2016
  ident: C8OB00066B-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature17042
– volume: 9
  start-page: 894
  year: 2011
  ident: C8OB00066B-(cit3)/*[position()=1]
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2693
– volume: 11
  start-page: 700
  year: 1990
  ident: C8OB00066B-(cit47)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540110605
– volume: 10
  start-page: 493
  year: 2002
  ident: C8OB00066B-(cit28)/*[position()=1]
  publication-title: Structure
  doi: 10.1016/S0969-2126(02)00747-5
– volume: 360
  start-page: 93
  year: 1995
  ident: C8OB00066B-(cit26)/*[position()=1]
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)00083-L
– volume: 38
  start-page: 2171
  year: 2017
  ident: C8OB00066B-(cit32)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24866
– volume: 41
  start-page: 3025
  year: 2012
  ident: C8OB00066B-(cit61)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15297e
– volume: 280
  start-page: 3120
  year: 2013
  ident: C8OB00066B-(cit15)/*[position()=1]
  publication-title: FEBS J.
  doi: 10.1111/febs.12158
– volume: 2
  start-page: e00301
  year: 2011
  ident: C8OB00066B-(cit17)/*[position()=1]
  publication-title: mBio
  doi: 10.1128/mBio.00301-10
– volume: 8
  start-page: 740
  year: 2013
  ident: C8OB00066B-(cit37)/*[position()=1]
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201300013
– volume: 530
  start-page: 24
  year: 2002
  ident: C8OB00066B-(cit30)/*[position()=2]
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03346-X
– volume: 79
  start-page: 926
  year: 1983
  ident: C8OB00066B-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 16
  start-page: 1339
  year: 1995
  ident: C8OB00066B-(cit51)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540161104
– volume: 23
  start-page: 327
  year: 1977
  ident: C8OB00066B-(cit46)/*[position()=1]
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
– ident: C8OB00066B-(cit5)/*[position()=1]
– volume: 436
  start-page: 729
  year: 2011
  ident: C8OB00066B-(cit38)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/BJ20110002
– volume: 98
  start-page: 11623
  year: 1994
  ident: C8OB00066B-(cit56)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume: 50
  start-page: 14736
  year: 2014
  ident: C8OB00066B-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06495J
– volume: 17
  start-page: e56
  year: 2017
  ident: C8OB00066B-(cit4)/*[position()=1]
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(16)30386-3
– volume: 25
  start-page: 1157
  year: 2004
  ident: C8OB00066B-(cit41)/*[position()=1]
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 134
  start-page: 18275
  year: 2012
  ident: C8OB00066B-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304460j
– volume: 94
  start-page: 8021
  year: 1990
  ident: C8OB00066B-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100384a009
– volume-title: AMBER 2012
  year: 2012
  ident: C8OB00066B-(cit44)/*[position()=1]
– volume: 104
  start-page: 4811
  year: 2000
  ident: C8OB00066B-(cit57)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp000497z
– volume: 58
  start-page: 7260
  year: 1998
  ident: C8OB00066B-(cit49)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.58.7260
– ident: C8OB00066B-(cit18)/*[position()=1]
– volume: 33
  start-page: W368
  year: 2005
  ident: C8OB00066B-(cit39)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki464
– volume: 5
  start-page: 2191
  year: 2014
  ident: C8OB00066B-(cit14)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C3SC53009D
– volume: 98
  start-page: 5648
  year: 1993
  ident: C8OB00066B-(cit55)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 54
  start-page: 6063
  year: 2011
  ident: C8OB00066B-(cit35)/*[position()=1]
  publication-title: J. Med. Chem.
  doi: 10.1021/jm2006063
– volume: 458
  start-page: 547
  year: 2014
  ident: C8OB00066B-(cit25)/*[position()=1]
  publication-title: Biochem. J.
  doi: 10.1042/BJ20131103
– start-page: 4425
  year: 2008
  ident: C8OB00066B-(cit59)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b810099c
– volume: 104
  start-page: 1720
  year: 2000
  ident: C8OB00066B-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9924124
– volume: 20
  start-page: 271
  year: 1982
  ident: C8OB00066B-(cit20)/*[position()=1]
  publication-title: Biochem. Genet.
  doi: 10.1007/BF00484424
– volume: 127
  start-page: 4454
  year: 2005
  ident: C8OB00066B-(cit58)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044210d
– volume: 271
  start-page: 24492
  year: 1996
  ident: C8OB00066B-(cit27)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.40.24492
SSID ssj0019764
Score 2.3264081
Snippet Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2...
Multiscale simulations pinpoint specific interactions responsible for differences in stabilization of key reacting species in two recognized targets for...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4443
SubjectTerms Amino Acid Sequence
Antibiotics
Arginine - chemistry
Aspartic Acid - chemistry
Biocatalysis
Catalysis
Catalytic activity
Catalytic Domain
Chemistry
Determinants
Drug development
Drug discovery
Enzymes
Helicobacter pylori
Helicobacter pylori - enzymology
Hydro-Lyases - chemistry
Models, Chemical
Molecular chains
Molecular dynamics
Molecular Dynamics Simulation
Mycobacterium tuberculosis - enzymology
Quantum mechanics
Quantum Theory
Residues
Target recognition
Tuberculosis
Tyrosine - chemistry
Water - chemistry
Title QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes
URI https://www.ncbi.nlm.nih.gov/pubmed/29767194
https://www.proquest.com/docview/2057326868
https://www.proquest.com/docview/2039872134
https://pubmed.ncbi.nlm.nih.gov/PMC6011038
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELdBYSAjeEFVtlxcO35cq6J1ENCkTuytSuxErdSmUy8P7f_jf3GOE6fpuofBS1T5kig5X-1j-zvfIeSLYHhYx2FZ0kkSh4WJB-Ng0HF0KmI3zoLQVxjgHP3klzfs6rZz22j8qbGW1qvkTG0fjCv5H6tCGdgVo2T_wbLVTaEAfoN94QoWhuujbHwdQd8oai8ns7XltE1M5G22MR6lvkd2MZs1G6PRqsq0ETZDCjKzLGnL7MsOBtB9vNE4dcAdlmk7zbcbGzBS-rNFKKcyAMJIfptst61sIrkd4ycv9uv7s8m0IH_Z8CmUs_gez-7K2CHV_n1W0YLm-dac5XvTdOt07UlRzwRbqglWdYN8h5rpGHFdbpbrBY5eV2f1nY29YZgJ4SBDp5il6mWF9FE1dvMaRn1WG4kZK-SfylmdsUIN-GDGcAMUXO2Fv7rG_dqdG1VcgHvTZUViNMf3gRzt-h6RY18Ir9Mkxxf94eBHdZwFPp-hN9jXsjq5gTzf9d73jA6WO4es3aOFTVJjnKHhc_KsXMXQiwKSL0gjzV-SJz1r81dkdR2dRxGtAZNaYFIAJq0Dk84zWgGTWmDSGjBpCUyKwKSDAd0HJi2B-ZrcfOsPe5dOmeDDUUyylQO-r-vGfpaGXIGn2pHazTgXOkPmtRcrobXnqVSGqatloJTWicy4EFzCIlckMjghzXyep28JlVzEsYuy-RKcTrhbhrk-NKxugpTF3G2Rr_bjjlSpfo9JWKajQzO2yOeq7V2h-fJgq1Nro1E5JixHPuqL-jzkYYt8qqrh2-MxXJyn8zW2CWQoUEmxRd4UJq0e4wNShCehRuwZu2qAavD7NflkbFThOXryATz3BGBRtVfhvFhXJO8e9VbvyVP8KxabjKekuVqs0w_gdq-SjyWo_wKdENsC
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QM%2FMM+simulations+identify+the+determinants+of+catalytic+activity+differences+between+type+II+dehydroquinase+enzymes&rft.jtitle=Organic+%26+biomolecular+chemistry&rft.au=Lence%2C+Emilio&rft.au=van+der+Kamp%2C+Marc+W.&rft.au=Gonz%C3%A1lez-Bello%2C+Concepci%C3%B3n&rft.au=Mulholland%2C+Adrian+J.&rft.date=2018&rft.issn=1477-0520&rft.eissn=1477-0539&rft.volume=16&rft.issue=24&rft.spage=4443&rft.epage=4455&rft_id=info:doi/10.1039%2FC8OB00066B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8OB00066B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-0520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-0520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-0520&client=summon