Enhancing enterprise knowledge retrieval via cross-domain deep recommendation: a sparse data approach
Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 17507 - 15 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.05.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments. |
---|---|
AbstractList | Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments. Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments. Abstract Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments. Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model's robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model's robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments. |
ArticleNumber | 17507 |
Author | Li, Ting |
Author_xml | – sequence: 1 givenname: Ting surname: Li fullname: Li, Ting email: Alfie.Clineadv@mail.com organization: Shanghai Keyao Industrial Co. Ltd., Shanghai Software Industry Association |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40394166$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAQxyNURB_0C3BAkbhwCfiVh7mgqmqhUiUucLYm9jjrJbGDnV3Et8fdlNJywBePZn7z93hmTosjHzwWxStK3lHCu_dJ0Fp2FWF1RaiUspLPihNGRF0xztjRI_u4OE9pS_KpmRRUviiOBeHZapqTAq_8Brx2fijRLxjn6BKW3334OaIZsIy4RId7GMu9g1LHkFJlwgTOlwZxznEdpgm9gcUF_6GEMs0Qs0R2QAnzHAPozcviuYUx4fn9fVZ8u776evm5uv3y6eby4rbSQoql6ojooZVtY6yV1FjZ94Zw6GWnrQCO1hjaGtJp0RppMkoN5XUPXHQGrOX8rLhZdU2Arcp_mSD-UgGcOjhCHBTExekRFded7lvAGiURLRdStnUrrUGT-5a1s9bHVWve9RMandsTYXwi-jTi3UYNYa8oI5I1VGaFt_cKMfzYYVrU5JLGcQSPYZcUZ6RhvCFtm9E3_6DbsIs-9-pAcUpI12Xq9eOSHmr5M84MsBU4DCqifUAoUXdro9a1UXlt1GFt1F2ZfE1KGfYDxr9v_yfrN_l_xy0 |
Cites_doi | 10.1145/3523227.3547426 10.1145/3648471 10.1109/ICNSC55942.2022.10004185 10.1111/coin.12646 10.1016/J.ESWA.2021.115335 10.1109/TKDE.2022.3142260 10.1109/ACCESS.2024.3465631 10.1016/J.KNOSYS.2021.106948 10.1109/TSC.2018.2847318 10.1145/3477314.3507031 10.15407/pp2022.03-04.171 10.1109/icaci55529.2022.9837581 10.1109/BigData55660.2022.10020825 10.1109/BigComp60711.2024.00024 10.1145/3488560.3498381 10.1145/3581783.3612454 10.5555/3545946.3598922 10.1016/J.INS.2021.02.009 10.3233/jifs-237056 10.1016/J.AEI.2021.101366 10.48550/arXiv.2311.06761 10.1117/12.2631115 10.1109/ICWS62655.2024.00080 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-01999-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_3c8cb7ae5e904734997579fded045dba PMC12092619 40394166 10_1038_s41598_025_01999_9 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM PJZUB PPXIY PQGLB 3V. 7XB 88A 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-804ba7976dff91df9bbd03ab98cf4a3efdd17d08c47d9dba71d135ba348daff33 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Aug 21 18:30:43 EDT 2025 Fri Jul 11 17:23:58 EDT 2025 Wed Aug 13 08:33:16 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Tue Jul 01 04:42:26 EDT 2025 Wed May 21 12:01:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Enterprise knowledge retrieval Cross-domain recommendation Deep generative model CDR-VAE Sparse data scenarios |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-804ba7976dff91df9bbd03ab98cf4a3efdd17d08c47d9dba71d135ba348daff33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-01999-9 |
PMID | 40394166 |
PQID | 3206310088 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c8cb7ae5e904734997579fded045dba pubmedcentral_primary_oai_pubmedcentral_nih_gov_12092619 proquest_miscellaneous_3206236077 proquest_journals_3206310088 pubmed_primary_40394166 crossref_primary_10_1038_s41598_025_01999_9 springer_journals_10_1038_s41598_025_01999_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-20 |
PublicationDateYYYYMMDD | 2025-05-20 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | J Hao (1999_CR13) 2021; 50 S Chen (1999_CR18) 2024 H Liu (1999_CR2) 2021; 565 JV Rogushina (1999_CR4) 2022; 3–4 H Sun (1999_CR15) 2024; 2024 B Lang (1999_CR5) 2021; 14 S An (1999_CR12) 2023 P Madhubala (1999_CR6) 2024; 46 Z Lyu (1999_CR19) 2023; 35 J Wang (1999_CR8) 2024; 56 N Bosch (1999_CR9) 2022; 2022 1999_CR16 Y Li (1999_CR1) 2021; 220 S Hao (1999_CR7) 2021; 183 1999_CR24 1999_CR14 1999_CR11 U Bibi (1999_CR21) 2024; 12 1999_CR22 1999_CR23 1999_CR20 1999_CR10 J Zheng (1999_CR17) 2024; 2024 1999_CR3 |
References_xml | – ident: 1999_CR3 doi: 10.1145/3523227.3547426 – volume: 56 start-page: 1 year: 2024 ident: 1999_CR8 publication-title: ACM Comput. Surv. doi: 10.1145/3648471 – ident: 1999_CR24 doi: 10.1109/ICNSC55942.2022.10004185 – year: 2024 ident: 1999_CR18 publication-title: Comput. Intell. doi: 10.1111/coin.12646 – volume: 183 start-page: 115335 year: 2021 ident: 1999_CR7 publication-title: Expert Syst. Appl. doi: 10.1016/J.ESWA.2021.115335 – volume: 35 start-page: 4954 year: 2023 ident: 1999_CR19 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2022.3142260 – volume: 12 start-page: 139113 year: 2024 ident: 1999_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3465631 – volume: 220 start-page: 106948 year: 2021 ident: 1999_CR1 publication-title: Knowl. Based Syst. doi: 10.1016/J.KNOSYS.2021.106948 – volume: 14 start-page: 850 year: 2021 ident: 1999_CR5 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2018.2847318 – start-page: 93 volume-title: ECAI 2023 year: 2023 ident: 1999_CR12 – ident: 1999_CR10 doi: 10.1145/3477314.3507031 – volume: 3–4 start-page: 171 year: 2022 ident: 1999_CR4 publication-title: Probl. Progr. doi: 10.15407/pp2022.03-04.171 – ident: 1999_CR23 doi: 10.1109/icaci55529.2022.9837581 – volume: 2022 start-page: 4737 year: 2022 ident: 1999_CR9 publication-title: IEEE Int. Conf. Big Data (Big Data) doi: 10.1109/BigData55660.2022.10020825 – volume: 2024 start-page: 97 year: 2024 ident: 1999_CR17 publication-title: IEEE Int. Conf. Big Data Smart Comput. (BigComp) doi: 10.1109/BigComp60711.2024.00024 – ident: 1999_CR22 doi: 10.1145/3488560.3498381 – ident: 1999_CR16 doi: 10.1145/3581783.3612454 – ident: 1999_CR20 doi: 10.5555/3545946.3598922 – volume: 565 start-page: 370 year: 2021 ident: 1999_CR2 publication-title: Inf. Sci. doi: 10.1016/J.INS.2021.02.009 – volume: 46 start-page: 9491 year: 2024 ident: 1999_CR6 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/jifs-237056 – volume: 50 start-page: 101366 year: 2021 ident: 1999_CR13 publication-title: Adv. Eng. Inform. doi: 10.1016/J.AEI.2021.101366 – ident: 1999_CR14 doi: 10.48550/arXiv.2311.06761 – ident: 1999_CR11 doi: 10.1117/12.2631115 – volume: 2024 start-page: 601 year: 2024 ident: 1999_CR15 publication-title: IEEE Int. Conf. Web Serv. (ICWS) doi: 10.1109/ICWS62655.2024.00080 |
SSID | ssj0000529419 |
Score | 2.447992 |
Snippet | Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address... Abstract Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 17507 |
SubjectTerms | 639/166 639/705 Accuracy CDR-VAE Cross-domain recommendation Datasets Decision making Deep generative model Deep learning Efficiency Enterprise knowledge retrieval Graphs Humanities and Social Sciences Knowledge management Knowledge representation Literature reviews Methods multidisciplinary Optimization Science Science (multidisciplinary) Semantics Sparse data scenarios |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CIJBLaNMmdZIWFXprTWxLtqTe2pIQCu2pgdyE5JGSPaw37G4C-fcZSd5tth_00qtlzDAz0ryxZt4AvAvO8xY7XYY4KEwE15TWayw7inWe-9C0iTL_2_fu4lJ8vWqvnoz6ijVhmR44K-6U96p30vrW60pITgBdtlIH9EhgBF2CRhTzniRTmdW70aLWY5dMxdXpgiJV7CZrYq1abL3XG5EoEfb_CWX-Xiz5y41pCkTnz2BvRJDsU5b8OWz5YR928kzJhxfgz4abyKExXDOfCwonC8_Wv87YPI3QIv9i9xPLkmglzqZ2MjD0_pbFDHk69eOspY_MMjpz5vSJWEvKVhTkL-Hy_OzHl4tynKVQ9kKLJQUi4awk7IEh6BqDdg4rbp1WfRCWjIJYS6xULyRqUqusseats1wotCFwfgDbw2zwr4B1gdfB9dy1TSWCUFp0yhJQoFy3QlvbAt6v9GpuM2WGSVfdXJlsBUNWMMkKRhfwOap-_Waku04PyAnM6ATmX05QwMnKcGbcgwvDG4JfkbtIFfB2vUy7J16J2MHP7vI7De8qKQs4zHZeSyIqTj7UdQWoDQ_YEHVzZZjcJIbu2JAcU9MCPqyc5adcf9fF0f_QxTHsNsnLWzoBT2B7Ob_zrwk4Ld2btEceAc0eFz4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlGT2IltLghQqwoJTlTam2XHdruHTZbdLVL_fWecR7W8rokVTTzjeXhmvgF4G13gtW90HmlQmIiuym3QPm_Q1gUeYlUnyPxv35vTM_F1US_GC7ftWFY56cSkqH3f0h35Ea_QmBISjfq4_pnT1CjKro4jNG7DHYIuI6mWCznfsVAWS5R67JUpuDraor2inrKKKtaoAV_v2aME2_83X_PPksnf8qbJHJ08gPujH8k-DYx_CLdC9wjuDpMlrx5DOO4uCEmjO2dhKCtcbgObL9DYJg3SQiljv5aWJdJy36_ssmM-hDWjOHm1CuPEpQ_MMtQ8G_wEVZSyCYj8CZydHP_4cpqPExXyVmixQ3MknJXogfgYdemjds4X3Dqt2igsssb7UvpCtUJ67XFp6UteO8uF8jZGzp_CQdd34TmwJvIyupa7uipEFEqLRll0FzDiLbwtbQbvpn016wE4w6SEN1dm4IJBLpjEBaMz-ExbP68k0Ov0oN-cm_EMGd6q1kkb6qALITnGarKWOvrg0S9FajM4nBhnxpO4NTdyk8Gb-TWeIUqM2C70l8OaijeFlBk8G_g8UyIKjjLUNBmoPQnYI3X_Tbe8SDjd1JZMAWoG7ydhuaHr33vx4v-_8RLuVUl-a9Rwh3Cw21yGV-gY7dzrJP3XLoEODA priority: 102 providerName: ProQuest |
Title | Enhancing enterprise knowledge retrieval via cross-domain deep recommendation: a sparse data approach |
URI | https://link.springer.com/article/10.1038/s41598-025-01999-9 https://www.ncbi.nlm.nih.gov/pubmed/40394166 https://www.proquest.com/docview/3206310088 https://www.proquest.com/docview/3206236077 https://pubmed.ncbi.nlm.nih.gov/PMC12092619 https://doaj.org/article/3c8cb7ae5e904734997579fded045dba |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY-0-6q0NGuxtM7Mt2ZL2loaUEmgZ2wp5E5IltXmIU5J0sP9-J_ljZOse9mSQz-bQnXQn3d3vAN5742hpK5n60CiMeVOk2kmbVmjrHHW-KCNk_tV1dXnDZvNyvgdFXwsTk_YjpGXcpvvssE8bNDShGKwIqWahcl7uw2GAakfdPhyPZ99mw81KiF2xXHYVMhkVj3y8Y4UiWP9jHubfiZJ_REujEbp4Ds8675GMW36PYM81x_Ck7Sf58wW4aXMX8DOaW-LaZMLFxpHh2oysY_ss1C3yY6FJZC21q6VeNMQ6d0_C6Xi5dF2fpc9EE9xv1viLkEdKevjxl3BzMf0-uUy7PgppzSTbohFiRnP0O6z3MrdeGmMzqo0UtWcaBWJtzm0masattEia25yWRlMmrPae0ldw0KwadwKk8jT3pqamLDLmmZCsEhqdBDznZlbnOoEP_byq-xYuQ8UwNxWqlYJCKagoBSUTOA9TP1AGqOs4sFrfqk70itaiNly70smMcYonNF5y6a2z6I0itwmc9oJT3frbKFqg6xVwi0QC74bXuHJCOEQ3bvXQ0hS0yjhP4HUr54ETllHUoapKQOxowA6ru2-axV1E5w7FyOFYmsDHXll-8_XvuXjzf-Rv4WkR9bnEfe4UDrbrB3eG7tHWjGCfz_moWxX4PJ9ef_mKo5NqMopXDr8ALlIRvg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkqQnBB7AQKGAlOEDWJndhGQoil1ZQup1aam7Fju53DJMPMFNSf4ht5dpKphu3Wa2JFL377DvDSG0dLW8nUh0VhzJsi1U7atEJd56jzRRlH5h8eVaMT9mVcjjfg59ALE8oqB5kYBbVt6xAj36YFKtMwiUa8n31Lw9aokF0dVmh0ZLHvLn6gy7Z4t_cZ8fuqKHZ3jj-N0n6rQFozyZYokpnRHLWw9V7m1ktjbEa1kaL2TCN41ubcZqJm3EqLR3Ob09JoyoTV3ocAKIr8a6h4s-Ds8TFfxXRC1ozlsu_NyajYXqB-DD1sRaiQCw3_ck3_xTUBf7Nt_yzR_C1PG9Xf7m241dut5ENHaHdgwzV34Xq3yfLiHrid5ixM7mhOievKGCcLR1YBOzKPi7uQqsn3iSYRtNS2Uz1piHVuRoJfPp26fsPTW6IJSro5fiJUsJJh8Pl9OLmSu34Am03buEdAKk9zb2pqyiJjngnJKqHRPEEPO7M61wm8Hu5VzbpBHSom2KlQHRYUYkFFLCiZwMdw9auTYch2fNDOT1XPs4rWojZcu9LJjHGKviEvufTWWbSDEdoEtgbEqZ7zF-qSThN4sXqNPBsSMbpx7Xl3pqBVxnkCDzs8ryBhGUUaqqoExBoFrIG6_qaZnMW54KENOjjECbwZiOUSrn_fxeP__8ZzuDE6PjxQB3tH-0_gZhFpuUTpugWby_m5e4pG2dI8i5xA4OtVs94vUTBNxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KmaCsQFlT20gJHgBNEksbMYCSFKZ9RSGFWISr25dmy3c5hkmJmC-mt8Hc_OUg3brdfEil789h3ghVWGpjrjoXWLwphVSSgN12GGus5QY5PUj8z_PMn2j9nHk_RkA352vTCurLKTiV5Q67p0MfIhTVCZukk0xdC2ZRFHe-N382-h2yDlMq3dOo2GRA7N5Q9035ZvD_YQ1y-TZDz6-mE_bDcMhCXjbIXimSmZo0bW1vJYW66UjqhUvCgtkwiq1nGuo6JkueYaj8Y6pqmSlBVaWuuCoSj-N3PnFQ1gc3c0OfrSR3hcDo3FvO3UiWgxXKK2dB1tiauXc-3_fE0b-qUBf7N0_yzY_C1r65XheAtut1Ysed-Q3R3YMNVduNHstby8B2ZUnbs5HtUZMU1R43RpSB--Iwu_xgtpnHyfSuJBC3U9k9OKaGPmxHnps5lp9z29IZKg3FvgJ1w9K-nGoN-H42u57QcwqOrKPAKSWRpbVVKVJhGzrOAsKyQaK-hvR1rGMoBX3b2KeTO2Q_h0Oy1EgwWBWBAeC4IHsOuuvj_pRm77B_XiTLQcLGhZlCqXJjU8YjlFTzFPc2610WgVI7QB7HSIE60cWIorqg3gef8aOdilZWRl6ovmTEKzKM8DeNjguYeERRRpKMsCKNYoYA3U9TfV9NxPCXdN0c49DuB1RyxXcP37Lh7__zeewU1kO_HpYHK4DbcST8opitodGKwWF-YJWmgr9bRlBQKn1819vwBMf1Ng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+enterprise+knowledge+retrieval+via+cross-domain+deep+recommendation%3A+a+sparse+data+approach&rft.jtitle=Scientific+reports&rft.au=Li%2C+Ting&rft.date=2025-05-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-01999-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_01999_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |