Enhancing enterprise knowledge retrieval via cross-domain deep recommendation: a sparse data approach

Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 17507 - 15
Main Author Li, Ting
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.
AbstractList Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.
Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.
Abstract Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model’s robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.
Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model's robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address this, we develop a cross-domain recommendation model (CDR-VAE), combining a hybrid autoencoder with domain alignment, and test its effectiveness on an enterprise dataset and the Movies&Books benchmark. At a top-5 recommendation length, CDR-VAE scores HR = 0.642, Recall = 0.432, NDCG = 0.715, outperforming existing models. Removing shared latent representations reduces HR to 0.701, proving their necessity for cross-domain learning. In enterprise applications, high-activity users favor technical reports (0.903), while low-activity users shift toward cross-domain content like industry standards (0.701), confirming the model's robustness in sparse scenarios. CDR-VAE successfully tackles sparsity and cross-domain barriers, advancing enterprise knowledge management. This work provides theoretical and practical insights for deep learning-based recommendation systems in data-scarce environments.
ArticleNumber 17507
Author Li, Ting
Author_xml – sequence: 1
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  email: Alfie.Clineadv@mail.com
  organization: Shanghai Keyao Industrial Co. Ltd., Shanghai Software Industry Association
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40394166$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQxyNURB_0C3BAkbhwCfiVh7mgqmqhUiUucLYm9jjrJbGDnV3Et8fdlNJywBePZn7z93hmTosjHzwWxStK3lHCu_dJ0Fp2FWF1RaiUspLPihNGRF0xztjRI_u4OE9pS_KpmRRUviiOBeHZapqTAq_8Brx2fijRLxjn6BKW3334OaIZsIy4RId7GMu9g1LHkFJlwgTOlwZxznEdpgm9gcUF_6GEMs0Qs0R2QAnzHAPozcviuYUx4fn9fVZ8u776evm5uv3y6eby4rbSQoql6ojooZVtY6yV1FjZ94Zw6GWnrQCO1hjaGtJp0RppMkoN5XUPXHQGrOX8rLhZdU2Arcp_mSD-UgGcOjhCHBTExekRFded7lvAGiURLRdStnUrrUGT-5a1s9bHVWve9RMandsTYXwi-jTi3UYNYa8oI5I1VGaFt_cKMfzYYVrU5JLGcQSPYZcUZ6RhvCFtm9E3_6DbsIs-9-pAcUpI12Xq9eOSHmr5M84MsBU4DCqifUAoUXdro9a1UXlt1GFt1F2ZfE1KGfYDxr9v_yfrN_l_xy0
Cites_doi 10.1145/3523227.3547426
10.1145/3648471
10.1109/ICNSC55942.2022.10004185
10.1111/coin.12646
10.1016/J.ESWA.2021.115335
10.1109/TKDE.2022.3142260
10.1109/ACCESS.2024.3465631
10.1016/J.KNOSYS.2021.106948
10.1109/TSC.2018.2847318
10.1145/3477314.3507031
10.15407/pp2022.03-04.171
10.1109/icaci55529.2022.9837581
10.1109/BigData55660.2022.10020825
10.1109/BigComp60711.2024.00024
10.1145/3488560.3498381
10.1145/3581783.3612454
10.5555/3545946.3598922
10.1016/J.INS.2021.02.009
10.3233/jifs-237056
10.1016/J.AEI.2021.101366
10.48550/arXiv.2311.06761
10.1117/12.2631115
10.1109/ICWS62655.2024.00080
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-01999-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_3c8cb7ae5e904734997579fded045dba
PMC12092619
40394166
10_1038_s41598_025_01999_9
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
88A
8FK
AARCD
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-804ba7976dff91df9bbd03ab98cf4a3efdd17d08c47d9dba71d135ba348daff33
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Aug 21 18:30:43 EDT 2025
Fri Jul 11 17:23:58 EDT 2025
Wed Aug 13 08:33:16 EDT 2025
Mon Jul 21 06:07:07 EDT 2025
Tue Jul 01 04:42:26 EDT 2025
Wed May 21 12:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Enterprise knowledge retrieval
Cross-domain recommendation
Deep generative model
CDR-VAE
Sparse data scenarios
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-804ba7976dff91df9bbd03ab98cf4a3efdd17d08c47d9dba71d135ba348daff33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-01999-9
PMID 40394166
PQID 3206310088
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_3c8cb7ae5e904734997579fded045dba
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12092619
proquest_miscellaneous_3206236077
proquest_journals_3206310088
pubmed_primary_40394166
crossref_primary_10_1038_s41598_025_01999_9
springer_journals_10_1038_s41598_025_01999_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-20
PublicationDateYYYYMMDD 2025-05-20
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Hao (1999_CR13) 2021; 50
S Chen (1999_CR18) 2024
H Liu (1999_CR2) 2021; 565
JV Rogushina (1999_CR4) 2022; 3–4
H Sun (1999_CR15) 2024; 2024
B Lang (1999_CR5) 2021; 14
S An (1999_CR12) 2023
P Madhubala (1999_CR6) 2024; 46
Z Lyu (1999_CR19) 2023; 35
J Wang (1999_CR8) 2024; 56
N Bosch (1999_CR9) 2022; 2022
1999_CR16
Y Li (1999_CR1) 2021; 220
S Hao (1999_CR7) 2021; 183
1999_CR24
1999_CR14
1999_CR11
U Bibi (1999_CR21) 2024; 12
1999_CR22
1999_CR23
1999_CR20
1999_CR10
J Zheng (1999_CR17) 2024; 2024
1999_CR3
References_xml – ident: 1999_CR3
  doi: 10.1145/3523227.3547426
– volume: 56
  start-page: 1
  year: 2024
  ident: 1999_CR8
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3648471
– ident: 1999_CR24
  doi: 10.1109/ICNSC55942.2022.10004185
– year: 2024
  ident: 1999_CR18
  publication-title: Comput. Intell.
  doi: 10.1111/coin.12646
– volume: 183
  start-page: 115335
  year: 2021
  ident: 1999_CR7
  publication-title: Expert Syst. Appl.
  doi: 10.1016/J.ESWA.2021.115335
– volume: 35
  start-page: 4954
  year: 2023
  ident: 1999_CR19
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2022.3142260
– volume: 12
  start-page: 139113
  year: 2024
  ident: 1999_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3465631
– volume: 220
  start-page: 106948
  year: 2021
  ident: 1999_CR1
  publication-title: Knowl. Based Syst.
  doi: 10.1016/J.KNOSYS.2021.106948
– volume: 14
  start-page: 850
  year: 2021
  ident: 1999_CR5
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2018.2847318
– start-page: 93
  volume-title: ECAI 2023
  year: 2023
  ident: 1999_CR12
– ident: 1999_CR10
  doi: 10.1145/3477314.3507031
– volume: 3–4
  start-page: 171
  year: 2022
  ident: 1999_CR4
  publication-title: Probl. Progr.
  doi: 10.15407/pp2022.03-04.171
– ident: 1999_CR23
  doi: 10.1109/icaci55529.2022.9837581
– volume: 2022
  start-page: 4737
  year: 2022
  ident: 1999_CR9
  publication-title: IEEE Int. Conf. Big Data (Big Data)
  doi: 10.1109/BigData55660.2022.10020825
– volume: 2024
  start-page: 97
  year: 2024
  ident: 1999_CR17
  publication-title: IEEE Int. Conf. Big Data Smart Comput. (BigComp)
  doi: 10.1109/BigComp60711.2024.00024
– ident: 1999_CR22
  doi: 10.1145/3488560.3498381
– ident: 1999_CR16
  doi: 10.1145/3581783.3612454
– ident: 1999_CR20
  doi: 10.5555/3545946.3598922
– volume: 565
  start-page: 370
  year: 2021
  ident: 1999_CR2
  publication-title: Inf. Sci.
  doi: 10.1016/J.INS.2021.02.009
– volume: 46
  start-page: 9491
  year: 2024
  ident: 1999_CR6
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/jifs-237056
– volume: 50
  start-page: 101366
  year: 2021
  ident: 1999_CR13
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/J.AEI.2021.101366
– ident: 1999_CR14
  doi: 10.48550/arXiv.2311.06761
– ident: 1999_CR11
  doi: 10.1117/12.2631115
– volume: 2024
  start-page: 601
  year: 2024
  ident: 1999_CR15
  publication-title: IEEE Int. Conf. Web Serv. (ICWS)
  doi: 10.1109/ICWS62655.2024.00080
SSID ssj0000529419
Score 2.447992
Snippet Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To address...
Abstract Enterprise knowledge retrieval faces challenges like sparse data and inefficient cross-domain knowledge transfer, hindering traditional methods. To...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17507
SubjectTerms 639/166
639/705
Accuracy
CDR-VAE
Cross-domain recommendation
Datasets
Decision making
Deep generative model
Deep learning
Efficiency
Enterprise knowledge retrieval
Graphs
Humanities and Social Sciences
Knowledge management
Knowledge representation
Literature reviews
Methods
multidisciplinary
Optimization
Science
Science (multidisciplinary)
Semantics
Sparse data scenarios
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CIJBLaNMmdZIWFXprTWxLtqTe2pIQCu2pgdyE5JGSPaw37G4C-fcZSd5tth_00qtlzDAz0ryxZt4AvAvO8xY7XYY4KEwE15TWayw7inWe-9C0iTL_2_fu4lJ8vWqvnoz6ijVhmR44K-6U96p30vrW60pITgBdtlIH9EhgBF2CRhTzniRTmdW70aLWY5dMxdXpgiJV7CZrYq1abL3XG5EoEfb_CWX-Xiz5y41pCkTnz2BvRJDsU5b8OWz5YR928kzJhxfgz4abyKExXDOfCwonC8_Wv87YPI3QIv9i9xPLkmglzqZ2MjD0_pbFDHk69eOspY_MMjpz5vSJWEvKVhTkL-Hy_OzHl4tynKVQ9kKLJQUi4awk7IEh6BqDdg4rbp1WfRCWjIJYS6xULyRqUqusseats1wotCFwfgDbw2zwr4B1gdfB9dy1TSWCUFp0yhJQoFy3QlvbAt6v9GpuM2WGSVfdXJlsBUNWMMkKRhfwOap-_Waku04PyAnM6ATmX05QwMnKcGbcgwvDG4JfkbtIFfB2vUy7J16J2MHP7vI7De8qKQs4zHZeSyIqTj7UdQWoDQ_YEHVzZZjcJIbu2JAcU9MCPqyc5adcf9fF0f_QxTHsNsnLWzoBT2B7Ob_zrwk4Ld2btEceAc0eFz4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlGT2IltLghQqwoJTlTam2XHdruHTZbdLVL_fWecR7W8rokVTTzjeXhmvgF4G13gtW90HmlQmIiuym3QPm_Q1gUeYlUnyPxv35vTM_F1US_GC7ftWFY56cSkqH3f0h35Ea_QmBISjfq4_pnT1CjKro4jNG7DHYIuI6mWCznfsVAWS5R67JUpuDraor2inrKKKtaoAV_v2aME2_83X_PPksnf8qbJHJ08gPujH8k-DYx_CLdC9wjuDpMlrx5DOO4uCEmjO2dhKCtcbgObL9DYJg3SQiljv5aWJdJy36_ssmM-hDWjOHm1CuPEpQ_MMtQ8G_wEVZSyCYj8CZydHP_4cpqPExXyVmixQ3MknJXogfgYdemjds4X3Dqt2igsssb7UvpCtUJ67XFp6UteO8uF8jZGzp_CQdd34TmwJvIyupa7uipEFEqLRll0FzDiLbwtbQbvpn016wE4w6SEN1dm4IJBLpjEBaMz-ExbP68k0Ov0oN-cm_EMGd6q1kkb6qALITnGarKWOvrg0S9FajM4nBhnxpO4NTdyk8Gb-TWeIUqM2C70l8OaijeFlBk8G_g8UyIKjjLUNBmoPQnYI3X_Tbe8SDjd1JZMAWoG7ydhuaHr33vx4v-_8RLuVUl-a9Rwh3Cw21yGV-gY7dzrJP3XLoEODA
  priority: 102
  providerName: ProQuest
Title Enhancing enterprise knowledge retrieval via cross-domain deep recommendation: a sparse data approach
URI https://link.springer.com/article/10.1038/s41598-025-01999-9
https://www.ncbi.nlm.nih.gov/pubmed/40394166
https://www.proquest.com/docview/3206310088
https://www.proquest.com/docview/3206236077
https://pubmed.ncbi.nlm.nih.gov/PMC12092619
https://doaj.org/article/3c8cb7ae5e904734997579fded045dba
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY-0-6q0NGuxtM7Mt2ZL2loaUEmgZ2wp5E5IltXmIU5J0sP9-J_ljZOse9mSQz-bQnXQn3d3vAN5742hpK5n60CiMeVOk2kmbVmjrHHW-KCNk_tV1dXnDZvNyvgdFXwsTk_YjpGXcpvvssE8bNDShGKwIqWahcl7uw2GAakfdPhyPZ99mw81KiF2xXHYVMhkVj3y8Y4UiWP9jHubfiZJ_REujEbp4Ds8675GMW36PYM81x_Ck7Sf58wW4aXMX8DOaW-LaZMLFxpHh2oysY_ss1C3yY6FJZC21q6VeNMQ6d0_C6Xi5dF2fpc9EE9xv1viLkEdKevjxl3BzMf0-uUy7PgppzSTbohFiRnP0O6z3MrdeGmMzqo0UtWcaBWJtzm0masattEia25yWRlMmrPae0ldw0KwadwKk8jT3pqamLDLmmZCsEhqdBDznZlbnOoEP_byq-xYuQ8UwNxWqlYJCKagoBSUTOA9TP1AGqOs4sFrfqk70itaiNly70smMcYonNF5y6a2z6I0itwmc9oJT3frbKFqg6xVwi0QC74bXuHJCOEQ3bvXQ0hS0yjhP4HUr54ETllHUoapKQOxowA6ru2-axV1E5w7FyOFYmsDHXll-8_XvuXjzf-Rv4WkR9bnEfe4UDrbrB3eG7tHWjGCfz_moWxX4PJ9ef_mKo5NqMopXDr8ALlIRvg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkqQnBB7AQKGAlOEDWJndhGQoil1ZQup1aam7Fju53DJMPMFNSf4ht5dpKphu3Wa2JFL377DvDSG0dLW8nUh0VhzJsi1U7atEJd56jzRRlH5h8eVaMT9mVcjjfg59ALE8oqB5kYBbVt6xAj36YFKtMwiUa8n31Lw9aokF0dVmh0ZLHvLn6gy7Z4t_cZ8fuqKHZ3jj-N0n6rQFozyZYokpnRHLWw9V7m1ktjbEa1kaL2TCN41ubcZqJm3EqLR3Ob09JoyoTV3ocAKIr8a6h4s-Ds8TFfxXRC1ozlsu_NyajYXqB-DD1sRaiQCw3_ck3_xTUBf7Nt_yzR_C1PG9Xf7m241dut5ENHaHdgwzV34Xq3yfLiHrid5ixM7mhOievKGCcLR1YBOzKPi7uQqsn3iSYRtNS2Uz1piHVuRoJfPp26fsPTW6IJSro5fiJUsJJh8Pl9OLmSu34Am03buEdAKk9zb2pqyiJjngnJKqHRPEEPO7M61wm8Hu5VzbpBHSom2KlQHRYUYkFFLCiZwMdw9auTYch2fNDOT1XPs4rWojZcu9LJjHGKviEvufTWWbSDEdoEtgbEqZ7zF-qSThN4sXqNPBsSMbpx7Xl3pqBVxnkCDzs8ryBhGUUaqqoExBoFrIG6_qaZnMW54KENOjjECbwZiOUSrn_fxeP__8ZzuDE6PjxQB3tH-0_gZhFpuUTpugWby_m5e4pG2dI8i5xA4OtVs94vUTBNxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KmaCsQFlT20gJHgBNEksbMYCSFKZ9RSGFWISr25dmy3c5hkmJmC-mt8Hc_OUg3brdfEil789h3ghVWGpjrjoXWLwphVSSgN12GGus5QY5PUj8z_PMn2j9nHk_RkA352vTCurLKTiV5Q67p0MfIhTVCZukk0xdC2ZRFHe-N382-h2yDlMq3dOo2GRA7N5Q9035ZvD_YQ1y-TZDz6-mE_bDcMhCXjbIXimSmZo0bW1vJYW66UjqhUvCgtkwiq1nGuo6JkueYaj8Y6pqmSlBVaWuuCoSj-N3PnFQ1gc3c0OfrSR3hcDo3FvO3UiWgxXKK2dB1tiauXc-3_fE0b-qUBf7N0_yzY_C1r65XheAtut1Ysed-Q3R3YMNVduNHstby8B2ZUnbs5HtUZMU1R43RpSB--Iwu_xgtpnHyfSuJBC3U9k9OKaGPmxHnps5lp9z29IZKg3FvgJ1w9K-nGoN-H42u57QcwqOrKPAKSWRpbVVKVJhGzrOAsKyQaK-hvR1rGMoBX3b2KeTO2Q_h0Oy1EgwWBWBAeC4IHsOuuvj_pRm77B_XiTLQcLGhZlCqXJjU8YjlFTzFPc2610WgVI7QB7HSIE60cWIorqg3gef8aOdilZWRl6ovmTEKzKM8DeNjguYeERRRpKMsCKNYoYA3U9TfV9NxPCXdN0c49DuB1RyxXcP37Lh7__zeewU1kO_HpYHK4DbcST8opitodGKwWF-YJWmgr9bRlBQKn1819vwBMf1Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+enterprise+knowledge+retrieval+via+cross-domain+deep+recommendation%3A+a+sparse+data+approach&rft.jtitle=Scientific+reports&rft.au=Li%2C+Ting&rft.date=2025-05-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-01999-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_01999_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon