AI-driven high-throughput droplet screening of cell-free gene expression

Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited y...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 2720 - 13
Main Authors Zhu, Jiawei, Meng, Yaru, Gao, Wenli, Yang, Shuo, Zhu, Wenjie, Ji, Xiangyang, Zhai, Xuanpei, Liu, Wan-Qiu, Luo, Yuan, Ling, Shengjie, Li, Jian, Liu, Yifan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli -based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis -based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems. Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness.
AbstractList Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli -based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis -based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems. Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness.
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness.
Abstract Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
ArticleNumber 2720
Author Gao, Wenli
Zhai, Xuanpei
Liu, Wan-Qiu
Luo, Yuan
Zhu, Wenjie
Ji, Xiangyang
Ling, Shengjie
Liu, Yifan
Meng, Yaru
Yang, Shuo
Zhu, Jiawei
Li, Jian
Author_xml – sequence: 1
  givenname: Jiawei
  orcidid: 0009-0008-9325-462X
  surname: Zhu
  fullname: Zhu, Jiawei
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 2
  givenname: Yaru
  surname: Meng
  fullname: Meng, Yaru
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 3
  givenname: Wenli
  orcidid: 0009-0001-2791-1192
  surname: Gao
  fullname: Gao, Wenli
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 4
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 5
  givenname: Wenjie
  surname: Zhu
  fullname: Zhu, Wenjie
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 6
  givenname: Xiangyang
  surname: Ji
  fullname: Ji, Xiangyang
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 7
  givenname: Xuanpei
  surname: Zhai
  fullname: Zhai, Xuanpei
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 8
  givenname: Wan-Qiu
  surname: Liu
  fullname: Liu, Wan-Qiu
  organization: School of Physical Science and Technology, ShanghaiTech University
– sequence: 9
  givenname: Yuan
  surname: Luo
  fullname: Luo, Yuan
  organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
– sequence: 10
  givenname: Shengjie
  orcidid: 0000-0003-1156-0479
  surname: Ling
  fullname: Ling, Shengjie
  email: lingshj@shanghaitech.edu.cn
  organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University
– sequence: 11
  givenname: Jian
  orcidid: 0000-0003-2359-238X
  surname: Li
  fullname: Li, Jian
  email: lijian@shanghaitech.edu.cn
  organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center
– sequence: 12
  givenname: Yifan
  orcidid: 0000-0002-2989-6280
  surname: Liu
  fullname: Liu, Yifan
  email: liuyf6@shanghaitech.edu.cn
  organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40108186$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEUhompsbX2D7gwk7hxg_I5wMo0jdqbNHHTPeHCmY-buXCFmUb_vdxOra0L2UAOz3nP4fC-RicxRUDoLSUfKeH6UxFUtAoTJrHUlBtMXqAzRgTFVDF-8uR8ii5K2ZG6uKFaiFfoVBBKNNXtGbq-3OCQxzuIzTD2A56HnJZ-OCxzE3I6TDA3xWeAOMa-SV3jYZpwVwNNDxEa-HnIUMqY4hv0snNTgYuH_Rzdfv1ye3WNb75_21xd3mAvjJixJlSElnMhtaSCGQOedUSo1gsdOJN62zJgbecpY9s2qOCDICxsjTe8VYqfo80qG5Lb2UMe9y7_ssmN9j6Qcm9dnkc_gVWUSUJCp4USwnDtHJVMdpKxlndOiqr1edU6LNs9BA9xzm56Jvr8Jo6D7dOdpdQwzgytCh8eFHL6sUCZ7X4sxxG5CGkpllNlmFCS84q-_wfdpSXHOqojpY0S0hyf9-5pS4-9_PmwCrAV8DmVkqF7RCixR2PY1Ri2GsPeG8OSmsTXpFLh2EP-W_s_Wb8Be7631A
Cites_doi 10.1016/j.patter.2023.100804
10.1002/bit.26253
10.1002/bit.24942
10.1039/C5LC00823A
10.1101/cshperspect.a040535
10.4269/ajtmh.2012.11-0302
10.1021/acssynbio.2c00050
10.1021/acssynbio.3c00724
10.1016/j.ijpharm.2022.121706
10.1038/nrd941
10.1038/s41467-021-24772-8
10.1038/s41587-021-00950-3
10.1073/pnas.1900102116
10.1016/j.coche.2018.10.003
10.1038/323533a0
10.1016/j.mib.2022.102142
10.1016/j.drudis.2020.07.024
10.1038/s41467-024-48726-y
10.5281/zenodo.14878884
10.1146/annurev-food-032519-051750
10.1016/j.cell.2021.01.017
10.1038/s41586-021-03213-y
10.1039/C7LC00552K
10.1109/TIT.1967.1053964
10.1038/384014a0
10.1038/s41587-021-01195-w
10.1007/s10404-015-1676-z
10.1021/acs.analchem.9b04219
10.1038/nbt0803-859
10.1038/s41467-024-48618-1
10.1002/anie.202312906
10.1039/D2NP00057A
10.1038/s41589-020-0559-0
10.1038/s41586-022-04437-2
10.1021/acssynbio.0c00618
10.1016/j.copbio.2020.12.012
10.1021/acssynbio.2c00339
10.1039/D0LC00757A
10.1002/advs.202203652
10.1038/s41524-022-00826-3
10.1016/j.bej.2018.10.023
10.1126/scitranslmed.3006667
10.1016/j.tibtech.2020.01.001
10.1073/pnas.1802233115
10.1038/s41538-022-00154-2
10.1002/bit.20026
10.1038/s41586-023-06139-9
10.1038/s41596-022-00799-z
10.1038/srep08663
10.1145/2939672.2939785
10.1039/C6LC01018K
10.1016/j.coph.2018.07.008
10.1038/s41576-019-0186-3
10.1002/bit.27541
10.1038/nbt.2391
10.1039/D0CP00972E
10.1021/acssynbio.4c00201
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-58139-0
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature : Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Acceso a contenido Full Text - Doaj
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_712500df84744938aa1525f52263fa54
PMC11923291
40108186
10_1038_s41467_025_58139_0
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52322305, 32171427, 21935002, and 62374170
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China (grant no. 2023YFA0914000), the Shanghai Science and Technology Committee (grant nos. 23QA1406600 and 24ZR1451000), the ShanghaiTech AI4S Initiative (grant no. SHTAI4S202404).
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52322305, 32171427, 21935002, and 62374170
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SV3
TSG
UKHRP
AARCD
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
SNYQT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-8014d633458514299ec2f0476c48d3258b62e26fc122b6d7dcd402db9c936773
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:52 EDT 2025
Thu Aug 21 18:40:25 EDT 2025
Mon Jul 21 11:41:56 EDT 2025
Sat Aug 23 12:42:33 EDT 2025
Fri May 16 02:45:15 EDT 2025
Tue Aug 05 12:12:06 EDT 2025
Thu Mar 20 02:10:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-8014d633458514299ec2f0476c48d3258b62e26fc122b6d7dcd402db9c936773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1156-0479
0000-0002-2989-6280
0009-0001-2791-1192
0009-0008-9325-462X
0000-0003-2359-238X
OpenAccessLink https://doaj.org/article/712500df84744938aa1525f52263fa54
PMID 40108186
PQID 3178974597
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_712500df84744938aa1525f52263fa54
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923291
proquest_miscellaneous_3179247533
proquest_journals_3178974597
pubmed_primary_40108186
crossref_primary_10_1038_s41467_025_58139_0
springer_journals_10_1038_s41467_025_58139_0
PublicationCentury 2000
PublicationDate 2025-03-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References T Cover (58139_CR26) 1967; 13
L Bollenbach (58139_CR23) 2022; 620
F Bajorath (58139_CR12) 2002; 1
BJ Shields (58139_CR25) 2021; 590
J Gong (58139_CR31) 2022; 8
X Tan (58139_CR8) 2021; 184
L Li (58139_CR36) 2022; 9
AD Silverman (58139_CR1) 2020; 21
YC Kwon (58139_CR18) 2015; 5
K McCullough (58139_CR55) 2020; 22
DE Rumelhart (58139_CR57) 1986; 323
O Wagner (58139_CR22) 2016; 16
Y Hori (58139_CR44) 2017; 17
JC Stark (58139_CR9) 2023; 18
CE Hodgman (58139_CR20) 2013; 110
58139_CR59
WZ Zeng (58139_CR17) 2020; 38
58139_CR58
JC Feng (58139_CR38) 2021; 10
K Zhang (58139_CR34) 2020; 11
BJ Rasor (58139_CR41) 2021; 69
WQ Liu (58139_CR5) 2024; 15
XY Ji (58139_CR39) 2022; 67
AJT Teo (58139_CR56) 2020; 92
SJ Moore (58139_CR40) 2023; 40
FE Liew (58139_CR6) 2022; 40
HF Lu (58139_CR3) 2023; 62
NS Chandel (58139_CR28) 2021; 13
H Zhang (58139_CR49) 2020; 20
P Jaaks (58139_CR52) 2022; 603
S Kapoor (58139_CR30) 2023; 4
J Li (58139_CR19) 2017; 114
58139_CR29
WQ Liu (58139_CR35) 2020; 117
A Kulesa (58139_CR54) 2018; 115
XC Sun (58139_CR15) 2013; 5
PQ Nguyen (58139_CR10) 2021; 39
CV Theodoris (58139_CR21) 2023; 618
AS Karim (58139_CR7) 2020; 16
Y-J Huang (58139_CR32) 2024; 15
J Kehe (58139_CR51) 2019; 116
X Wang (58139_CR33) 2022; 6
A Dove (58139_CR46) 2003; 21
Y Liu (58139_CR4) 2024; 13
BJ Rasor (58139_CR11) 2023; 12
WQ Liu (58139_CR2) 2019; 141
PA Zhu (58139_CR48) 2017; 17
S Lee (58139_CR50) 2016; 20
R Gan (58139_CR43) 2022; 11
L Olivi (58139_CR45) 2021; 12
LJ Rothschild (58139_CR37) 2024; 13
X Tan (58139_CR16) 2012; 30
S Duffy (58139_CR47) 2012; 86
H Drucker (58139_CR27) 1996; 28
V Blay (58139_CR14) 2020; 25
JR Broach (58139_CR13) 1996; 384
T Pemovska (58139_CR53) 2018; 42
MC Jewett (58139_CR24) 2004; 86
BC Bundy (58139_CR42) 2018; 22
References_xml – volume: 4
  start-page: 100804
  year: 2023
  ident: 58139_CR30
  publication-title: Patterns
  doi: 10.1016/j.patter.2023.100804
– volume: 114
  start-page: 1343
  year: 2017
  ident: 58139_CR19
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26253
– volume: 110
  start-page: 2643
  year: 2013
  ident: 58139_CR20
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24942
– volume: 16
  start-page: 65
  year: 2016
  ident: 58139_CR22
  publication-title: Lab Chip
  doi: 10.1039/C5LC00823A
– volume: 13
  start-page: a040535
  year: 2021
  ident: 58139_CR28
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a040535
– volume: 86
  start-page: 84
  year: 2012
  ident: 58139_CR47
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2012.11-0302
– volume: 11
  start-page: 2108
  year: 2022
  ident: 58139_CR43
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.2c00050
– volume: 13
  start-page: 974
  year: 2024
  ident: 58139_CR37
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.3c00724
– volume: 620
  start-page: 121706
  year: 2022
  ident: 58139_CR23
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2022.121706
– volume: 1
  start-page: 882
  year: 2002
  ident: 58139_CR12
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd941
– volume: 12
  year: 2021
  ident: 58139_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24772-8
– volume: 39
  start-page: 1366
  year: 2021
  ident: 58139_CR10
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00950-3
– volume: 116
  start-page: 12804
  year: 2019
  ident: 58139_CR51
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1900102116
– volume: 22
  start-page: 177
  year: 2018
  ident: 58139_CR42
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2018.10.003
– volume: 323
  start-page: 533
  year: 1986
  ident: 58139_CR57
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 67
  start-page: 102142
  year: 2022
  ident: 58139_CR39
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2022.102142
– volume: 25
  start-page: 1807
  year: 2020
  ident: 58139_CR14
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.07.024
– volume: 15
  year: 2024
  ident: 58139_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48726-y
– ident: 58139_CR59
  doi: 10.5281/zenodo.14878884
– volume: 11
  start-page: 295
  year: 2020
  ident: 58139_CR34
  publication-title: Annu. Rev. food Sci. Technol.
  doi: 10.1146/annurev-food-032519-051750
– volume: 28
  start-page: 779
  year: 1996
  ident: 58139_CR27
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 184
  start-page: 881
  year: 2021
  ident: 58139_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.017
– volume: 590
  start-page: 89
  year: 2021
  ident: 58139_CR25
  publication-title: Nature
  doi: 10.1038/s41586-021-03213-y
– volume: 17
  start-page: 3037
  year: 2017
  ident: 58139_CR44
  publication-title: Lab Chip
  doi: 10.1039/C7LC00552K
– volume: 13
  start-page: 21
  year: 1967
  ident: 58139_CR26
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– ident: 58139_CR58
– volume: 384
  start-page: 14
  year: 1996
  ident: 58139_CR13
  publication-title: Nature
  doi: 10.1038/384014a0
– volume: 40
  start-page: 335
  year: 2022
  ident: 58139_CR6
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01195-w
– volume: 20
  year: 2016
  ident: 58139_CR50
  publication-title: Microfluid. Nanofluidics
  doi: 10.1007/s10404-015-1676-z
– volume: 92
  start-page: 1147
  year: 2020
  ident: 58139_CR56
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b04219
– volume: 21
  start-page: 859
  year: 2003
  ident: 58139_CR46
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0803-859
– volume: 15
  year: 2024
  ident: 58139_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-48618-1
– volume: 62
  year: 2023
  ident: 58139_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202312906
– volume: 40
  start-page: 228
  year: 2023
  ident: 58139_CR40
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/D2NP00057A
– volume: 16
  start-page: 912
  year: 2020
  ident: 58139_CR7
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0559-0
– volume: 603
  start-page: 166
  year: 2022
  ident: 58139_CR52
  publication-title: Nature
  doi: 10.1038/s41586-022-04437-2
– volume: 10
  start-page: 620
  year: 2021
  ident: 58139_CR38
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00618
– volume: 69
  start-page: 136
  year: 2021
  ident: 58139_CR41
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2020.12.012
– volume: 12
  start-page: 405
  year: 2023
  ident: 58139_CR11
  publication-title: Acs Synth. Biol.
  doi: 10.1021/acssynbio.2c00339
– volume: 20
  start-page: 3948
  year: 2020
  ident: 58139_CR49
  publication-title: Lab Chip
  doi: 10.1039/D0LC00757A
– volume: 9
  year: 2022
  ident: 58139_CR36
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202203652
– volume: 8
  year: 2022
  ident: 58139_CR31
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-022-00826-3
– volume: 141
  start-page: 182
  year: 2019
  ident: 58139_CR2
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.10.023
– volume: 5
  start-page: 205rv1
  year: 2013
  ident: 58139_CR15
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3006667
– volume: 38
  start-page: 888
  year: 2020
  ident: 58139_CR17
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.01.001
– volume: 115
  start-page: 6685
  year: 2018
  ident: 58139_CR54
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1802233115
– volume: 6
  year: 2022
  ident: 58139_CR33
  publication-title: NPJ Sci. Food
  doi: 10.1038/s41538-022-00154-2
– volume: 86
  start-page: 19
  year: 2004
  ident: 58139_CR24
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20026
– volume: 618
  start-page: 616
  year: 2023
  ident: 58139_CR21
  publication-title: Nature
  doi: 10.1038/s41586-023-06139-9
– volume: 18
  start-page: 2374
  year: 2023
  ident: 58139_CR9
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-022-00799-z
– volume: 5
  year: 2015
  ident: 58139_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/srep08663
– ident: 58139_CR29
  doi: 10.1145/2939672.2939785
– volume: 17
  start-page: 34
  year: 2017
  ident: 58139_CR48
  publication-title: Lab Chip
  doi: 10.1039/C6LC01018K
– volume: 42
  start-page: 102
  year: 2018
  ident: 58139_CR53
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2018.07.008
– volume: 21
  start-page: 151
  year: 2020
  ident: 58139_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-019-0186-3
– volume: 117
  start-page: 4001
  year: 2020
  ident: 58139_CR35
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27541
– volume: 30
  start-page: 1125
  year: 2012
  ident: 58139_CR16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2391
– volume: 22
  start-page: 11174
  year: 2020
  ident: 58139_CR55
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP00972E
– volume: 13
  start-page: 1434
  year: 2024
  ident: 58139_CR4
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.4c00201
SSID ssj0000391844
Score 2.4768572
Snippet Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology...
Abstract Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2720
SubjectTerms 38/35
49/56
49/62
631/553/552
631/92/507
639/638/11/877
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Cell-Free System
Color coding
Combinatorial analysis
Composition
Constraints
Cost effectiveness
Droplets
E coli
Efficiency
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fluorescence
Gene Expression
Green fluorescent protein
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
High-Throughput Screening Assays - methods
Humanities and Social Sciences
Machine Learning
Microfluidics
Microfluidics - methods
multidisciplinary
Optimization
Proteins
Science
Science (multidisciplinary)
Screening
Synthetic Biology - methods
Transfer learning
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDfZXVCQuIG1qe34cUILYlWQ4LRIvVmJH8Al6bapBP-eGdftqryujhU5n8cz33gmMwAvbZSxCY1mvdANk0oI1nPLWacM96327UzT38ifPqv5F_lx0S7Khdu6pFXudGJW1GH0dEd-hnbOIPdF_vtmecWoaxRFV0sLjZtwi0qXkVTrhd7fsVD1cyNl-VemEeZsLbNmoB6urUHyw5oDe5TL9v-Na_6ZMvlb3DSbo4t7cLfwyPp8u_H34UYcHsDtbWfJnw9hfv6BhRVpspoKErPSjme5meqwopzxqUZ9gT4svrweU0339yzhQI0CFev4o-THDo_g8uL95bs5K00TmJdWTmRxZEDIJcX7yNhEz1MjtfLSBMFb0yseuUp-xnmvgg4-oAsZeuutUFqLx3A0jEN8CnXHCe1O2Z57SfE1y01KfY8-WlRGpwpe7ZBzy21pDJdD2sK4Lc4OcXYZZ9dU8JbA3c-kstZ5YFx9deWUOI10q2lCQpMppRWm66g9UyKOKFLXygpOd1vjyllbu2vJqODF_jGeEoKuG-K4yXPQ0UTXTFTwZLuT-5Wgh5nr-lVgDvb4YKmHT4bv33Il7hnxY25nFbzeicP1uv6NxfH_P-ME7nCSUMoatKdwNK028RlSn6l_nuX7FyYP_kA
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN7DI2o4fxwVRLSvBhSL1ZsWxDVyy1TYr0X_PjJMsWigHrrYTjcZjz3z2-BuAVy6pVMfa8CBNzZWWkgfhBG-1FV1jumZh6DXyp8969VWtL5qLIxDzW5iStF8oLcs2PWeHvb1SZUlT8dXGYtTCEaafEFU72vbJcrn-st6frBDnuVVqeiFTS3vDxwdeqJD13xRh_p0o-cdtaXFCZ3fhzhQ9suUo7z04Sv19uDXWk7x-AKvlRx63tH8xoiHmUxGey93A4pYyxQeGuwQiV_w522RGp_Y8YwNDM0os_ZyyYvuHcH724fz9ik-lEninnBrIz6iIilZ0y0cuJnUi18roTtkoRWODFkno3C2ECDqa2EUEjjG4zkltjHwEx_2mT0-AtUIhxmi1C6JTdKvmhM05BERmSVuTK3g9a85fjoQYvlxkS-tHPXvUsy969nUF70i5-5FEZl0aNttvfppcbzDIquuY0VEq5aRtWyrKlCkylLltVAWn89T4aYVdeYx7LGIhlLWCl_tuXBukurZPm10Zg_ASAZms4PE4k3tJEFcWNr8K7MEcH4h62NP_-F74txcUFQu3qODNbA6_5fq3Lp7-3_BncFuQxVLuoDuF42G7S88xABrCi8nifwGWvf1F
  priority: 102
  providerName: Springer Nature
Title AI-driven high-throughput droplet screening of cell-free gene expression
URI https://link.springer.com/article/10.1038/s41467-025-58139-0
https://www.ncbi.nlm.nih.gov/pubmed/40108186
https://www.proquest.com/docview/3178974597
https://www.proquest.com/docview/3179247533
https://pubmed.ncbi.nlm.nih.gov/PMC11923291
https://doaj.org/article/712500df84744938aa1525f52263fa54
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIvE98LjCpIvIG11Hb88dhVK6USE4Ih9c1KYlvwkk5dKsF_z52TlhWYeNlLItlRdPqdfXe_-HIH8MYGGQpfaFYLXTCphGA1t5xVyvCm1E051vQ38sdzNf8qF8tyea3VF-WE9eWBe-BONHrgovARraiUVpiqoo49kcIGEasyVQJFn3eNTCUbLCxSFzn8JVMIc3Ilk02g7q2lwbCHFXueKBXs_1eU-Xey5B8npskRzR7C4RBB5pNe8kdwJ7SP4X7fU_LnE5hPPjC_JhuWUyliNjTiudx0uV9TtniXo6VA9oovz1cxpy_3LOJAjksp5OHHkBnbPoWL2dnFdM6GdgmskVZ25GukR7AlnfSRmwkNj4XUqpHGC16aWvHAVWzGnNfKa994JI--to0VSmvxDA7aVRuOIK-4RJ5RKVvzRtLJmuUmxrpGdhaU0TGDt1vk3GVfFMOlw2xhXI-zQ5xdwtkVGZwSuLsnqaB1GkA1u0HN7n9qzuB4qxo37LIrh7GPQT6EsmbwejeN-4Ogq9qw2qRnkGIiKRMZPO81uZMEuWWq6JeB2dPxnqj7M-33b6kG95giY27HGbzbLoffct2MxYvbwOIlPOC0jimr0B7DQbfehFcYGnX1CO7qpcarmb0fwb3JZPFlgffTs_NPn3F0qqajtE9-AYQhCqk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9QwDLaWRQguiDeFBYoEJ4i2k6RJekBoeQwz7OM0SHuL2iYBLu0wD8H-KP4jdtrOanjd9tpEUWo79ufYsQGeFV76zGWaVUJnTCohWMULzkpleJ3rOh9peo18fKImn-TH0_x0B34Ob2EorXLQiVFRu7amO_J9tHMGsS_i39fzb4y6RlF0dWih0YnFoT_7ji7b8tX0HfL3Oefj97O3E9Z3FWC1LOSKVLJ0uCdJATHSxr7mIZNa1dI4wXNTKe65CvWI80o57WqHPpariroQSmuBy16Cy1KgIaeH6eMPmysdKrZupOyf5mTC7C9lVETUMjY3iLVYtmX-YpeAv0HbPzM0fwvTRus3vgHXe9iaHnRydhN2fHMLrnSNLM9uw-RgytyCFGdK9Y9Z3_1nvl6lbkEp6qsU1RO6zLh42oaUwgUs4IcU5den_kefjtvcgdlFUPMu7DZt4-9DWnJibqmKiteSwnkFNyFUFbqEXhkdEngxUM7Ou0ocNkbQhbEdnS3S2UY62yyBN0TczUyqoh0_tIvPtj-UViO6yzIX0EJLWQhTltQNKhAkFaHMZQJ7A2tsf7SX9lwQE3i6GcZDSaQrG9-u4xz0a9ETFAnc6zi52Qk6tLGMYAJmi8dbW90eab5-iYW_RwTHeTFK4OUgDuf7-jctHvz_N57A1cns-MgeTU8OH8I1TtJKCYvFHuyuFmv_CFHXqnocZT0Fe8Fn6xeJ6jhv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2azuxfUCopV3tUlhVqEi9WUlsA5dk2YegP41_x0weWy2vW6-xZTnz8jee8QzAc-OlT1yiWCFUwmQmBCu44SzPNC9TVaYjRa-RP8yyySf57iw924Gf_VsYSqvsbWJjqF1d0h35EM85jdgX8e8wdGkRJ4fjN_NvjDpIUaS1b6fRisixP_-O7tvy9fQQef2C8_HR6dsJ6zoMsFIauSLzLB3uT1JwjCyzL3lIpMpKqZ3gqS4y7nkWyhHnReaUKx36W64wpRGZUgKXvQK7ipyiAeweHM1OPm4ueKj0upaye6iTCD1cysYsUQPZVCPyYsnWYdj0DPgb0P0zX_O3oG1zFo5vwo0OxMb7rdTdgh1f3YarbVvL8zsw2Z8ytyAzGlM1ZNb1ApqvV7FbUML6KkZjhQ40Lh7XIabgAQv4IUZp9rH_0SXnVnfh9DLoeQ8GVV35BxDnnFidZ6bgpaTgnuE6hKJAB9FnWoUIXvaUs_O2Lodt4ulC25bOFulsGzrbJIIDIu5mJtXUbj7Ui8-2U1GrEOsliQt4XktphM5z6g0VCKCKkKcygr2eNbZT9KW9EMsInm2GUUWJdHnl63UzB71c9AtFBPdbTm52gu5tU1QwAr3F462tbo9UX780ZcBHBM65GUXwqheHi339mxYP__8bT-Ea6pV9P50dP4LrnISVshfNHgxWi7V_jBBsVTzphD0Ge8nq9QuZ_j4B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+high-throughput+droplet+screening+of+cell-free+gene+expression&rft.jtitle=Nature+communications&rft.au=Zhu%2C+Jiawei&rft.au=Meng%2C+Yaru&rft.au=Gao%2C+Wenli&rft.au=Yang%2C+Shuo&rft.date=2025-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58139-0&rft.externalDocID=PMC11923291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon