AI-driven high-throughput droplet screening of cell-free gene expression
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited y...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 2720 - 13 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an
Escherichia coli
-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established
E. coli
model is successfully adapted to a
Bacillus subtilis
-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness. |
---|---|
AbstractList | Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an
Escherichia coli
-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established
E. coli
model is successfully adapted to a
Bacillus subtilis
-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness. Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems. Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems. Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.Cell-free gene expression (CFE) systems are often constrained by numerous biochemical components required to maintain biocatalytic efficiency. Here, the authors propose a droplet-AI combined approach to perform high-throughput and efficient combinatorial screening of CFE. This work led to simplified CFE systems with improved yield and cost-effectiveness. Abstract Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems. |
ArticleNumber | 2720 |
Author | Gao, Wenli Zhai, Xuanpei Liu, Wan-Qiu Luo, Yuan Zhu, Wenjie Ji, Xiangyang Ling, Shengjie Liu, Yifan Meng, Yaru Yang, Shuo Zhu, Jiawei Li, Jian |
Author_xml | – sequence: 1 givenname: Jiawei orcidid: 0009-0008-9325-462X surname: Zhu fullname: Zhu, Jiawei organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 2 givenname: Yaru surname: Meng fullname: Meng, Yaru organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 3 givenname: Wenli orcidid: 0009-0001-2791-1192 surname: Gao fullname: Gao, Wenli organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 4 givenname: Shuo surname: Yang fullname: Yang, Shuo organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 5 givenname: Wenjie surname: Zhu fullname: Zhu, Wenjie organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 6 givenname: Xiangyang surname: Ji fullname: Ji, Xiangyang organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 7 givenname: Xuanpei surname: Zhai fullname: Zhai, Xuanpei organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 8 givenname: Wan-Qiu surname: Liu fullname: Liu, Wan-Qiu organization: School of Physical Science and Technology, ShanghaiTech University – sequence: 9 givenname: Yuan surname: Luo fullname: Luo, Yuan organization: State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences – sequence: 10 givenname: Shengjie orcidid: 0000-0003-1156-0479 surname: Ling fullname: Ling, Shengjie email: lingshj@shanghaitech.edu.cn organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center, State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University – sequence: 11 givenname: Jian orcidid: 0000-0003-2359-238X surname: Li fullname: Li, Jian email: lijian@shanghaitech.edu.cn organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center – sequence: 12 givenname: Yifan orcidid: 0000-0002-2989-6280 surname: Liu fullname: Liu, Yifan email: liuyf6@shanghaitech.edu.cn organization: School of Physical Science and Technology, ShanghaiTech University, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai Clinical Research and Trial Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40108186$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompsbX2D7gwk7hxg_I5wMo0jdqbNHHTPeHCmY-buXCFmUb_vdxOra0L2UAOz3nP4fC-RicxRUDoLSUfKeH6UxFUtAoTJrHUlBtMXqAzRgTFVDF-8uR8ii5K2ZG6uKFaiFfoVBBKNNXtGbq-3OCQxzuIzTD2A56HnJZ-OCxzE3I6TDA3xWeAOMa-SV3jYZpwVwNNDxEa-HnIUMqY4hv0snNTgYuH_Rzdfv1ye3WNb75_21xd3mAvjJixJlSElnMhtaSCGQOedUSo1gsdOJN62zJgbecpY9s2qOCDICxsjTe8VYqfo80qG5Lb2UMe9y7_ssmN9j6Qcm9dnkc_gVWUSUJCp4USwnDtHJVMdpKxlndOiqr1edU6LNs9BA9xzm56Jvr8Jo6D7dOdpdQwzgytCh8eFHL6sUCZ7X4sxxG5CGkpllNlmFCS84q-_wfdpSXHOqojpY0S0hyf9-5pS4-9_PmwCrAV8DmVkqF7RCixR2PY1Ri2GsPeG8OSmsTXpFLh2EP-W_s_Wb8Be7631A |
Cites_doi | 10.1016/j.patter.2023.100804 10.1002/bit.26253 10.1002/bit.24942 10.1039/C5LC00823A 10.1101/cshperspect.a040535 10.4269/ajtmh.2012.11-0302 10.1021/acssynbio.2c00050 10.1021/acssynbio.3c00724 10.1016/j.ijpharm.2022.121706 10.1038/nrd941 10.1038/s41467-021-24772-8 10.1038/s41587-021-00950-3 10.1073/pnas.1900102116 10.1016/j.coche.2018.10.003 10.1038/323533a0 10.1016/j.mib.2022.102142 10.1016/j.drudis.2020.07.024 10.1038/s41467-024-48726-y 10.5281/zenodo.14878884 10.1146/annurev-food-032519-051750 10.1016/j.cell.2021.01.017 10.1038/s41586-021-03213-y 10.1039/C7LC00552K 10.1109/TIT.1967.1053964 10.1038/384014a0 10.1038/s41587-021-01195-w 10.1007/s10404-015-1676-z 10.1021/acs.analchem.9b04219 10.1038/nbt0803-859 10.1038/s41467-024-48618-1 10.1002/anie.202312906 10.1039/D2NP00057A 10.1038/s41589-020-0559-0 10.1038/s41586-022-04437-2 10.1021/acssynbio.0c00618 10.1016/j.copbio.2020.12.012 10.1021/acssynbio.2c00339 10.1039/D0LC00757A 10.1002/advs.202203652 10.1038/s41524-022-00826-3 10.1016/j.bej.2018.10.023 10.1126/scitranslmed.3006667 10.1016/j.tibtech.2020.01.001 10.1073/pnas.1802233115 10.1038/s41538-022-00154-2 10.1002/bit.20026 10.1038/s41586-023-06139-9 10.1038/s41596-022-00799-z 10.1038/srep08663 10.1145/2939672.2939785 10.1039/C6LC01018K 10.1016/j.coph.2018.07.008 10.1038/s41576-019-0186-3 10.1002/bit.27541 10.1038/nbt.2391 10.1039/D0CP00972E 10.1021/acssynbio.4c00201 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-58139-0 |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature : Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_712500df84744938aa1525f52263fa54 PMC11923291 40108186 10_1038_s41467_025_58139_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52322305, 32171427, 21935002, and 62374170 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China (grant no. 2023YFA0914000), the Shanghai Science and Technology Committee (grant nos. 23QA1406600 and 24ZR1451000), the ShanghaiTech AI4S Initiative (grant no. SHTAI4S202404). – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52322305, 32171427, 21935002, and 62374170 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AARCD AAYXX CITATION PHGZM PJZUB PPXIY PQGLB SNYQT CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-8014d633458514299ec2f0476c48d3258b62e26fc122b6d7dcd402db9c936773 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:52 EDT 2025 Thu Aug 21 18:40:25 EDT 2025 Mon Jul 21 11:41:56 EDT 2025 Sat Aug 23 12:42:33 EDT 2025 Fri May 16 02:45:15 EDT 2025 Tue Aug 05 12:12:06 EDT 2025 Thu Mar 20 02:10:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-8014d633458514299ec2f0476c48d3258b62e26fc122b6d7dcd402db9c936773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1156-0479 0000-0002-2989-6280 0009-0001-2791-1192 0009-0008-9325-462X 0000-0003-2359-238X |
OpenAccessLink | https://doaj.org/article/712500df84744938aa1525f52263fa54 |
PMID | 40108186 |
PQID | 3178974597 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_712500df84744938aa1525f52263fa54 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11923291 proquest_miscellaneous_3179247533 proquest_journals_3178974597 pubmed_primary_40108186 crossref_primary_10_1038_s41467_025_58139_0 springer_journals_10_1038_s41467_025_58139_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-19 |
PublicationDateYYYYMMDD | 2025-03-19 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | T Cover (58139_CR26) 1967; 13 L Bollenbach (58139_CR23) 2022; 620 F Bajorath (58139_CR12) 2002; 1 BJ Shields (58139_CR25) 2021; 590 J Gong (58139_CR31) 2022; 8 X Tan (58139_CR8) 2021; 184 L Li (58139_CR36) 2022; 9 AD Silverman (58139_CR1) 2020; 21 YC Kwon (58139_CR18) 2015; 5 K McCullough (58139_CR55) 2020; 22 DE Rumelhart (58139_CR57) 1986; 323 O Wagner (58139_CR22) 2016; 16 Y Hori (58139_CR44) 2017; 17 JC Stark (58139_CR9) 2023; 18 CE Hodgman (58139_CR20) 2013; 110 58139_CR59 WZ Zeng (58139_CR17) 2020; 38 58139_CR58 JC Feng (58139_CR38) 2021; 10 K Zhang (58139_CR34) 2020; 11 BJ Rasor (58139_CR41) 2021; 69 WQ Liu (58139_CR5) 2024; 15 XY Ji (58139_CR39) 2022; 67 AJT Teo (58139_CR56) 2020; 92 SJ Moore (58139_CR40) 2023; 40 FE Liew (58139_CR6) 2022; 40 HF Lu (58139_CR3) 2023; 62 NS Chandel (58139_CR28) 2021; 13 H Zhang (58139_CR49) 2020; 20 P Jaaks (58139_CR52) 2022; 603 S Kapoor (58139_CR30) 2023; 4 J Li (58139_CR19) 2017; 114 58139_CR29 WQ Liu (58139_CR35) 2020; 117 A Kulesa (58139_CR54) 2018; 115 XC Sun (58139_CR15) 2013; 5 PQ Nguyen (58139_CR10) 2021; 39 CV Theodoris (58139_CR21) 2023; 618 AS Karim (58139_CR7) 2020; 16 Y-J Huang (58139_CR32) 2024; 15 J Kehe (58139_CR51) 2019; 116 X Wang (58139_CR33) 2022; 6 A Dove (58139_CR46) 2003; 21 Y Liu (58139_CR4) 2024; 13 BJ Rasor (58139_CR11) 2023; 12 WQ Liu (58139_CR2) 2019; 141 PA Zhu (58139_CR48) 2017; 17 S Lee (58139_CR50) 2016; 20 R Gan (58139_CR43) 2022; 11 L Olivi (58139_CR45) 2021; 12 LJ Rothschild (58139_CR37) 2024; 13 X Tan (58139_CR16) 2012; 30 S Duffy (58139_CR47) 2012; 86 H Drucker (58139_CR27) 1996; 28 V Blay (58139_CR14) 2020; 25 JR Broach (58139_CR13) 1996; 384 T Pemovska (58139_CR53) 2018; 42 MC Jewett (58139_CR24) 2004; 86 BC Bundy (58139_CR42) 2018; 22 |
References_xml | – volume: 4 start-page: 100804 year: 2023 ident: 58139_CR30 publication-title: Patterns doi: 10.1016/j.patter.2023.100804 – volume: 114 start-page: 1343 year: 2017 ident: 58139_CR19 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26253 – volume: 110 start-page: 2643 year: 2013 ident: 58139_CR20 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24942 – volume: 16 start-page: 65 year: 2016 ident: 58139_CR22 publication-title: Lab Chip doi: 10.1039/C5LC00823A – volume: 13 start-page: a040535 year: 2021 ident: 58139_CR28 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a040535 – volume: 86 start-page: 84 year: 2012 ident: 58139_CR47 publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2012.11-0302 – volume: 11 start-page: 2108 year: 2022 ident: 58139_CR43 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.2c00050 – volume: 13 start-page: 974 year: 2024 ident: 58139_CR37 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.3c00724 – volume: 620 start-page: 121706 year: 2022 ident: 58139_CR23 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2022.121706 – volume: 1 start-page: 882 year: 2002 ident: 58139_CR12 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd941 – volume: 12 year: 2021 ident: 58139_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24772-8 – volume: 39 start-page: 1366 year: 2021 ident: 58139_CR10 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-00950-3 – volume: 116 start-page: 12804 year: 2019 ident: 58139_CR51 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1900102116 – volume: 22 start-page: 177 year: 2018 ident: 58139_CR42 publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2018.10.003 – volume: 323 start-page: 533 year: 1986 ident: 58139_CR57 publication-title: Nature doi: 10.1038/323533a0 – volume: 67 start-page: 102142 year: 2022 ident: 58139_CR39 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2022.102142 – volume: 25 start-page: 1807 year: 2020 ident: 58139_CR14 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2020.07.024 – volume: 15 year: 2024 ident: 58139_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-024-48726-y – ident: 58139_CR59 doi: 10.5281/zenodo.14878884 – volume: 11 start-page: 295 year: 2020 ident: 58139_CR34 publication-title: Annu. Rev. food Sci. Technol. doi: 10.1146/annurev-food-032519-051750 – volume: 28 start-page: 779 year: 1996 ident: 58139_CR27 publication-title: Adv. Neural Inf. Process. Syst. – volume: 184 start-page: 881 year: 2021 ident: 58139_CR8 publication-title: Cell doi: 10.1016/j.cell.2021.01.017 – volume: 590 start-page: 89 year: 2021 ident: 58139_CR25 publication-title: Nature doi: 10.1038/s41586-021-03213-y – volume: 17 start-page: 3037 year: 2017 ident: 58139_CR44 publication-title: Lab Chip doi: 10.1039/C7LC00552K – volume: 13 start-page: 21 year: 1967 ident: 58139_CR26 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – ident: 58139_CR58 – volume: 384 start-page: 14 year: 1996 ident: 58139_CR13 publication-title: Nature doi: 10.1038/384014a0 – volume: 40 start-page: 335 year: 2022 ident: 58139_CR6 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01195-w – volume: 20 year: 2016 ident: 58139_CR50 publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-015-1676-z – volume: 92 start-page: 1147 year: 2020 ident: 58139_CR56 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04219 – volume: 21 start-page: 859 year: 2003 ident: 58139_CR46 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0803-859 – volume: 15 year: 2024 ident: 58139_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-024-48618-1 – volume: 62 year: 2023 ident: 58139_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202312906 – volume: 40 start-page: 228 year: 2023 ident: 58139_CR40 publication-title: Nat. Prod. Rep. doi: 10.1039/D2NP00057A – volume: 16 start-page: 912 year: 2020 ident: 58139_CR7 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0559-0 – volume: 603 start-page: 166 year: 2022 ident: 58139_CR52 publication-title: Nature doi: 10.1038/s41586-022-04437-2 – volume: 10 start-page: 620 year: 2021 ident: 58139_CR38 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00618 – volume: 69 start-page: 136 year: 2021 ident: 58139_CR41 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2020.12.012 – volume: 12 start-page: 405 year: 2023 ident: 58139_CR11 publication-title: Acs Synth. Biol. doi: 10.1021/acssynbio.2c00339 – volume: 20 start-page: 3948 year: 2020 ident: 58139_CR49 publication-title: Lab Chip doi: 10.1039/D0LC00757A – volume: 9 year: 2022 ident: 58139_CR36 publication-title: Adv. Sci. doi: 10.1002/advs.202203652 – volume: 8 year: 2022 ident: 58139_CR31 publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-022-00826-3 – volume: 141 start-page: 182 year: 2019 ident: 58139_CR2 publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.10.023 – volume: 5 start-page: 205rv1 year: 2013 ident: 58139_CR15 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3006667 – volume: 38 start-page: 888 year: 2020 ident: 58139_CR17 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.01.001 – volume: 115 start-page: 6685 year: 2018 ident: 58139_CR54 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1802233115 – volume: 6 year: 2022 ident: 58139_CR33 publication-title: NPJ Sci. Food doi: 10.1038/s41538-022-00154-2 – volume: 86 start-page: 19 year: 2004 ident: 58139_CR24 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20026 – volume: 618 start-page: 616 year: 2023 ident: 58139_CR21 publication-title: Nature doi: 10.1038/s41586-023-06139-9 – volume: 18 start-page: 2374 year: 2023 ident: 58139_CR9 publication-title: Nat. Protoc. doi: 10.1038/s41596-022-00799-z – volume: 5 year: 2015 ident: 58139_CR18 publication-title: Sci. Rep. doi: 10.1038/srep08663 – ident: 58139_CR29 doi: 10.1145/2939672.2939785 – volume: 17 start-page: 34 year: 2017 ident: 58139_CR48 publication-title: Lab Chip doi: 10.1039/C6LC01018K – volume: 42 start-page: 102 year: 2018 ident: 58139_CR53 publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2018.07.008 – volume: 21 start-page: 151 year: 2020 ident: 58139_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0186-3 – volume: 117 start-page: 4001 year: 2020 ident: 58139_CR35 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27541 – volume: 30 start-page: 1125 year: 2012 ident: 58139_CR16 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2391 – volume: 22 start-page: 11174 year: 2020 ident: 58139_CR55 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP00972E – volume: 13 start-page: 1434 year: 2024 ident: 58139_CR4 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.4c00201 |
SSID | ssj0000391844 |
Score | 2.4768572 |
Snippet | Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology... Abstract Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2720 |
SubjectTerms | 38/35 49/56 49/62 631/553/552 631/92/507 639/638/11/877 Bacillus subtilis - genetics Bacillus subtilis - metabolism Cell-Free System Color coding Combinatorial analysis Composition Constraints Cost effectiveness Droplets E coli Efficiency Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fluorescence Gene Expression Green fluorescent protein Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism High-Throughput Screening Assays - methods Humanities and Social Sciences Machine Learning Microfluidics Microfluidics - methods multidisciplinary Optimization Proteins Science Science (multidisciplinary) Screening Synthetic Biology - methods Transfer learning |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDfZXVCQuIG1qe34cUILYlWQ4LRIvVmJH8Al6bapBP-eGdftqryujhU5n8cz33gmMwAvbZSxCY1mvdANk0oI1nPLWacM96327UzT38ifPqv5F_lx0S7Khdu6pFXudGJW1GH0dEd-hnbOIPdF_vtmecWoaxRFV0sLjZtwi0qXkVTrhd7fsVD1cyNl-VemEeZsLbNmoB6urUHyw5oDe5TL9v-Na_6ZMvlb3DSbo4t7cLfwyPp8u_H34UYcHsDtbWfJnw9hfv6BhRVpspoKErPSjme5meqwopzxqUZ9gT4svrweU0339yzhQI0CFev4o-THDo_g8uL95bs5K00TmJdWTmRxZEDIJcX7yNhEz1MjtfLSBMFb0yseuUp-xnmvgg4-oAsZeuutUFqLx3A0jEN8CnXHCe1O2Z57SfE1y01KfY8-WlRGpwpe7ZBzy21pDJdD2sK4Lc4OcXYZZ9dU8JbA3c-kstZ5YFx9deWUOI10q2lCQpMppRWm66g9UyKOKFLXygpOd1vjyllbu2vJqODF_jGeEoKuG-K4yXPQ0UTXTFTwZLuT-5Wgh5nr-lVgDvb4YKmHT4bv33Il7hnxY25nFbzeicP1uv6NxfH_P-ME7nCSUMoatKdwNK028RlSn6l_nuX7FyYP_kA priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN7DI2o4fxwVRLSvBhSL1ZsWxDVyy1TYr0X_PjJMsWigHrrYTjcZjz3z2-BuAVy6pVMfa8CBNzZWWkgfhBG-1FV1jumZh6DXyp8969VWtL5qLIxDzW5iStF8oLcs2PWeHvb1SZUlT8dXGYtTCEaafEFU72vbJcrn-st6frBDnuVVqeiFTS3vDxwdeqJD13xRh_p0o-cdtaXFCZ3fhzhQ9suUo7z04Sv19uDXWk7x-AKvlRx63tH8xoiHmUxGey93A4pYyxQeGuwQiV_w522RGp_Y8YwNDM0os_ZyyYvuHcH724fz9ik-lEninnBrIz6iIilZ0y0cuJnUi18roTtkoRWODFkno3C2ECDqa2EUEjjG4zkltjHwEx_2mT0-AtUIhxmi1C6JTdKvmhM05BERmSVuTK3g9a85fjoQYvlxkS-tHPXvUsy969nUF70i5-5FEZl0aNttvfppcbzDIquuY0VEq5aRtWyrKlCkylLltVAWn89T4aYVdeYx7LGIhlLWCl_tuXBukurZPm10Zg_ASAZms4PE4k3tJEFcWNr8K7MEcH4h62NP_-F74txcUFQu3qODNbA6_5fq3Lp7-3_BncFuQxVLuoDuF42G7S88xABrCi8nifwGWvf1F priority: 102 providerName: Springer Nature |
Title | AI-driven high-throughput droplet screening of cell-free gene expression |
URI | https://link.springer.com/article/10.1038/s41467-025-58139-0 https://www.ncbi.nlm.nih.gov/pubmed/40108186 https://www.proquest.com/docview/3178974597 https://www.proquest.com/docview/3179247533 https://pubmed.ncbi.nlm.nih.gov/PMC11923291 https://doaj.org/article/712500df84744938aa1525f52263fa54 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIvE98LjCpIvIG11Hb88dhVK6USE4Ih9c1KYlvwkk5dKsF_z52TlhWYeNlLItlRdPqdfXe_-HIH8MYGGQpfaFYLXTCphGA1t5xVyvCm1E051vQ38sdzNf8qF8tyea3VF-WE9eWBe-BONHrgovARraiUVpiqoo49kcIGEasyVQJFn3eNTCUbLCxSFzn8JVMIc3Ilk02g7q2lwbCHFXueKBXs_1eU-Xey5B8npskRzR7C4RBB5pNe8kdwJ7SP4X7fU_LnE5hPPjC_JhuWUyliNjTiudx0uV9TtniXo6VA9oovz1cxpy_3LOJAjksp5OHHkBnbPoWL2dnFdM6GdgmskVZ25GukR7AlnfSRmwkNj4XUqpHGC16aWvHAVWzGnNfKa994JI--to0VSmvxDA7aVRuOIK-4RJ5RKVvzRtLJmuUmxrpGdhaU0TGDt1vk3GVfFMOlw2xhXI-zQ5xdwtkVGZwSuLsnqaB1GkA1u0HN7n9qzuB4qxo37LIrh7GPQT6EsmbwejeN-4Ogq9qw2qRnkGIiKRMZPO81uZMEuWWq6JeB2dPxnqj7M-33b6kG95giY27HGbzbLoffct2MxYvbwOIlPOC0jimr0B7DQbfehFcYGnX1CO7qpcarmb0fwb3JZPFlgffTs_NPn3F0qqajtE9-AYQhCqk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9QwDLaWRQguiDeFBYoEJ4i2k6RJekBoeQwz7OM0SHuL2iYBLu0wD8H-KP4jdtrOanjd9tpEUWo79ufYsQGeFV76zGWaVUJnTCohWMULzkpleJ3rOh9peo18fKImn-TH0_x0B34Ob2EorXLQiVFRu7amO_J9tHMGsS_i39fzb4y6RlF0dWih0YnFoT_7ji7b8tX0HfL3Oefj97O3E9Z3FWC1LOSKVLJ0uCdJATHSxr7mIZNa1dI4wXNTKe65CvWI80o57WqHPpariroQSmuBy16Cy1KgIaeH6eMPmysdKrZupOyf5mTC7C9lVETUMjY3iLVYtmX-YpeAv0HbPzM0fwvTRus3vgHXe9iaHnRydhN2fHMLrnSNLM9uw-RgytyCFGdK9Y9Z3_1nvl6lbkEp6qsU1RO6zLh42oaUwgUs4IcU5den_kefjtvcgdlFUPMu7DZt4-9DWnJibqmKiteSwnkFNyFUFbqEXhkdEngxUM7Ou0ocNkbQhbEdnS3S2UY62yyBN0TczUyqoh0_tIvPtj-UViO6yzIX0EJLWQhTltQNKhAkFaHMZQJ7A2tsf7SX9lwQE3i6GcZDSaQrG9-u4xz0a9ETFAnc6zi52Qk6tLGMYAJmi8dbW90eab5-iYW_RwTHeTFK4OUgDuf7-jctHvz_N57A1cns-MgeTU8OH8I1TtJKCYvFHuyuFmv_CFHXqnocZT0Fe8Fn6xeJ6jhv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2azuxfUCopV3tUlhVqEi9WUlsA5dk2YegP41_x0weWy2vW6-xZTnz8jee8QzAc-OlT1yiWCFUwmQmBCu44SzPNC9TVaYjRa-RP8yyySf57iw924Gf_VsYSqvsbWJjqF1d0h35EM85jdgX8e8wdGkRJ4fjN_NvjDpIUaS1b6fRisixP_-O7tvy9fQQef2C8_HR6dsJ6zoMsFIauSLzLB3uT1JwjCyzL3lIpMpKqZ3gqS4y7nkWyhHnReaUKx36W64wpRGZUgKXvQK7ipyiAeweHM1OPm4ueKj0upaye6iTCD1cysYsUQPZVCPyYsnWYdj0DPgb0P0zX_O3oG1zFo5vwo0OxMb7rdTdgh1f3YarbVvL8zsw2Z8ytyAzGlM1ZNb1ApqvV7FbUML6KkZjhQ40Lh7XIabgAQv4IUZp9rH_0SXnVnfh9DLoeQ8GVV35BxDnnFidZ6bgpaTgnuE6hKJAB9FnWoUIXvaUs_O2Lodt4ulC25bOFulsGzrbJIIDIu5mJtXUbj7Ui8-2U1GrEOsliQt4XktphM5z6g0VCKCKkKcygr2eNbZT9KW9EMsInm2GUUWJdHnl63UzB71c9AtFBPdbTm52gu5tU1QwAr3F462tbo9UX780ZcBHBM65GUXwqheHi339mxYP__8bT-Ea6pV9P50dP4LrnISVshfNHgxWi7V_jBBsVTzphD0Ge8nq9QuZ_j4B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+high-throughput+droplet+screening+of+cell-free+gene+expression&rft.jtitle=Nature+communications&rft.au=Zhu%2C+Jiawei&rft.au=Meng%2C+Yaru&rft.au=Gao%2C+Wenli&rft.au=Yang%2C+Shuo&rft.date=2025-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58139-0&rft.externalDocID=PMC11923291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |