SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first st...
Saved in:
Published in | The Journal of biological chemistry Vol. 296; p. 100306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity. |
ArticleNumber | 100306 |
Author | Kumar, Rahul Bayati, Armin McPherson, Peter S. Francis, Vincent |
Author_xml | – sequence: 1 givenname: Armin surname: Bayati fullname: Bayati, Armin – sequence: 2 givenname: Rahul surname: Kumar fullname: Kumar, Rahul – sequence: 3 givenname: Vincent surname: Francis fullname: Francis, Vincent – sequence: 4 givenname: Peter S. orcidid: 0000-0001-7806-5662 surname: McPherson fullname: McPherson, Peter S. email: peter.mcpherson@mcgill.ca |
BookMark | eNp9UUlLAzEYDVKxi_4Ab3P0MjXbLEEQpLhBQbAq3kImk9iU6aQmaaH_3gxTD3poLsnHW3j53hgMWtsqAC4RnCKI8uvVdFXJKYYYxRkSmJ-AEYIlSUmGPgdgBCOSMpyVQzD2fgXjoQydgSEhtMhzWo7AfHH3ukhn9iPFiWm1ksEnUjWNT4QOyiU740STqDa4fXyLRDYiLJ1p07WqjQiqjlht5T5Yb_w5ONWi8ericE_A-8P92-wpnb88Ps_u5qmkjIa0wBUVdaYxYUpATKDMJESIaawxZbrCkBBSZ1ldCkJLVcos8iEjpNKMIgHJBNz2vpttFXPILp5o-MaZtXB7boXhf5HWLPmX3fGiRHmOaTS4Ohg4-71VPvC18d23Ravs1nNMS4hzkmEWqUVPlc5675Tm0gQRjO2cTcMR5F0XfMVjF7zrgvddRCX6p_wNeExz02tUXN_OKMe9NKqVcdkudsNra46ofwAVs6HI |
CitedBy_id | crossref_primary_10_3389_fmolb_2021_813175 crossref_primary_10_3390_molecules27092723 crossref_primary_10_1021_acs_jmedchem_2c00697 crossref_primary_10_1128_JVI_02288_20 crossref_primary_10_1371_journal_ppat_1010343 crossref_primary_10_1039_D1NA00839K crossref_primary_10_1042_EBC20220082 crossref_primary_10_1016_j_coviro_2021_11_002 crossref_primary_10_3389_fcimb_2022_794264 crossref_primary_10_3390_v14051092 crossref_primary_10_1007_s00439_021_02397_7 crossref_primary_10_1016_j_scib_2023_08_031 crossref_primary_10_1080_22221751_2021_2021806 crossref_primary_10_3390_vaccines10060951 crossref_primary_10_1038_s41467_022_29896_z crossref_primary_10_26508_lsa_202201880 crossref_primary_10_3390_ijms22105274 crossref_primary_10_1093_pcmedi_pbae015 crossref_primary_10_1039_D2EN00019A crossref_primary_10_1016_j_biochi_2024_02_006 crossref_primary_10_1038_s12276_024_01283_2 crossref_primary_10_1038_s41423_023_01122_w crossref_primary_10_1007_s12275_021_1348_5 crossref_primary_10_1016_j_bbrc_2021_11_097 crossref_primary_10_3390_v14122825 crossref_primary_10_3390_ijerph19116410 crossref_primary_10_1016_j_jbc_2024_108144 crossref_primary_10_15252_embj_2022110727 crossref_primary_10_3389_fimmu_2023_1271508 crossref_primary_10_3390_ijms24087151 crossref_primary_10_3390_microorganisms11020341 crossref_primary_10_1073_pnas_2407437121 crossref_primary_10_1016_j_biopha_2022_113104 crossref_primary_10_1016_j_str_2025_02_011 crossref_primary_10_1186_s11658_022_00308_w crossref_primary_10_7759_cureus_77188 crossref_primary_10_1016_j_antiviral_2022_105367 crossref_primary_10_1038_s41598_021_99893_7 crossref_primary_10_3390_cimb44100342 crossref_primary_10_1038_s42003_023_05317_9 crossref_primary_10_1016_j_jbc_2023_104763 crossref_primary_10_1016_j_isci_2022_105066 crossref_primary_10_1080_21688370_2022_2090792 crossref_primary_10_2139_ssrn_4114954 crossref_primary_10_1038_s41467_024_54037_z crossref_primary_10_1016_j_celrep_2022_111102 crossref_primary_10_3390_cells11172631 crossref_primary_10_3390_ijms23073448 crossref_primary_10_26508_lsa_202302453 crossref_primary_10_1038_s41590_021_01091_0 crossref_primary_10_1016_j_molliq_2022_119795 crossref_primary_10_1128_jvi_01760_24 crossref_primary_10_1161_HYPERTENSIONAHA_124_22067 crossref_primary_10_1371_journal_pone_0263146 crossref_primary_10_3389_fmicb_2023_1258975 crossref_primary_10_3390_molecules27123651 crossref_primary_10_1038_s41467_022_35590_x crossref_primary_10_3390_cells10071814 crossref_primary_10_1016_j_eclinm_2022_101493 crossref_primary_10_1016_j_virs_2023_06_005 crossref_primary_10_3390_vaccines11020204 crossref_primary_10_1186_s13578_023_01070_y crossref_primary_10_1002_smll_202105640 crossref_primary_10_4110_in_2023_23_e26 crossref_primary_10_1007_s12013_024_01529_w crossref_primary_10_1016_j_celrep_2022_110945 crossref_primary_10_1021_acsinfecdis_1c00253 crossref_primary_10_3390_vaccines11030615 crossref_primary_10_3390_biomedicines9091142 crossref_primary_10_1016_j_jbc_2022_102511 crossref_primary_10_1128_mbio_01060_21 crossref_primary_10_1016_j_micpath_2021_105278 crossref_primary_10_32322_jhsm_1343953 crossref_primary_10_1016_j_jbc_2024_107390 crossref_primary_10_3390_microorganisms10071284 crossref_primary_10_1016_j_cophys_2022_100596 crossref_primary_10_3390_v16081243 crossref_primary_10_1038_s41577_022_00784_3 crossref_primary_10_1080_07391102_2023_2173297 crossref_primary_10_1016_j_jtcme_2021_09_005 crossref_primary_10_3389_fcimb_2023_1249894 crossref_primary_10_1128_mbio_00892_22 crossref_primary_10_1021_acs_analchem_4c05966 crossref_primary_10_1089_jir_2022_0029 crossref_primary_10_1165_rcmb_2023_0020ED crossref_primary_10_1016_j_ejphar_2021_174191 crossref_primary_10_1016_j_placenta_2023_01_004 crossref_primary_10_3390_v14122738 crossref_primary_10_1080_26896583_2023_2186683 crossref_primary_10_1111_cts_13400 crossref_primary_10_1016_j_bcp_2022_115370 crossref_primary_10_1002_iid3_573 crossref_primary_10_3389_fnins_2021_674204 crossref_primary_10_3390_v14102201 crossref_primary_10_1016_j_cellin_2022_100031 crossref_primary_10_1126_sciadv_abn2018 crossref_primary_10_1128_jvi_01611_22 crossref_primary_10_1183_13993003_00133_2024 crossref_primary_10_1016_j_chembiol_2023_02_001 crossref_primary_10_3389_fimmu_2021_762162 crossref_primary_10_1039_D1SC06750H crossref_primary_10_3390_v14040828 crossref_primary_10_1186_s13567_024_01442_3 crossref_primary_10_3389_fendo_2022_799521 crossref_primary_10_1016_j_ydbio_2024_09_001 crossref_primary_10_3390_biom14101232 crossref_primary_10_1515_mr_2022_0016 crossref_primary_10_3390_v16081341 crossref_primary_10_1016_j_isci_2021_102770 crossref_primary_10_1038_s41598_022_15976_z crossref_primary_10_1136_gutjnl_2022_326952 crossref_primary_10_3389_froh_2022_1001790 crossref_primary_10_1002_mco2_254 crossref_primary_10_1089_dna_2023_0002 crossref_primary_10_1016_j_apsb_2021_05_007 crossref_primary_10_1016_j_chembiol_2023_02_010 crossref_primary_10_1016_j_isci_2022_105082 crossref_primary_10_3390_v14030496 crossref_primary_10_51847_8u5aXM8acL crossref_primary_10_1016_j_trac_2022_116814 crossref_primary_10_1080_07391102_2022_2120541 crossref_primary_10_3390_ijms24098290 crossref_primary_10_1186_s12864_024_10342_x crossref_primary_10_1002_ptr_8040 crossref_primary_10_3389_fmolb_2023_1288686 crossref_primary_10_3390_biom13101452 crossref_primary_10_3390_v15051040 crossref_primary_10_1002_rmv_2403 crossref_primary_10_1055_s_0043_1768969 crossref_primary_10_4014_jmb_2206_06064 crossref_primary_10_3390_antiox13020175 crossref_primary_10_1016_j_ebiom_2024_105361 crossref_primary_10_1007_s43440_021_00303_6 crossref_primary_10_1128_jvi_01915_23 crossref_primary_10_2139_ssrn_4052012 crossref_primary_10_1038_s41467_024_52773_w crossref_primary_10_3390_ijms241411597 crossref_primary_10_3390_v14122728 crossref_primary_10_3390_ijms23147609 crossref_primary_10_1016_j_compbiomed_2024_109343 crossref_primary_10_1038_s41392_023_01631_0 crossref_primary_10_3390_v13112132 crossref_primary_10_1016_j_antiviral_2023_105769 crossref_primary_10_54393_pjhs_v5i03_1340 crossref_primary_10_2139_ssrn_4089984 crossref_primary_10_1002_jmv_28212 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_2139_ssrn_4137991 crossref_primary_10_1128_jvi_00128_22 crossref_primary_10_1021_acsinfecdis_2c00217 crossref_primary_10_1242_jcs_260887 crossref_primary_10_1007_s12033_024_01277_5 crossref_primary_10_1016_j_isci_2024_109363 crossref_primary_10_1038_s41392_023_01510_8 crossref_primary_10_3390_v15091930 crossref_primary_10_1007_s00284_024_03846_y crossref_primary_10_1016_j_cell_2022_11_030 crossref_primary_10_1371_journal_ppat_1012365 crossref_primary_10_1002_rmv_2423 crossref_primary_10_3390_ijms222011028 crossref_primary_10_1002_rmv_2543 crossref_primary_10_3389_fimmu_2022_947384 crossref_primary_10_1016_j_jve_2022_100307 crossref_primary_10_1038_s41598_022_22921_7 crossref_primary_10_1038_s41580_021_00418_x crossref_primary_10_1016_j_molimm_2022_11_020 crossref_primary_10_1128_aac_00439_22 crossref_primary_10_3389_fimmu_2024_1360370 crossref_primary_10_1007_s12602_022_09998_2 crossref_primary_10_1016_j_carbpol_2024_122605 crossref_primary_10_1111_jfbc_14212 crossref_primary_10_3390_v15091925 crossref_primary_10_1016_j_jacadv_2024_101107 crossref_primary_10_1002_rmv_2413 crossref_primary_10_1038_s41392_022_00997_x crossref_primary_10_1038_s42003_022_03841_8 crossref_primary_10_3389_fimmu_2022_966236 crossref_primary_10_1016_j_micres_2023_127364 crossref_primary_10_1099_jgv_0_001868 crossref_primary_10_3389_fimmu_2021_612807 crossref_primary_10_1021_acsbiomaterials_1c00318 crossref_primary_10_3389_fphar_2021_787261 crossref_primary_10_1002_jcb_30396 crossref_primary_10_3389_fmed_2024_1364657 crossref_primary_10_1016_j_repc_2022_02_014 crossref_primary_10_1073_pnas_2117576119 crossref_primary_10_3389_fimmu_2023_1268854 crossref_primary_10_3390_membranes12090859 crossref_primary_10_3390_v16111726 crossref_primary_10_1002_rmv_2321 crossref_primary_10_1111_imr_70000 crossref_primary_10_3390_life12101605 crossref_primary_10_1016_j_lfs_2021_120284 crossref_primary_10_3389_fimmu_2021_785941 crossref_primary_10_1098_rsfs_2021_0019 crossref_primary_10_3390_v15102001 crossref_primary_10_1002_advs_202411515 crossref_primary_10_3389_fimmu_2023_1254206 crossref_primary_10_3390_pathogens12060843 crossref_primary_10_3389_fimmu_2022_833355 crossref_primary_10_1099_jgv_0_002009 crossref_primary_10_1128_spectrum_00459_22 crossref_primary_10_1016_j_micres_2024_127659 crossref_primary_10_3390_molecules27030658 crossref_primary_10_3390_v15071615 crossref_primary_10_3390_ijms24032971 crossref_primary_10_1016_j_ejmcr_2022_100079 crossref_primary_10_1128_jvi_01418_22 crossref_primary_10_1007_s13577_024_01142_2 crossref_primary_10_1016_j_isci_2024_110387 crossref_primary_10_1055_a_1873_2150 crossref_primary_10_1080_15476286_2023_2241755 crossref_primary_10_1128_JVI_00975_21 crossref_primary_10_1371_journal_ppat_1012690 crossref_primary_10_3389_fimmu_2024_1380697 crossref_primary_10_3390_clinpract11040085 crossref_primary_10_1016_j_coviro_2021_02_006 crossref_primary_10_1111_mmi_15284 crossref_primary_10_1007_s00210_022_02262_y crossref_primary_10_1038_s41467_024_49415_6 crossref_primary_10_3390_cells11010045 crossref_primary_10_1007_s43440_024_00585_6 crossref_primary_10_1016_j_micres_2022_126993 crossref_primary_10_3389_fviro_2022_848465 crossref_primary_10_1186_s13578_024_01331_4 crossref_primary_10_3389_fimmu_2022_1050478 crossref_primary_10_1016_j_jneuroim_2021_577658 crossref_primary_10_1111_imr_13084 crossref_primary_10_1002_adbi_202101327 crossref_primary_10_1007_s00705_022_05366_1 crossref_primary_10_1128_jvi_01823_24 crossref_primary_10_2174_1389203724666230816092518 crossref_primary_10_1111_acel_14050 crossref_primary_10_1042_BCJ20210602 crossref_primary_10_1186_s12985_022_01783_5 crossref_primary_10_1371_journal_ppat_1011358 crossref_primary_10_3390_v16050785 crossref_primary_10_3390_v14112535 crossref_primary_10_3389_fncel_2021_777738 crossref_primary_10_1038_s41467_023_41453_w crossref_primary_10_1038_s41598_021_02432_7 crossref_primary_10_3390_v14092044 crossref_primary_10_1021_acsnano_4c04212 crossref_primary_10_3389_fimmu_2022_1066456 crossref_primary_10_1128_aac_00341_24 crossref_primary_10_3390_biom12111665 crossref_primary_10_3389_fnins_2023_1117845 crossref_primary_10_3390_ijms241914584 crossref_primary_10_1016_j_devcel_2024_04_008 crossref_primary_10_1016_j_bioorg_2022_105985 crossref_primary_10_1016_j_ejmech_2024_116232 crossref_primary_10_1016_j_bbrc_2024_149954 crossref_primary_10_3390_ijms23094576 crossref_primary_10_1128_mbio_03368_23 crossref_primary_10_2147_IJN_S500978 crossref_primary_10_3390_ijms25168917 crossref_primary_10_1007_s40242_022_2069_y crossref_primary_10_1002_rmv_2348 crossref_primary_10_1016_j_ijbiomac_2023_127021 crossref_primary_10_1038_s41467_023_37059_x crossref_primary_10_1024_0301_1526_a000991 crossref_primary_10_3389_fcimb_2024_1353971 crossref_primary_10_3390_v14071507 crossref_primary_10_1016_j_smhs_2023_03_004 crossref_primary_10_3390_brainsci12010059 crossref_primary_10_1007_s10787_024_01525_9 crossref_primary_10_1128_spectrum_02553_23 crossref_primary_10_1016_j_ijid_2022_11_018 crossref_primary_10_3390_ijms24054523 crossref_primary_10_3390_molecules27175405 crossref_primary_10_3389_fviro_2022_923018 crossref_primary_10_3390_v15020496 crossref_primary_10_1186_s12985_024_02460_5 crossref_primary_10_3389_fimmu_2021_796855 crossref_primary_10_1002_jmv_28953 crossref_primary_10_1016_j_ejogrb_2024_10_027 crossref_primary_10_1016_j_ijbiomac_2025_141602 crossref_primary_10_1038_s41421_021_00357_z crossref_primary_10_1177_09544062221098538 crossref_primary_10_3390_microorganisms11010030 crossref_primary_10_3390_v13061029 crossref_primary_10_3390_ijms241411860 crossref_primary_10_3389_fmicb_2023_1162470 crossref_primary_10_3389_fimmu_2022_752105 crossref_primary_10_3390_v16111648 crossref_primary_10_1073_pnas_2301689120 crossref_primary_10_1016_j_clim_2022_109093 crossref_primary_10_3389_fmicb_2024_1332175 crossref_primary_10_3390_v13112306 crossref_primary_10_1111_bph_16063 crossref_primary_10_3390_immuno2020017 crossref_primary_10_2174_1389450124666221014102927 crossref_primary_10_1134_S1990747822060034 crossref_primary_10_1016_j_ymthe_2024_06_038 crossref_primary_10_3389_fimmu_2021_636966 crossref_primary_10_1016_j_biocel_2022_106349 crossref_primary_10_1021_acschembio_2c00378 crossref_primary_10_3390_ijms22126558 crossref_primary_10_1016_j_ijbiomac_2022_09_105 crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_3389_fimmu_2024_1378591 crossref_primary_10_1038_s41598_023_48084_7 crossref_primary_10_3390_v15030639 crossref_primary_10_1042_BSR20231395 crossref_primary_10_3390_ijms25147553 crossref_primary_10_3390_ijms25010640 crossref_primary_10_1186_s12951_021_00926_0 crossref_primary_10_15252_embr_202154322 crossref_primary_10_3390_v15061231 crossref_primary_10_1016_j_biochi_2024_05_004 crossref_primary_10_3390_ijms23094545 crossref_primary_10_1371_journal_pone_0273660 crossref_primary_10_1242_dmm_050049 crossref_primary_10_1016_j_jacbts_2022_08_005 crossref_primary_10_3390_covid3120121 crossref_primary_10_3390_ijms24021654 crossref_primary_10_3390_v16111776 crossref_primary_10_3390_life14020279 crossref_primary_10_3390_fishes7060315 |
Cites_doi | 10.1016/j.antiviral.2020.104792 10.1002/path.1570 10.1111/j.1600-0854.2005.00274.x 10.1038/s41565-020-0674-9 10.1016/j.cell.2006.02.007 10.1038/s41564-020-0688-y 10.1016/j.devcel.2015.03.002 10.1016/S0140-6736(20)30183-5 10.1073/pnas.1921186117 10.1038/cr.2008.15 10.1038/s41598-018-25640-0 10.15252/msb.20209610 10.1371/journal.ppat.1004502 10.1016/j.cell.2018.12.028 10.1056/NEJMoa030747 10.1128/JVI.01933-17 10.3390/v12050513 10.1073/pnas.0409465102 10.1016/S0092-8674(00)81404-X 10.1016/j.devcel.2006.04.002 10.1073/pnas.1809667116 10.1073/pnas.2007837117 10.1016/j.cell.2011.06.025 10.1016/S0955-0674(03)00081-4 10.1186/gb-2007-8-7-r142 10.1126/science.abd2985 10.1128/JVI.78.16.8701-8708.2004 10.1128/JVI.01218-20 10.1038/nature12328 10.1016/bs.aivir.2019.08.002 10.5582/bst.2020.01047 10.1128/JVI.00253-07 10.1126/science.abb2507 10.1016/j.cell.2020.02.052 10.1056/NEJMoa2001017 10.1016/j.cell.2020.10.039 10.1038/357420a0 10.1016/j.jbiotec.2020.01.015 10.1056/NEJMoa1211721 10.1126/science.abd3072 10.1056/NEJMoa030781 10.1111/j.1600-0854.2011.01321.x 10.1016/j.encep.2020.05.006 10.1038/s41586-020-2012-7 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.jbc.2021.100306 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC7816624 10_1016_j_jbc_2021_100306 S0021925821000752 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 7X8 5PM |
ID | FETCH-LOGICAL-c494t-72b4ad5f239ea0230c5c0119f2f249fb20333d55d8a348e8c5b4a0933bf941a03 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:02:08 EDT 2025 Sun Aug 24 03:27:23 EDT 2025 Tue Jul 01 04:33:18 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Fri Feb 23 02:43:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TfR infection clathrin SARS-CoV MERS-CoV CQ dynamin COVID-19 ACE2 SARS-CoV-2 Tf virus entry endocytosis CHC |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c494t-72b4ad5f239ea0230c5c0119f2f249fb20333d55d8a348e8c5b4a0933bf941a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7806-5662 |
OpenAccessLink | http://dx.doi.org/10.1016/j.jbc.2021.100306 |
PMID | 33476648 |
PQID | 2480263529 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7816624 proquest_miscellaneous_2480263529 crossref_citationtrail_10_1016_j_jbc_2021_100306 crossref_primary_10_1016_j_jbc_2021_100306 elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Journal of biological chemistry |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Yamauchi, Helenius (bib41) 2013; 126 Hikmet, Méar, Edvinsson, Micke, Uhlén, Lindskog (bib44) 2020; 16 Sun, Xiao, Liu, Wang, Li, Wang, Li, Zhu, Song, Sun, Jiang, Liu, Zhang, Wei, Hou (bib7) 2020; 117 Hulswit, Lang, Bakkers, Li, Li, Schouten, Ophorst, van Kuppeveld, Boons, Bosch, Huizinga, de groot (bib24) 2019; 116 Crawford, Eguia, Dingens, Loes, Malone, Wolf, Chu, Tortorici, Veesler, Murphy, Pettie, King, Balazs, Bloom (bib30) 2020; 12 Owczarek, Szczepanski, Milewska, Baster, Rajfur, Sarna, Pyrc (bib21) 2018; 8 Weber, Zemelman, McNew, Westermann, Gmachl, Parlati, Söllner, Rothman (bib17) 1998; 92 Wang, Yang, Liu, Guo, Zhang, Zhang, Jiang (bib28) 2008; 18 Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib8) 2020; 367 Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz, Kuivanen, van der Meer, Kallio, Kaya, Anastasina, Smura, Levanov, Szirovicza, Tobi, Kallio-Kokko (bib14) 2020; 370 von Kleist, Stahlschmidt, Bulut, Gromova, Puchkov, Robertson, MacGregor, Tomilin, Pechstein, Chau, Chircop, Sakoff, von Kries, Saenger, Kräusslich (bib33) 2011; 146 Miller, Mathiasen, Bright, Pierre, Kelly, Kladt, Schauss, Merrifield, Stamou, Höning, Owen (bib47) 2015; 33 Galvez, Teruel, Do Heo, Jones, Kim, Liou, Myers, Meyer (bib36) 2007; 8 Hu, Frieman, Wolfram (bib46) 2020; 15 Burkard, Verheije, Wicht, van Kasteren, van Kuppeveld, Haagmans, Pelkmans, Rottier, Bosch, de Haan (bib25) 2014; 10 Inoue, Tanaka, Tanaka, Inoue, Morita, Zhuang, Hattori, Sugamara (bib27) 2007; 81 Yeager, Ashmun, Williams, Cardellicho, Shapiro, Look, Homes (bib19) 1992; 357 Lemmon, Traub (bib35) 2012; 13 Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qui, Fisher, Takvorian, Bleck, Hsu, Fehr, Perlman, Achar, Straus, Whittaker, deHaan (bib43) 2020; 183 Gao, Tian, Yang (bib45) 2020; 16 Marcia, Ehrlich, Massol, Boucrot, Brunner, Kirchhausen (bib32) 2006; 10 Ksiazek, Erdman, Goldsmith, Zaki, Peret, Emery, Tong, Urbani, Comer, Lim, Rollin, Dowell, Ling, Humphrey, Shieh (bib3) 2003; 348 Pelkmans, Helenius (bib40) 2003; 15 Tang, Bidon, Jaimes, Whittaker, Daniel (bib18) 2020; 178 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib4) 2020; 395 Kim, Sorg, Arrieumerlou (bib37) 2011; 6 Li, Stolz, Romero (bib31) 2005; 6 Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao, Zhang, Shi, Yan, Gao (bib26) 2013; 500 Nomura, Kiyota, Suzaki, Kataoka, Ohe, Miyamoto, Senda, Fujimoto (bib20) 2004; 78 Kang, Chou, Rothlauf, Liu, Piccinotti, Soh, Cureton, Case, Chen, Diamond, Whelan, Kirchhausen (bib39) 2020; 117 Hamming, Timens, Bulthuis, Lely, Navis, van Goor (bib16) 2004; 203 Stoorvogel, Strous, Ciechanover, Schwartz (bib38) 1991; 4 Weston, Coleman, Haupt, Logue, Matthews, Li, Reyes, Weiss, Frieman (bib48) 2020; 94 Davies, Randeva, Chatha, Hall, Spandidos, Karteris, Kyrou (bib15) 2020; 22 Marsh, Helenius (bib42) 2006; 124 Hofmann, Pyrc, Van Der Hoek, Geier, Berkhout, Pöhlmann (bib22) 2005; 102 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib1) 2012; 367 Tortorici, Veesler (bib6) 2019; 105 Drosten, Günther, Preiser, van der Werf, Brodt, Becker, Rabenau, Panning, Kolesnikova, Fouchier, Berger, Burguière, Cinatl, Eickmann, Escriou (bib2) 2003; 348 Milewska, Nowak, Owczarek, Szczepanski, Zarebski, Hoang, Berniak, Wojarski, Zeglen, Baster, Rajfur, Pyrc (bib23) 2018; 92 Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche, Müller, Drosten, Pöhlmann (bib9) 2020; 181 Daly, Simonetti, Klein, Chen, Williamson, Antón-Plágaro, Shoemark, Simón-Gracia, Bauer, Hollandi, Greber, Horvath, Sessions, Helenius, Hiscox (bib13) 2020; 370 Letko, Marzi, Munster (bib10) 2020; 5 Park, Shen, Liu, Liu, Ferguson, De Camilli (bib34) 2013; 126 Plaze, Attali, Petit, Blatzer, Simon-Loriere, Vinckier, Cachia, Chrétien, Gaillard (bib49) 2020; 46 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib5) 2020; 382 Kiesslich, Losa, Gelinas, Kamen (bib29) 2020; 310 Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia, Zambon, Rey, Corti, Veesler (bib12) 2019; 176 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang (bib11) 2020; 579 Ksiazek (10.1016/j.jbc.2021.100306_bib3) 2003; 348 Hulswit (10.1016/j.jbc.2021.100306_bib24) 2019; 116 Nomura (10.1016/j.jbc.2021.100306_bib20) 2004; 78 Lemmon (10.1016/j.jbc.2021.100306_bib35) 2012; 13 Drosten (10.1016/j.jbc.2021.100306_bib2) 2003; 348 Hoffmann (10.1016/j.jbc.2021.100306_bib9) 2020; 181 Zaki (10.1016/j.jbc.2021.100306_bib1) 2012; 367 Hu (10.1016/j.jbc.2021.100306_bib46) 2020; 15 Tortorici (10.1016/j.jbc.2021.100306_bib6) 2019; 105 Yamauchi (10.1016/j.jbc.2021.100306_bib41) 2013; 126 Sun (10.1016/j.jbc.2021.100306_bib7) 2020; 117 Daly (10.1016/j.jbc.2021.100306_bib13) 2020; 370 Marsh (10.1016/j.jbc.2021.100306_bib42) 2006; 124 Cantuti-Castelvetri (10.1016/j.jbc.2021.100306_bib14) 2020; 370 Milewska (10.1016/j.jbc.2021.100306_bib23) 2018; 92 Zhou (10.1016/j.jbc.2021.100306_bib11) 2020; 579 Park (10.1016/j.jbc.2021.100306_bib34) 2013; 126 Hofmann (10.1016/j.jbc.2021.100306_bib22) 2005; 102 Li (10.1016/j.jbc.2021.100306_bib31) 2005; 6 Walls (10.1016/j.jbc.2021.100306_bib12) 2019; 176 Inoue (10.1016/j.jbc.2021.100306_bib27) 2007; 81 Lu (10.1016/j.jbc.2021.100306_bib26) 2013; 500 Yeager (10.1016/j.jbc.2021.100306_bib19) 1992; 357 Hamming (10.1016/j.jbc.2021.100306_bib16) 2004; 203 Weber (10.1016/j.jbc.2021.100306_bib17) 1998; 92 Wang (10.1016/j.jbc.2021.100306_bib28) 2008; 18 Zhu (10.1016/j.jbc.2021.100306_bib5) 2020; 382 Galvez (10.1016/j.jbc.2021.100306_bib36) 2007; 8 Owczarek (10.1016/j.jbc.2021.100306_bib21) 2018; 8 Letko (10.1016/j.jbc.2021.100306_bib10) 2020; 5 Kim (10.1016/j.jbc.2021.100306_bib37) 2011; 6 Marcia (10.1016/j.jbc.2021.100306_bib32) 2006; 10 Kiesslich (10.1016/j.jbc.2021.100306_bib29) 2020; 310 Tang (10.1016/j.jbc.2021.100306_bib18) 2020; 178 Huang (10.1016/j.jbc.2021.100306_bib4) 2020; 395 Wrapp (10.1016/j.jbc.2021.100306_bib8) 2020; 367 Miller (10.1016/j.jbc.2021.100306_bib47) 2015; 33 Plaze (10.1016/j.jbc.2021.100306_bib49) 2020; 46 Burkard (10.1016/j.jbc.2021.100306_bib25) 2014; 10 Gao (10.1016/j.jbc.2021.100306_bib45) 2020; 16 von Kleist (10.1016/j.jbc.2021.100306_bib33) 2011; 146 Ghosh (10.1016/j.jbc.2021.100306_bib43) 2020; 183 Weston (10.1016/j.jbc.2021.100306_bib48) 2020; 94 Stoorvogel (10.1016/j.jbc.2021.100306_bib38) 1991; 4 Crawford (10.1016/j.jbc.2021.100306_bib30) 2020; 12 Kang (10.1016/j.jbc.2021.100306_bib39) 2020; 117 Hikmet (10.1016/j.jbc.2021.100306_bib44) 2020; 16 Pelkmans (10.1016/j.jbc.2021.100306_bib40) 2003; 15 Davies (10.1016/j.jbc.2021.100306_bib15) 2020; 22 |
References_xml | – volume: 310 start-page: 32 year: 2020 end-page: 39 ident: bib29 article-title: Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X hydron fixed bed publication-title: J. Biotech. – volume: 102 start-page: 7988 year: 2005 end-page: 7993 ident: bib22 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 start-page: 169 year: 2020 end-page: 172 ident: bib49 article-title: Repurposing chlorpromazine to treat COVID-19: The recovery study publication-title: Encephale – volume: 105 start-page: 93 year: 2019 end-page: 116 ident: bib6 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. – volume: 6 year: 2011 ident: bib37 article-title: Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kB activation publication-title: PLoS One – volume: 92 start-page: 759 year: 1998 end-page: 772 ident: bib17 article-title: SNAREpins: Minimal machinery for membrane fusion publication-title: Cell – volume: 126 start-page: 5305 year: 2013 end-page: 5312 ident: bib34 article-title: Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors publication-title: J. Cell Sci. – volume: 367 start-page: 1260 year: 2020 end-page: 1263 ident: bib8 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science – volume: 12 year: 2020 ident: bib30 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays publication-title: Viruses – volume: 6 start-page: 324 year: 2005 end-page: 334 ident: bib31 article-title: Characterization of endocytic vesicles using magnetic microbeads coated with signaling ligands publication-title: Traffic – volume: 117 start-page: 17204 year: 2020 end-page: 17210 ident: bib7 article-title: Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 290 year: 2008 end-page: 301 ident: bib28 article-title: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway publication-title: Cell Res. – volume: 348 start-page: 1967 year: 2003 end-page: 1976 ident: bib2 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 15 start-page: 414 year: 2003 end-page: 422 ident: bib40 article-title: Insider information: What viruses tell us about endocytosis publication-title: Curr. Opin. Cell Biol. – volume: 116 start-page: 2681 year: 2019 end-page: 2690 ident: bib24 article-title: Human coronaviruses OC43 and HKU1 bind to 9- publication-title: Pro.c Natl. Acad. Sci. U. S. A. – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib11 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 183 start-page: 1520 year: 2020 end-page: 1535 ident: bib43 article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway publication-title: Cell – volume: 117 start-page: 20803 year: 2020 end-page: 20813 ident: bib39 article-title: Inhibition of PIKfyve kinase prevents infection 1 by EBOV and SARS2 CoV-2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 78 start-page: 8701 year: 2004 end-page: 8708 ident: bib20 article-title: Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae publication-title: J. Virol. – volume: 81 start-page: 8722 year: 2007 end-page: 8729 ident: bib27 article-title: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic Tail Deleted publication-title: J. Virol. – volume: 13 start-page: 511 year: 2012 end-page: 519 ident: bib35 article-title: Getting in touch with the clathrin terminal domain publication-title: Traffic – volume: 176 start-page: 1026 year: 2019 end-page: 1039 ident: bib12 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell – volume: 8 year: 2018 ident: bib21 article-title: Early events during human coronavirus OC43 entry to the cell publication-title: Sci. Rep. – volume: 203 start-page: 631 year: 2004 end-page: 637 ident: bib16 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. – volume: 10 start-page: 839 year: 2006 end-page: 850 ident: bib32 article-title: Dynasore, a cell-permeable inhibitor of dynamin publication-title: Dev. Cell – volume: 348 start-page: 1953 year: 2003 end-page: 1966 ident: bib3 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: bib9 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 178 year: 2020 ident: bib18 article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development publication-title: Antivir. Res. – volume: 357 start-page: 420 year: 1992 end-page: 422 ident: bib19 article-title: Human aminopeptidase N is a receptor for human coronavirus 229E publication-title: Nature – volume: 126 start-page: 1289 year: 2013 end-page: 1295 ident: bib41 article-title: Virus entry at a glance publication-title: J. Cell Sci. – volume: 370 start-page: 856 year: 2020 end-page: 860 ident: bib14 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science – volume: 92 year: 2018 ident: bib23 article-title: Entry of human coronavirus NL63 into the cell publication-title: J. Virol. – volume: 146 start-page: 471 year: 2011 end-page: 484 ident: bib33 article-title: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition publication-title: Cell – volume: 94 year: 2020 ident: bib48 article-title: Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 publication-title: J. Virol. – volume: 16 start-page: 72 year: 2020 end-page: 73 ident: bib45 article-title: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies publication-title: Biosci. Trends. – volume: 33 start-page: 163 year: 2015 end-page: 175 ident: bib47 article-title: CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature publication-title: Dev. Cell – volume: 124 start-page: 729 year: 2006 end-page: 740 ident: bib42 article-title: Virus entry: Open sesame publication-title: Cell – volume: 15 start-page: 247 year: 2020 end-page: 249 ident: bib46 article-title: Insights from nanomedicine into chloriquine efficacy against COVID-19 publication-title: Nat. Nanotech. – volume: 370 start-page: 861 year: 2020 end-page: 865 ident: bib13 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science – volume: 4 start-page: 267 year: 1991 end-page: 304 ident: bib38 article-title: Trafficking of the transferrin receptor publication-title: Targeted Diagn. Ther. – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: bib1 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: bib4 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 8 year: 2007 ident: bib36 article-title: siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake publication-title: Gen. Biol. – volume: 22 start-page: 4221 year: 2020 end-page: 4226 ident: bib15 article-title: Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19 publication-title: Mol. Med. Rep. – volume: 10 year: 2014 ident: bib25 article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner publication-title: PLoS Pathog. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib5 article-title: A Novel coronavirus from patients with pneumonia in China publication-title: N. Engl. J. Med. – volume: 500 start-page: 227 year: 2013 end-page: 231 ident: bib26 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature – volume: 5 start-page: 562 year: 2020 end-page: 569 ident: bib10 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. – volume: 16 year: 2020 ident: bib44 article-title: The protein expression profile of ACE2 in human tissues publication-title: Mol. Syst. Biol. – volume: 178 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib18 article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2020.104792 – volume: 203 start-page: 631 year: 2004 ident: 10.1016/j.jbc.2021.100306_bib16 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 6 start-page: 324 year: 2005 ident: 10.1016/j.jbc.2021.100306_bib31 article-title: Characterization of endocytic vesicles using magnetic microbeads coated with signaling ligands publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00274.x – volume: 15 start-page: 247 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib46 article-title: Insights from nanomedicine into chloriquine efficacy against COVID-19 publication-title: Nat. Nanotech. doi: 10.1038/s41565-020-0674-9 – volume: 124 start-page: 729 year: 2006 ident: 10.1016/j.jbc.2021.100306_bib42 article-title: Virus entry: Open sesame publication-title: Cell doi: 10.1016/j.cell.2006.02.007 – volume: 5 start-page: 562 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib10 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – volume: 4 start-page: 267 year: 1991 ident: 10.1016/j.jbc.2021.100306_bib38 article-title: Trafficking of the transferrin receptor publication-title: Targeted Diagn. Ther. – volume: 33 start-page: 163 year: 2015 ident: 10.1016/j.jbc.2021.100306_bib47 article-title: CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.03.002 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib4 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 117 start-page: 17204 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib7 article-title: Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1921186117 – volume: 18 start-page: 290 year: 2008 ident: 10.1016/j.jbc.2021.100306_bib28 article-title: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway publication-title: Cell Res. doi: 10.1038/cr.2008.15 – volume: 8 year: 2018 ident: 10.1016/j.jbc.2021.100306_bib21 article-title: Early events during human coronavirus OC43 entry to the cell publication-title: Sci. Rep. doi: 10.1038/s41598-018-25640-0 – volume: 16 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib44 article-title: The protein expression profile of ACE2 in human tissues publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20209610 – volume: 10 year: 2014 ident: 10.1016/j.jbc.2021.100306_bib25 article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004502 – volume: 176 start-page: 1026 year: 2019 ident: 10.1016/j.jbc.2021.100306_bib12 article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion publication-title: Cell doi: 10.1016/j.cell.2018.12.028 – volume: 348 start-page: 1967 year: 2003 ident: 10.1016/j.jbc.2021.100306_bib2 article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030747 – volume: 92 year: 2018 ident: 10.1016/j.jbc.2021.100306_bib23 article-title: Entry of human coronavirus NL63 into the cell publication-title: J. Virol. doi: 10.1128/JVI.01933-17 – volume: 12 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib30 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays publication-title: Viruses doi: 10.3390/v12050513 – volume: 102 start-page: 7988 year: 2005 ident: 10.1016/j.jbc.2021.100306_bib22 article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0409465102 – volume: 92 start-page: 759 year: 1998 ident: 10.1016/j.jbc.2021.100306_bib17 article-title: SNAREpins: Minimal machinery for membrane fusion publication-title: Cell doi: 10.1016/S0092-8674(00)81404-X – volume: 10 start-page: 839 year: 2006 ident: 10.1016/j.jbc.2021.100306_bib32 article-title: Dynasore, a cell-permeable inhibitor of dynamin publication-title: Dev. Cell doi: 10.1016/j.devcel.2006.04.002 – volume: 116 start-page: 2681 year: 2019 ident: 10.1016/j.jbc.2021.100306_bib24 article-title: Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A publication-title: Pro.c Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1809667116 – volume: 117 start-page: 20803 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib39 article-title: Inhibition of PIKfyve kinase prevents infection 1 by EBOV and SARS2 CoV-2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2007837117 – volume: 146 start-page: 471 year: 2011 ident: 10.1016/j.jbc.2021.100306_bib33 article-title: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition publication-title: Cell doi: 10.1016/j.cell.2011.06.025 – volume: 15 start-page: 414 year: 2003 ident: 10.1016/j.jbc.2021.100306_bib40 article-title: Insider information: What viruses tell us about endocytosis publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(03)00081-4 – volume: 8 year: 2007 ident: 10.1016/j.jbc.2021.100306_bib36 article-title: siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake publication-title: Gen. Biol. doi: 10.1186/gb-2007-8-7-r142 – volume: 370 start-page: 856 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib14 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science doi: 10.1126/science.abd2985 – volume: 78 start-page: 8701 year: 2004 ident: 10.1016/j.jbc.2021.100306_bib20 article-title: Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae publication-title: J. Virol. doi: 10.1128/JVI.78.16.8701-8708.2004 – volume: 94 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib48 article-title: Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo publication-title: J. Virol. doi: 10.1128/JVI.01218-20 – volume: 500 start-page: 227 year: 2013 ident: 10.1016/j.jbc.2021.100306_bib26 article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 publication-title: Nature doi: 10.1038/nature12328 – volume: 105 start-page: 93 year: 2019 ident: 10.1016/j.jbc.2021.100306_bib6 article-title: Structural insights into coronavirus entry publication-title: Adv. Virus Res. doi: 10.1016/bs.aivir.2019.08.002 – volume: 16 start-page: 72 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib45 article-title: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies publication-title: Biosci. Trends. doi: 10.5582/bst.2020.01047 – volume: 81 start-page: 8722 year: 2007 ident: 10.1016/j.jbc.2021.100306_bib27 article-title: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic Tail Deleted publication-title: J. Virol. doi: 10.1128/JVI.00253-07 – volume: 367 start-page: 1260 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib8 article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation publication-title: Science doi: 10.1126/science.abb2507 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib9 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 126 start-page: 5305 year: 2013 ident: 10.1016/j.jbc.2021.100306_bib34 article-title: Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors publication-title: J. Cell Sci. – volume: 382 start-page: 727 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib5 article-title: A Novel coronavirus from patients with pneumonia in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 183 start-page: 1520 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib43 article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway publication-title: Cell doi: 10.1016/j.cell.2020.10.039 – volume: 357 start-page: 420 year: 1992 ident: 10.1016/j.jbc.2021.100306_bib19 article-title: Human aminopeptidase N is a receptor for human coronavirus 229E publication-title: Nature doi: 10.1038/357420a0 – volume: 310 start-page: 32 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib29 article-title: Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X hydron fixed bed publication-title: J. Biotech. doi: 10.1016/j.jbiotec.2020.01.015 – volume: 6 year: 2011 ident: 10.1016/j.jbc.2021.100306_bib37 article-title: Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kB activation publication-title: PLoS One – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.jbc.2021.100306_bib1 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 370 start-page: 861 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib13 article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection publication-title: Science doi: 10.1126/science.abd3072 – volume: 348 start-page: 1953 year: 2003 ident: 10.1016/j.jbc.2021.100306_bib3 article-title: A novel coronavirus associated with severe acute respiratory syndrome publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa030781 – volume: 22 start-page: 4221 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib15 article-title: Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19 publication-title: Mol. Med. Rep. – volume: 13 start-page: 511 year: 2012 ident: 10.1016/j.jbc.2021.100306_bib35 article-title: Getting in touch with the clathrin terminal domain publication-title: Traffic doi: 10.1111/j.1600-0854.2011.01321.x – volume: 46 start-page: 169 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib49 article-title: Repurposing chlorpromazine to treat COVID-19: The recovery study publication-title: Encephale doi: 10.1016/j.encep.2020.05.006 – volume: 126 start-page: 1289 year: 2013 ident: 10.1016/j.jbc.2021.100306_bib41 article-title: Virus entry at a glance publication-title: J. Cell Sci. – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.jbc.2021.100306_bib11 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 |
SSID | ssj0000491 |
Score | 2.6994336 |
SecondaryResourceType | review_article |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100306 |
SubjectTerms | clathrin COVID-19 dynamin endocytosis infection SARS-CoV-2 virus entry |
Title | SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis |
URI | https://dx.doi.org/10.1016/j.jbc.2021.100306 https://www.proquest.com/docview/2480263529 https://pubmed.ncbi.nlm.nih.gov/PMC7816624 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgPMALgg1EGUxGQjxQuUocp0keqwo0AUNAN7S3yL-ithoJWrKH7q_nbCdxOraJ8RJZqWM5vqtzd_7uO4TewhdHFebAnWWRIkxHAREZU0SBI6ZSyoW0PNtHX6eHJ-zTaXzqYWM2u6QRE3l5bV7J_0gV7oFcTZbsHSTbDwo3oA3yhStIGK7_JOPF7MeCzKufhLagqnpsAvF1W_nb4HfPxrZ0CLRNFiSYe-erkth0EWNq6lJVctNU9aoeWqk-X8xaqo6oyVGJdPXhfAR0wx0iwKiMP9Lvkdt86aGHbRUPi61dlXKAuTmS35bW9u8xw-PFZBiRoOEgItFlCIQko46SvdtlaTbcJ0Prq1y7hbtownqyFoZhkoYT33ebLvvKZ6wHF3a4tXUOQ-RmiNwNcR89oOBMmDoXn797TnnwkVxdxXbW3dm3RQFemcVN1svAO9nG1g6MleMn6HErOzxzKvMU3dPlLtqblbypfm3wO2xxv_ZAZRc9nHcy3UNfvEbhVqOw1ShsNQpbjcJWo6DN8V8ahQca9QydfPxwPD8kbb0NIlnGGpJQwbiKCxplmhvfVMbSUAIWtAAnvRA0iKJIxbFKecRSncoY-puImCgyFvIgeo52yqrULxCWIimmUwWfw7BgCRMCDNGIx6HUjIKDrkco6NYxly0ZvamJcpbfKL0Ret8_8tsxsdzWmXXCyVtT0pmIOajZbY-96QSZw8qbBealri7qnLI0MLxNNBuhZEvC_WQMUfv2L-VqaQnbE3M4T9nLu7zBPnrk_1uv0E5zfqFfg_3biAMbNzqwSvwHG02vzA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+infects+cells+after+viral+entry+via+clathrin-mediated+endocytosis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Bayati%2C+Armin&rft.au=Kumar%2C+Rahul&rft.au=Francis%2C+Vincent&rft.au=McPherson%2C+Peter+S.&rft.date=2021-01-01&rft.issn=0021-9258&rft.volume=296&rft.spage=100306&rft_id=info:doi/10.1016%2Fj.jbc.2021.100306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbc_2021_100306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |