SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first st...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 296; p. 100306
Main Authors Bayati, Armin, Kumar, Rahul, Francis, Vincent, McPherson, Peter S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is critical to facing this major medical challenge. SARS-CoV-2 is known to use its spike glycoprotein to interact with the cell surface as a first step in the infection process. As for other coronaviruses, it is likely that SARS-CoV-2 next undergoes endocytosis, but whether or not this is required for infectivity and the precise endocytic mechanism used are unknown. Using purified spike glycoprotein and lentivirus pseudotyped with spike glycoprotein, a common model of SARS-CoV-2 infectivity, we now demonstrate that after engagement with the plasma membrane, SARS-CoV-2 undergoes rapid, clathrin-mediated endocytosis. This suggests that transfer of viral RNA to the cell cytosol occurs from the lumen of the endosomal system. Importantly, we further demonstrate that knockdown of clathrin heavy chain, which blocks clathrin-mediated endocytosis, reduces viral infectivity. These discoveries reveal that SARS-CoV-2 uses clathrin-mediated endocytosis to gain access into cells and suggests that this process is a key aspect of virus infectivity.
ArticleNumber 100306
Author Kumar, Rahul
Bayati, Armin
McPherson, Peter S.
Francis, Vincent
Author_xml – sequence: 1
  givenname: Armin
  surname: Bayati
  fullname: Bayati, Armin
– sequence: 2
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
– sequence: 3
  givenname: Vincent
  surname: Francis
  fullname: Francis, Vincent
– sequence: 4
  givenname: Peter S.
  orcidid: 0000-0001-7806-5662
  surname: McPherson
  fullname: McPherson, Peter S.
  email: peter.mcpherson@mcgill.ca
BookMark eNp9UUlLAzEYDVKxi_4Ab3P0MjXbLEEQpLhBQbAq3kImk9iU6aQmaaH_3gxTD3poLsnHW3j53hgMWtsqAC4RnCKI8uvVdFXJKYYYxRkSmJ-AEYIlSUmGPgdgBCOSMpyVQzD2fgXjoQydgSEhtMhzWo7AfHH3ukhn9iPFiWm1ksEnUjWNT4QOyiU740STqDa4fXyLRDYiLJ1p07WqjQiqjlht5T5Yb_w5ONWi8ericE_A-8P92-wpnb88Ps_u5qmkjIa0wBUVdaYxYUpATKDMJESIaawxZbrCkBBSZ1ldCkJLVcos8iEjpNKMIgHJBNz2vpttFXPILp5o-MaZtXB7boXhf5HWLPmX3fGiRHmOaTS4Ohg4-71VPvC18d23Ravs1nNMS4hzkmEWqUVPlc5675Tm0gQRjO2cTcMR5F0XfMVjF7zrgvddRCX6p_wNeExz02tUXN_OKMe9NKqVcdkudsNra46ofwAVs6HI
CitedBy_id crossref_primary_10_3389_fmolb_2021_813175
crossref_primary_10_3390_molecules27092723
crossref_primary_10_1021_acs_jmedchem_2c00697
crossref_primary_10_1128_JVI_02288_20
crossref_primary_10_1371_journal_ppat_1010343
crossref_primary_10_1039_D1NA00839K
crossref_primary_10_1042_EBC20220082
crossref_primary_10_1016_j_coviro_2021_11_002
crossref_primary_10_3389_fcimb_2022_794264
crossref_primary_10_3390_v14051092
crossref_primary_10_1007_s00439_021_02397_7
crossref_primary_10_1016_j_scib_2023_08_031
crossref_primary_10_1080_22221751_2021_2021806
crossref_primary_10_3390_vaccines10060951
crossref_primary_10_1038_s41467_022_29896_z
crossref_primary_10_26508_lsa_202201880
crossref_primary_10_3390_ijms22105274
crossref_primary_10_1093_pcmedi_pbae015
crossref_primary_10_1039_D2EN00019A
crossref_primary_10_1016_j_biochi_2024_02_006
crossref_primary_10_1038_s12276_024_01283_2
crossref_primary_10_1038_s41423_023_01122_w
crossref_primary_10_1007_s12275_021_1348_5
crossref_primary_10_1016_j_bbrc_2021_11_097
crossref_primary_10_3390_v14122825
crossref_primary_10_3390_ijerph19116410
crossref_primary_10_1016_j_jbc_2024_108144
crossref_primary_10_15252_embj_2022110727
crossref_primary_10_3389_fimmu_2023_1271508
crossref_primary_10_3390_ijms24087151
crossref_primary_10_3390_microorganisms11020341
crossref_primary_10_1073_pnas_2407437121
crossref_primary_10_1016_j_biopha_2022_113104
crossref_primary_10_1016_j_str_2025_02_011
crossref_primary_10_1186_s11658_022_00308_w
crossref_primary_10_7759_cureus_77188
crossref_primary_10_1016_j_antiviral_2022_105367
crossref_primary_10_1038_s41598_021_99893_7
crossref_primary_10_3390_cimb44100342
crossref_primary_10_1038_s42003_023_05317_9
crossref_primary_10_1016_j_jbc_2023_104763
crossref_primary_10_1016_j_isci_2022_105066
crossref_primary_10_1080_21688370_2022_2090792
crossref_primary_10_2139_ssrn_4114954
crossref_primary_10_1038_s41467_024_54037_z
crossref_primary_10_1016_j_celrep_2022_111102
crossref_primary_10_3390_cells11172631
crossref_primary_10_3390_ijms23073448
crossref_primary_10_26508_lsa_202302453
crossref_primary_10_1038_s41590_021_01091_0
crossref_primary_10_1016_j_molliq_2022_119795
crossref_primary_10_1128_jvi_01760_24
crossref_primary_10_1161_HYPERTENSIONAHA_124_22067
crossref_primary_10_1371_journal_pone_0263146
crossref_primary_10_3389_fmicb_2023_1258975
crossref_primary_10_3390_molecules27123651
crossref_primary_10_1038_s41467_022_35590_x
crossref_primary_10_3390_cells10071814
crossref_primary_10_1016_j_eclinm_2022_101493
crossref_primary_10_1016_j_virs_2023_06_005
crossref_primary_10_3390_vaccines11020204
crossref_primary_10_1186_s13578_023_01070_y
crossref_primary_10_1002_smll_202105640
crossref_primary_10_4110_in_2023_23_e26
crossref_primary_10_1007_s12013_024_01529_w
crossref_primary_10_1016_j_celrep_2022_110945
crossref_primary_10_1021_acsinfecdis_1c00253
crossref_primary_10_3390_vaccines11030615
crossref_primary_10_3390_biomedicines9091142
crossref_primary_10_1016_j_jbc_2022_102511
crossref_primary_10_1128_mbio_01060_21
crossref_primary_10_1016_j_micpath_2021_105278
crossref_primary_10_32322_jhsm_1343953
crossref_primary_10_1016_j_jbc_2024_107390
crossref_primary_10_3390_microorganisms10071284
crossref_primary_10_1016_j_cophys_2022_100596
crossref_primary_10_3390_v16081243
crossref_primary_10_1038_s41577_022_00784_3
crossref_primary_10_1080_07391102_2023_2173297
crossref_primary_10_1016_j_jtcme_2021_09_005
crossref_primary_10_3389_fcimb_2023_1249894
crossref_primary_10_1128_mbio_00892_22
crossref_primary_10_1021_acs_analchem_4c05966
crossref_primary_10_1089_jir_2022_0029
crossref_primary_10_1165_rcmb_2023_0020ED
crossref_primary_10_1016_j_ejphar_2021_174191
crossref_primary_10_1016_j_placenta_2023_01_004
crossref_primary_10_3390_v14122738
crossref_primary_10_1080_26896583_2023_2186683
crossref_primary_10_1111_cts_13400
crossref_primary_10_1016_j_bcp_2022_115370
crossref_primary_10_1002_iid3_573
crossref_primary_10_3389_fnins_2021_674204
crossref_primary_10_3390_v14102201
crossref_primary_10_1016_j_cellin_2022_100031
crossref_primary_10_1126_sciadv_abn2018
crossref_primary_10_1128_jvi_01611_22
crossref_primary_10_1183_13993003_00133_2024
crossref_primary_10_1016_j_chembiol_2023_02_001
crossref_primary_10_3389_fimmu_2021_762162
crossref_primary_10_1039_D1SC06750H
crossref_primary_10_3390_v14040828
crossref_primary_10_1186_s13567_024_01442_3
crossref_primary_10_3389_fendo_2022_799521
crossref_primary_10_1016_j_ydbio_2024_09_001
crossref_primary_10_3390_biom14101232
crossref_primary_10_1515_mr_2022_0016
crossref_primary_10_3390_v16081341
crossref_primary_10_1016_j_isci_2021_102770
crossref_primary_10_1038_s41598_022_15976_z
crossref_primary_10_1136_gutjnl_2022_326952
crossref_primary_10_3389_froh_2022_1001790
crossref_primary_10_1002_mco2_254
crossref_primary_10_1089_dna_2023_0002
crossref_primary_10_1016_j_apsb_2021_05_007
crossref_primary_10_1016_j_chembiol_2023_02_010
crossref_primary_10_1016_j_isci_2022_105082
crossref_primary_10_3390_v14030496
crossref_primary_10_51847_8u5aXM8acL
crossref_primary_10_1016_j_trac_2022_116814
crossref_primary_10_1080_07391102_2022_2120541
crossref_primary_10_3390_ijms24098290
crossref_primary_10_1186_s12864_024_10342_x
crossref_primary_10_1002_ptr_8040
crossref_primary_10_3389_fmolb_2023_1288686
crossref_primary_10_3390_biom13101452
crossref_primary_10_3390_v15051040
crossref_primary_10_1002_rmv_2403
crossref_primary_10_1055_s_0043_1768969
crossref_primary_10_4014_jmb_2206_06064
crossref_primary_10_3390_antiox13020175
crossref_primary_10_1016_j_ebiom_2024_105361
crossref_primary_10_1007_s43440_021_00303_6
crossref_primary_10_1128_jvi_01915_23
crossref_primary_10_2139_ssrn_4052012
crossref_primary_10_1038_s41467_024_52773_w
crossref_primary_10_3390_ijms241411597
crossref_primary_10_3390_v14122728
crossref_primary_10_3390_ijms23147609
crossref_primary_10_1016_j_compbiomed_2024_109343
crossref_primary_10_1038_s41392_023_01631_0
crossref_primary_10_3390_v13112132
crossref_primary_10_1016_j_antiviral_2023_105769
crossref_primary_10_54393_pjhs_v5i03_1340
crossref_primary_10_2139_ssrn_4089984
crossref_primary_10_1002_jmv_28212
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_2139_ssrn_4137991
crossref_primary_10_1128_jvi_00128_22
crossref_primary_10_1021_acsinfecdis_2c00217
crossref_primary_10_1242_jcs_260887
crossref_primary_10_1007_s12033_024_01277_5
crossref_primary_10_1016_j_isci_2024_109363
crossref_primary_10_1038_s41392_023_01510_8
crossref_primary_10_3390_v15091930
crossref_primary_10_1007_s00284_024_03846_y
crossref_primary_10_1016_j_cell_2022_11_030
crossref_primary_10_1371_journal_ppat_1012365
crossref_primary_10_1002_rmv_2423
crossref_primary_10_3390_ijms222011028
crossref_primary_10_1002_rmv_2543
crossref_primary_10_3389_fimmu_2022_947384
crossref_primary_10_1016_j_jve_2022_100307
crossref_primary_10_1038_s41598_022_22921_7
crossref_primary_10_1038_s41580_021_00418_x
crossref_primary_10_1016_j_molimm_2022_11_020
crossref_primary_10_1128_aac_00439_22
crossref_primary_10_3389_fimmu_2024_1360370
crossref_primary_10_1007_s12602_022_09998_2
crossref_primary_10_1016_j_carbpol_2024_122605
crossref_primary_10_1111_jfbc_14212
crossref_primary_10_3390_v15091925
crossref_primary_10_1016_j_jacadv_2024_101107
crossref_primary_10_1002_rmv_2413
crossref_primary_10_1038_s41392_022_00997_x
crossref_primary_10_1038_s42003_022_03841_8
crossref_primary_10_3389_fimmu_2022_966236
crossref_primary_10_1016_j_micres_2023_127364
crossref_primary_10_1099_jgv_0_001868
crossref_primary_10_3389_fimmu_2021_612807
crossref_primary_10_1021_acsbiomaterials_1c00318
crossref_primary_10_3389_fphar_2021_787261
crossref_primary_10_1002_jcb_30396
crossref_primary_10_3389_fmed_2024_1364657
crossref_primary_10_1016_j_repc_2022_02_014
crossref_primary_10_1073_pnas_2117576119
crossref_primary_10_3389_fimmu_2023_1268854
crossref_primary_10_3390_membranes12090859
crossref_primary_10_3390_v16111726
crossref_primary_10_1002_rmv_2321
crossref_primary_10_1111_imr_70000
crossref_primary_10_3390_life12101605
crossref_primary_10_1016_j_lfs_2021_120284
crossref_primary_10_3389_fimmu_2021_785941
crossref_primary_10_1098_rsfs_2021_0019
crossref_primary_10_3390_v15102001
crossref_primary_10_1002_advs_202411515
crossref_primary_10_3389_fimmu_2023_1254206
crossref_primary_10_3390_pathogens12060843
crossref_primary_10_3389_fimmu_2022_833355
crossref_primary_10_1099_jgv_0_002009
crossref_primary_10_1128_spectrum_00459_22
crossref_primary_10_1016_j_micres_2024_127659
crossref_primary_10_3390_molecules27030658
crossref_primary_10_3390_v15071615
crossref_primary_10_3390_ijms24032971
crossref_primary_10_1016_j_ejmcr_2022_100079
crossref_primary_10_1128_jvi_01418_22
crossref_primary_10_1007_s13577_024_01142_2
crossref_primary_10_1016_j_isci_2024_110387
crossref_primary_10_1055_a_1873_2150
crossref_primary_10_1080_15476286_2023_2241755
crossref_primary_10_1128_JVI_00975_21
crossref_primary_10_1371_journal_ppat_1012690
crossref_primary_10_3389_fimmu_2024_1380697
crossref_primary_10_3390_clinpract11040085
crossref_primary_10_1016_j_coviro_2021_02_006
crossref_primary_10_1111_mmi_15284
crossref_primary_10_1007_s00210_022_02262_y
crossref_primary_10_1038_s41467_024_49415_6
crossref_primary_10_3390_cells11010045
crossref_primary_10_1007_s43440_024_00585_6
crossref_primary_10_1016_j_micres_2022_126993
crossref_primary_10_3389_fviro_2022_848465
crossref_primary_10_1186_s13578_024_01331_4
crossref_primary_10_3389_fimmu_2022_1050478
crossref_primary_10_1016_j_jneuroim_2021_577658
crossref_primary_10_1111_imr_13084
crossref_primary_10_1002_adbi_202101327
crossref_primary_10_1007_s00705_022_05366_1
crossref_primary_10_1128_jvi_01823_24
crossref_primary_10_2174_1389203724666230816092518
crossref_primary_10_1111_acel_14050
crossref_primary_10_1042_BCJ20210602
crossref_primary_10_1186_s12985_022_01783_5
crossref_primary_10_1371_journal_ppat_1011358
crossref_primary_10_3390_v16050785
crossref_primary_10_3390_v14112535
crossref_primary_10_3389_fncel_2021_777738
crossref_primary_10_1038_s41467_023_41453_w
crossref_primary_10_1038_s41598_021_02432_7
crossref_primary_10_3390_v14092044
crossref_primary_10_1021_acsnano_4c04212
crossref_primary_10_3389_fimmu_2022_1066456
crossref_primary_10_1128_aac_00341_24
crossref_primary_10_3390_biom12111665
crossref_primary_10_3389_fnins_2023_1117845
crossref_primary_10_3390_ijms241914584
crossref_primary_10_1016_j_devcel_2024_04_008
crossref_primary_10_1016_j_bioorg_2022_105985
crossref_primary_10_1016_j_ejmech_2024_116232
crossref_primary_10_1016_j_bbrc_2024_149954
crossref_primary_10_3390_ijms23094576
crossref_primary_10_1128_mbio_03368_23
crossref_primary_10_2147_IJN_S500978
crossref_primary_10_3390_ijms25168917
crossref_primary_10_1007_s40242_022_2069_y
crossref_primary_10_1002_rmv_2348
crossref_primary_10_1016_j_ijbiomac_2023_127021
crossref_primary_10_1038_s41467_023_37059_x
crossref_primary_10_1024_0301_1526_a000991
crossref_primary_10_3389_fcimb_2024_1353971
crossref_primary_10_3390_v14071507
crossref_primary_10_1016_j_smhs_2023_03_004
crossref_primary_10_3390_brainsci12010059
crossref_primary_10_1007_s10787_024_01525_9
crossref_primary_10_1128_spectrum_02553_23
crossref_primary_10_1016_j_ijid_2022_11_018
crossref_primary_10_3390_ijms24054523
crossref_primary_10_3390_molecules27175405
crossref_primary_10_3389_fviro_2022_923018
crossref_primary_10_3390_v15020496
crossref_primary_10_1186_s12985_024_02460_5
crossref_primary_10_3389_fimmu_2021_796855
crossref_primary_10_1002_jmv_28953
crossref_primary_10_1016_j_ejogrb_2024_10_027
crossref_primary_10_1016_j_ijbiomac_2025_141602
crossref_primary_10_1038_s41421_021_00357_z
crossref_primary_10_1177_09544062221098538
crossref_primary_10_3390_microorganisms11010030
crossref_primary_10_3390_v13061029
crossref_primary_10_3390_ijms241411860
crossref_primary_10_3389_fmicb_2023_1162470
crossref_primary_10_3389_fimmu_2022_752105
crossref_primary_10_3390_v16111648
crossref_primary_10_1073_pnas_2301689120
crossref_primary_10_1016_j_clim_2022_109093
crossref_primary_10_3389_fmicb_2024_1332175
crossref_primary_10_3390_v13112306
crossref_primary_10_1111_bph_16063
crossref_primary_10_3390_immuno2020017
crossref_primary_10_2174_1389450124666221014102927
crossref_primary_10_1134_S1990747822060034
crossref_primary_10_1016_j_ymthe_2024_06_038
crossref_primary_10_3389_fimmu_2021_636966
crossref_primary_10_1016_j_biocel_2022_106349
crossref_primary_10_1021_acschembio_2c00378
crossref_primary_10_3390_ijms22126558
crossref_primary_10_1016_j_ijbiomac_2022_09_105
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_3389_fimmu_2024_1378591
crossref_primary_10_1038_s41598_023_48084_7
crossref_primary_10_3390_v15030639
crossref_primary_10_1042_BSR20231395
crossref_primary_10_3390_ijms25147553
crossref_primary_10_3390_ijms25010640
crossref_primary_10_1186_s12951_021_00926_0
crossref_primary_10_15252_embr_202154322
crossref_primary_10_3390_v15061231
crossref_primary_10_1016_j_biochi_2024_05_004
crossref_primary_10_3390_ijms23094545
crossref_primary_10_1371_journal_pone_0273660
crossref_primary_10_1242_dmm_050049
crossref_primary_10_1016_j_jacbts_2022_08_005
crossref_primary_10_3390_covid3120121
crossref_primary_10_3390_ijms24021654
crossref_primary_10_3390_v16111776
crossref_primary_10_3390_life14020279
crossref_primary_10_3390_fishes7060315
Cites_doi 10.1016/j.antiviral.2020.104792
10.1002/path.1570
10.1111/j.1600-0854.2005.00274.x
10.1038/s41565-020-0674-9
10.1016/j.cell.2006.02.007
10.1038/s41564-020-0688-y
10.1016/j.devcel.2015.03.002
10.1016/S0140-6736(20)30183-5
10.1073/pnas.1921186117
10.1038/cr.2008.15
10.1038/s41598-018-25640-0
10.15252/msb.20209610
10.1371/journal.ppat.1004502
10.1016/j.cell.2018.12.028
10.1056/NEJMoa030747
10.1128/JVI.01933-17
10.3390/v12050513
10.1073/pnas.0409465102
10.1016/S0092-8674(00)81404-X
10.1016/j.devcel.2006.04.002
10.1073/pnas.1809667116
10.1073/pnas.2007837117
10.1016/j.cell.2011.06.025
10.1016/S0955-0674(03)00081-4
10.1186/gb-2007-8-7-r142
10.1126/science.abd2985
10.1128/JVI.78.16.8701-8708.2004
10.1128/JVI.01218-20
10.1038/nature12328
10.1016/bs.aivir.2019.08.002
10.5582/bst.2020.01047
10.1128/JVI.00253-07
10.1126/science.abb2507
10.1016/j.cell.2020.02.052
10.1056/NEJMoa2001017
10.1016/j.cell.2020.10.039
10.1038/357420a0
10.1016/j.jbiotec.2020.01.015
10.1056/NEJMoa1211721
10.1126/science.abd3072
10.1056/NEJMoa030781
10.1111/j.1600-0854.2011.01321.x
10.1016/j.encep.2020.05.006
10.1038/s41586-020-2012-7
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.jbc.2021.100306
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC7816624
10_1016_j_jbc_2021_100306
S0021925821000752
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
7X8
5PM
ID FETCH-LOGICAL-c494t-72b4ad5f239ea0230c5c0119f2f249fb20333d55d8a348e8c5b4a0933bf941a03
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:02:08 EDT 2025
Sun Aug 24 03:27:23 EDT 2025
Tue Jul 01 04:33:18 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Fri Feb 23 02:43:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TfR
infection
clathrin
SARS-CoV
MERS-CoV
CQ
dynamin
COVID-19
ACE2
SARS-CoV-2
Tf
virus entry
endocytosis
CHC
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-72b4ad5f239ea0230c5c0119f2f249fb20333d55d8a348e8c5b4a0933bf941a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7806-5662
OpenAccessLink http://dx.doi.org/10.1016/j.jbc.2021.100306
PMID 33476648
PQID 2480263529
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7816624
proquest_miscellaneous_2480263529
crossref_citationtrail_10_1016_j_jbc_2021_100306
crossref_primary_10_1016_j_jbc_2021_100306
elsevier_sciencedirect_doi_10_1016_j_jbc_2021_100306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle The Journal of biological chemistry
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Yamauchi, Helenius (bib41) 2013; 126
Hikmet, Méar, Edvinsson, Micke, Uhlén, Lindskog (bib44) 2020; 16
Sun, Xiao, Liu, Wang, Li, Wang, Li, Zhu, Song, Sun, Jiang, Liu, Zhang, Wei, Hou (bib7) 2020; 117
Hulswit, Lang, Bakkers, Li, Li, Schouten, Ophorst, van Kuppeveld, Boons, Bosch, Huizinga, de groot (bib24) 2019; 116
Crawford, Eguia, Dingens, Loes, Malone, Wolf, Chu, Tortorici, Veesler, Murphy, Pettie, King, Balazs, Bloom (bib30) 2020; 12
Owczarek, Szczepanski, Milewska, Baster, Rajfur, Sarna, Pyrc (bib21) 2018; 8
Weber, Zemelman, McNew, Westermann, Gmachl, Parlati, Söllner, Rothman (bib17) 1998; 92
Wang, Yang, Liu, Guo, Zhang, Zhang, Jiang (bib28) 2008; 18
Wrapp, Wang, Corbett, Goldsmith, Hsieh, Abiona, Graham, McLellan (bib8) 2020; 367
Cantuti-Castelvetri, Ojha, Pedro, Djannatian, Franz, Kuivanen, van der Meer, Kallio, Kaya, Anastasina, Smura, Levanov, Szirovicza, Tobi, Kallio-Kokko (bib14) 2020; 370
von Kleist, Stahlschmidt, Bulut, Gromova, Puchkov, Robertson, MacGregor, Tomilin, Pechstein, Chau, Chircop, Sakoff, von Kries, Saenger, Kräusslich (bib33) 2011; 146
Miller, Mathiasen, Bright, Pierre, Kelly, Kladt, Schauss, Merrifield, Stamou, Höning, Owen (bib47) 2015; 33
Galvez, Teruel, Do Heo, Jones, Kim, Liou, Myers, Meyer (bib36) 2007; 8
Hu, Frieman, Wolfram (bib46) 2020; 15
Burkard, Verheije, Wicht, van Kasteren, van Kuppeveld, Haagmans, Pelkmans, Rottier, Bosch, de Haan (bib25) 2014; 10
Inoue, Tanaka, Tanaka, Inoue, Morita, Zhuang, Hattori, Sugamara (bib27) 2007; 81
Yeager, Ashmun, Williams, Cardellicho, Shapiro, Look, Homes (bib19) 1992; 357
Lemmon, Traub (bib35) 2012; 13
Ghosh, Dellibovi-Ragheb, Kerviel, Pak, Qui, Fisher, Takvorian, Bleck, Hsu, Fehr, Perlman, Achar, Straus, Whittaker, deHaan (bib43) 2020; 183
Gao, Tian, Yang (bib45) 2020; 16
Marcia, Ehrlich, Massol, Boucrot, Brunner, Kirchhausen (bib32) 2006; 10
Ksiazek, Erdman, Goldsmith, Zaki, Peret, Emery, Tong, Urbani, Comer, Lim, Rollin, Dowell, Ling, Humphrey, Shieh (bib3) 2003; 348
Pelkmans, Helenius (bib40) 2003; 15
Tang, Bidon, Jaimes, Whittaker, Daniel (bib18) 2020; 178
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu (bib4) 2020; 395
Kim, Sorg, Arrieumerlou (bib37) 2011; 6
Li, Stolz, Romero (bib31) 2005; 6
Lu, Hu, Wang, Qi, Gao, Li, Zhang, Zhang, Yuan, Bao, Zhang, Shi, Yan, Gao (bib26) 2013; 500
Nomura, Kiyota, Suzaki, Kataoka, Ohe, Miyamoto, Senda, Fujimoto (bib20) 2004; 78
Kang, Chou, Rothlauf, Liu, Piccinotti, Soh, Cureton, Case, Chen, Diamond, Whelan, Kirchhausen (bib39) 2020; 117
Hamming, Timens, Bulthuis, Lely, Navis, van Goor (bib16) 2004; 203
Stoorvogel, Strous, Ciechanover, Schwartz (bib38) 1991; 4
Weston, Coleman, Haupt, Logue, Matthews, Li, Reyes, Weiss, Frieman (bib48) 2020; 94
Davies, Randeva, Chatha, Hall, Spandidos, Karteris, Kyrou (bib15) 2020; 22
Marsh, Helenius (bib42) 2006; 124
Hofmann, Pyrc, Van Der Hoek, Geier, Berkhout, Pöhlmann (bib22) 2005; 102
Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (bib1) 2012; 367
Tortorici, Veesler (bib6) 2019; 105
Drosten, Günther, Preiser, van der Werf, Brodt, Becker, Rabenau, Panning, Kolesnikova, Fouchier, Berger, Burguière, Cinatl, Eickmann, Escriou (bib2) 2003; 348
Milewska, Nowak, Owczarek, Szczepanski, Zarebski, Hoang, Berniak, Wojarski, Zeglen, Baster, Rajfur, Pyrc (bib23) 2018; 92
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler, Erichsen, Schiergens, Herrler, Wu, Nitsche, Müller, Drosten, Pöhlmann (bib9) 2020; 181
Daly, Simonetti, Klein, Chen, Williamson, Antón-Plágaro, Shoemark, Simón-Gracia, Bauer, Hollandi, Greber, Horvath, Sessions, Helenius, Hiscox (bib13) 2020; 370
Letko, Marzi, Munster (bib10) 2020; 5
Park, Shen, Liu, Liu, Ferguson, De Camilli (bib34) 2013; 126
Plaze, Attali, Petit, Blatzer, Simon-Loriere, Vinckier, Cachia, Chrétien, Gaillard (bib49) 2020; 46
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu (bib5) 2020; 382
Kiesslich, Losa, Gelinas, Kamen (bib29) 2020; 310
Walls, Xiong, Park, Tortorici, Snijder, Quispe, Cameroni, Gopal, Dai, Lanzavecchia, Zambon, Rey, Corti, Veesler (bib12) 2019; 176
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang (bib11) 2020; 579
Ksiazek (10.1016/j.jbc.2021.100306_bib3) 2003; 348
Hulswit (10.1016/j.jbc.2021.100306_bib24) 2019; 116
Nomura (10.1016/j.jbc.2021.100306_bib20) 2004; 78
Lemmon (10.1016/j.jbc.2021.100306_bib35) 2012; 13
Drosten (10.1016/j.jbc.2021.100306_bib2) 2003; 348
Hoffmann (10.1016/j.jbc.2021.100306_bib9) 2020; 181
Zaki (10.1016/j.jbc.2021.100306_bib1) 2012; 367
Hu (10.1016/j.jbc.2021.100306_bib46) 2020; 15
Tortorici (10.1016/j.jbc.2021.100306_bib6) 2019; 105
Yamauchi (10.1016/j.jbc.2021.100306_bib41) 2013; 126
Sun (10.1016/j.jbc.2021.100306_bib7) 2020; 117
Daly (10.1016/j.jbc.2021.100306_bib13) 2020; 370
Marsh (10.1016/j.jbc.2021.100306_bib42) 2006; 124
Cantuti-Castelvetri (10.1016/j.jbc.2021.100306_bib14) 2020; 370
Milewska (10.1016/j.jbc.2021.100306_bib23) 2018; 92
Zhou (10.1016/j.jbc.2021.100306_bib11) 2020; 579
Park (10.1016/j.jbc.2021.100306_bib34) 2013; 126
Hofmann (10.1016/j.jbc.2021.100306_bib22) 2005; 102
Li (10.1016/j.jbc.2021.100306_bib31) 2005; 6
Walls (10.1016/j.jbc.2021.100306_bib12) 2019; 176
Inoue (10.1016/j.jbc.2021.100306_bib27) 2007; 81
Lu (10.1016/j.jbc.2021.100306_bib26) 2013; 500
Yeager (10.1016/j.jbc.2021.100306_bib19) 1992; 357
Hamming (10.1016/j.jbc.2021.100306_bib16) 2004; 203
Weber (10.1016/j.jbc.2021.100306_bib17) 1998; 92
Wang (10.1016/j.jbc.2021.100306_bib28) 2008; 18
Zhu (10.1016/j.jbc.2021.100306_bib5) 2020; 382
Galvez (10.1016/j.jbc.2021.100306_bib36) 2007; 8
Owczarek (10.1016/j.jbc.2021.100306_bib21) 2018; 8
Letko (10.1016/j.jbc.2021.100306_bib10) 2020; 5
Kim (10.1016/j.jbc.2021.100306_bib37) 2011; 6
Marcia (10.1016/j.jbc.2021.100306_bib32) 2006; 10
Kiesslich (10.1016/j.jbc.2021.100306_bib29) 2020; 310
Tang (10.1016/j.jbc.2021.100306_bib18) 2020; 178
Huang (10.1016/j.jbc.2021.100306_bib4) 2020; 395
Wrapp (10.1016/j.jbc.2021.100306_bib8) 2020; 367
Miller (10.1016/j.jbc.2021.100306_bib47) 2015; 33
Plaze (10.1016/j.jbc.2021.100306_bib49) 2020; 46
Burkard (10.1016/j.jbc.2021.100306_bib25) 2014; 10
Gao (10.1016/j.jbc.2021.100306_bib45) 2020; 16
von Kleist (10.1016/j.jbc.2021.100306_bib33) 2011; 146
Ghosh (10.1016/j.jbc.2021.100306_bib43) 2020; 183
Weston (10.1016/j.jbc.2021.100306_bib48) 2020; 94
Stoorvogel (10.1016/j.jbc.2021.100306_bib38) 1991; 4
Crawford (10.1016/j.jbc.2021.100306_bib30) 2020; 12
Kang (10.1016/j.jbc.2021.100306_bib39) 2020; 117
Hikmet (10.1016/j.jbc.2021.100306_bib44) 2020; 16
Pelkmans (10.1016/j.jbc.2021.100306_bib40) 2003; 15
Davies (10.1016/j.jbc.2021.100306_bib15) 2020; 22
References_xml – volume: 310
  start-page: 32
  year: 2020
  end-page: 39
  ident: bib29
  article-title: Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X hydron fixed bed
  publication-title: J. Biotech.
– volume: 102
  start-page: 7988
  year: 2005
  end-page: 7993
  ident: bib22
  article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 46
  start-page: 169
  year: 2020
  end-page: 172
  ident: bib49
  article-title: Repurposing chlorpromazine to treat COVID-19: The recovery study
  publication-title: Encephale
– volume: 105
  start-page: 93
  year: 2019
  end-page: 116
  ident: bib6
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
– volume: 6
  year: 2011
  ident: bib37
  article-title: Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kB activation
  publication-title: PLoS One
– volume: 92
  start-page: 759
  year: 1998
  end-page: 772
  ident: bib17
  article-title: SNAREpins: Minimal machinery for membrane fusion
  publication-title: Cell
– volume: 126
  start-page: 5305
  year: 2013
  end-page: 5312
  ident: bib34
  article-title: Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors
  publication-title: J. Cell Sci.
– volume: 367
  start-page: 1260
  year: 2020
  end-page: 1263
  ident: bib8
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
– volume: 12
  year: 2020
  ident: bib30
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays
  publication-title: Viruses
– volume: 6
  start-page: 324
  year: 2005
  end-page: 334
  ident: bib31
  article-title: Characterization of endocytic vesicles using magnetic microbeads coated with signaling ligands
  publication-title: Traffic
– volume: 117
  start-page: 17204
  year: 2020
  end-page: 17210
  ident: bib7
  article-title: Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 290
  year: 2008
  end-page: 301
  ident: bib28
  article-title: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway
  publication-title: Cell Res.
– volume: 348
  start-page: 1967
  year: 2003
  end-page: 1976
  ident: bib2
  article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 414
  year: 2003
  end-page: 422
  ident: bib40
  article-title: Insider information: What viruses tell us about endocytosis
  publication-title: Curr. Opin. Cell Biol.
– volume: 116
  start-page: 2681
  year: 2019
  end-page: 2690
  ident: bib24
  article-title: Human coronaviruses OC43 and HKU1 bind to 9-
  publication-title: Pro.c Natl. Acad. Sci. U. S. A.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib11
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 183
  start-page: 1520
  year: 2020
  end-page: 1535
  ident: bib43
  article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway
  publication-title: Cell
– volume: 117
  start-page: 20803
  year: 2020
  end-page: 20813
  ident: bib39
  article-title: Inhibition of PIKfyve kinase prevents infection 1 by EBOV and SARS2 CoV-2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 78
  start-page: 8701
  year: 2004
  end-page: 8708
  ident: bib20
  article-title: Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae
  publication-title: J. Virol.
– volume: 81
  start-page: 8722
  year: 2007
  end-page: 8729
  ident: bib27
  article-title: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic Tail Deleted
  publication-title: J. Virol.
– volume: 13
  start-page: 511
  year: 2012
  end-page: 519
  ident: bib35
  article-title: Getting in touch with the clathrin terminal domain
  publication-title: Traffic
– volume: 176
  start-page: 1026
  year: 2019
  end-page: 1039
  ident: bib12
  article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
  publication-title: Cell
– volume: 8
  year: 2018
  ident: bib21
  article-title: Early events during human coronavirus OC43 entry to the cell
  publication-title: Sci. Rep.
– volume: 203
  start-page: 631
  year: 2004
  end-page: 637
  ident: bib16
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J. Pathol.
– volume: 10
  start-page: 839
  year: 2006
  end-page: 850
  ident: bib32
  article-title: Dynasore, a cell-permeable inhibitor of dynamin
  publication-title: Dev. Cell
– volume: 348
  start-page: 1953
  year: 2003
  end-page: 1966
  ident: bib3
  article-title: A novel coronavirus associated with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280
  ident: bib9
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 178
  year: 2020
  ident: bib18
  article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development
  publication-title: Antivir. Res.
– volume: 357
  start-page: 420
  year: 1992
  end-page: 422
  ident: bib19
  article-title: Human aminopeptidase N is a receptor for human coronavirus 229E
  publication-title: Nature
– volume: 126
  start-page: 1289
  year: 2013
  end-page: 1295
  ident: bib41
  article-title: Virus entry at a glance
  publication-title: J. Cell Sci.
– volume: 370
  start-page: 856
  year: 2020
  end-page: 860
  ident: bib14
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
– volume: 92
  year: 2018
  ident: bib23
  article-title: Entry of human coronavirus NL63 into the cell
  publication-title: J. Virol.
– volume: 146
  start-page: 471
  year: 2011
  end-page: 484
  ident: bib33
  article-title: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition
  publication-title: Cell
– volume: 94
  year: 2020
  ident: bib48
  article-title: Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2
  publication-title: J. Virol.
– volume: 16
  start-page: 72
  year: 2020
  end-page: 73
  ident: bib45
  article-title: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies
  publication-title: Biosci. Trends.
– volume: 33
  start-page: 163
  year: 2015
  end-page: 175
  ident: bib47
  article-title: CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature
  publication-title: Dev. Cell
– volume: 124
  start-page: 729
  year: 2006
  end-page: 740
  ident: bib42
  article-title: Virus entry: Open sesame
  publication-title: Cell
– volume: 15
  start-page: 247
  year: 2020
  end-page: 249
  ident: bib46
  article-title: Insights from nanomedicine into chloriquine efficacy against COVID-19
  publication-title: Nat. Nanotech.
– volume: 370
  start-page: 861
  year: 2020
  end-page: 865
  ident: bib13
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
– volume: 4
  start-page: 267
  year: 1991
  end-page: 304
  ident: bib38
  article-title: Trafficking of the transferrin receptor
  publication-title: Targeted Diagn. Ther.
– volume: 367
  start-page: 1814
  year: 2012
  end-page: 1820
  ident: bib1
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: bib4
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 8
  year: 2007
  ident: bib36
  article-title: siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake
  publication-title: Gen. Biol.
– volume: 22
  start-page: 4221
  year: 2020
  end-page: 4226
  ident: bib15
  article-title: Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19
  publication-title: Mol. Med. Rep.
– volume: 10
  year: 2014
  ident: bib25
  article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
  publication-title: PLoS Pathog.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib5
  article-title: A Novel coronavirus from patients with pneumonia in China
  publication-title: N. Engl. J. Med.
– volume: 500
  start-page: 227
  year: 2013
  end-page: 231
  ident: bib26
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
– volume: 5
  start-page: 562
  year: 2020
  end-page: 569
  ident: bib10
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
– volume: 16
  year: 2020
  ident: bib44
  article-title: The protein expression profile of ACE2 in human tissues
  publication-title: Mol. Syst. Biol.
– volume: 178
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib18
  article-title: Coronavirus membrane fusion mechanism offers a potential target for antiviral development
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2020.104792
– volume: 203
  start-page: 631
  year: 2004
  ident: 10.1016/j.jbc.2021.100306_bib16
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J. Pathol.
  doi: 10.1002/path.1570
– volume: 6
  start-page: 324
  year: 2005
  ident: 10.1016/j.jbc.2021.100306_bib31
  article-title: Characterization of endocytic vesicles using magnetic microbeads coated with signaling ligands
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00274.x
– volume: 15
  start-page: 247
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib46
  article-title: Insights from nanomedicine into chloriquine efficacy against COVID-19
  publication-title: Nat. Nanotech.
  doi: 10.1038/s41565-020-0674-9
– volume: 124
  start-page: 729
  year: 2006
  ident: 10.1016/j.jbc.2021.100306_bib42
  article-title: Virus entry: Open sesame
  publication-title: Cell
  doi: 10.1016/j.cell.2006.02.007
– volume: 5
  start-page: 562
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib10
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0688-y
– volume: 4
  start-page: 267
  year: 1991
  ident: 10.1016/j.jbc.2021.100306_bib38
  article-title: Trafficking of the transferrin receptor
  publication-title: Targeted Diagn. Ther.
– volume: 33
  start-page: 163
  year: 2015
  ident: 10.1016/j.jbc.2021.100306_bib47
  article-title: CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.03.002
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib4
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 117
  start-page: 17204
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib7
  article-title: Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1921186117
– volume: 18
  start-page: 290
  year: 2008
  ident: 10.1016/j.jbc.2021.100306_bib28
  article-title: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway
  publication-title: Cell Res.
  doi: 10.1038/cr.2008.15
– volume: 8
  year: 2018
  ident: 10.1016/j.jbc.2021.100306_bib21
  article-title: Early events during human coronavirus OC43 entry to the cell
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25640-0
– volume: 16
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib44
  article-title: The protein expression profile of ACE2 in human tissues
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209610
– volume: 10
  year: 2014
  ident: 10.1016/j.jbc.2021.100306_bib25
  article-title: Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004502
– volume: 176
  start-page: 1026
  year: 2019
  ident: 10.1016/j.jbc.2021.100306_bib12
  article-title: Unexpected receptor functional mimicry elucidates activation of coronavirus fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.028
– volume: 348
  start-page: 1967
  year: 2003
  ident: 10.1016/j.jbc.2021.100306_bib2
  article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030747
– volume: 92
  year: 2018
  ident: 10.1016/j.jbc.2021.100306_bib23
  article-title: Entry of human coronavirus NL63 into the cell
  publication-title: J. Virol.
  doi: 10.1128/JVI.01933-17
– volume: 12
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib30
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 Spike protein for neutralization assays
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 102
  start-page: 7988
  year: 2005
  ident: 10.1016/j.jbc.2021.100306_bib22
  article-title: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0409465102
– volume: 92
  start-page: 759
  year: 1998
  ident: 10.1016/j.jbc.2021.100306_bib17
  article-title: SNAREpins: Minimal machinery for membrane fusion
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81404-X
– volume: 10
  start-page: 839
  year: 2006
  ident: 10.1016/j.jbc.2021.100306_bib32
  article-title: Dynasore, a cell-permeable inhibitor of dynamin
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2006.04.002
– volume: 116
  start-page: 2681
  year: 2019
  ident: 10.1016/j.jbc.2021.100306_bib24
  article-title: Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A
  publication-title: Pro.c Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1809667116
– volume: 117
  start-page: 20803
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib39
  article-title: Inhibition of PIKfyve kinase prevents infection 1 by EBOV and SARS2 CoV-2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2007837117
– volume: 146
  start-page: 471
  year: 2011
  ident: 10.1016/j.jbc.2021.100306_bib33
  article-title: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.025
– volume: 15
  start-page: 414
  year: 2003
  ident: 10.1016/j.jbc.2021.100306_bib40
  article-title: Insider information: What viruses tell us about endocytosis
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(03)00081-4
– volume: 8
  year: 2007
  ident: 10.1016/j.jbc.2021.100306_bib36
  article-title: siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3-mTOR signaling pathway as a primary regulator of transferrin uptake
  publication-title: Gen. Biol.
  doi: 10.1186/gb-2007-8-7-r142
– volume: 370
  start-page: 856
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib14
  article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity
  publication-title: Science
  doi: 10.1126/science.abd2985
– volume: 78
  start-page: 8701
  year: 2004
  ident: 10.1016/j.jbc.2021.100306_bib20
  article-title: Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.16.8701-8708.2004
– volume: 94
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib48
  article-title: Broad anti-coronavirus activity of Food and Drug Administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.01218-20
– volume: 500
  start-page: 227
  year: 2013
  ident: 10.1016/j.jbc.2021.100306_bib26
  article-title: Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26
  publication-title: Nature
  doi: 10.1038/nature12328
– volume: 105
  start-page: 93
  year: 2019
  ident: 10.1016/j.jbc.2021.100306_bib6
  article-title: Structural insights into coronavirus entry
  publication-title: Adv. Virus Res.
  doi: 10.1016/bs.aivir.2019.08.002
– volume: 16
  start-page: 72
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib45
  article-title: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies
  publication-title: Biosci. Trends.
  doi: 10.5582/bst.2020.01047
– volume: 81
  start-page: 8722
  year: 2007
  ident: 10.1016/j.jbc.2021.100306_bib27
  article-title: Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic Tail Deleted
  publication-title: J. Virol.
  doi: 10.1128/JVI.00253-07
– volume: 367
  start-page: 1260
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib8
  article-title: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib9
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 126
  start-page: 5305
  year: 2013
  ident: 10.1016/j.jbc.2021.100306_bib34
  article-title: Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors
  publication-title: J. Cell Sci.
– volume: 382
  start-page: 727
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib5
  article-title: A Novel coronavirus from patients with pneumonia in China
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 183
  start-page: 1520
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib43
  article-title: β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.039
– volume: 357
  start-page: 420
  year: 1992
  ident: 10.1016/j.jbc.2021.100306_bib19
  article-title: Human aminopeptidase N is a receptor for human coronavirus 229E
  publication-title: Nature
  doi: 10.1038/357420a0
– volume: 310
  start-page: 32
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib29
  article-title: Serum-free production of rVSV-ZEBOV in Vero cells: Microcarrier bioreactor versus scale-X hydron fixed bed
  publication-title: J. Biotech.
  doi: 10.1016/j.jbiotec.2020.01.015
– volume: 6
  year: 2011
  ident: 10.1016/j.jbc.2021.100306_bib37
  article-title: Endocytosis-independent function of clathrin heavy chain in the control of basal NF-kB activation
  publication-title: PLoS One
– volume: 367
  start-page: 1814
  year: 2012
  ident: 10.1016/j.jbc.2021.100306_bib1
  article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211721
– volume: 370
  start-page: 861
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib13
  article-title: Neuropilin-1 is a host factor for SARS-CoV-2 infection
  publication-title: Science
  doi: 10.1126/science.abd3072
– volume: 348
  start-page: 1953
  year: 2003
  ident: 10.1016/j.jbc.2021.100306_bib3
  article-title: A novel coronavirus associated with severe acute respiratory syndrome
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa030781
– volume: 22
  start-page: 4221
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib15
  article-title: Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19
  publication-title: Mol. Med. Rep.
– volume: 13
  start-page: 511
  year: 2012
  ident: 10.1016/j.jbc.2021.100306_bib35
  article-title: Getting in touch with the clathrin terminal domain
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2011.01321.x
– volume: 46
  start-page: 169
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib49
  article-title: Repurposing chlorpromazine to treat COVID-19: The recovery study
  publication-title: Encephale
  doi: 10.1016/j.encep.2020.05.006
– volume: 126
  start-page: 1289
  year: 2013
  ident: 10.1016/j.jbc.2021.100306_bib41
  article-title: Virus entry at a glance
  publication-title: J. Cell Sci.
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.jbc.2021.100306_bib11
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
SSID ssj0000491
Score 2.6994336
SecondaryResourceType review_article
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, so understanding its biology and infection mechanisms is...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100306
SubjectTerms clathrin
COVID-19
dynamin
endocytosis
infection
SARS-CoV-2
virus entry
Title SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis
URI https://dx.doi.org/10.1016/j.jbc.2021.100306
https://www.proquest.com/docview/2480263529
https://pubmed.ncbi.nlm.nih.gov/PMC7816624
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgPMALgg1EGUxGQjxQuUocp0keqwo0AUNAN7S3yL-ithoJWrKH7q_nbCdxOraJ8RJZqWM5vqtzd_7uO4TewhdHFebAnWWRIkxHAREZU0SBI6ZSyoW0PNtHX6eHJ-zTaXzqYWM2u6QRE3l5bV7J_0gV7oFcTZbsHSTbDwo3oA3yhStIGK7_JOPF7MeCzKufhLagqnpsAvF1W_nb4HfPxrZ0CLRNFiSYe-erkth0EWNq6lJVctNU9aoeWqk-X8xaqo6oyVGJdPXhfAR0wx0iwKiMP9Lvkdt86aGHbRUPi61dlXKAuTmS35bW9u8xw-PFZBiRoOEgItFlCIQko46SvdtlaTbcJ0Prq1y7hbtownqyFoZhkoYT33ebLvvKZ6wHF3a4tXUOQ-RmiNwNcR89oOBMmDoXn797TnnwkVxdxXbW3dm3RQFemcVN1svAO9nG1g6MleMn6HErOzxzKvMU3dPlLtqblbypfm3wO2xxv_ZAZRc9nHcy3UNfvEbhVqOw1ShsNQpbjcJWo6DN8V8ahQca9QydfPxwPD8kbb0NIlnGGpJQwbiKCxplmhvfVMbSUAIWtAAnvRA0iKJIxbFKecRSncoY-puImCgyFvIgeo52yqrULxCWIimmUwWfw7BgCRMCDNGIx6HUjIKDrkco6NYxly0ZvamJcpbfKL0Ret8_8tsxsdzWmXXCyVtT0pmIOajZbY-96QSZw8qbBealri7qnLI0MLxNNBuhZEvC_WQMUfv2L-VqaQnbE3M4T9nLu7zBPnrk_1uv0E5zfqFfg_3biAMbNzqwSvwHG02vzA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+infects+cells+after+viral+entry+via+clathrin-mediated+endocytosis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Bayati%2C+Armin&rft.au=Kumar%2C+Rahul&rft.au=Francis%2C+Vincent&rft.au=McPherson%2C+Peter+S.&rft.date=2021-01-01&rft.issn=0021-9258&rft.volume=296&rft.spage=100306&rft_id=info:doi/10.1016%2Fj.jbc.2021.100306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbc_2021_100306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon