Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning

Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 16596 - 15
Main Authors Xie, Haoran, Wang, Junjun, Zhao, Qiuyan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.05.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. Methods: This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. Results: We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. Conclusion: This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
AbstractList Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. Methods: This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. Results: We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. Conclusion: This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
Abstract Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. Methods: This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. Results: We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. Conclusion: This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH.BACKGROUNDMetabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH.This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells.METHODSThis study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells.We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH.RESULTSWe successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH.This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.CONCLUSIONThis study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
ArticleNumber 16596
Author Zhao, Qiuyan
Xie, Haoran
Wang, Junjun
Author_xml – sequence: 1
  givenname: Haoran
  surname: Xie
  fullname: Xie, Haoran
  organization: Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University
– sequence: 2
  givenname: Junjun
  surname: Wang
  fullname: Wang, Junjun
  organization: Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Qiuyan
  surname: Zhao
  fullname: Zhao, Qiuyan
  email: zhaosjtu@163.com
  organization: Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40360670$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpC7BAkdiwCfg3dlYIVfyMVIkNrK0b25nxkNiD7ak6L8Rz4kxKmbIgG0c33zn35vo8r8588LaqXmL0FiMq3yWGeScbRHgjW9qJ5u5JdUEQ4w2hhJydvJ9XVyltUXk46RjunlXnDNEWtQJdVL9WxvrsBqchu-DrMNS7kOcSjPVkM_RhdLruXZgg_rAx1eBN7aZp722t7TjWzg9uzHGRDyGeqCCloB1ka-qULeSwsbvCZZfq_jB7Fm2IUynp2RfGQ3JLgwn0xpUOo4XonV-_qJ4OMCZ7dX9eVt8_ffx2_aW5-fp5df3hptGsY7kRhHbQdgCYCI4xGQQBDIYM3HAM7YBR3yJDOtLLoScCeE-lJIZoa7lgsqeX1WrxNQG2ahdd-euDCuDUsRDiWkEs445W0bZrcWes1powDkZq3TNiLOIYCQO4eL1fvHb7frJGl6VGGB-ZPv7i3Uatw63CBAnOhSgOb-4dYvi5tymryaV56eBt2CdFCaIdKRfLCvr6H3Qb9rGs9EgxJIWkslCvTkd6mOVPHgpAFkDHkFK0wwOCkZpzp5bcqZI7dcyduisiuohSgf3axr-9_6P6DT6u3-k
Cites_doi 10.1146/annurev-pathol-012615-044224
10.1007/s10620-016-4049-x
10.1002/hep.30952
10.1002/hep.27695
10.3748/wjg.v22.i41.9096
10.1073/pnas.1412759111
10.4254/wjh.v9.i8.443
10.3390/ijms25168731
10.1136/gutjnl-2012-303179
10.3389/fimmu.2023.1302006
10.1038/s41467-021-24734-0
10.3390/biomedicines10051015
10.1016/j.cgh.2022.11.002
10.1038/s12276-024-01222-1
10.1038/ncomms13839
10.1016/j.autrev.2023.103353
10.1016/j.cmet.2013.07.004
10.1016/j.jcmgh.2021.08.019
10.1002/stem.2454
10.1007/s12072-021-10286-4
10.1097/HEP.0000000000000323
10.3390/metabo11060332
10.1016/j.heliyon.2024.e32783
10.1016/j.artmed.2023.102589
10.1023/A:1027332523114
10.1038/nrgastro.2015.200
10.1210/endrev/bnz009
10.1016/j.diabres.2024.111846
10.1146/annurev-nutr-082018-124250
10.21037/atm-21-471
10.1038/s41590-018-0298-5
10.1186/s12967-022-03734-8
10.1002/hep.24107
10.4049/jimmunol.1501175
10.1186/s12944-023-01988-9
10.1042/BJ20080595
10.1371/journal.pone.0009570
10.1002/hep.24793
10.1371/journal.pone.0124544
10.1002/hep4.1396
10.1152/ajpgi.00358.2018
10.1053/j.gastro.2015.05.044
10.1186/1297-9686-40-5-563
10.1038/s41586-018-0812-9
10.1126/scitranslmed.aba4448
10.3390/nu15214616
10.1186/s12944-024-02162-5
10.4093/dmj.2023.0189
10.1097/HEP.0000000000000520
10.1016/j.bcp.2023.115985
10.1038/sdata.2015.68
10.1016/j.cgh.2008.11.005
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-86397-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_369619deccc245ad8ccb42de05107da1
PMC12075577
40360670
10_1038_s41598_025_86397_x
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Henan Provincial
  grantid: NO. 242300421499
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-7239a69aa1275112f72a1ad2f5d51a6f10b60d292b8fb27a5b3882d2cee5748b3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:51 EDT 2025
Thu Aug 21 18:30:09 EDT 2025
Fri Jul 11 17:55:17 EDT 2025
Wed Aug 13 08:07:56 EDT 2025
Mon May 19 02:16:34 EDT 2025
Tue Jul 01 04:38:40 EDT 2025
Thu May 15 22:56:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Biomarkers
Metabolism
Metabolic associated steatohepatitis
Bioinformatics
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-7239a69aa1275112f72a1ad2f5d51a6f10b60d292b8fb27a5b3882d2cee5748b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3204087838?pq-origsite=%requestingapplication%
PMID 40360670
PQID 3204087838
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_369619deccc245ad8ccb42de05107da1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12075577
proquest_miscellaneous_3203920004
proquest_journals_3204087838
pubmed_primary_40360670
crossref_primary_10_1038_s41598_025_86397_x
springer_journals_10_1038_s41598_025_86397_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-13
PublicationDateYYYYMMDD 2025-05-13
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Gancheva (86397_CR24) 2024; 217
S Horvath (86397_CR13) 2014; 111
L Agius (86397_CR37) 2008; 414
W Wruck (86397_CR27) 2015; 2
MP Suppli (86397_CR14) 2019; 316
86397_CR26
86397_CR20
86397_CR22
HM Zou (86397_CR3) 2022; 16
J Swierczynski (86397_CR42) 2003; 254
S Oh (86397_CR41) 2024; 56
P Gabriel-Medina (86397_CR6) 2022; 10
W Wruck (86397_CR25) 2017; 35
ME Rinella (86397_CR5) 2023; 78
E Vilar-Gomez (86397_CR7) 2023; 21
BM Arendt (86397_CR16) 2015; 61
M Ahrens (86397_CR17) 2013; 18
86397_CR36
S Endo (86397_CR28) 2021; 11
86397_CR30
R Yu (86397_CR12) 2024; 10
86397_CR32
VR Adams (86397_CR44) 2023; 14
MG Danieli (86397_CR9) 2023; 22
CM Chackelevicius (86397_CR49) 2016; 22
86397_CR29
T Yuan (86397_CR8) 2023; 143
S Zundler (86397_CR52) 2019; 20
F Li (86397_CR46) 2017; 7
SL Park (86397_CR51) 2019; 565
LP Bechmann (86397_CR38) 2012; 55
N Rafiq (86397_CR4) 2009; 7
F Heymann (86397_CR48) 2016; 13
SS Baker (86397_CR19) 2010; 5
J Wu (86397_CR35) 2008; 40
T Hardy (86397_CR21) 2016; 11
F Wang (86397_CR47) 2022; 13
86397_CR39
C López-Vicario (86397_CR18) 2014; 63
A Torres-Hernandez (86397_CR45) 2020; 71
L Dai (86397_CR11) 2024; 23
B Koletzko (86397_CR31) 2019; 39
W Wruck (86397_CR34) 2017; 9
Z He (86397_CR10) 2022; 20
T Marjot (86397_CR2) 2020; 41
N Dali-Youcef (86397_CR40) 2019; 3
TG Li (86397_CR33) 2011; 53
M Rau (86397_CR50) 2016; 196
ME Rinella (86397_CR1) 2023; 77
I Frades (86397_CR15) 2015; 10
X Feng (86397_CR23) 2024; 12
M Arrese (86397_CR43) 2016; 61
Y Koda (86397_CR53) 2021; 12
References_xml – volume: 11
  start-page: 451
  year: 2016
  ident: 86397_CR21
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012615-044224
– volume: 61
  start-page: 1294
  issue: 5
  year: 2016
  ident: 86397_CR43
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-016-4049-x
– volume: 71
  start-page: 477
  issue: 2
  year: 2020
  ident: 86397_CR45
  publication-title: Hepatology
  doi: 10.1002/hep.30952
– volume: 61
  start-page: 1565
  issue: 5
  year: 2015
  ident: 86397_CR16
  publication-title: Hepatology
  doi: 10.1002/hep.27695
– volume: 22
  start-page: 9096
  issue: 41
  year: 2016
  ident: 86397_CR49
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i41.9096
– volume: 111
  start-page: 15538
  issue: 43
  year: 2014
  ident: 86397_CR13
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1412759111
– volume: 9
  start-page: 443
  issue: 8
  year: 2017
  ident: 86397_CR34
  publication-title: World J. Hepatol.
  doi: 10.4254/wjh.v9.i8.443
– ident: 86397_CR22
  doi: 10.3390/ijms25168731
– volume: 63
  start-page: 344
  issue: 2
  year: 2014
  ident: 86397_CR18
  publication-title: Gut
  doi: 10.1136/gutjnl-2012-303179
– volume: 14
  start-page: 1302006
  year: 2023
  ident: 86397_CR44
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1302006
– volume: 12
  start-page: 4474
  issue: 1
  year: 2021
  ident: 86397_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24734-0
– volume: 10
  start-page: 1015
  issue: 5
  year: 2022
  ident: 86397_CR6
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10051015
– volume: 21
  start-page: 2981
  issue: 11
  year: 2023
  ident: 86397_CR7
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2022.11.002
– volume: 56
  start-page: 1066
  issue: 5
  year: 2024
  ident: 86397_CR41
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-024-01222-1
– volume: 7
  start-page: 13839
  year: 2017
  ident: 86397_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13839
– volume: 22
  start-page: 103353
  issue: 7
  year: 2023
  ident: 86397_CR9
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2023.103353
– volume: 18
  start-page: 296
  issue: 2
  year: 2013
  ident: 86397_CR17
  publication-title: Cell. Metab.
  doi: 10.1016/j.cmet.2013.07.004
– volume: 13
  start-page: 257
  issue: 1
  year: 2022
  ident: 86397_CR47
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2021.08.019
– volume: 35
  start-page: 89
  issue: 1
  year: 2017
  ident: 86397_CR25
  publication-title: Stem Cells
  doi: 10.1002/stem.2454
– volume: 16
  start-page: 27
  issue: 1
  year: 2022
  ident: 86397_CR3
  publication-title: Hep. Intl.
  doi: 10.1007/s12072-021-10286-4
– volume: 77
  start-page: 1797
  issue: 5
  year: 2023
  ident: 86397_CR1
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000323
– volume: 11
  start-page: 332
  issue: 6
  year: 2021
  ident: 86397_CR28
  publication-title: Metabolites
  doi: 10.3390/metabo11060332
– volume: 10
  start-page: e32783
  issue: 14
  year: 2024
  ident: 86397_CR12
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e32783
– volume: 143
  start-page: 102589
  year: 2023
  ident: 86397_CR8
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102589
– volume: 254
  start-page: 55
  issue: 1–2
  year: 2003
  ident: 86397_CR42
  publication-title: Mol. Cell. Biochem.
  doi: 10.1023/A:1027332523114
– volume: 13
  start-page: 88
  issue: 2
  year: 2016
  ident: 86397_CR48
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2015.200
– volume: 41
  start-page: 66
  issue: 1
  year: 2020
  ident: 86397_CR2
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnz009
– volume: 217
  start-page: 111846
  year: 2024
  ident: 86397_CR24
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2024.111846
– volume: 39
  start-page: 21
  year: 2019
  ident: 86397_CR31
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-082018-124250
– ident: 86397_CR36
  doi: 10.21037/atm-21-471
– volume: 20
  start-page: 288
  issue: 3
  year: 2019
  ident: 86397_CR52
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0298-5
– volume: 20
  start-page: 529
  issue: 1
  year: 2022
  ident: 86397_CR10
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-022-03734-8
– volume: 53
  start-page: 996
  issue: 3
  year: 2011
  ident: 86397_CR33
  publication-title: Hepatology
  doi: 10.1002/hep.24107
– volume: 196
  start-page: 97
  issue: 1
  year: 2016
  ident: 86397_CR50
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501175
– volume: 23
  start-page: 23
  issue: 1
  year: 2024
  ident: 86397_CR11
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-023-01988-9
– volume: 414
  start-page: 1
  year: 2008
  ident: 86397_CR37
  publication-title: Biochem. J.
  doi: 10.1042/BJ20080595
– volume: 5
  start-page: e9570
  issue: 3
  year: 2010
  ident: 86397_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009570
– volume: 55
  start-page: 1083
  issue: 4
  year: 2012
  ident: 86397_CR38
  publication-title: Hepatology
  doi: 10.1002/hep.24793
– volume: 10
  start-page: e0124544
  issue: 5
  year: 2015
  ident: 86397_CR15
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124544
– volume: 3
  start-page: 1205
  issue: 9
  year: 2019
  ident: 86397_CR40
  publication-title: Hepatol. Commun.
  doi: 10.1002/hep4.1396
– volume: 316
  start-page: G462
  issue: 4
  year: 2019
  ident: 86397_CR14
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00358.2018
– ident: 86397_CR26
  doi: 10.1053/j.gastro.2015.05.044
– volume: 40
  start-page: 563
  issue: 5
  year: 2008
  ident: 86397_CR35
  publication-title: Genet. Sel. Evol.
  doi: 10.1186/1297-9686-40-5-563
– volume: 565
  start-page: 366
  issue: 7739
  year: 2019
  ident: 86397_CR51
  publication-title: Nature
  doi: 10.1038/s41586-018-0812-9
– ident: 86397_CR20
  doi: 10.1126/scitranslmed.aba4448
– ident: 86397_CR39
  doi: 10.3390/nu15214616
– ident: 86397_CR29
  doi: 10.1186/s12944-024-02162-5
– ident: 86397_CR30
  doi: 10.4093/dmj.2023.0189
– volume: 78
  start-page: 1966
  issue: 6
  year: 2023
  ident: 86397_CR5
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000520
– ident: 86397_CR32
  doi: 10.1016/j.bcp.2023.115985
– volume: 12
  start-page: 815
  issue: 9
  year: 2024
  ident: 86397_CR23
  publication-title: J. Clin. Transl. Hepatol.
– volume: 2
  start-page: 150068
  year: 2015
  ident: 86397_CR27
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.68
– volume: 7
  start-page: 234
  issue: 2
  year: 2009
  ident: 86397_CR4
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2008.11.005
SSID ssj0000529419
Score 2.447564
Snippet Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk...
Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of...
Abstract Background: Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16596
SubjectTerms 631/208/199
692/4020/4021
Algorithms
Bioinformatics
Biomarkers
Biomarkers - metabolism
Biopsy
CD8 antigen
Cirrhosis
Computational Biology - methods
Correlation analysis
Diagnosis
Fatty liver
Fatty Liver - diagnosis
Fatty Liver - genetics
Fatty Liver - immunology
Fatty Liver - metabolism
Gene Expression Profiling
Gene set enrichment analysis
Genes
Glucose metabolism
Glycerol-3-phosphate dehydrogenase
Hepatocellular carcinoma
Humanities and Social Sciences
Humans
Infiltration
Invasiveness
Learning algorithms
Lipid metabolism
Liver diseases
Lymphocytes T
Machine Learning
Metabolic associated steatohepatitis
Metabolism
multidisciplinary
Natural killer cells
Non-alcoholic Fatty Liver Disease - diagnosis
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - immunology
Non-alcoholic Fatty Liver Disease - metabolism
Protein interaction
Protein Interaction Maps
Protein turnover
ROC Curve
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtUwELVQJSQ2iDeBgozEDqImfsT2EhBVhQQrKnVn2bFDI7VJ1ZtK7Q_xnczYvpd7eYgNmyzytDzHmWN75gwhrx1vBi55rAOHg-iHWHvehZqLHtlCMKrBBOfPX7qjY_HpRJ5slfrCmLAsD5w77gDrzbUmwJd6JqQLuu-9YCEimFRwaeIDPm9rMpVVvZkRrSlZMg3XByvwVJhNxmStcTOrvt7xREmw_08s8_dgyV92TJMjOrxH7hYGSd_llt8nt-L0gNzONSVvHpLvOfV2KGtxdB7oxbzgKXjoPC5g9LOxp5h2j5E5lyvqpkBHTBOJFJfxKWBuPCtquhQ47dZTrhgzBoroWObTiBHZy7ii_gbfWXRYUfsZ3pv1TtIHzlPQZqSlSsW3R-T48OPXD0d1KcZQ98KIpVaMG9cZ51ARHkjaoJhrXWCDDLJ13dA2vmsCM8zrwTPlpOdA3gMDJyyV0J4_JnvTPMWnhOJep5HBu05owZTxvYCJkReAjQ4JWkXerA1jL7Lmhk175VzbbEYLZrTJjPa6Iu_Rdps7US87nQAU2YIi-y8UVWR_bXlbBvHKcgZ_OK001xV5tbkMww-N4aY4X6V7gGEiM67IkwyUTUsEsANMg6qI3oHQTlN3r0zjaZL4bhlQOalURd6u0fazXX_vi2f_oy-ekzsMhwlK1PJ9srdcXsUXwLwW_zINsh8hdi9n
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWqVkhcUPkOLchI3CAi8UfsHBdEVa0EF6jUm2XHThupTardVKJ_qL-zM46zsFAOXHJw7MTKPNsvnplnQt5ZXrRc8pB7DhfRtCF3vPI5Fw2yBV-rAhOcv36rjk_E8lSe7hA258LEoP0oaRmn6Tk67OMaFhpMBmMy1-iLyoE37qFUO2B7b7FYfl9udlbQdyXKOmXIFFzf03hrFYpi_fcxzL8DJf_wlsZF6GifPErskS6m_j4mO6F_Qh5M50nePCW3U9ptm_bh6NDSq2HEImh0GUYw-EXXUEy5x6ic1Zra3tMOU0QCxS18CnjrLpKSLgU--1srmwwZPEVkjMN5wGjssVtTd4PPTBqsqPsMz520TuILLmPAZqDphIqzZ-Tk6MuPz8d5Ooghb0QtxlwxXtuqthbV4IGgtYrZ0nrWSi9LW7Vl4arCs5o53TqmrHQciLtnsABLJbTjz8luP_ThJaHo56yld7YSWjBVu0bAT5ETgIsKyVlG3s-GMVeT3oaJfnKuzWRGA2Y00YzmZ0Y-oe02NVErOxYMqzOTsGPwxMKy9oDVhglpvW4aJ5gPOB0pb8uMHM6WN2kArw1nMLtppbnOyNvNbRh6aAzbh-E61gF2iaw4Iy8moGx6IoAZYApURvQWhLa6un2n786jvHfJgMZJpTLyYUbbr379-1u8-r_qB-QhwwGBQrT8kOyOq-vwGvjV6N6kAXUHZ2Il_A
  priority: 102
  providerName: Springer Nature
Title Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning
URI https://link.springer.com/article/10.1038/s41598-025-86397-x
https://www.ncbi.nlm.nih.gov/pubmed/40360670
https://www.proquest.com/docview/3204087838
https://www.proquest.com/docview/3203920004
https://pubmed.ncbi.nlm.nih.gov/PMC12075577
https://doaj.org/article/369619deccc245ad8ccb42de05107da1
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY_d664IGe9tMbUm25KeRhpYSWBnbCnkzkiW3htbOYhfaP7TfuXNkJV12e0lAvkT2OUf6ci7fIeSd5knNM-5iy-FDVLWLDc9tzEWFaMEWMsEC50-n-cmZmC-yRXC49SGtcr0m-oXadhX6yA84A3VTUnH1cfk9xq5RGF0NLTTuk12kLkOtlgu58bFgFEukRaiVSbg66GG_wpoylsUKQ1rxzdZ-5Gn7_4Y1_0yZ_C1u6rej48fkUcCRdDoK_gm559qn5MHYWfL2GfkxFuDWwSNHu5ouuwGH4KIrN4DoL5uKYvE95ueseqpbSxssFnEUnfkUNK-5DJy6FJDtL1fpIFJnKerI0F04zMsemp6aW7xnYGNFBmi478h64n_gyqduOhp6VZw_J2fHR99mJ3FoyRBXohBDLBkvdF5ojbzwANVqyXSqLaszm6U6r9PE5IllBTOqNkzqzHCA8JbBVpxJoQx_QXbarnV7hGLEs8is0blQgsnCVAL-HhkBGpIjTIvI-7VgyuXIvFH6iDlX5SjGEsRYejGWNxE5RNltzkTWbD_Qrc7LYIQl9i5MCwtaWzGRaauqyghmHS5M0uo0IvtryZfBlPvyTvEi8nZzGIwQhaFb1137cwBnIj6OyMtRUTYzEYARsBgqImpLhbamun2kbS480XfKANBlUkbkw1rb7ub173fx6v-P8Zo8ZGgASEHL98nOsLp2bwBZDWbizWdCdqfT-dc5fB8enX7-AqOzfDbx3oqfY88rJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwgqiJ7cTOASG2akqXUyvNzdix047UJsNMKjp_iCO_kfecZMqw3XqZQxaPZ973_D77bYS8MDypeMZ97Dh8iLLyseW5i7kokS24QiaY4Ly3n48OxedxNl4jP4ZcGAyrHNbEsFC7psQz8k3OAG5KKq7eTr_G2DUKvatDC40OFjt-8Q22bPM32x9Bvi8Z2_p08GEU910F4lIUoo0l44XJC2OwtDmwjUoykxrHqsxlqcmrNLF54ljBrKoskyazHFioY2BNMimU5TDuFXIVDG-Cmz05lsszHfSaibToc3MSrjbnYB8xh41lsUIXWny-Yv9Cm4C_cds_QzR_89MG87d1i9zseSt91wHtNlnz9R1yretkubhLvncJv1V_Akibik6bFi_BS6e-BaidTEqKyf4YDzSbU1M7OsHkFE_ReUAB6ZOTvoYvBSb9y1umh5B3FDHZNsce48DbyZzaBY7ZV3_FitMwbldlJXzBaQgV9bTvjXF0jxxeirDuk_W6qf1DQtHDWmTOmlwowWRhSwHbMSsAkTnSwoi8GgSjp12lDx089FzpTowaxKiDGPV5RN6j7JZPYpXucKGZHele6TX2SkwLB1pSMpEZp8rSCuY8LoTSmTQiG4Pkdb90zPUF0CPyfHkblB6FYWrfnIVngNciH4_Igw4oy5kI4CSYfBURtQKhlamu3qknx6GweMqAQGZSRuT1gLaLef37v3j0_5_xjFwfHezt6t3t_Z3H5AZDZcDyt3yDrLezM_8EWF1rnwZVouTLZevuT8FzYlI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiDcLBYwEJ1g1a3tfB4QobdRSqCpEpd6Mvfa2kdrdkGxF84f4Efw6Zna9KeF16yWHfThO5pvxZ88L4LkWw1LEwoVW4IcsShcakdhQyILYgs3TISU4f9xLtg_k-8P4cAV-9LkwFFbZ28TWUNu6oDPydcERblmaiWy99GER-5ujN5OvIXWQIk9r306jg8ium3_D7dvs9c4myvoF56Otz--2Q99hICxkLpsw5SLXSa41lTlH5lGmXEfa8jK2caSTMhqaZGh5zk1WGp7q2AhkpJbjyhKnMjMCx70CqyntigawurG1t_9pccJDPjQZ5T5TZ4gTn-FqSRltPA4zcqiF50urYds04G9M98-Azd-8tu1iOLoJNzyLZW872N2CFVfdhqtdX8v5Hfjepf-W_jyQ1SWb1A1dwpdOXYPAOxkXjFL_KTpoOmO6smxMqSqOkSuBIe7HJ76iL0Ne_ctb2gPKWUYIbepjR1HhzXjGzJzG9LVgqf40jtvVXGm_4LQNHHXMd8o4ugsHlyKuezCo6so9AEb-1jy2RicykzzNTSFxc2Yk4jMhkhjAy14watLV_VCtv15kqhOjQjGqVozqPIANkt3iSarZ3V6op0fKmwBFnROj3KLOFFzG2mZFYSS3jsxianUUwFoveeUNyUxdwD6AZ4vbaAJIGLpy9Vn7DLJcYucB3O-AspiJRIZCqVgBZEsQWprq8p1qfNyWGY840sk4TQN41aPtYl7__i8e_v9nPIVrqLfqw87e7iO4zkkXqBauWINBMz1zj5HiNeaJ1yUGXy5bfX8CJbFn7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+potential+metabolic+biomarkers+and+immune+cell+infiltration+for+metabolic+associated+steatohepatitis+by+bioinformatics+analysis+and+machine+learning&rft.jtitle=Scientific+reports&rft.au=Xie%2C+Haoran&rft.au=Wang%2C+Junjun&rft.au=Zhao%2C+Qiuyan&rft.date=2025-05-13&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-86397-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_86397_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon