Self-normal and biorthogonal dynamical quantum phase transitions in non-Hermitian quantum walks

Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 14; no. 1; pp. 253 - 11
Main Authors Zhang, Haiting, Wang, Kunkun, Xiao, Lei, Xue, Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.07.2025
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally.
AbstractList Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.
Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally.
Abstract Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.
Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.
Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally.
ArticleNumber 253
Author Xue, Peng
Wang, Kunkun
Xiao, Lei
Zhang, Haiting
Author_xml – sequence: 1
  givenname: Haiting
  surname: Zhang
  fullname: Zhang, Haiting
  organization: Beijing Computational Science Research Center
– sequence: 2
  givenname: Kunkun
  surname: Wang
  fullname: Wang, Kunkun
  organization: School of Physics and Optoelectronic Engineering, Anhui University
– sequence: 3
  givenname: Lei
  surname: Xiao
  fullname: Xiao, Lei
  organization: Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University
– sequence: 4
  givenname: Peng
  orcidid: 0000-0002-4272-2883
  surname: Xue
  fullname: Xue, Peng
  email: gnep.eux@gmail.com
  organization: Beijing Computational Science Research Center, Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40715070$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHpJdRjO7FzQqhqaaVKPQBny3Emu14Se2snoP77upuytBzwxaPxM-98eN6SAx88EvIe6CegXJ0lAVzKkrKqpNBAU9avyBGjQpay4urgmX1ITlLa0HwaAVTJN-RQUAkVlfSI6G849KUPcTRDYXxXtC7EaR1WwWdHd-_N6Gy27mbjp3kstmuTsJii8clNLvhUOF_k0sorjGP2GL9Hf5vhZ3pHXvdmSHjydB-TH5cX38-vypvbr9fnX25KKxoxlRWyvu9QAmuVtKyvJCgrlUXJe8GQ0b6WABlFCijqtmfA0XS2ho7JTtX8mFwvul0wG72NbjTxXgfj9M4R4kqbODk7oLayRWgaoJZxYWthGlNXilnVAoeW0qz1edHazu2InUWf-x1eiL588W6tV-GXBsYayanKCqdPCjHczZgmPbpkcRiMxzAnzXNmSplgMqMf_0E3YY55-DuKV7k3XmXqw_OS9rX8-cgMsAWwMaQUsd8jQPXjwuhlYXReGL1bGP04NL4EpQz7Fca_uf8T9QAUeMLs
Cites_doi 10.1103/PhysRevA.97.052126
10.1103/PhysRevB.93.085416
10.1103/PhysRevA.98.022129
10.1103/PhysRevLett.102.065703
10.1038/s41567-017-0013-8
10.1103/PhysRevB.103.224310
10.1103/PhysRevB.102.144306
10.1103/PhysRevLett.118.180601
10.1093/nsr/nwad005
10.1016/j.isci.2019.09.037
10.1103/PhysRevB.107.184311
10.1038/s41563-019-0304-9
10.1103/PhysRevA.109.032619
10.1088/1751-8113/42/15/153001
10.1038/s41567-020-0836-6
10.1103/PhysRevB.96.134427
10.1088/1751-8113/47/3/035305
10.1007/s11128-012-0425-4
10.1038/nature24622
10.1103/PhysRevLett.132.220402
10.1103/PhysRevB.86.020401
10.1103/PhysRevLett.110.135704
10.1103/PhysRevB.103.064306
10.1103/PhysRevLett.86.2490
10.1103/PhysRevLett.115.140602
10.1103/PhysRevLett.60.2339
10.1103/PhysRevB.84.195139
10.1103/PhysRevB.105.094311
10.1103/PhysRevB.89.161105
10.1088/1361-6633/aaaf9a
10.1103/PhysRevA.82.012103
10.1103/PhysRevLett.119.080501
10.1103/PhysRevE.64.055203
10.1038/nature24654
10.1103/PhysRevB.100.024310
10.1103/PhysRevB.106.054308
10.1103/PhysRevApplied.11.044080
10.1103/PhysRevA.82.033429
10.1103/PhysRev.87.404
10.1088/1367-2630/ac0574
10.1103/PhysRevLett.133.070801
10.1088/0034-4885/70/6/R03
10.1103/PhysRevB.100.184310
10.1103/PhysRevLett.122.020501
10.1103/PhysRevLett.124.250601
10.1103/PhysRevLett.127.270602
10.1088/0034-4885/30/2/306
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-025-01919-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 11
ExternalDocumentID oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00
PMC12297308
40715070
10_1038_s41377_025_01919_6
Genre Journal Article
GroupedDBID 0R~
5VS
7X7
88I
8FE
8FH
8FI
8FJ
AAJSJ
AASML
ABUWG
ACGFS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c494t-5e2ffde712b87c2f5718c78ce73f42e20f6711494e01e46bf213eadc61d27d863
IEDL.DBID DOA
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:22:28 EDT 2025
Thu Aug 21 18:24:44 EDT 2025
Mon Jul 28 18:32:25 EDT 2025
Sat Aug 23 14:30:34 EDT 2025
Fri Aug 01 03:41:27 EDT 2025
Tue Aug 05 12:09:45 EDT 2025
Sun Jul 27 01:10:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-5e2ffde712b87c2f5718c78ce73f42e20f6711494e01e46bf213eadc61d27d863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4272-2883
OpenAccessLink https://doaj.org/article/c7be19910c234c64a9a6582c8b131b00
PMID 40715070
PQID 3233586335
PQPubID 2041947
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12297308
proquest_miscellaneous_3234002427
proquest_journals_3233586335
pubmed_primary_40715070
crossref_primary_10_1038_s41377_025_01919_6
springer_journals_10_1038_s41377_025_01919_6
PublicationCentury 2000
PublicationDate 2025-07-26
PublicationDateYYYYMMDD 2025-07-26
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2025
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References KK Wang (1919_CR31) 2019; 10
M Heyl (1919_CR4) 2015; 115
LW Zhou (1919_CR33) 2018; 98
M Heyl (1919_CR3) 2013; 110
R Jafari (1919_CR11) 2022; 105
D Mondal (1919_CR30) 2023; 107
J Zhang (1919_CR14) 2017; 551
DC Brody (1919_CR32) 2013; 47
T Tian (1919_CR19) 2019; 100
L Xiao (1919_CR39) 2024; 133
ME Fisher (1919_CR1) 1967; 30
K Brandner (1919_CR51) 2017; 118
T Nag (1919_CR12) 2012; 86
S Vajna (1919_CR5) 2014; 89
M Abdi (1919_CR8) 2019; 100
ME Fisher (1919_CR50) 1965; 7
BZ Huo (1919_CR38) 2025; 12
JC Halimeh (1919_CR7) 2017; 96
T Kitagawa (1919_CR37) 2010; 82
LW Zhou (1919_CR29) 2021; 23
XY Guo (1919_CR18) 2019; 11
H Bernien (1919_CR16) 2017; 551
MS Rudner (1919_CR43) 2009; 102
YC Jing (1919_CR34) 2024; 132
CN Yang (1919_CR2) 1952; 87
KK Wang (1919_CR20) 2019; 122
J Samuel (1919_CR25) 1988; 60
JC Budich (1919_CR24) 2016; 93
M Syed (1919_CR9) 2021; 103
H Obuse (1919_CR44) 2011; 84
I Rotter (1919_CR27) 2009; 42
M Heyl (1919_CR52) 2018; 81
P Xue (1919_CR40) 2024; 15
A Fring (1919_CR48) 2024; 139
XF Nie (1919_CR15) 2020; 124
CM Bender (1919_CR28) 2007; 70
XZ Qiu (1919_CR35) 2019; 20
T Kitagawa (1919_CR42) 2012; 11
R Modak (1919_CR6) 2021; 103
ŞK Ózdemir (1919_CR47) 2019; 18
AS Kazmina (1919_CR49) 2024; 109
KK Wang (1919_CR46) 2021; 127
N Fläschner (1919_CR17) 2018; 14
L Xiao (1919_CR45) 2020; 16
P Jurcevic (1919_CR13) 2017; 119
1919_CR26
JB Gong (1919_CR36) 2018; 97
P Xue (1919_CR41) 2023; 10
S Zamani (1919_CR10) 2020; 102
RA Jalabert (1919_CR21) 2001; 86
P Jacquod (1919_CR22) 2001; 64
D Mondal (1919_CR23) 2022; 106
References_xml – volume: 97
  start-page: 052126
  year: 2018
  ident: 1919_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.97.052126
– volume: 93
  start-page: 085416
  year: 2016
  ident: 1919_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.085416
– volume: 98
  start-page: 022129
  year: 2018
  ident: 1919_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.022129
– volume: 102
  start-page: 065703
  year: 2009
  ident: 1919_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.065703
– volume: 14
  start-page: 265
  year: 2018
  ident: 1919_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0013-8
– volume: 103
  start-page: 224310
  year: 2021
  ident: 1919_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.224310
– volume: 102
  start-page: 144306
  year: 2020
  ident: 1919_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.144306
– volume: 118
  start-page: 180601
  year: 2017
  ident: 1919_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.180601
– volume: 10
  start-page: nwad005
  year: 2023
  ident: 1919_CR41
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwad005
– volume: 20
  start-page: 392
  year: 2019
  ident: 1919_CR35
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.037
– volume: 107
  start-page: 184311
  year: 2023
  ident: 1919_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.184311
– volume: 18
  start-page: 783
  year: 2019
  ident: 1919_CR47
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0304-9
– volume: 109
  start-page: 032619
  year: 2024
  ident: 1919_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.109.032619
– volume: 7
  start-page: 1
  year: 1965
  ident: 1919_CR50
  publication-title: Lectures Theor. Phys. C.
– volume: 42
  start-page: 153001
  year: 2009
  ident: 1919_CR27
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/42/15/153001
– volume: 16
  start-page: 761
  year: 2020
  ident: 1919_CR45
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0836-6
– volume: 12
  start-page: nwae263
  year: 2025
  ident: 1919_CR38
  publication-title: Natl Sci. Rev.
– volume: 15
  year: 2024
  ident: 1919_CR40
  publication-title: Nat. Commun.
– volume: 96
  start-page: 134427
  year: 2017
  ident: 1919_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.134427
– volume: 47
  start-page: 035305
  year: 2013
  ident: 1919_CR32
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/47/3/035305
– volume: 11
  start-page: 1107
  year: 2012
  ident: 1919_CR42
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-012-0425-4
– volume: 551
  start-page: 579
  year: 2017
  ident: 1919_CR16
  publication-title: Nature
  doi: 10.1038/nature24622
– volume: 132
  start-page: 220402
  year: 2024
  ident: 1919_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.132.220402
– volume: 86
  start-page: 020401
  year: 2012
  ident: 1919_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.020401
– volume: 110
  start-page: 135704
  year: 2013
  ident: 1919_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.135704
– volume: 103
  start-page: 064306
  year: 2021
  ident: 1919_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.064306
– volume: 86
  start-page: 2490
  year: 2001
  ident: 1919_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.2490
– volume: 115
  start-page: 140602
  year: 2015
  ident: 1919_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.140602
– volume: 60
  start-page: 2339
  year: 1988
  ident: 1919_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.60.2339
– volume: 84
  start-page: 195139
  year: 2011
  ident: 1919_CR44
  publication-title: Phys. Rev. Lett. B
  doi: 10.1103/PhysRevB.84.195139
– volume: 105
  start-page: 094311
  year: 2022
  ident: 1919_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.105.094311
– volume: 89
  start-page: 161105
  year: 2014
  ident: 1919_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.161105
– volume: 81
  start-page: 054001
  year: 2018
  ident: 1919_CR52
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/aaaf9a
– ident: 1919_CR26
  doi: 10.1103/PhysRevA.82.012103
– volume: 119
  start-page: 080501
  year: 2017
  ident: 1919_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.080501
– volume: 64
  start-page: 055203
  year: 2001
  ident: 1919_CR22
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.055203
– volume: 139
  year: 2024
  ident: 1919_CR48
  publication-title: Eur. Phys. J.
– volume: 551
  start-page: 601
  year: 2017
  ident: 1919_CR14
  publication-title: Nature
  doi: 10.1038/nature24654
– volume: 100
  start-page: 024310
  year: 2019
  ident: 1919_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.024310
– volume: 106
  start-page: 054308
  year: 2022
  ident: 1919_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.054308
– volume: 11
  start-page: 044080
  year: 2019
  ident: 1919_CR18
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.044080
– volume: 82
  start-page: 033429
  year: 2010
  ident: 1919_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.033429
– volume: 87
  start-page: 404
  year: 1952
  ident: 1919_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.87.404
– volume: 23
  start-page: 063041
  year: 2021
  ident: 1919_CR29
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/ac0574
– volume: 133
  start-page: 070801
  year: 2024
  ident: 1919_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.133.070801
– volume: 70
  start-page: 947
  year: 2007
  ident: 1919_CR28
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/6/R03
– volume: 100
  start-page: 184310
  year: 2019
  ident: 1919_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.184310
– volume: 122
  start-page: 020501
  year: 2019
  ident: 1919_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.020501
– volume: 124
  start-page: 250601
  year: 2020
  ident: 1919_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.250601
– volume: 10
  year: 2019
  ident: 1919_CR31
  publication-title: Nat. Commun.
– volume: 127
  start-page: 270602
  year: 2021
  ident: 1919_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.270602
– volume: 30
  start-page: 615
  year: 1967
  ident: 1919_CR1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/30/2/306
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.387434
Snippet Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters...
Abstract Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 253
SubjectTerms 639/766/400/3925
639/766/400/482
Lasers
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
Phase transitions
Photonics
Photons
Physics
Physics and Astronomy
Quantum physics
RF and Optical Engineering
Symmetry
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLanmmDxQkbmA1fsR2TggQ1QoJLlBpb1b8SLvqkmybXfH3O-NkUy2vSxTFVuyMx57Pnsk3hLwRomaFL0vKmtpR6VygLjQ1raUrkYCOhcTE9PWbmp3LL_NyPh649WNY5XZNTAt16DyekZ8KLkRpFFzer64pZo1C7-qYQuM-eYDUZajVeq6nMxbYujBob_xXphDmtJfIsEcxhytgG1ZRtWOPEm3_37DmnyGTv_lNkzk62yePRxyZfxgG_oDci-0T8jDFc_r-KbHf47KhLQLSZV63IXcLdNB0Fwi88zCkoYe76w1IdvMzX12CNcvXaLiGGK580eZt19IZBsvgKjBV_VUvr_pn5Pzs849PMzrmUqBeVnJNy8ibJkTNuDPa86YEm-S18VGLRvLIi0Zp2BpVMhYsSuUazgQomVcscB1A7s_JHrQaX5JcMKeEK51QhZER6U0DbOoAqjkjK1-yjLzdStSuBsoMm1zdwthB_hbkb5P8rcrIRxT6VBPprtOD7ubCjrPHeu0ixmgVngvplayrGpAT98Yx6E1RZOR4O2R2nIO9vdOYjLyeimH2oEukbmO3SXVkgik6Iy-GEZ56gltdQMvwcrMz9jtd3S1pF5eJoZtxTAlWmIy826rJXb_-LYvD_3_GEXnEk-ZqytUx2VvfbOIJQKK1e5X0_hYDgQl_
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CBQWJG1j4Hee4IKrVSnAplXqzYsduV2yzpbsr_j5j54EWyoFbFE_i0Xgm8zkefwZ4K0TDqFeKsNg4Ip1riWtjQxrpVCKgY21mYvryVc_P5OJcnR8AH_fC5KL9TGmZP9NjddiHjUzUeCQdvoqghNVE34GjRNWOvn00my1OF9OfFZywMOxl2CFDhbnl4b0slMn6b0OYfxdK_rFampPQyQO4P6DHctbr-xAOQvcI7uYqTr95DPY0rCLpEgxdlU3Xlm6ZlmXWFwlul21_-Dxe_dihPXdX5fUl5rBym9JVX7lVLruyW3dknkpkUuxPoj-b1ffNEzg7-fzt05wMJygQL2u5JSrwGNtQMe5M5XlUmIl8ZXyoRJQ8cBp1hROiWgbKgtQucibQtbxmLa9ao8VTOMRew3MoBXNaOOWEpkaGRGra4lQOAZozsvaKFfButKi97okybF7gFsb29rdof5vtb3UBH5PRJ8lEcp1vrG8u7DDo1lcupMos6rmQXsumbhAvcW8cQ20oLeB4HDI7RN7GCi6EQs2FKuDN1IwxkxZCmi6sd1lGZnBSFfCsH-FJkzTBRYyMLzd7Y7-n6n5Lt7zMvNyMp4PAqCng_egmv_X6ty1e_J_4S7jHsydXhOtjONze7MIrBEZb93qIhF_oTgiq
  priority: 102
  providerName: Springer Nature
Title Self-normal and biorthogonal dynamical quantum phase transitions in non-Hermitian quantum walks
URI https://link.springer.com/article/10.1038/s41377-025-01919-6
https://www.ncbi.nlm.nih.gov/pubmed/40715070
https://www.proquest.com/docview/3233586335
https://www.proquest.com/docview/3234002427
https://pubmed.ncbi.nlm.nih.gov/PMC12297308
https://doaj.org/article/c7be19910c234c64a9a6582c8b131b00
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CISRe0LiHbVWQeANr8d157KpNVSUmxJjUNyt2HFYo6aCt-PscO2m3chEvPCWyreToO3bOZ_nkOwCvOa9o4aUktKkcEc7VxNVNRSrhZBSgo3VSYnp3rsaXYjKV01ulvmJOWCcP3AF37LULMT2n8IwLr0RVVhg0mTeOcopzJn59Mebd2kx97vLlKL6p_0um4OZ4KaK2HonVW5HV0JKonUiUBPv_xDJ_T5b85cQ0BaKzfXjYM8h82Fn-CO6E9jHcT5mcfvkE7EWYN6SNVHSeV22du1k8mll8ipQ7r7sC9Hj3bY2Yrr_m11cYx_JVDFld9lY-a_N20ZJxTJOJ63879Ec1_7J8Cpdnpx9HY9JXUSBelGJFZGBNUwdNmTPas0ZiNPLa-KB5I1hgRaM0bopKEQoahHINoxynl1e0Zro2ij-DPXxreAE5Aq64k46rwogQhU1r3M4hSXNGlF7SDN5sELXXnViGTYfc3NgOf4v424S_VRmcRNC3I6PQdWpA99ve_fZf7s_gcOMy26--peWMc4mWc5nBq203rpt4GFK1YbFOY0QiKDqD552Ht5bETS7yZHy42fH9jqm7Pe3sKmlzUxaLgRUmg7ebaXJj19-xePk_sDiAByzNb02YOoS91fd1OELKtHIDuKunegD3hsPJxQSvJ6fn7z9g60iNBmnl_ASzOBYf
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBuXAkaCE6zqfXjXOSDEq0rp40Ir5bZ41-s2InXSJlHFn-I3MrOOU4XXrRcrslfOeB4733jGMwAvpSx55vOc8bp0TDlXMVfVJSuVy6kBHa9iJ6b9A90_Ul8G-WANfnbfwlBZZbcnxo26Gnt6R74lhZR5ofHwbnLGaGoUZVe7ERqtWuyGHxcYsk3f7nxC-b4SYvvz4cc-W0wVYF711IzlQdR1FQwXrjBe1Dnuzt4UPhhZKxFEVmuDQUJPhYwHpV0tuER2e80rYSqkAO97Da6j480o2DMDs3yng6ESx-dbfJuTyWJrqqijH6OZsYileI_pFf8XxwT8Ddv-WaL5W542ur_tO3B7gVvT962i3YW10NyDG7F-1E_vg_0aRjVrCACP0rKpUjekhND4mIB-WrVj7_HX2RwlOT9NJyfoPdMZOcq2ZiwdNmkzblifinNo11kuvShH36cP4OhKuPwQ1vFfw2NIJXdautxJnRUqUDvVCoNIhIauUD2f8wRedxy1k7ZFh42pdVnYlv8W-W8j_61O4AMxfbmS2mvHE-PzY7uwVuuNC1QTlnkhldeq7JWI1IQvHEdqsiyBzU5kdmHzU3upoQm8WF5Ga6UUTNmE8TyuUREWmQQetRJeUkKhNaJzvHmxIvsVUlevNMOT2BGcCxpBlhUJvOnU5JKuf_Ni4_-P8Rxu9g_39-zezsHuE7glohYbJvQmrM_O5-EpwrGZexZtIIVvV210vwD81EY8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDcuBRYJTrCK9-G1c0CI0kYphagCKvW29a7XbUTqpE2iqn-NX8fs2k4VXrdefLBX9nhe-41nPAPwSoicxTZJKCtzQ6UxBTVFmdNcmsQ3oGNF6MT0ZagGB_LTYXK4Bj_bf2F8WWXrE4OjLibWfyPvCi5Ekik8dMumLGJ_u_9-ekb9BCmfaW3HadQqsucuLzB8m73b3UZZv-a8v_P944A2EwaolT05p4njZVm4lHGTpZaXCXpqm2bWpaKU3PG4VCkGDD3pYuakMiVnAllvFSt4WiA1eN8bsJ76qKgD61s7w_2vyy88GDgxfNvmT51YZN2Z9P39qJ8gi8iK9aha2Q3D0IC_Id0_CzZ_y9qGzbB_F-40KJZ8qNXuHqy56j7cDNWkdvYA9Dc3Lmnl4fCY5FVBzMinhybHHvaT4rLKQ5MCcrZAuS5OyfQE91Iy99tmXUFGRhWpJhUd-FId74OWSy_y8Y_ZQzi4Fj4_gg4-1T0BIphRwiRGqDiTzjdXLTCkRKBoMtmzCYvgTctRPa0bduiQaBeZrvmvkf868F-rCLY805crfbPtcGJyfqwb29U2Nc5XiMWWC2mVzHs54jZuM8OQmjiOYLMVmW48wExf6WsEL5eX0XZ9Qiav3GQR1sgAktIIHtcSXlLiVQqxOt48W5H9CqmrV6rRSegPzrgfSBZnEbxt1eSKrn_zYuP_r_ECbqHB6c-7w72ncJsHJU4pV5vQmZ8v3DPEZnPzvDECAkfXbXe_ANLUS9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-normal+and+biorthogonal+dynamical+quantum+phase+transitions+in+non-Hermitian+quantum+walks&rft.jtitle=Light%2C+science+%26+applications&rft.au=Haiting+Zhang&rft.au=Kunkun+Wang&rft.au=Lei+Xiao&rft.au=Peng+Xue&rft.date=2025-07-26&rft.pub=Nature+Publishing+Group&rft.eissn=2047-7538&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41377-025-01919-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon