Self-normal and biorthogonal dynamical quantum phase transitions in non-Hermitian quantum walks
Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the...
Saved in:
Published in | Light, science & applications Vol. 14; no. 1; pp. 253 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.07.2025
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.
The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally. |
---|---|
AbstractList | Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally. Abstract Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons. Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters (DTOPs) over time, have garnered enormous attention in recent decades. However, in non-Hermitian systems, the special biorthogonality of the bases makes the definition of DQPTs complex. In this work, we delve into the comprehensive investigation of self-normal DQPTs (originally used in Hermitian systems) to compare them with their biorthogonal counterpart, within the context of non-Hermitian quantum walks (QWs). We present a detailed analysis of the behaviors of Loschmidt rate functions and DTOPs under these two distinct theoretical approaches. While both self-normal and biorthogonal methods can be used to detect DQPTs in quench dynamics between different topological phases, we theoretically present their differences in the definition of critical momenta and critical times by analyzing the Fisher zeros and fixed points. Finally, we present an experiment that observes both types of DQPTs using one-dimensional discrete-time QWs with single photons.The article performs a detailed analysis of self-normal and biorthogonal dynamical quantum phase transitions, presenting characteristics of their physical quantities both theoretically and experimentally. |
ArticleNumber | 253 |
Author | Xue, Peng Wang, Kunkun Xiao, Lei Zhang, Haiting |
Author_xml | – sequence: 1 givenname: Haiting surname: Zhang fullname: Zhang, Haiting organization: Beijing Computational Science Research Center – sequence: 2 givenname: Kunkun surname: Wang fullname: Wang, Kunkun organization: School of Physics and Optoelectronic Engineering, Anhui University – sequence: 3 givenname: Lei surname: Xiao fullname: Xiao, Lei organization: Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University – sequence: 4 givenname: Peng orcidid: 0000-0002-4272-2883 surname: Xue fullname: Xue, Peng email: gnep.eux@gmail.com organization: Beijing Computational Science Research Center, Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40715070$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1UREvpH-CAInHpJdRjO7FzQqhqaaVKPQBny3Emu14Se2snoP77upuytBzwxaPxM-98eN6SAx88EvIe6CegXJ0lAVzKkrKqpNBAU9avyBGjQpay4urgmX1ITlLa0HwaAVTJN-RQUAkVlfSI6G849KUPcTRDYXxXtC7EaR1WwWdHd-_N6Gy27mbjp3kstmuTsJii8clNLvhUOF_k0sorjGP2GL9Hf5vhZ3pHXvdmSHjydB-TH5cX38-vypvbr9fnX25KKxoxlRWyvu9QAmuVtKyvJCgrlUXJe8GQ0b6WABlFCijqtmfA0XS2ho7JTtX8mFwvul0wG72NbjTxXgfj9M4R4kqbODk7oLayRWgaoJZxYWthGlNXilnVAoeW0qz1edHazu2InUWf-x1eiL588W6tV-GXBsYayanKCqdPCjHczZgmPbpkcRiMxzAnzXNmSplgMqMf_0E3YY55-DuKV7k3XmXqw_OS9rX8-cgMsAWwMaQUsd8jQPXjwuhlYXReGL1bGP04NL4EpQz7Fca_uf8T9QAUeMLs |
Cites_doi | 10.1103/PhysRevA.97.052126 10.1103/PhysRevB.93.085416 10.1103/PhysRevA.98.022129 10.1103/PhysRevLett.102.065703 10.1038/s41567-017-0013-8 10.1103/PhysRevB.103.224310 10.1103/PhysRevB.102.144306 10.1103/PhysRevLett.118.180601 10.1093/nsr/nwad005 10.1016/j.isci.2019.09.037 10.1103/PhysRevB.107.184311 10.1038/s41563-019-0304-9 10.1103/PhysRevA.109.032619 10.1088/1751-8113/42/15/153001 10.1038/s41567-020-0836-6 10.1103/PhysRevB.96.134427 10.1088/1751-8113/47/3/035305 10.1007/s11128-012-0425-4 10.1038/nature24622 10.1103/PhysRevLett.132.220402 10.1103/PhysRevB.86.020401 10.1103/PhysRevLett.110.135704 10.1103/PhysRevB.103.064306 10.1103/PhysRevLett.86.2490 10.1103/PhysRevLett.115.140602 10.1103/PhysRevLett.60.2339 10.1103/PhysRevB.84.195139 10.1103/PhysRevB.105.094311 10.1103/PhysRevB.89.161105 10.1088/1361-6633/aaaf9a 10.1103/PhysRevA.82.012103 10.1103/PhysRevLett.119.080501 10.1103/PhysRevE.64.055203 10.1038/nature24654 10.1103/PhysRevB.100.024310 10.1103/PhysRevB.106.054308 10.1103/PhysRevApplied.11.044080 10.1103/PhysRevA.82.033429 10.1103/PhysRev.87.404 10.1088/1367-2630/ac0574 10.1103/PhysRevLett.133.070801 10.1088/0034-4885/70/6/R03 10.1103/PhysRevB.100.184310 10.1103/PhysRevLett.122.020501 10.1103/PhysRevLett.124.250601 10.1103/PhysRevLett.127.270602 10.1088/0034-4885/30/2/306 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-025-01919-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00 PMC12297308 40715070 10_1038_s41377_025_01919_6 |
Genre | Journal Article |
GroupedDBID | 0R~ 5VS 7X7 88I 8FE 8FH 8FI 8FJ AAJSJ AASML ABUWG ACGFS AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AARCD AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c494t-5e2ffde712b87c2f5718c78ce73f42e20f6711494e01e46bf213eadc61d27d863 |
IEDL.DBID | DOA |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:22:28 EDT 2025 Thu Aug 21 18:24:44 EDT 2025 Mon Jul 28 18:32:25 EDT 2025 Sat Aug 23 14:30:34 EDT 2025 Fri Aug 01 03:41:27 EDT 2025 Tue Aug 05 12:09:45 EDT 2025 Sun Jul 27 01:10:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-5e2ffde712b87c2f5718c78ce73f42e20f6711494e01e46bf213eadc61d27d863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4272-2883 |
OpenAccessLink | https://doaj.org/article/c7be19910c234c64a9a6582c8b131b00 |
PMID | 40715070 |
PQID | 3233586335 |
PQPubID | 2041947 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12297308 proquest_miscellaneous_3234002427 proquest_journals_3233586335 pubmed_primary_40715070 crossref_primary_10_1038_s41377_025_01919_6 springer_journals_10_1038_s41377_025_01919_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-26 |
PublicationDateYYYYMMDD | 2025-07-26 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | KK Wang (1919_CR31) 2019; 10 M Heyl (1919_CR4) 2015; 115 LW Zhou (1919_CR33) 2018; 98 M Heyl (1919_CR3) 2013; 110 R Jafari (1919_CR11) 2022; 105 D Mondal (1919_CR30) 2023; 107 J Zhang (1919_CR14) 2017; 551 DC Brody (1919_CR32) 2013; 47 T Tian (1919_CR19) 2019; 100 L Xiao (1919_CR39) 2024; 133 ME Fisher (1919_CR1) 1967; 30 K Brandner (1919_CR51) 2017; 118 T Nag (1919_CR12) 2012; 86 S Vajna (1919_CR5) 2014; 89 M Abdi (1919_CR8) 2019; 100 ME Fisher (1919_CR50) 1965; 7 BZ Huo (1919_CR38) 2025; 12 JC Halimeh (1919_CR7) 2017; 96 T Kitagawa (1919_CR37) 2010; 82 LW Zhou (1919_CR29) 2021; 23 XY Guo (1919_CR18) 2019; 11 H Bernien (1919_CR16) 2017; 551 MS Rudner (1919_CR43) 2009; 102 YC Jing (1919_CR34) 2024; 132 CN Yang (1919_CR2) 1952; 87 KK Wang (1919_CR20) 2019; 122 J Samuel (1919_CR25) 1988; 60 JC Budich (1919_CR24) 2016; 93 M Syed (1919_CR9) 2021; 103 H Obuse (1919_CR44) 2011; 84 I Rotter (1919_CR27) 2009; 42 M Heyl (1919_CR52) 2018; 81 P Xue (1919_CR40) 2024; 15 A Fring (1919_CR48) 2024; 139 XF Nie (1919_CR15) 2020; 124 CM Bender (1919_CR28) 2007; 70 XZ Qiu (1919_CR35) 2019; 20 T Kitagawa (1919_CR42) 2012; 11 R Modak (1919_CR6) 2021; 103 ŞK Ózdemir (1919_CR47) 2019; 18 AS Kazmina (1919_CR49) 2024; 109 KK Wang (1919_CR46) 2021; 127 N Fläschner (1919_CR17) 2018; 14 L Xiao (1919_CR45) 2020; 16 P Jurcevic (1919_CR13) 2017; 119 1919_CR26 JB Gong (1919_CR36) 2018; 97 P Xue (1919_CR41) 2023; 10 S Zamani (1919_CR10) 2020; 102 RA Jalabert (1919_CR21) 2001; 86 P Jacquod (1919_CR22) 2001; 64 D Mondal (1919_CR23) 2022; 106 |
References_xml | – volume: 97 start-page: 052126 year: 2018 ident: 1919_CR36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.052126 – volume: 93 start-page: 085416 year: 2016 ident: 1919_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.085416 – volume: 98 start-page: 022129 year: 2018 ident: 1919_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.022129 – volume: 102 start-page: 065703 year: 2009 ident: 1919_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.065703 – volume: 14 start-page: 265 year: 2018 ident: 1919_CR17 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0013-8 – volume: 103 start-page: 224310 year: 2021 ident: 1919_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.224310 – volume: 102 start-page: 144306 year: 2020 ident: 1919_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.144306 – volume: 118 start-page: 180601 year: 2017 ident: 1919_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.180601 – volume: 10 start-page: nwad005 year: 2023 ident: 1919_CR41 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwad005 – volume: 20 start-page: 392 year: 2019 ident: 1919_CR35 publication-title: iScience doi: 10.1016/j.isci.2019.09.037 – volume: 107 start-page: 184311 year: 2023 ident: 1919_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.184311 – volume: 18 start-page: 783 year: 2019 ident: 1919_CR47 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0304-9 – volume: 109 start-page: 032619 year: 2024 ident: 1919_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.109.032619 – volume: 7 start-page: 1 year: 1965 ident: 1919_CR50 publication-title: Lectures Theor. Phys. C. – volume: 42 start-page: 153001 year: 2009 ident: 1919_CR27 publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/42/15/153001 – volume: 16 start-page: 761 year: 2020 ident: 1919_CR45 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0836-6 – volume: 12 start-page: nwae263 year: 2025 ident: 1919_CR38 publication-title: Natl Sci. Rev. – volume: 15 year: 2024 ident: 1919_CR40 publication-title: Nat. Commun. – volume: 96 start-page: 134427 year: 2017 ident: 1919_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.134427 – volume: 47 start-page: 035305 year: 2013 ident: 1919_CR32 publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/47/3/035305 – volume: 11 start-page: 1107 year: 2012 ident: 1919_CR42 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-012-0425-4 – volume: 551 start-page: 579 year: 2017 ident: 1919_CR16 publication-title: Nature doi: 10.1038/nature24622 – volume: 132 start-page: 220402 year: 2024 ident: 1919_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.132.220402 – volume: 86 start-page: 020401 year: 2012 ident: 1919_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.020401 – volume: 110 start-page: 135704 year: 2013 ident: 1919_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.135704 – volume: 103 start-page: 064306 year: 2021 ident: 1919_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.064306 – volume: 86 start-page: 2490 year: 2001 ident: 1919_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2490 – volume: 115 start-page: 140602 year: 2015 ident: 1919_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.140602 – volume: 60 start-page: 2339 year: 1988 ident: 1919_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.60.2339 – volume: 84 start-page: 195139 year: 2011 ident: 1919_CR44 publication-title: Phys. Rev. Lett. B doi: 10.1103/PhysRevB.84.195139 – volume: 105 start-page: 094311 year: 2022 ident: 1919_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.094311 – volume: 89 start-page: 161105 year: 2014 ident: 1919_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.161105 – volume: 81 start-page: 054001 year: 2018 ident: 1919_CR52 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aaaf9a – ident: 1919_CR26 doi: 10.1103/PhysRevA.82.012103 – volume: 119 start-page: 080501 year: 2017 ident: 1919_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.080501 – volume: 64 start-page: 055203 year: 2001 ident: 1919_CR22 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.055203 – volume: 139 year: 2024 ident: 1919_CR48 publication-title: Eur. Phys. J. – volume: 551 start-page: 601 year: 2017 ident: 1919_CR14 publication-title: Nature doi: 10.1038/nature24654 – volume: 100 start-page: 024310 year: 2019 ident: 1919_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.024310 – volume: 106 start-page: 054308 year: 2022 ident: 1919_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.054308 – volume: 11 start-page: 044080 year: 2019 ident: 1919_CR18 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.044080 – volume: 82 start-page: 033429 year: 2010 ident: 1919_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.033429 – volume: 87 start-page: 404 year: 1952 ident: 1919_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.87.404 – volume: 23 start-page: 063041 year: 2021 ident: 1919_CR29 publication-title: N. J. Phys. doi: 10.1088/1367-2630/ac0574 – volume: 133 start-page: 070801 year: 2024 ident: 1919_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.070801 – volume: 70 start-page: 947 year: 2007 ident: 1919_CR28 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/6/R03 – volume: 100 start-page: 184310 year: 2019 ident: 1919_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.184310 – volume: 122 start-page: 020501 year: 2019 ident: 1919_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.020501 – volume: 124 start-page: 250601 year: 2020 ident: 1919_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.250601 – volume: 10 year: 2019 ident: 1919_CR31 publication-title: Nat. Commun. – volume: 127 start-page: 270602 year: 2021 ident: 1919_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.270602 – volume: 30 start-page: 615 year: 1967 ident: 1919_CR1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/30/2/306 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.387434 |
Snippet | Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order parameters... Abstract Dynamical quantum phase transitions (DQPTs), characterized by non-analytic behavior in rate function and abrupt changes in dynamic topological order... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 253 |
SubjectTerms | 639/766/400/3925 639/766/400/482 Lasers Microwaves Optical and Electronic Materials Optical Devices Optics Phase transitions Photonics Photons Physics Physics and Astronomy Quantum physics RF and Optical Engineering Symmetry |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLanmmDxQkbmA1fsR2TggQ1QoJLlBpb1b8SLvqkmybXfH3O-NkUy2vSxTFVuyMx57Pnsk3hLwRomaFL0vKmtpR6VygLjQ1raUrkYCOhcTE9PWbmp3LL_NyPh649WNY5XZNTAt16DyekZ8KLkRpFFzer64pZo1C7-qYQuM-eYDUZajVeq6nMxbYujBob_xXphDmtJfIsEcxhytgG1ZRtWOPEm3_37DmnyGTv_lNkzk62yePRxyZfxgG_oDci-0T8jDFc_r-KbHf47KhLQLSZV63IXcLdNB0Fwi88zCkoYe76w1IdvMzX12CNcvXaLiGGK580eZt19IZBsvgKjBV_VUvr_pn5Pzs849PMzrmUqBeVnJNy8ibJkTNuDPa86YEm-S18VGLRvLIi0Zp2BpVMhYsSuUazgQomVcscB1A7s_JHrQaX5JcMKeEK51QhZER6U0DbOoAqjkjK1-yjLzdStSuBsoMm1zdwthB_hbkb5P8rcrIRxT6VBPprtOD7ubCjrPHeu0ixmgVngvplayrGpAT98Yx6E1RZOR4O2R2nIO9vdOYjLyeimH2oEukbmO3SXVkgik6Iy-GEZ56gltdQMvwcrMz9jtd3S1pF5eJoZtxTAlWmIy826rJXb_-LYvD_3_GEXnEk-ZqytUx2VvfbOIJQKK1e5X0_hYDgQl_ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CBQWJG1j4Hee4IKrVSnAplXqzYsduV2yzpbsr_j5j54EWyoFbFE_i0Xgm8zkefwZ4K0TDqFeKsNg4Ip1riWtjQxrpVCKgY21mYvryVc_P5OJcnR8AH_fC5KL9TGmZP9NjddiHjUzUeCQdvoqghNVE34GjRNWOvn00my1OF9OfFZywMOxl2CFDhbnl4b0slMn6b0OYfxdK_rFampPQyQO4P6DHctbr-xAOQvcI7uYqTr95DPY0rCLpEgxdlU3Xlm6ZlmXWFwlul21_-Dxe_dihPXdX5fUl5rBym9JVX7lVLruyW3dknkpkUuxPoj-b1ffNEzg7-fzt05wMJygQL2u5JSrwGNtQMe5M5XlUmIl8ZXyoRJQ8cBp1hROiWgbKgtQucibQtbxmLa9ao8VTOMRew3MoBXNaOOWEpkaGRGra4lQOAZozsvaKFfButKi97okybF7gFsb29rdof5vtb3UBH5PRJ8lEcp1vrG8u7DDo1lcupMos6rmQXsumbhAvcW8cQ20oLeB4HDI7RN7GCi6EQs2FKuDN1IwxkxZCmi6sd1lGZnBSFfCsH-FJkzTBRYyMLzd7Y7-n6n5Lt7zMvNyMp4PAqCng_egmv_X6ty1e_J_4S7jHsydXhOtjONze7MIrBEZb93qIhF_oTgiq priority: 102 providerName: Springer Nature |
Title | Self-normal and biorthogonal dynamical quantum phase transitions in non-Hermitian quantum walks |
URI | https://link.springer.com/article/10.1038/s41377-025-01919-6 https://www.ncbi.nlm.nih.gov/pubmed/40715070 https://www.proquest.com/docview/3233586335 https://www.proquest.com/docview/3234002427 https://pubmed.ncbi.nlm.nih.gov/PMC12297308 https://doaj.org/article/c7be19910c234c64a9a6582c8b131b00 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD6CISRe0LiHbVWQeANr8d157KpNVSUmxJjUNyt2HFYo6aCt-PscO2m3chEvPCWyreToO3bOZ_nkOwCvOa9o4aUktKkcEc7VxNVNRSrhZBSgo3VSYnp3rsaXYjKV01ulvmJOWCcP3AF37LULMT2n8IwLr0RVVhg0mTeOcopzJn59Mebd2kx97vLlKL6p_0um4OZ4KaK2HonVW5HV0JKonUiUBPv_xDJ_T5b85cQ0BaKzfXjYM8h82Fn-CO6E9jHcT5mcfvkE7EWYN6SNVHSeV22du1k8mll8ipQ7r7sC9Hj3bY2Yrr_m11cYx_JVDFld9lY-a_N20ZJxTJOJ63879Ec1_7J8Cpdnpx9HY9JXUSBelGJFZGBNUwdNmTPas0ZiNPLa-KB5I1hgRaM0bopKEQoahHINoxynl1e0Zro2ij-DPXxreAE5Aq64k46rwogQhU1r3M4hSXNGlF7SDN5sELXXnViGTYfc3NgOf4v424S_VRmcRNC3I6PQdWpA99ve_fZf7s_gcOMy26--peWMc4mWc5nBq203rpt4GFK1YbFOY0QiKDqD552Ht5bETS7yZHy42fH9jqm7Pe3sKmlzUxaLgRUmg7ebaXJj19-xePk_sDiAByzNb02YOoS91fd1OELKtHIDuKunegD3hsPJxQSvJ6fn7z9g60iNBmnl_ASzOBYf |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBuXAkaCE6zqfXjXOSDEq0rp40Ir5bZ41-s2InXSJlHFn-I3MrOOU4XXrRcrslfOeB4733jGMwAvpSx55vOc8bp0TDlXMVfVJSuVy6kBHa9iJ6b9A90_Ul8G-WANfnbfwlBZZbcnxo26Gnt6R74lhZR5ofHwbnLGaGoUZVe7ERqtWuyGHxcYsk3f7nxC-b4SYvvz4cc-W0wVYF711IzlQdR1FQwXrjBe1Dnuzt4UPhhZKxFEVmuDQUJPhYwHpV0tuER2e80rYSqkAO97Da6j480o2DMDs3yng6ESx-dbfJuTyWJrqqijH6OZsYileI_pFf8XxwT8Ddv-WaL5W542ur_tO3B7gVvT962i3YW10NyDG7F-1E_vg_0aRjVrCACP0rKpUjekhND4mIB-WrVj7_HX2RwlOT9NJyfoPdMZOcq2ZiwdNmkzblifinNo11kuvShH36cP4OhKuPwQ1vFfw2NIJXdautxJnRUqUDvVCoNIhIauUD2f8wRedxy1k7ZFh42pdVnYlv8W-W8j_61O4AMxfbmS2mvHE-PzY7uwVuuNC1QTlnkhldeq7JWI1IQvHEdqsiyBzU5kdmHzU3upoQm8WF5Ga6UUTNmE8TyuUREWmQQetRJeUkKhNaJzvHmxIvsVUlevNMOT2BGcCxpBlhUJvOnU5JKuf_Ni4_-P8Rxu9g_39-zezsHuE7glohYbJvQmrM_O5-EpwrGZexZtIIVvV210vwD81EY8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDcuBRYJTrCK9-G1c0CI0kYphagCKvW29a7XbUTqpE2iqn-NX8fs2k4VXrdefLBX9nhe-41nPAPwSoicxTZJKCtzQ6UxBTVFmdNcmsQ3oGNF6MT0ZagGB_LTYXK4Bj_bf2F8WWXrE4OjLibWfyPvCi5Ekik8dMumLGJ_u_9-ekb9BCmfaW3HadQqsucuLzB8m73b3UZZv-a8v_P944A2EwaolT05p4njZVm4lHGTpZaXCXpqm2bWpaKU3PG4VCkGDD3pYuakMiVnAllvFSt4WiA1eN8bsJ76qKgD61s7w_2vyy88GDgxfNvmT51YZN2Z9P39qJ8gi8iK9aha2Q3D0IC_Id0_CzZ_y9qGzbB_F-40KJZ8qNXuHqy56j7cDNWkdvYA9Dc3Lmnl4fCY5FVBzMinhybHHvaT4rLKQ5MCcrZAuS5OyfQE91Iy99tmXUFGRhWpJhUd-FId74OWSy_y8Y_ZQzi4Fj4_gg4-1T0BIphRwiRGqDiTzjdXLTCkRKBoMtmzCYvgTctRPa0bduiQaBeZrvmvkf868F-rCLY805crfbPtcGJyfqwb29U2Nc5XiMWWC2mVzHs54jZuM8OQmjiOYLMVmW48wExf6WsEL5eX0XZ9Qiav3GQR1sgAktIIHtcSXlLiVQqxOt48W5H9CqmrV6rRSegPzrgfSBZnEbxt1eSKrn_zYuP_r_ECbqHB6c-7w72ncJsHJU4pV5vQmZ8v3DPEZnPzvDECAkfXbXe_ANLUS9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-normal+and+biorthogonal+dynamical+quantum+phase+transitions+in+non-Hermitian+quantum+walks&rft.jtitle=Light%2C+science+%26+applications&rft.au=Haiting+Zhang&rft.au=Kunkun+Wang&rft.au=Lei+Xiao&rft.au=Peng+Xue&rft.date=2025-07-26&rft.pub=Nature+Publishing+Group&rft.eissn=2047-7538&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41377-025-01919-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c7be19910c234c64a9a6582c8b131b00 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |