Exosome-based strategy for degenerative disease in orthopedics: Recent progress and perspectives
Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cel...
Saved in:
Published in | Journal of orthopaedic translation Vol. 36; pp. 8 - 17 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
Chinese Speaking Orthopaedic Society Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration.
Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented.
Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes.
Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics.
Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. |
---|---|
AbstractList | Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell-based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.BackgroundDegenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell-based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome-based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented.MethodsTraditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome-based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented.Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome-based strategies can better match the requirements of the regeneration in some complex healing processes.ResultsTreatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome-based strategies can better match the requirements of the regeneration in some complex healing processes.Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics.ConclusionExosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics.Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell-based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.Translational potential of this articleExosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell-based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration. Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented. Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes. Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics. Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Background: Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Methods: Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented. Results: Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes. Conclusion: Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics. Translational potential of this article: Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. |
Author | Yu, Haiyang Wu, Rongjie Chen, Yuanfeng Sun, Chuanwei Liu, Jialin Huang, Zena Chen, Duanyong Lin, Sien Zheng, Qiujian Li, Haotao |
Author_xml | – sequence: 1 givenname: Rongjie surname: Wu fullname: Wu, Rongjie organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 2 givenname: Haotao orcidid: 0000-0003-0556-4051 surname: Li fullname: Li, Haotao organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 3 givenname: Chuanwei surname: Sun fullname: Sun, Chuanwei organization: Department of Burn and Wound Repair Surgery and Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 4 givenname: Jialin surname: Liu fullname: Liu, Jialin organization: Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, PR China – sequence: 5 givenname: Duanyong surname: Chen fullname: Chen, Duanyong organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 6 givenname: Haiyang orcidid: 0000-0001-9311-0230 surname: Yu fullname: Yu, Haiyang organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 7 givenname: Zena surname: Huang fullname: Huang, Zena organization: Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China – sequence: 8 givenname: Sien surname: Lin fullname: Lin, Sien email: sienlin@cuhk.edu.hk organization: Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China – sequence: 9 givenname: Yuanfeng orcidid: 0000-0002-8211-5762 surname: Chen fullname: Chen, Yuanfeng email: chenyuanfeng@gdph.org.cn organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China – sequence: 10 givenname: Qiujian surname: Zheng fullname: Zheng, Qiujian email: zhengqiujian@gdph.org.cn organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China |
BookMark | eNp9kVFr1TAUx4tM3Jz7AL710ZfWk7RpEwVBxtTBQBAF3-Jpctql9DY16b24b2_qncJ82FPCyfn_ODm_59nJ7GfKspcMSgaseT2Wo19LDpyXIEoA9SQ745zVBVRcnvy7s--n2UWMIwAwVgPU8ll2WgmpmOLVWfbj6pePfkdFh5FsHteAKw13ee9DbmmgmVLBHSi3LlJqyd2c-7De-oWsM_FN_oUMzWu-BD8EijHH2eYLhbiQ2XLxRfa0xynSxf15nn37cPX18lNx8_nj9eX7m8LUql4LgWibTkqCWlCFCipLUlkhCIysGgEMRS8ltqZFgdzITrakyCretILqvjrPro9c63HUS3A7DHfao9N_Cj4MGsPqzESaBFZNy3opWqgBKwShsCFVG2n7DurEendkLftuR3b7YMDpAfThy-xu9eAPWnFZSWgS4NU9IPife4qr3rloaJpwJr-PmjdKcNnIBlJre2w1wccYqNfGrWnlfiO7STPQm2496qRbb7o1CJ10pyT7L_l3wMcyb48ZSioOjoKOxtFsksyQhKVduUfSvwFAfMWx |
CitedBy_id | crossref_primary_10_1002_cbdv_202402095 crossref_primary_10_1016_j_jot_2023_06_003 crossref_primary_10_1016_j_yexcr_2024_114009 crossref_primary_10_1089_ten_teb_2024_0170 crossref_primary_10_1016_j_ncrna_2024_03_012 crossref_primary_10_1016_j_jot_2024_09_014 crossref_primary_10_1111_os_13848 crossref_primary_10_5005_jp_journals_10040_1369 crossref_primary_10_1186_s12951_024_02336_4 crossref_primary_10_1002_imt2_86 crossref_primary_10_1016_j_jot_2022_10_014 crossref_primary_10_1016_j_mtbio_2023_100841 crossref_primary_10_1016_j_jtv_2024_04_005 crossref_primary_10_3389_fbioe_2024_1377142 crossref_primary_10_1007_s10863_023_09964_9 crossref_primary_10_1080_07853890_2024_2416070 crossref_primary_10_3389_fbioe_2023_1162263 crossref_primary_10_1093_pcmedi_pbae032 |
Cites_doi | 10.1177/03635465211068129 10.3402/jev.v4.26238 10.1038/nbt.2816 10.1080/15384101.2018.1526603 10.1038/s41598-017-15376-8 10.1016/j.jconrel.2014.12.013 10.1073/pnas.1521230113 10.1126/science.aaw2622 10.1021/acsami.0c10458 10.1172/JCI44635 10.1002/art.34626 10.1080/14712598.2018.1502266 10.1186/s10020-021-00355-7 10.1080/20013078.2020.1778883 10.1038/s41420-021-00418-y 10.7150/thno.17133 10.3402/jev.v5.32945 10.1002/jcb.29657 10.1089/ten.tec.2020.0039 10.1186/s13287-018-1047-2 10.1016/j.ymeth.2015.09.015 10.1089/scd.2013.0479 10.1089/ten.tea.2010.0517 10.1016/j.arthro.2020.03.031 10.1016/j.biomaterials.2017.11.028 10.1186/s13287-018-1004-0 10.1016/j.omtn.2020.10.021 10.1016/j.actbio.2018.02.019 10.1016/j.ajpath.2015.04.010 10.1002/stem.3322 10.1080/15384101.2020.1769301 10.1089/107632703768247368 10.1038/35102194 10.1016/j.joca.2008.05.009 10.1089/ten.tea.2012.0088 10.1186/s12943-019-1041-z 10.1021/acsami.9b01532 10.1186/s13287-017-0563-9 10.1186/s13075-020-02325-6 10.1016/j.joca.2015.01.008 10.1016/j.biomaterials.2019.119492 10.1016/j.biomaterials.2020.120539 10.1159/000369452 10.1016/j.freeradbiomed.2019.07.026 10.1016/j.jot.2019.10.012 10.1016/j.addr.2018.04.017 10.1186/s13287-018-0791-7 10.2217/nnm-2019-0208 10.1111/jcmm.13316 10.1016/j.cellsig.2021.110083 10.1016/j.biomaterials.2021.121169 10.1016/j.biomaterials.2019.03.022 10.1016/j.arr.2020.101106 10.1016/j.jot.2021.08.003 10.1016/j.canlet.2015.10.020 10.1016/j.yexcr.2020.112109 10.1016/j.jot.2021.07.005 10.1080/20013078.2018.1535750 10.1016/j.jot.2020.03.015 10.1016/j.jot.2022.02.001 10.18632/aging.104110 10.1038/srep03553 10.1038/s43587-021-00143-2 10.1155/2020/6697577 10.1007/s10565-019-09504-5 10.1155/2021/5542241 10.1016/j.spinee.2004.09.006 10.1016/j.redox.2018.09.006 10.1016/j.jot.2020.04.004 10.1186/s12951-021-00991-5 10.7150/thno.33638 10.1186/s13287-021-02431-5 10.1038/nrdp.2016.72 10.1039/C7NR00352H 10.3389/fcell.2021.648201 10.1111/jcmm.13067 10.1016/j.tcb.2015.01.004 10.7150/thno.31017 10.1038/nrrheum.2013.160 10.3389/fcell.2021.644380 10.2174/1381612823666170913164738 10.1016/j.omtn.2020.09.026 10.1016/j.addr.2014.11.011 10.1016/j.bioorg.2021.104978 10.3389/fbioe.2018.00090 10.1002/jor.1100100510 10.1038/s41418-020-00636-4 10.1016/j.bbrc.2019.12.065 10.1016/j.msec.2020.110757 10.1016/j.tibtech.2020.05.002 10.1007/s10067-021-05986-z 10.1007/s10495-013-0839-1 10.1038/s41582-018-0126-4 10.1111/jcmm.15784 10.1002/advs.201700449 10.3389/fphar.2016.00231 10.1016/j.jot.2020.12.002 10.3727/096368910X532738 10.1016/j.jot.2020.03.005 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.jot.2022.05.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2214-0328 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_e5a3671f857040a3a059a6e94c8dfb04 PMC9283806 10_1016_j_jot_2022_05_009 S2214031X22000468 |
GroupedDBID | .~1 0SF 1~. 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACJTP ADBBV ADEZE AEKER AFTJW AGHFR AITUG AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ HVGLF HYE IPNFZ KQ8 M41 MO0 NCXOZ OK1 P-8 P-9 PC. RIG ROL RPM SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c494t-5aad6b88e045e3a903de89d55e0c836501a5f88a7c7a5a2c8b87e9ed92675e4f3 |
IEDL.DBID | .~1 |
ISSN | 2214-031X |
IngestDate | Wed Aug 27 01:03:57 EDT 2025 Thu Aug 21 18:04:26 EDT 2025 Fri Jul 11 07:21:34 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 Tue Jul 01 02:15:34 EDT 2025 Fri Feb 23 02:42:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Exosome Degenerative disease Orthopaedics |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-5aad6b88e045e3a903de89d55e0c836501a5f88a7c7a5a2c8b87e9ed92675e4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this manuscript. |
ORCID | 0000-0003-0556-4051 0000-0002-8211-5762 0000-0001-9311-0230 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2214031X22000468 |
PMID | 35891923 |
PQID | 2695286860 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e5a3671f857040a3a059a6e94c8dfb04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9283806 proquest_miscellaneous_2695286860 crossref_citationtrail_10_1016_j_jot_2022_05_009 crossref_primary_10_1016_j_jot_2022_05_009 elsevier_sciencedirect_doi_10_1016_j_jot_2022_05_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of orthopaedic translation |
PublicationYear | 2022 |
Publisher | Elsevier B.V Chinese Speaking Orthopaedic Society Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Chinese Speaking Orthopaedic Society – name: Elsevier |
References | Tao, Zhou, Wang, Tao, Bai, Ge (bib41) 2021; 113 Richardson, Kalamegam, Pushparaj, Matta, Memic, Khademhosseini (bib4) 2016; 99 Chu, Shi, Wang, Zhang, Yang, Li (bib86) 2018; 6 Chen, Shi, Xue, Ma, Li, Zhang (bib30) 2020; 22 Deng, Hu, Ling, Zhao, Bao, Zhou (bib102) 2021; 28 Marote, Teixeira, Mendes-Pinheiro, Salgado (bib22) 2016; 7 Li, Wang, Xiang, Zheng, Bian, Feng (bib36) 2020; 523 Zhang, Liu, Ding, Meng, Su, Zhang (bib32) 2021; 278 Mao, Zhang, Hu, Zhang, Chang, Huang (bib48) 2018; 9 Smyth, Kullberg, Malik, Smith-Jones, Graner, Anchordoquy (bib60) 2015; 199 Guillen, Tofino-Vian, Silvestre, Castejon, Alcaraz (bib15) 2021; 30 Risbud, Shapiro (bib76) 2014; 10 Xia, Zeng, Fang, Tao, Gu, Zheng (bib78) 2019; 143 Hu, Ran, Zheng, Jin, Chen, Yin (bib57) 2018; 71 Clouet, Fusellier, Camus, Le Visage, Guicheux (bib96) 2019; 146 Mercuri, Patnaik, Dion, Gill, Liao, Simionescu (bib93) 2013; 19 Mao, Xu, Long, Sun, Li, Xin (bib54) 2021; 12 Zhang, Wong, Ren, Teo, Afizah, Choo (bib66) 2022; 50 Xu, Liang, Li, Ouyang, Wang, Cao (bib24) 2021; 269 Meurot, Jacques, Martin, Sudre, Breton, Rattenbach (bib3) 2022; 32 Liu, Li, Yang, Zhou, Lou, Zhang (bib47) 2020; 15 Wu, Chen, Liu, Tong, Suen, Huang (bib59) 2020; 111 Grishko, Ho, Wilson, Pearsall (bib44) 2009; 17 Guo, Su, Zhou, Zhang, Yang, Wu (bib69) 2021; 2021 Sun, Liu, Liu, Song, Wang, Chen (bib87) 2020; 22 Liao, Luo, Li, Song, Zhan, Zhao (bib84) 2019; 9 Martel-Pelletier, Barr, Cicuttini, Conaghan, Cooper, Goldring (bib95) 2016; 2 Lai, Kajiyama, Smith, Maloney, Yang (bib27) 2013; 3 Zhang, Shen, Zhao, Jiang, Zhou, Zhang (bib91) 2021; 86 Luo, Jian, Sun, Qin, Wang, Zhang (bib72) 2021; 39 Xie, Chen, Liu, Huang, Zou, Ma (bib73) 2020; 22 Hopkins, Chen (bib1) 2021; 26 Munagala, Aqil, Jeyabalan, Gupta (bib105) 2016; 371 Lu, Li, Yang, Wu, Cai, Zhou (bib68) 2017; 8 Liu, Yang, Li, Niu, Zhao, Wang (bib64) 2017; 9 Tao, Yuan, Zhang, Yin, Guo, Zhang (bib49) 2017; 7 Horowitz, Fan, Bieri, Smith, Sanchez-Diaz, Schroer (bib99) 2020; 369 Cosenza, Ruiz, Toupet, Jorgensen, Noel (bib38) 2017; 7 Wang, Li, Cui, Cui, Chen, Wang (bib42) 2021; 9 Luo, Gong, Zhang, Qin, Li, Zhang (bib70) 2021; 9 Wu, Ma, Yang, Li, Zheng, Fu (bib97) 2021; 41 Warnecke, Prenzler, Harre, Kohl, Gartner, Lenarz (bib101) 2021; 10 Zhang, Buller, Chopp (bib14) 2019; 15 Yao, Wei, Wang, Chenglin, Bjorklund, Ouyang (bib23) 2019; 224 Won Lee, Thangavelu, Joung Choi, Yeong Shin, Sol Kim, Seon Baek (bib51) 2020; 121 Song, Wang, Zhang, Geng, Liu, Gao (bib74) 2017; 21 Keshtkar, Azarpira, Ghahremani (bib16) 2018; 9 Wu, Leijten, Georgi, Post, van Blitterswijk, Karperien (bib28) 2011; 17 Zhu, Yang, Peng, Yu, Hao (bib80) 2020; 393 Wu, Kuang, Chen, Yang, Zeng, Li (bib43) 2019; 206 Imai, Takahashi, Nishikawa, Kato, Morishita, Yamashita (bib61) 2015; 4 Yuan, Li, Shi, Miao, Guo, Chen (bib81) 2021; 27 Iturriaga, Hernaez-Moya, Erezuma, Dolatshahi-Pirouz, Orive (bib5) 2018; 18 Cheng, Zhang, Zhang, Hu, Zhang, Sun (bib82) 2018; 22 Greene, Loeser (bib37) 2015; 23 Sahu, Clemens, Shinde, Sivakumar, Pius, Bhatia (bib100) 2021; 1 Zhou, Ming, Li, Li, Deng, Ma (bib50) 2021; 7 Veceric-Haler, Cerar, Perse (bib7) 2017; 2017 ter Huurne, Schelbergen, Blattes, Blom, de Munter, Grevers (bib77) 2012; 64 Qi, Liu, Xiao, Tian, Su, Jin (bib46) 2019; vol. 55 Zhang, Rong, Luo, Cui (bib39) 2020; 12 Yan, Wu (bib29) 2020; 36 Chen, Chen, Wu, Lin, Tao, Cao (bib2) 2022; 32 Chen, Zheng, Wang, Tao, Xie, Xia (bib45) 2019; 9 Zhang, Yin, Lai, Tan, Choo, Lim (bib40) 2014; 23 de Miguel-Beriain (bib12) 2015; 82-83 Yan, Zhang, Yang, Deng, Lyu, Xu (bib104) 2020; 26 Song, Zhang, Xu, Lin, Chang, Liu (bib6) 2020; 24 Yan, Liu, Wu (bib31) 2021; 26 Liang, Xu, Li, Xiong, Li, Duan (bib62) 2020; 12 Rahmani, Saleki, Javanmehr, Khodaparast, Saadat, Nouri (bib103) 2020; 62 Xing, Zhang, Mao, Wang, Zhou, Zhou (bib92) 2021; 19 Tao, Huang, Gao, Li, Wei, Dawes (bib55) 2021; 6 Han, Wang, Li, Tao, Liang, Li (bib90) 2014; 199 Thomas, Eldridge, Nosrati, Alvarez, Thorup, Nalesso (bib56) 2021; 10 Narsinh, Sun, Sanchez-Freire, Lee, Almeida, Hu (bib10) 2011; 121 Gamradt, Wang (bib98) 2005; 5 Wu, Wang, Xiao, Crawford, Mao, Prasadam (bib17) 2020; 21 Hu, Dong, Bu, Shen, Luo, Zhang (bib63) 2020; 9 Ling, Li, Chen, Hu, Zhao, Wilson (bib71) 2020; 24 Kowal, Arras, Colombo, Jouve, Morath, Primdal-Bengtson (bib21) 2016; 113 Ankrum, Ong, Karp (bib8) 2014; 32 Thery, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina (bib20) 2018; 7 Gardiner, Di Vizio, Sahoo, Thery, Witwer, Wauben (bib19) 2016; 5 Chen, Wu, Huang, Suen, Cheng, Li (bib58) 2019; 11 Hunter, Matyas, Duncan (bib88) 2003; 9 Chen, Xue, Zhang, Zheng, Liu (bib35) 2018; 9 Maldonado, Oegema (bib89) 1992; 10 Jiang, Tian, Yang, Gao, Wang, Li (bib33) 2021; 6 Tao, Guo, Zhang (bib52) 2018; 5 Jiang, Zhang, Qi, Wang, Ouyang (bib9) 2011; 20 Song, Li, Geng, Luo, Liu, Tu (bib75) 2018; 19 Ding, Shao, Xiong (bib67) 2013; 18 Xiang, Su, Wu, Chen, Cong, Yang (bib85) 2020; 2020 Cocucci, Meldolesi (bib18) 2015; 25 Matsumoto, Stewart, Banks, Zhang (bib25) 2017; 23 Zhang, Zhang, Zhang, Liu, Ni, Huang (bib79) 2020; 24 Burger, Vinas, Akbari, Dehak, Knoll, Gutsol (bib26) 2015; 185 Zhang, Chuah, Lai, Hui, Lim, Toh (bib11) 2018; 156 Zhu, Shi, Liu, Wang, Shen, Yang (bib83) 2020; 19 Fiordalisi, Silva, Barbosa, Goncalves, Caldeira (bib94) 2020; 38 Liu, Lin, Zou, Wen, Wang, Lin (bib34) 2018; 17 Wang, Liu, Ma, Sun, Zhou, Wang (bib53) 2019; 18 McLaren (bib13) 2001; 414 Wong, Zhang, Wang, Ren, Afizah, Lai (bib65) 2020; 36 Zhang (10.1016/j.jot.2022.05.009_bib14) 2019; 15 Hopkins (10.1016/j.jot.2022.05.009_bib1) 2021; 26 Veceric-Haler (10.1016/j.jot.2022.05.009_bib7) 2017; 2017 Gardiner (10.1016/j.jot.2022.05.009_bib19) 2016; 5 Hu (10.1016/j.jot.2022.05.009_bib63) 2020; 9 Zhang (10.1016/j.jot.2022.05.009_bib91) 2021; 86 Sahu (10.1016/j.jot.2022.05.009_bib100) 2021; 1 Munagala (10.1016/j.jot.2022.05.009_bib105) 2016; 371 Yan (10.1016/j.jot.2022.05.009_bib104) 2020; 26 Song (10.1016/j.jot.2022.05.009_bib6) 2020; 24 Thery (10.1016/j.jot.2022.05.009_bib20) 2018; 7 McLaren (10.1016/j.jot.2022.05.009_bib13) 2001; 414 Tao (10.1016/j.jot.2022.05.009_bib55) 2021; 6 Zhang (10.1016/j.jot.2022.05.009_bib32) 2021; 278 Meurot (10.1016/j.jot.2022.05.009_bib3) 2022; 32 Kowal (10.1016/j.jot.2022.05.009_bib21) 2016; 113 Mao (10.1016/j.jot.2022.05.009_bib54) 2021; 12 Tao (10.1016/j.jot.2022.05.009_bib49) 2017; 7 Liu (10.1016/j.jot.2022.05.009_bib47) 2020; 15 Ankrum (10.1016/j.jot.2022.05.009_bib8) 2014; 32 Wu (10.1016/j.jot.2022.05.009_bib43) 2019; 206 Warnecke (10.1016/j.jot.2022.05.009_bib101) 2021; 10 Hunter (10.1016/j.jot.2022.05.009_bib88) 2003; 9 Wang (10.1016/j.jot.2022.05.009_bib42) 2021; 9 Gamradt (10.1016/j.jot.2022.05.009_bib98) 2005; 5 Zhang (10.1016/j.jot.2022.05.009_bib11) 2018; 156 Chu (10.1016/j.jot.2022.05.009_bib86) 2018; 6 Xiang (10.1016/j.jot.2022.05.009_bib85) 2020; 2020 Han (10.1016/j.jot.2022.05.009_bib90) 2014; 199 Jiang (10.1016/j.jot.2022.05.009_bib9) 2011; 20 Guillen (10.1016/j.jot.2022.05.009_bib15) 2021; 30 Rahmani (10.1016/j.jot.2022.05.009_bib103) 2020; 62 Li (10.1016/j.jot.2022.05.009_bib36) 2020; 523 Liang (10.1016/j.jot.2022.05.009_bib62) 2020; 12 Xing (10.1016/j.jot.2022.05.009_bib92) 2021; 19 Ling (10.1016/j.jot.2022.05.009_bib71) 2020; 24 Chen (10.1016/j.jot.2022.05.009_bib30) 2020; 22 Liu (10.1016/j.jot.2022.05.009_bib64) 2017; 9 Mercuri (10.1016/j.jot.2022.05.009_bib93) 2013; 19 Smyth (10.1016/j.jot.2022.05.009_bib60) 2015; 199 Zhang (10.1016/j.jot.2022.05.009_bib66) 2022; 50 Song (10.1016/j.jot.2022.05.009_bib75) 2018; 19 Chen (10.1016/j.jot.2022.05.009_bib45) 2019; 9 Liu (10.1016/j.jot.2022.05.009_bib34) 2018; 17 Lu (10.1016/j.jot.2022.05.009_bib68) 2017; 8 Zhu (10.1016/j.jot.2022.05.009_bib80) 2020; 393 Wong (10.1016/j.jot.2022.05.009_bib65) 2020; 36 Ding (10.1016/j.jot.2022.05.009_bib67) 2013; 18 de Miguel-Beriain (10.1016/j.jot.2022.05.009_bib12) 2015; 82-83 Liao (10.1016/j.jot.2022.05.009_bib84) 2019; 9 Wu (10.1016/j.jot.2022.05.009_bib97) 2021; 41 Chen (10.1016/j.jot.2022.05.009_bib58) 2019; 11 Tao (10.1016/j.jot.2022.05.009_bib41) 2021; 113 Song (10.1016/j.jot.2022.05.009_bib74) 2017; 21 Wang (10.1016/j.jot.2022.05.009_bib53) 2019; 18 Chen (10.1016/j.jot.2022.05.009_bib35) 2018; 9 Sun (10.1016/j.jot.2022.05.009_bib87) 2020; 22 Cosenza (10.1016/j.jot.2022.05.009_bib38) 2017; 7 Chen (10.1016/j.jot.2022.05.009_bib2) 2022; 32 Zhang (10.1016/j.jot.2022.05.009_bib39) 2020; 12 Clouet (10.1016/j.jot.2022.05.009_bib96) 2019; 146 Zhang (10.1016/j.jot.2022.05.009_bib40) 2014; 23 Iturriaga (10.1016/j.jot.2022.05.009_bib5) 2018; 18 Marote (10.1016/j.jot.2022.05.009_bib22) 2016; 7 Xia (10.1016/j.jot.2022.05.009_bib78) 2019; 143 Jiang (10.1016/j.jot.2022.05.009_bib33) 2021; 6 Xie (10.1016/j.jot.2022.05.009_bib73) 2020; 22 Zhou (10.1016/j.jot.2022.05.009_bib50) 2021; 7 Maldonado (10.1016/j.jot.2022.05.009_bib89) 1992; 10 Horowitz (10.1016/j.jot.2022.05.009_bib99) 2020; 369 Yao (10.1016/j.jot.2022.05.009_bib23) 2019; 224 Luo (10.1016/j.jot.2022.05.009_bib72) 2021; 39 Cocucci (10.1016/j.jot.2022.05.009_bib18) 2015; 25 Guo (10.1016/j.jot.2022.05.009_bib69) 2021; 2021 Hu (10.1016/j.jot.2022.05.009_bib57) 2018; 71 Xu (10.1016/j.jot.2022.05.009_bib24) 2021; 269 Mao (10.1016/j.jot.2022.05.009_bib48) 2018; 9 Grishko (10.1016/j.jot.2022.05.009_bib44) 2009; 17 Risbud (10.1016/j.jot.2022.05.009_bib76) 2014; 10 Yan (10.1016/j.jot.2022.05.009_bib29) 2020; 36 Matsumoto (10.1016/j.jot.2022.05.009_bib25) 2017; 23 Cheng (10.1016/j.jot.2022.05.009_bib82) 2018; 22 Imai (10.1016/j.jot.2022.05.009_bib61) 2015; 4 Luo (10.1016/j.jot.2022.05.009_bib70) 2021; 9 Greene (10.1016/j.jot.2022.05.009_bib37) 2015; 23 Wu (10.1016/j.jot.2022.05.009_bib28) 2011; 17 Deng (10.1016/j.jot.2022.05.009_bib102) 2021; 28 Wu (10.1016/j.jot.2022.05.009_bib59) 2020; 111 Burger (10.1016/j.jot.2022.05.009_bib26) 2015; 185 Martel-Pelletier (10.1016/j.jot.2022.05.009_bib95) 2016; 2 Zhu (10.1016/j.jot.2022.05.009_bib83) 2020; 19 Richardson (10.1016/j.jot.2022.05.009_bib4) 2016; 99 Narsinh (10.1016/j.jot.2022.05.009_bib10) 2011; 121 ter Huurne (10.1016/j.jot.2022.05.009_bib77) 2012; 64 Fiordalisi (10.1016/j.jot.2022.05.009_bib94) 2020; 38 Wu (10.1016/j.jot.2022.05.009_bib17) 2020; 21 Won Lee (10.1016/j.jot.2022.05.009_bib51) 2020; 121 Yuan (10.1016/j.jot.2022.05.009_bib81) 2021; 27 Tao (10.1016/j.jot.2022.05.009_bib52) 2018; 5 Qi (10.1016/j.jot.2022.05.009_bib46) 2019; vol. 55 Zhang (10.1016/j.jot.2022.05.009_bib79) 2020; 24 Lai (10.1016/j.jot.2022.05.009_bib27) 2013; 3 Keshtkar (10.1016/j.jot.2022.05.009_bib16) 2018; 9 Thomas (10.1016/j.jot.2022.05.009_bib56) 2021; 10 Yan (10.1016/j.jot.2022.05.009_bib31) 2021; 26 |
References_xml | – volume: vol. 55 start-page: 203 year: 2019 end-page: 210 ident: bib46 article-title: Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways publication-title: Vitro cellular & developmental biology Animal – volume: 22 start-page: 1092 year: 2020 end-page: 1106 ident: bib87 article-title: Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/beta-Catenin Axis publication-title: Mol Ther Nucleic Acids – volume: 20 start-page: 593 year: 2011 end-page: 607 ident: bib9 article-title: Cell transplantation for articular cartilage defects: principles of past, present, and future practice publication-title: Cell Transplant – volume: 27 start-page: 91 year: 2021 ident: bib81 article-title: Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3 publication-title: Mol Med – volume: 28 start-page: 1041 year: 2021 end-page: 1061 ident: bib102 article-title: Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration publication-title: Cell Death Differ – volume: 111 start-page: 110757 year: 2020 ident: bib59 article-title: Ginsenoside Rb1/TGF-beta1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration publication-title: Mater Sci Eng C Mater Biol Appl – volume: 4 start-page: 26238 year: 2015 ident: bib61 article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice publication-title: J Extracell Vesicles – volume: 18 start-page: 883 year: 2018 end-page: 896 ident: bib5 article-title: Advances in stem cell therapy for cartilage regeneration in osteoarthritis publication-title: Expet Opin Biol Ther – volume: 146 start-page: 306 year: 2019 end-page: 324 ident: bib96 article-title: Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies publication-title: Adv Drug Deliv Rev – volume: 11 start-page: 14608 year: 2019 end-page: 14618 ident: bib58 article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair publication-title: ACS Appl Mater Interfaces – volume: 17 start-page: 2411 year: 2018 end-page: 2422 ident: bib34 article-title: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis publication-title: Cell Cycle – volume: 12 start-page: 389 year: 2021 ident: bib54 article-title: Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis publication-title: Stem Cell Res Ther – volume: 6 start-page: 4455 year: 2021 end-page: 4469 ident: bib55 article-title: Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis publication-title: Bioact Mater – volume: 50 start-page: 788 year: 2022 end-page: 800 ident: bib66 article-title: Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model publication-title: Am J Sports Med – volume: 23 start-page: 1233 year: 2014 end-page: 1244 ident: bib40 article-title: Mesenchymal stem cells secrete immunologically active exosomes publication-title: Stem Cell Dev – volume: 10 start-page: 44 year: 2014 end-page: 56 ident: bib76 article-title: Role of cytokines in intervertebral disc degeneration: pain and disc content publication-title: Nat Rev Rheumatol – volume: 32 start-page: 49 year: 2022 end-page: 58 ident: bib2 article-title: Global, regional and national burden of low back pain 1990-2019: a systematic analysis of the Global Burden of Disease study 2019 publication-title: J Orthop Translat – volume: 15 start-page: 193 year: 2019 end-page: 203 ident: bib14 article-title: Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury publication-title: Nat Rev Neurol – volume: 82-83 start-page: 176 year: 2015 end-page: 180 ident: bib12 article-title: The ethics of stem cells revisited publication-title: Adv Drug Deliv Rev – volume: 23 start-page: 1966 year: 2015 end-page: 1971 ident: bib37 article-title: Aging-related inflammation in osteoarthritis publication-title: Osteoarthritis Cartilage – volume: 206 start-page: 87 year: 2019 end-page: 100 ident: bib43 article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis publication-title: Biomaterials – volume: 32 start-page: 121 year: 2022 end-page: 129 ident: bib3 article-title: Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: a new opportunity? publication-title: J Orthop Translat – volume: 22 start-page: 601 year: 2020 end-page: 614 ident: bib73 article-title: MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 Axis publication-title: Mol Ther Nucleic Acids – volume: 8 start-page: 108 year: 2017 ident: bib68 article-title: Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells publication-title: Stem Cell Res Ther – volume: 9 start-page: 4084 year: 2019 end-page: 4100 ident: bib84 article-title: Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo publication-title: Theranostics – volume: 278 start-page: 121169 year: 2021 ident: bib32 article-title: Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration publication-title: Biomaterials – volume: 369 start-page: 167 year: 2020 end-page: 173 ident: bib99 article-title: Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain publication-title: Science – volume: 19 start-page: 1727 year: 2020 end-page: 1739 ident: bib83 article-title: Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases publication-title: Cell Cycle – volume: 71 start-page: 168 year: 2018 end-page: 183 ident: bib57 article-title: Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration publication-title: Acta Biomater – volume: 1 start-page: 1148 year: 2021 end-page: 1161 ident: bib100 article-title: Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles publication-title: Nature Aging – volume: 10 start-page: 677 year: 1992 end-page: 690 ident: bib89 article-title: Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres publication-title: J Orthop Res – volume: 2020 start-page: 6697577 year: 2020 ident: bib85 article-title: Exosomes derived from human urine-derived stem cells inhibit intervertebral disc degeneration by ameliorating endoplasmic reticulum stress publication-title: Oxid Med Cell Longev – volume: 23 start-page: 6206 year: 2017 end-page: 6214 ident: bib25 article-title: The transport mechanism of extracellular vesicles at the blood-brain barrier publication-title: Curr Pharmaceut Des – volume: 7 start-page: 16214 year: 2017 ident: bib38 article-title: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis publication-title: Sci Rep – volume: 121 start-page: 3642 year: 2020 end-page: 3652 ident: bib51 article-title: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration publication-title: J Cell Biochem – volume: 10 year: 2021 ident: bib101 article-title: First-in-human intracochlear application of human stromal cell-derived extracellular vesicles publication-title: J Extracell Vesicles – volume: 7 start-page: 231 year: 2016 ident: bib22 article-title: MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential publication-title: Front Pharmacol – volume: 26 start-page: 1 year: 2021 end-page: 2 ident: bib1 article-title: Medicine and models of degenerative orthopaedic disorders publication-title: J Orthop Translat – volume: 7 start-page: 180 year: 2017 end-page: 195 ident: bib49 article-title: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model publication-title: Theranostics – volume: 18 start-page: 777 year: 2013 end-page: 785 ident: bib67 article-title: Cell death in intervertebral disc degeneration publication-title: Apoptosis – volume: 36 start-page: 165 year: 2020 end-page: 178 ident: bib29 article-title: Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity publication-title: Cell Biol Toxicol – volume: 9 start-page: 318 year: 2018 ident: bib35 article-title: Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells publication-title: Stem Cell Res Ther – volume: 523 start-page: 506 year: 2020 end-page: 513 ident: bib36 article-title: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/beta-catenin pathways to promote chondrogenic differentiation of BMSCs publication-title: Biochem Biophys Res Commun – volume: 26 start-page: 263 year: 2020 end-page: 275 ident: bib104 article-title: Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion publication-title: Tissue Eng C Methods – volume: 2017 start-page: 7304643 year: 2017 ident: bib7 article-title: (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity publication-title: Stem Cell Int – volume: 26 start-page: 111 year: 2021 end-page: 120 ident: bib31 article-title: Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19 publication-title: J Orthop Translat – volume: 41 start-page: 1199 year: 2021 end-page: 1210 ident: bib97 article-title: A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative publication-title: Clin Rheumatol – volume: 10 year: 2021 ident: bib56 article-title: WNT3A-loaded exosomes enable cartilage repair publication-title: J Extracell Vesicles – volume: 21 start-page: 1373 year: 2017 end-page: 1387 ident: bib74 article-title: Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells publication-title: J Cell Mol Med – volume: 121 start-page: 1217 year: 2011 end-page: 1221 ident: bib10 article-title: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells publication-title: J Clin Invest – volume: 393 start-page: 112109 year: 2020 ident: bib80 article-title: Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5 publication-title: Exp Cell Res – volume: 2 start-page: 16072 year: 2016 ident: bib95 article-title: Osteoarthritis publication-title: Nat Rev Dis Prim – volume: 17 start-page: 1425 year: 2011 end-page: 1436 ident: bib28 article-title: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation publication-title: Tissue Eng Part A – volume: 19 start-page: 264 year: 2021 ident: bib92 article-title: Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration publication-title: J Nanobiotechnol – volume: 143 start-page: 1 year: 2019 end-page: 15 ident: bib78 article-title: Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects publication-title: Free Radic Biol Med – volume: 9 start-page: 1778883 year: 2020 ident: bib63 article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration publication-title: J Extracell Vesicles – volume: 64 start-page: 3604 year: 2012 end-page: 3613 ident: bib77 article-title: Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis publication-title: Arthritis Rheum – volume: 5 start-page: 95 year: 2005 end-page: 103 ident: bib98 article-title: Lumbar disc arthroplasty publication-title: Spine J – volume: 5 start-page: 32945 year: 2016 ident: bib19 article-title: Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey publication-title: J Extracell Vesicles – volume: 9 start-page: 644380 year: 2021 ident: bib42 article-title: Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p publication-title: Front Cell Dev Biol – volume: 32 start-page: 252 year: 2014 end-page: 260 ident: bib8 article-title: Mesenchymal stem cells: immune evasive, not immune privileged publication-title: Nat Biotechnol – volume: 25 start-page: 364 year: 2015 end-page: 372 ident: bib18 article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol – volume: 414 start-page: 129 year: 2001 end-page: 131 ident: bib13 article-title: Ethical and social considerations of stem cell research publication-title: Nature – volume: 9 start-page: 247 year: 2018 ident: bib48 article-title: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A publication-title: Stem Cell Res Ther – volume: 9 start-page: 648201 year: 2021 ident: bib70 article-title: Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes publication-title: Front Cell Dev Biol – volume: 269 start-page: 120539 year: 2021 ident: bib24 article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration publication-title: Biomaterials – volume: 24 start-page: 121 year: 2020 end-page: 130 ident: bib6 article-title: Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis publication-title: J Orthop Translat – volume: 224 start-page: 119492 year: 2019 ident: bib23 article-title: Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders publication-title: Biomaterials – volume: 12 start-page: 36938 year: 2020 end-page: 36947 ident: bib62 article-title: Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy publication-title: ACS Appl Mater Interfaces – volume: 15 start-page: 273 year: 2020 end-page: 288 ident: bib47 article-title: Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair publication-title: Nanomedicine – volume: 62 start-page: 101106 year: 2020 ident: bib103 article-title: Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke publication-title: Ageing Res Rev – volume: 199 start-page: 342 year: 2014 end-page: 352 ident: bib90 article-title: Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells publication-title: Cells Tissues Organs – volume: 30 start-page: 61 year: 2021 end-page: 69 ident: bib15 article-title: Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells publication-title: J Orthop Translat – volume: 371 start-page: 48 year: 2016 end-page: 61 ident: bib105 article-title: Bovine milk-derived exosomes for drug delivery publication-title: Cancer Lett – volume: 21 start-page: 73 year: 2020 end-page: 80 ident: bib17 article-title: Extracellular vesicles: potential role in osteoarthritis regenerative medicine publication-title: J Orthop Translat – volume: 2021 start-page: 5542241 year: 2021 ident: bib69 article-title: Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-beta publication-title: Oxid Med Cell Longev – volume: 17 start-page: 107 year: 2009 end-page: 113 ident: bib44 article-title: Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes publication-title: Osteoarthritis Cartilage – volume: 3 start-page: 3553 year: 2013 ident: bib27 article-title: Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels publication-title: Sci Rep – volume: 36 start-page: 2215 year: 2020 end-page: 22128 e2 ident: bib65 article-title: Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model publication-title: Arthroscopy – volume: 9 start-page: 2439 year: 2019 end-page: 2459 ident: bib45 article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration publication-title: Theranostics – volume: 99 start-page: 69 year: 2016 end-page: 80 ident: bib4 article-title: Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration publication-title: Methods – volume: 9 start-page: 63 year: 2018 ident: bib16 article-title: Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine publication-title: Stem Cell Res Ther – volume: 199 start-page: 145 year: 2015 end-page: 155 ident: bib60 article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes publication-title: J Contr Release – volume: 9 start-page: 4430 year: 2017 end-page: 4438 ident: bib64 article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration publication-title: Nanoscale – volume: 22 start-page: 261 year: 2018 end-page: 276 ident: bib82 article-title: Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration publication-title: J Cell Mol Med – volume: 6 start-page: 90 year: 2018 ident: bib86 article-title: Strategies for annulus fibrosus regeneration: from biological therapies to tissue engineering publication-title: Front Bioeng Biotechnol – volume: 6 start-page: 2711 year: 2021 end-page: 2728 ident: bib33 article-title: Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration publication-title: Bioact Mater – volume: 12 start-page: 25138 year: 2020 end-page: 25152 ident: bib39 article-title: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization publication-title: Aging (Albany NY) – volume: 7 start-page: 1535750 year: 2018 ident: bib20 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles – volume: 185 start-page: 2309 year: 2015 end-page: 2323 ident: bib26 article-title: Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes publication-title: Am J Pathol – volume: 22 start-page: 256 year: 2020 ident: bib30 article-title: Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3 publication-title: Arthritis Res Ther – volume: 156 start-page: 16 year: 2018 end-page: 27 ident: bib11 article-title: MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity publication-title: Biomaterials – volume: 24 start-page: 11742 year: 2020 end-page: 11754 ident: bib79 article-title: Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis publication-title: J Cell Mol Med – volume: 19 start-page: 952 year: 2013 end-page: 966 ident: bib93 article-title: Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies publication-title: Tissue Eng Part A – volume: 9 start-page: 667 year: 2003 end-page: 677 ident: bib88 article-title: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering publication-title: Tissue Eng – volume: 18 start-page: 116 year: 2019 ident: bib53 article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases publication-title: Mol Cancer – volume: 24 start-page: 23 year: 2020 end-page: 31 ident: bib71 article-title: Changes of the end plate cartilage are associated with intervertebral disc degeneration: a quantitative magnetic resonance imaging study in rhesus monkeys and humans publication-title: J Orthop Translat – volume: 39 start-page: 467 year: 2021 end-page: 481 ident: bib72 article-title: Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy publication-title: Stem Cell – volume: 113 start-page: 104978 year: 2021 ident: bib41 article-title: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-kappaB signaling pathway publication-title: Bioorg Chem – volume: 7 start-page: 37 year: 2021 ident: bib50 article-title: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis publication-title: Cell Death Dis – volume: 5 start-page: 1700449 year: 2018 ident: bib52 article-title: Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine publication-title: Adv Sci – volume: 86 start-page: 110083 year: 2021 ident: bib91 article-title: Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3 publication-title: Cell Signal – volume: 19 start-page: 339 year: 2018 end-page: 353 ident: bib75 article-title: Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration publication-title: Redox Biol – volume: 113 start-page: E968 year: 2016 end-page: E977 ident: bib21 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc Natl Acad Sci U S A – volume: 38 start-page: 947 year: 2020 end-page: 951 ident: bib94 article-title: Decellularized scaffolds for intervertebral disc regeneration publication-title: Trends Biotechnol – volume: 50 start-page: 788 issue: 3 year: 2022 ident: 10.1016/j.jot.2022.05.009_bib66 article-title: Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model publication-title: Am J Sports Med doi: 10.1177/03635465211068129 – volume: 6 start-page: 4455 issue: 12 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib55 article-title: Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis publication-title: Bioact Mater – volume: 4 start-page: 26238 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib61 article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice publication-title: J Extracell Vesicles doi: 10.3402/jev.v4.26238 – volume: 32 start-page: 252 issue: 3 year: 2014 ident: 10.1016/j.jot.2022.05.009_bib8 article-title: Mesenchymal stem cells: immune evasive, not immune privileged publication-title: Nat Biotechnol doi: 10.1038/nbt.2816 – volume: 17 start-page: 2411 issue: 21–22 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib34 article-title: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis publication-title: Cell Cycle doi: 10.1080/15384101.2018.1526603 – volume: 2017 start-page: 7304643 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib7 article-title: (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity publication-title: Stem Cell Int – volume: 7 start-page: 16214 issue: 1 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib38 article-title: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis publication-title: Sci Rep doi: 10.1038/s41598-017-15376-8 – volume: 6 start-page: 2711 issue: 9 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib33 article-title: Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration publication-title: Bioact Mater – volume: 199 start-page: 145 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib60 article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes publication-title: J Contr Release doi: 10.1016/j.jconrel.2014.12.013 – volume: 113 start-page: E968 issue: 8 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib21 article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521230113 – volume: 369 start-page: 167 issue: 6500 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib99 article-title: Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain publication-title: Science doi: 10.1126/science.aaw2622 – volume: 12 start-page: 36938 issue: 33 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib62 article-title: Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c10458 – volume: 121 start-page: 1217 issue: 3 year: 2011 ident: 10.1016/j.jot.2022.05.009_bib10 article-title: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells publication-title: J Clin Invest doi: 10.1172/JCI44635 – volume: 64 start-page: 3604 issue: 11 year: 2012 ident: 10.1016/j.jot.2022.05.009_bib77 article-title: Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis publication-title: Arthritis Rheum doi: 10.1002/art.34626 – volume: 18 start-page: 883 issue: 8 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib5 article-title: Advances in stem cell therapy for cartilage regeneration in osteoarthritis publication-title: Expet Opin Biol Ther doi: 10.1080/14712598.2018.1502266 – volume: 27 start-page: 91 issue: 1 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib81 article-title: Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3 publication-title: Mol Med doi: 10.1186/s10020-021-00355-7 – volume: 9 start-page: 1778883 issue: 1 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib63 article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration publication-title: J Extracell Vesicles doi: 10.1080/20013078.2020.1778883 – volume: 7 start-page: 37 issue: 1 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib50 article-title: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis publication-title: Cell Death Dis doi: 10.1038/s41420-021-00418-y – volume: 7 start-page: 180 issue: 1 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib49 article-title: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model publication-title: Theranostics doi: 10.7150/thno.17133 – volume: 5 start-page: 32945 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib19 article-title: Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey publication-title: J Extracell Vesicles doi: 10.3402/jev.v5.32945 – volume: 121 start-page: 3642 issue: 7 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib51 article-title: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration publication-title: J Cell Biochem doi: 10.1002/jcb.29657 – volume: 26 start-page: 263 issue: 5 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib104 article-title: Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion publication-title: Tissue Eng C Methods doi: 10.1089/ten.tec.2020.0039 – volume: 9 start-page: 318 issue: 1 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib35 article-title: Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1047-2 – volume: 99 start-page: 69 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib4 article-title: Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration publication-title: Methods doi: 10.1016/j.ymeth.2015.09.015 – volume: 23 start-page: 1233 issue: 11 year: 2014 ident: 10.1016/j.jot.2022.05.009_bib40 article-title: Mesenchymal stem cells secrete immunologically active exosomes publication-title: Stem Cell Dev doi: 10.1089/scd.2013.0479 – volume: 17 start-page: 1425 issue: 9–10 year: 2011 ident: 10.1016/j.jot.2022.05.009_bib28 article-title: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2010.0517 – volume: 36 start-page: 2215 issue: 8 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib65 article-title: Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model publication-title: Arthroscopy doi: 10.1016/j.arthro.2020.03.031 – volume: 156 start-page: 16 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib11 article-title: MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.11.028 – volume: 9 start-page: 247 issue: 1 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib48 article-title: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-1004-0 – volume: 22 start-page: 1092 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib87 article-title: Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/beta-Catenin Axis publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.10.021 – volume: 71 start-page: 168 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib57 article-title: Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.02.019 – volume: 185 start-page: 2309 issue: 8 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib26 article-title: Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes publication-title: Am J Pathol doi: 10.1016/j.ajpath.2015.04.010 – volume: 39 start-page: 467 issue: 4 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib72 article-title: Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy publication-title: Stem Cell doi: 10.1002/stem.3322 – volume: 10 issue: 8 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib101 article-title: First-in-human intracochlear application of human stromal cell-derived extracellular vesicles publication-title: J Extracell Vesicles – volume: 19 start-page: 1727 issue: 14 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib83 article-title: Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases publication-title: Cell Cycle doi: 10.1080/15384101.2020.1769301 – volume: 9 start-page: 667 issue: 4 year: 2003 ident: 10.1016/j.jot.2022.05.009_bib88 article-title: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering publication-title: Tissue Eng doi: 10.1089/107632703768247368 – volume: 414 start-page: 129 issue: 6859 year: 2001 ident: 10.1016/j.jot.2022.05.009_bib13 article-title: Ethical and social considerations of stem cell research publication-title: Nature doi: 10.1038/35102194 – volume: 17 start-page: 107 issue: 1 year: 2009 ident: 10.1016/j.jot.2022.05.009_bib44 article-title: Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2008.05.009 – volume: 19 start-page: 952 issue: 7–8 year: 2013 ident: 10.1016/j.jot.2022.05.009_bib93 article-title: Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2012.0088 – volume: 18 start-page: 116 issue: 1 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib53 article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases publication-title: Mol Cancer doi: 10.1186/s12943-019-1041-z – volume: 11 start-page: 14608 issue: 16 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib58 article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b01532 – volume: 8 start-page: 108 issue: 1 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib68 article-title: Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0563-9 – volume: 22 start-page: 256 issue: 1 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib30 article-title: Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3 publication-title: Arthritis Res Ther doi: 10.1186/s13075-020-02325-6 – volume: 23 start-page: 1966 issue: 11 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib37 article-title: Aging-related inflammation in osteoarthritis publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2015.01.008 – volume: vol. 55 start-page: 203 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib46 article-title: Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways – volume: 224 start-page: 119492 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib23 article-title: Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119492 – volume: 269 start-page: 120539 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib24 article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120539 – volume: 199 start-page: 342 issue: 5–6 year: 2014 ident: 10.1016/j.jot.2022.05.009_bib90 article-title: Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells publication-title: Cells Tissues Organs doi: 10.1159/000369452 – volume: 143 start-page: 1 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib78 article-title: Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2019.07.026 – volume: 21 start-page: 73 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib17 article-title: Extracellular vesicles: potential role in osteoarthritis regenerative medicine publication-title: J Orthop Translat doi: 10.1016/j.jot.2019.10.012 – volume: 146 start-page: 306 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib96 article-title: Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.04.017 – volume: 9 start-page: 63 issue: 1 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib16 article-title: Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine publication-title: Stem Cell Res Ther doi: 10.1186/s13287-018-0791-7 – volume: 15 start-page: 273 issue: 3 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib47 article-title: Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair publication-title: Nanomedicine doi: 10.2217/nnm-2019-0208 – volume: 22 start-page: 261 issue: 1 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib82 article-title: Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration publication-title: J Cell Mol Med doi: 10.1111/jcmm.13316 – volume: 86 start-page: 110083 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib91 article-title: Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3 publication-title: Cell Signal doi: 10.1016/j.cellsig.2021.110083 – volume: 278 start-page: 121169 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib32 article-title: Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121169 – volume: 206 start-page: 87 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib43 article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.03.022 – volume: 62 start-page: 101106 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib103 article-title: Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke publication-title: Ageing Res Rev doi: 10.1016/j.arr.2020.101106 – volume: 30 start-page: 61 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib15 article-title: Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells publication-title: J Orthop Translat doi: 10.1016/j.jot.2021.08.003 – volume: 371 start-page: 48 issue: 1 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib105 article-title: Bovine milk-derived exosomes for drug delivery publication-title: Cancer Lett doi: 10.1016/j.canlet.2015.10.020 – volume: 393 start-page: 112109 issue: 2 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib80 article-title: Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5 publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2020.112109 – volume: 32 start-page: 49 year: 2022 ident: 10.1016/j.jot.2022.05.009_bib2 article-title: Global, regional and national burden of low back pain 1990-2019: a systematic analysis of the Global Burden of Disease study 2019 publication-title: J Orthop Translat doi: 10.1016/j.jot.2021.07.005 – volume: 7 start-page: 1535750 issue: 1 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib20 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: J Extracell Vesicles doi: 10.1080/20013078.2018.1535750 – volume: 24 start-page: 121 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib6 article-title: Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis publication-title: J Orthop Translat doi: 10.1016/j.jot.2020.03.015 – volume: 32 start-page: 121 year: 2022 ident: 10.1016/j.jot.2022.05.009_bib3 article-title: Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: a new opportunity? publication-title: J Orthop Translat doi: 10.1016/j.jot.2022.02.001 – volume: 12 start-page: 25138 issue: 24 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib39 article-title: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization publication-title: Aging (Albany NY) doi: 10.18632/aging.104110 – volume: 3 start-page: 3553 year: 2013 ident: 10.1016/j.jot.2022.05.009_bib27 article-title: Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels publication-title: Sci Rep doi: 10.1038/srep03553 – volume: 1 start-page: 1148 issue: 12 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib100 article-title: Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles publication-title: Nature Aging doi: 10.1038/s43587-021-00143-2 – volume: 2020 start-page: 6697577 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib85 article-title: Exosomes derived from human urine-derived stem cells inhibit intervertebral disc degeneration by ameliorating endoplasmic reticulum stress publication-title: Oxid Med Cell Longev doi: 10.1155/2020/6697577 – volume: 36 start-page: 165 issue: 2 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib29 article-title: Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity publication-title: Cell Biol Toxicol doi: 10.1007/s10565-019-09504-5 – volume: 2021 start-page: 5542241 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib69 article-title: Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-beta publication-title: Oxid Med Cell Longev doi: 10.1155/2021/5542241 – volume: 5 start-page: 95 issue: 1 year: 2005 ident: 10.1016/j.jot.2022.05.009_bib98 article-title: Lumbar disc arthroplasty publication-title: Spine J doi: 10.1016/j.spinee.2004.09.006 – volume: 19 start-page: 339 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib75 article-title: Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration publication-title: Redox Biol doi: 10.1016/j.redox.2018.09.006 – volume: 24 start-page: 23 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib71 article-title: Changes of the end plate cartilage are associated with intervertebral disc degeneration: a quantitative magnetic resonance imaging study in rhesus monkeys and humans publication-title: J Orthop Translat doi: 10.1016/j.jot.2020.04.004 – volume: 19 start-page: 264 issue: 1 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib92 article-title: Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration publication-title: J Nanobiotechnol doi: 10.1186/s12951-021-00991-5 – volume: 9 start-page: 4084 issue: 14 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib84 article-title: Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo publication-title: Theranostics doi: 10.7150/thno.33638 – volume: 12 start-page: 389 issue: 1 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib54 article-title: Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis publication-title: Stem Cell Res Ther doi: 10.1186/s13287-021-02431-5 – volume: 2 start-page: 16072 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib95 article-title: Osteoarthritis publication-title: Nat Rev Dis Prim doi: 10.1038/nrdp.2016.72 – volume: 9 start-page: 4430 issue: 13 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib64 article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration publication-title: Nanoscale doi: 10.1039/C7NR00352H – volume: 9 start-page: 648201 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib70 article-title: Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.648201 – volume: 21 start-page: 1373 issue: 7 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib74 article-title: Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells publication-title: J Cell Mol Med doi: 10.1111/jcmm.13067 – volume: 25 start-page: 364 issue: 6 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib18 article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2015.01.004 – volume: 9 start-page: 2439 issue: 9 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib45 article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration publication-title: Theranostics doi: 10.7150/thno.31017 – volume: 10 start-page: 44 issue: 1 year: 2014 ident: 10.1016/j.jot.2022.05.009_bib76 article-title: Role of cytokines in intervertebral disc degeneration: pain and disc content publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2013.160 – volume: 9 start-page: 644380 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib42 article-title: Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.644380 – volume: 23 start-page: 6206 issue: 40 year: 2017 ident: 10.1016/j.jot.2022.05.009_bib25 article-title: The transport mechanism of extracellular vesicles at the blood-brain barrier publication-title: Curr Pharmaceut Des doi: 10.2174/1381612823666170913164738 – volume: 22 start-page: 601 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib73 article-title: MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 Axis publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.09.026 – volume: 82-83 start-page: 176 year: 2015 ident: 10.1016/j.jot.2022.05.009_bib12 article-title: The ethics of stem cells revisited publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.11.011 – volume: 113 start-page: 104978 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib41 article-title: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-kappaB signaling pathway publication-title: Bioorg Chem doi: 10.1016/j.bioorg.2021.104978 – volume: 6 start-page: 90 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib86 article-title: Strategies for annulus fibrosus regeneration: from biological therapies to tissue engineering publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2018.00090 – volume: 10 start-page: 677 issue: 5 year: 1992 ident: 10.1016/j.jot.2022.05.009_bib89 article-title: Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres publication-title: J Orthop Res doi: 10.1002/jor.1100100510 – volume: 28 start-page: 1041 issue: 3 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib102 article-title: Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration publication-title: Cell Death Differ doi: 10.1038/s41418-020-00636-4 – volume: 523 start-page: 506 issue: 2 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib36 article-title: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/beta-catenin pathways to promote chondrogenic differentiation of BMSCs publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.12.065 – volume: 111 start-page: 110757 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib59 article-title: Ginsenoside Rb1/TGF-beta1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2020.110757 – volume: 38 start-page: 947 issue: 9 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib94 article-title: Decellularized scaffolds for intervertebral disc regeneration publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2020.05.002 – volume: 41 start-page: 1199 issue: 4 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib97 article-title: A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative publication-title: Clin Rheumatol doi: 10.1007/s10067-021-05986-z – volume: 10 issue: 7 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib56 article-title: WNT3A-loaded exosomes enable cartilage repair publication-title: J Extracell Vesicles – volume: 18 start-page: 777 issue: 7 year: 2013 ident: 10.1016/j.jot.2022.05.009_bib67 article-title: Cell death in intervertebral disc degeneration publication-title: Apoptosis doi: 10.1007/s10495-013-0839-1 – volume: 15 start-page: 193 issue: 4 year: 2019 ident: 10.1016/j.jot.2022.05.009_bib14 article-title: Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury publication-title: Nat Rev Neurol doi: 10.1038/s41582-018-0126-4 – volume: 24 start-page: 11742 issue: 20 year: 2020 ident: 10.1016/j.jot.2022.05.009_bib79 article-title: Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis publication-title: J Cell Mol Med doi: 10.1111/jcmm.15784 – volume: 5 start-page: 1700449 issue: 2 year: 2018 ident: 10.1016/j.jot.2022.05.009_bib52 article-title: Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine publication-title: Adv Sci doi: 10.1002/advs.201700449 – volume: 7 start-page: 231 year: 2016 ident: 10.1016/j.jot.2022.05.009_bib22 article-title: MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential publication-title: Front Pharmacol doi: 10.3389/fphar.2016.00231 – volume: 26 start-page: 1 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib1 article-title: Medicine and models of degenerative orthopaedic disorders publication-title: J Orthop Translat doi: 10.1016/j.jot.2020.12.002 – volume: 20 start-page: 593 issue: 5 year: 2011 ident: 10.1016/j.jot.2022.05.009_bib9 article-title: Cell transplantation for articular cartilage defects: principles of past, present, and future practice publication-title: Cell Transplant doi: 10.3727/096368910X532738 – volume: 26 start-page: 111 year: 2021 ident: 10.1016/j.jot.2022.05.009_bib31 article-title: Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19 publication-title: J Orthop Translat doi: 10.1016/j.jot.2020.03.005 |
SSID | ssj0001140048 |
Score | 2.331278 |
SecondaryResourceType | review_article |
Snippet | Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical... Background: Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8 |
SubjectTerms | Degenerative disease Exosome Orthopaedics Review |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gECCWl4zUE1JE4tiOzQ1Qq6pSOVFpb8aPCWwFyYpsJfj3zDhJSS7lwiWHxLGd8djzOTP-hrGTqEuRGgWFD8EXEjfMhQW8BBlBU4qRUNF558tP-vxKXmzVdpHqi2LCRnrgUXBvQflaN1VLROyy9LVHPOA1WBlNasPIBIo2b7GZyn9XqqyblFlOVLJAzd3OLs0c3HXdUxylEJm1k4IRF0Ypc_evbNMCe64jJxem6OwBuz9hSP5-7PtDdg-6R-zL6a9-6H9AQXYp8WFknf3NEZTyBF8zuzQtbXxyyfBdx8ln0-_JVTO84wggsTmeA7Zw-eO-S3z_9yjm8JhdnZ1-_nheTOkTiiitPBTK-6SDMSh6BbW3ZZ3A2KQUlNHUiMwqr1pjfBMbr7yIJpgGLCQrcBMBsq2fsKOu7-Ap40FYCA3UNkrcT-KsjcLrUGHVNUK0ttmwcpafixO3OKW4-O7mILJrhyJ3JHJXKoci37A3t6_sR2KNuwp_oEG5LUic2PkGaoqbNMX9S1M2TM5D6iZ4McIGrGp3V9uv5-F3OPXIn-I76G8GJ7RVwmijyw1rVnqx6uj6Sbf7lkm8LeI6U-pn_-PLnrNj6vAY-vaCHR1-3sBLxEqH8CpPiz-yoRLK priority: 102 providerName: Directory of Open Access Journals |
Title | Exosome-based strategy for degenerative disease in orthopedics: Recent progress and perspectives |
URI | https://dx.doi.org/10.1016/j.jot.2022.05.009 https://www.proquest.com/docview/2695286860 https://pubmed.ncbi.nlm.nih.gov/PMC9283806 https://doaj.org/article/e5a3671f857040a3a059a6e94c8dfb04 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqnrggECCWj8pInJDCJo7t2NxK1aoCgYSg0t6M7UzKVjRZNVuJXvjtzDhJu7n0wMVSEjuxxuPxc2bmmbG3UeeirhRkPgSfSdwwZxawCDKCpiNGQkH5zl--6tMz-WmlVnvsaMqFobDK0fYPNj1Z6_HOcpTmcrNeL78LQVxzxUqIlAJJCb9SVqTl7_8Wd_9ZiqSldMYc1s-oweTcTGFeFx1FVAqR-DspLHFneUos_rNVageFzmModxalk0fs4Ygm-eHQ4cdsD9on7Ofxn67vLiGjFarm_cA_e8MRnvIazhPPNBk5Pjpn-Lrl5L3pNuS06T9whJL4OZ5Ct9AQct_WfHOXlNk_ZWcnxz-OTrPxIIUsSiu3mfK-1sEYHAQFpbd5WYOxtVKQR1MiRiu8aozxVay88iKaYCqwUFuB2wmQTfmM7bddC88ZD8JCqKC0UeLOEudvFF6HAl9dIlhrqgXLJ_m5OLKM02EXv90UTnbhUOSORO5y5VDkC_butslmoNi4r_JHGpTbisSOnW50V-duVA8Hype6Khoi75e5Lz1iSK_BymjqJuRyweQ0pG6mbPiq9X3ffjMNv8NJSJ4V30J33TuhrRJGG50vWDXTi1lH50_a9a9E520R4Zlcv_i_Tr1kD-hqCHt7xfa3V9fwGnHSNhykiXCQ_jJg-fmb-QcneRUO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFFQFigYKROCGFTRzbsXuDqtUCbS-00t6M7ThtKkhWzVaCS387M07Sbi49cMnB3xp7xs-Z8TMhH7xMWVmIkFjnbMLhwJzoAB_HfZD4xIjL8L7z8YlcnPFvS7HcIvvjXRgMqxxsf2_To7UeUuaDNOerup7_YAy55rIlY_EKpHpAHnJQX9TOTzfZ3Y-WLC5TfGQOKiRYY_RuxjivyxZDKhmLBJ4Yl7ixP0Ua_8k2tQFDp0GUG7vS4Q55MsBJ-rkf8VOyFZpn5OfBn7Zrf4cEt6iSdj0B7V8K-JSW4TwSTaOVo4N3htYNRfdNu0KvTbdHAUtCdzTGboElpLYp6eruVmb3nJwdHpzuL5LhJYXEc83XibC2lE4pmAURcqvTvAxKl0KE1KscQFpmRaWULXxhhWVeOVUEHUrN4DwReJW_INtN24SXhDqmgytCrj2HoyUosGdWugyazgGtVcWMpKP8jB9oxvG1i19mjCe7NCBygyI3qTAg8hn5eFtl1XNs3Ff4C07KbUGkx44J7dW5GdaHCcLmssgqZO_nqc0tgEgrg-ZelZVL-YzwcUrNZLVBU_V9fb8fp9-AFqJrxTahve4Mk1owJZVMZ6SYrIvJQKc5TX0R-bw1QDyVylf_N6h35NHi9PjIHH09-f6aPMacPgbuDdleX12HXQBNa_c2KsU_-icWPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosome-based+strategy+for+degenerative+disease+in+orthopedics%3A+Recent+progress+and+perspectives&rft.jtitle=Journal+of+orthopaedic+translation&rft.au=Wu%2C+Rongjie&rft.au=Li%2C+Haotao&rft.au=Sun%2C+Chuanwei&rft.au=Liu%2C+Jialin&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2214-031X&rft.volume=36&rft.spage=8&rft.epage=17&rft_id=info:doi/10.1016%2Fj.jot.2022.05.009&rft.externalDocID=S2214031X22000468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-031X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-031X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-031X&client=summon |