Exosome-based strategy for degenerative disease in orthopedics: Recent progress and perspectives

Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cel...

Full description

Saved in:
Bibliographic Details
Published inJournal of orthopaedic translation Vol. 36; pp. 8 - 17
Main Authors Wu, Rongjie, Li, Haotao, Sun, Chuanwei, Liu, Jialin, Chen, Duanyong, Yu, Haiyang, Huang, Zena, Lin, Sien, Chen, Yuanfeng, Zheng, Qiujian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Chinese Speaking Orthopaedic Society
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented. Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes. Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics. Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration.
AbstractList Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell-based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.BackgroundDegenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell-based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome-based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented.MethodsTraditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome-based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented.Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome-based strategies can better match the requirements of the regeneration in some complex healing processes.ResultsTreatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome-based strategies can better match the requirements of the regeneration in some complex healing processes.Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics.ConclusionExosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics.Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell-based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.Translational potential of this articleExosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell-based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell-based therapy, offering a promise to achieve 'cell-free' tissue regeneration.
Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented. Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes. Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics. Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration.
Background: Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical interventions, including physical therapy, pharmacological therapy and even surgery, hardly work to modify degenerative progression. Stem cell–based therapy is widely accepted to treat degenerative orthopaedic disease effectively but possesses several limitations, such as the need for strict monitoring of production and storage and the potential risks of tumorigenicity and immune rejection in clinical translation. Furthermore, the ethical issues surrounding the acquisition of embryonic stem cells are also broadly concerned. Exosome-based therapy has rapidly grown in popularity in recent years and is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration. Methods: Traditionally, the native exosomes extracted from stem cells are directly injected into the injured site to promote tissue regeneration. Recently, several modified exosome–based strategies were developed to overcome the limitations of native exosomes, which include mainly exogenous molecule loading and exosome delivery through scaffolds. In this paper, a systematic review of the exosome-based strategy for degenerative disease in orthopaedics is presented. Results: Treatment strategies based on the native exosomes are effective but with several disadvantages such as rapid diffusion and insufficient and fluctuating functional contents. The modified exosome–based strategies can better match the requirements of the regeneration in some complex healing processes. Conclusion: Exosome-based strategies hold promise to manage degenerative disease in orthopaedics prior to patients reaching the advanced stage of disease in the future. The timely summary and highlights offered herein could provide a research perspective to promote the development of exosome-based therapy, facilitating the clinical translation of exosomes in orthopaedics. Translational potential of this article: Exosome-based therapy is superior in anti-senescence and anti-inflammatory effects and possesses lower risks of tumorigenicity and immune rejection relative to stem cell–based therapy. Exosome-based therapy is regarded as an ideal alternative to stem cell–based therapy, offering a promise to achieve ‘cell-free’ tissue regeneration.
Author Yu, Haiyang
Wu, Rongjie
Chen, Yuanfeng
Sun, Chuanwei
Liu, Jialin
Huang, Zena
Chen, Duanyong
Lin, Sien
Zheng, Qiujian
Li, Haotao
Author_xml – sequence: 1
  givenname: Rongjie
  surname: Wu
  fullname: Wu, Rongjie
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 2
  givenname: Haotao
  orcidid: 0000-0003-0556-4051
  surname: Li
  fullname: Li, Haotao
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 3
  givenname: Chuanwei
  surname: Sun
  fullname: Sun, Chuanwei
  organization: Department of Burn and Wound Repair Surgery and Research Department of Medical Science, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 4
  givenname: Jialin
  surname: Liu
  fullname: Liu, Jialin
  organization: Rehabilitation Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, PR China
– sequence: 5
  givenname: Duanyong
  surname: Chen
  fullname: Chen, Duanyong
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 6
  givenname: Haiyang
  orcidid: 0000-0001-9311-0230
  surname: Yu
  fullname: Yu, Haiyang
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 7
  givenname: Zena
  surname: Huang
  fullname: Huang, Zena
  organization: Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
– sequence: 8
  givenname: Sien
  surname: Lin
  fullname: Lin, Sien
  email: sienlin@cuhk.edu.hk
  organization: Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
– sequence: 9
  givenname: Yuanfeng
  orcidid: 0000-0002-8211-5762
  surname: Chen
  fullname: Chen, Yuanfeng
  email: chenyuanfeng@gdph.org.cn
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
– sequence: 10
  givenname: Qiujian
  surname: Zheng
  fullname: Zheng, Qiujian
  email: zhengqiujian@gdph.org.cn
  organization: Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
BookMark eNp9kVFr1TAUx4tM3Jz7AL710ZfWk7RpEwVBxtTBQBAF3-Jpctql9DY16b24b2_qncJ82FPCyfn_ODm_59nJ7GfKspcMSgaseT2Wo19LDpyXIEoA9SQ745zVBVRcnvy7s--n2UWMIwAwVgPU8ll2WgmpmOLVWfbj6pePfkdFh5FsHteAKw13ee9DbmmgmVLBHSi3LlJqyd2c-7De-oWsM_FN_oUMzWu-BD8EijHH2eYLhbiQ2XLxRfa0xynSxf15nn37cPX18lNx8_nj9eX7m8LUql4LgWibTkqCWlCFCipLUlkhCIysGgEMRS8ltqZFgdzITrakyCretILqvjrPro9c63HUS3A7DHfao9N_Cj4MGsPqzESaBFZNy3opWqgBKwShsCFVG2n7DurEendkLftuR3b7YMDpAfThy-xu9eAPWnFZSWgS4NU9IPife4qr3rloaJpwJr-PmjdKcNnIBlJre2w1wccYqNfGrWnlfiO7STPQm2496qRbb7o1CJ10pyT7L_l3wMcyb48ZSioOjoKOxtFsksyQhKVduUfSvwFAfMWx
CitedBy_id crossref_primary_10_1002_cbdv_202402095
crossref_primary_10_1016_j_jot_2023_06_003
crossref_primary_10_1016_j_yexcr_2024_114009
crossref_primary_10_1089_ten_teb_2024_0170
crossref_primary_10_1016_j_ncrna_2024_03_012
crossref_primary_10_1016_j_jot_2024_09_014
crossref_primary_10_1111_os_13848
crossref_primary_10_5005_jp_journals_10040_1369
crossref_primary_10_1186_s12951_024_02336_4
crossref_primary_10_1002_imt2_86
crossref_primary_10_1016_j_jot_2022_10_014
crossref_primary_10_1016_j_mtbio_2023_100841
crossref_primary_10_1016_j_jtv_2024_04_005
crossref_primary_10_3389_fbioe_2024_1377142
crossref_primary_10_1007_s10863_023_09964_9
crossref_primary_10_1080_07853890_2024_2416070
crossref_primary_10_3389_fbioe_2023_1162263
crossref_primary_10_1093_pcmedi_pbae032
Cites_doi 10.1177/03635465211068129
10.3402/jev.v4.26238
10.1038/nbt.2816
10.1080/15384101.2018.1526603
10.1038/s41598-017-15376-8
10.1016/j.jconrel.2014.12.013
10.1073/pnas.1521230113
10.1126/science.aaw2622
10.1021/acsami.0c10458
10.1172/JCI44635
10.1002/art.34626
10.1080/14712598.2018.1502266
10.1186/s10020-021-00355-7
10.1080/20013078.2020.1778883
10.1038/s41420-021-00418-y
10.7150/thno.17133
10.3402/jev.v5.32945
10.1002/jcb.29657
10.1089/ten.tec.2020.0039
10.1186/s13287-018-1047-2
10.1016/j.ymeth.2015.09.015
10.1089/scd.2013.0479
10.1089/ten.tea.2010.0517
10.1016/j.arthro.2020.03.031
10.1016/j.biomaterials.2017.11.028
10.1186/s13287-018-1004-0
10.1016/j.omtn.2020.10.021
10.1016/j.actbio.2018.02.019
10.1016/j.ajpath.2015.04.010
10.1002/stem.3322
10.1080/15384101.2020.1769301
10.1089/107632703768247368
10.1038/35102194
10.1016/j.joca.2008.05.009
10.1089/ten.tea.2012.0088
10.1186/s12943-019-1041-z
10.1021/acsami.9b01532
10.1186/s13287-017-0563-9
10.1186/s13075-020-02325-6
10.1016/j.joca.2015.01.008
10.1016/j.biomaterials.2019.119492
10.1016/j.biomaterials.2020.120539
10.1159/000369452
10.1016/j.freeradbiomed.2019.07.026
10.1016/j.jot.2019.10.012
10.1016/j.addr.2018.04.017
10.1186/s13287-018-0791-7
10.2217/nnm-2019-0208
10.1111/jcmm.13316
10.1016/j.cellsig.2021.110083
10.1016/j.biomaterials.2021.121169
10.1016/j.biomaterials.2019.03.022
10.1016/j.arr.2020.101106
10.1016/j.jot.2021.08.003
10.1016/j.canlet.2015.10.020
10.1016/j.yexcr.2020.112109
10.1016/j.jot.2021.07.005
10.1080/20013078.2018.1535750
10.1016/j.jot.2020.03.015
10.1016/j.jot.2022.02.001
10.18632/aging.104110
10.1038/srep03553
10.1038/s43587-021-00143-2
10.1155/2020/6697577
10.1007/s10565-019-09504-5
10.1155/2021/5542241
10.1016/j.spinee.2004.09.006
10.1016/j.redox.2018.09.006
10.1016/j.jot.2020.04.004
10.1186/s12951-021-00991-5
10.7150/thno.33638
10.1186/s13287-021-02431-5
10.1038/nrdp.2016.72
10.1039/C7NR00352H
10.3389/fcell.2021.648201
10.1111/jcmm.13067
10.1016/j.tcb.2015.01.004
10.7150/thno.31017
10.1038/nrrheum.2013.160
10.3389/fcell.2021.644380
10.2174/1381612823666170913164738
10.1016/j.omtn.2020.09.026
10.1016/j.addr.2014.11.011
10.1016/j.bioorg.2021.104978
10.3389/fbioe.2018.00090
10.1002/jor.1100100510
10.1038/s41418-020-00636-4
10.1016/j.bbrc.2019.12.065
10.1016/j.msec.2020.110757
10.1016/j.tibtech.2020.05.002
10.1007/s10067-021-05986-z
10.1007/s10495-013-0839-1
10.1038/s41582-018-0126-4
10.1111/jcmm.15784
10.1002/advs.201700449
10.3389/fphar.2016.00231
10.1016/j.jot.2020.12.002
10.3727/096368910X532738
10.1016/j.jot.2020.03.005
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.jot.2022.05.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2214-0328
EndPage 17
ExternalDocumentID oai_doaj_org_article_e5a3671f857040a3a059a6e94c8dfb04
PMC9283806
10_1016_j_jot_2022_05_009
S2214031X22000468
GroupedDBID .~1
0SF
1~.
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACJTP
ADBBV
ADEZE
AEKER
AFTJW
AGHFR
AITUG
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
FEDTE
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HVGLF
HYE
IPNFZ
KQ8
M41
MO0
NCXOZ
OK1
P-8
P-9
PC.
RIG
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c494t-5aad6b88e045e3a903de89d55e0c836501a5f88a7c7a5a2c8b87e9ed92675e4f3
IEDL.DBID .~1
ISSN 2214-031X
IngestDate Wed Aug 27 01:03:57 EDT 2025
Thu Aug 21 18:04:26 EDT 2025
Fri Jul 11 07:21:34 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
Tue Jul 01 02:15:34 EDT 2025
Fri Feb 23 02:42:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Exosome
Degenerative disease
Orthopaedics
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-5aad6b88e045e3a903de89d55e0c836501a5f88a7c7a5a2c8b87e9ed92675e4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this manuscript.
ORCID 0000-0003-0556-4051
0000-0002-8211-5762
0000-0001-9311-0230
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214031X22000468
PMID 35891923
PQID 2695286860
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_e5a3671f857040a3a059a6e94c8dfb04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9283806
proquest_miscellaneous_2695286860
crossref_citationtrail_10_1016_j_jot_2022_05_009
crossref_primary_10_1016_j_jot_2022_05_009
elsevier_sciencedirect_doi_10_1016_j_jot_2022_05_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of orthopaedic translation
PublicationYear 2022
Publisher Elsevier B.V
Chinese Speaking Orthopaedic Society
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Chinese Speaking Orthopaedic Society
– name: Elsevier
References Tao, Zhou, Wang, Tao, Bai, Ge (bib41) 2021; 113
Richardson, Kalamegam, Pushparaj, Matta, Memic, Khademhosseini (bib4) 2016; 99
Chu, Shi, Wang, Zhang, Yang, Li (bib86) 2018; 6
Chen, Shi, Xue, Ma, Li, Zhang (bib30) 2020; 22
Deng, Hu, Ling, Zhao, Bao, Zhou (bib102) 2021; 28
Marote, Teixeira, Mendes-Pinheiro, Salgado (bib22) 2016; 7
Li, Wang, Xiang, Zheng, Bian, Feng (bib36) 2020; 523
Zhang, Liu, Ding, Meng, Su, Zhang (bib32) 2021; 278
Mao, Zhang, Hu, Zhang, Chang, Huang (bib48) 2018; 9
Smyth, Kullberg, Malik, Smith-Jones, Graner, Anchordoquy (bib60) 2015; 199
Guillen, Tofino-Vian, Silvestre, Castejon, Alcaraz (bib15) 2021; 30
Risbud, Shapiro (bib76) 2014; 10
Xia, Zeng, Fang, Tao, Gu, Zheng (bib78) 2019; 143
Hu, Ran, Zheng, Jin, Chen, Yin (bib57) 2018; 71
Clouet, Fusellier, Camus, Le Visage, Guicheux (bib96) 2019; 146
Mercuri, Patnaik, Dion, Gill, Liao, Simionescu (bib93) 2013; 19
Mao, Xu, Long, Sun, Li, Xin (bib54) 2021; 12
Zhang, Wong, Ren, Teo, Afizah, Choo (bib66) 2022; 50
Xu, Liang, Li, Ouyang, Wang, Cao (bib24) 2021; 269
Meurot, Jacques, Martin, Sudre, Breton, Rattenbach (bib3) 2022; 32
Liu, Li, Yang, Zhou, Lou, Zhang (bib47) 2020; 15
Wu, Chen, Liu, Tong, Suen, Huang (bib59) 2020; 111
Grishko, Ho, Wilson, Pearsall (bib44) 2009; 17
Guo, Su, Zhou, Zhang, Yang, Wu (bib69) 2021; 2021
Sun, Liu, Liu, Song, Wang, Chen (bib87) 2020; 22
Liao, Luo, Li, Song, Zhan, Zhao (bib84) 2019; 9
Martel-Pelletier, Barr, Cicuttini, Conaghan, Cooper, Goldring (bib95) 2016; 2
Lai, Kajiyama, Smith, Maloney, Yang (bib27) 2013; 3
Zhang, Shen, Zhao, Jiang, Zhou, Zhang (bib91) 2021; 86
Luo, Jian, Sun, Qin, Wang, Zhang (bib72) 2021; 39
Xie, Chen, Liu, Huang, Zou, Ma (bib73) 2020; 22
Hopkins, Chen (bib1) 2021; 26
Munagala, Aqil, Jeyabalan, Gupta (bib105) 2016; 371
Lu, Li, Yang, Wu, Cai, Zhou (bib68) 2017; 8
Liu, Yang, Li, Niu, Zhao, Wang (bib64) 2017; 9
Tao, Yuan, Zhang, Yin, Guo, Zhang (bib49) 2017; 7
Horowitz, Fan, Bieri, Smith, Sanchez-Diaz, Schroer (bib99) 2020; 369
Cosenza, Ruiz, Toupet, Jorgensen, Noel (bib38) 2017; 7
Wang, Li, Cui, Cui, Chen, Wang (bib42) 2021; 9
Luo, Gong, Zhang, Qin, Li, Zhang (bib70) 2021; 9
Wu, Ma, Yang, Li, Zheng, Fu (bib97) 2021; 41
Warnecke, Prenzler, Harre, Kohl, Gartner, Lenarz (bib101) 2021; 10
Zhang, Buller, Chopp (bib14) 2019; 15
Yao, Wei, Wang, Chenglin, Bjorklund, Ouyang (bib23) 2019; 224
Won Lee, Thangavelu, Joung Choi, Yeong Shin, Sol Kim, Seon Baek (bib51) 2020; 121
Song, Wang, Zhang, Geng, Liu, Gao (bib74) 2017; 21
Keshtkar, Azarpira, Ghahremani (bib16) 2018; 9
Wu, Leijten, Georgi, Post, van Blitterswijk, Karperien (bib28) 2011; 17
Zhu, Yang, Peng, Yu, Hao (bib80) 2020; 393
Wu, Kuang, Chen, Yang, Zeng, Li (bib43) 2019; 206
Imai, Takahashi, Nishikawa, Kato, Morishita, Yamashita (bib61) 2015; 4
Yuan, Li, Shi, Miao, Guo, Chen (bib81) 2021; 27
Iturriaga, Hernaez-Moya, Erezuma, Dolatshahi-Pirouz, Orive (bib5) 2018; 18
Cheng, Zhang, Zhang, Hu, Zhang, Sun (bib82) 2018; 22
Greene, Loeser (bib37) 2015; 23
Sahu, Clemens, Shinde, Sivakumar, Pius, Bhatia (bib100) 2021; 1
Zhou, Ming, Li, Li, Deng, Ma (bib50) 2021; 7
Veceric-Haler, Cerar, Perse (bib7) 2017; 2017
ter Huurne, Schelbergen, Blattes, Blom, de Munter, Grevers (bib77) 2012; 64
Qi, Liu, Xiao, Tian, Su, Jin (bib46) 2019; vol. 55
Zhang, Rong, Luo, Cui (bib39) 2020; 12
Yan, Wu (bib29) 2020; 36
Chen, Chen, Wu, Lin, Tao, Cao (bib2) 2022; 32
Chen, Zheng, Wang, Tao, Xie, Xia (bib45) 2019; 9
Zhang, Yin, Lai, Tan, Choo, Lim (bib40) 2014; 23
de Miguel-Beriain (bib12) 2015; 82-83
Yan, Zhang, Yang, Deng, Lyu, Xu (bib104) 2020; 26
Song, Zhang, Xu, Lin, Chang, Liu (bib6) 2020; 24
Yan, Liu, Wu (bib31) 2021; 26
Liang, Xu, Li, Xiong, Li, Duan (bib62) 2020; 12
Rahmani, Saleki, Javanmehr, Khodaparast, Saadat, Nouri (bib103) 2020; 62
Xing, Zhang, Mao, Wang, Zhou, Zhou (bib92) 2021; 19
Tao, Huang, Gao, Li, Wei, Dawes (bib55) 2021; 6
Han, Wang, Li, Tao, Liang, Li (bib90) 2014; 199
Thomas, Eldridge, Nosrati, Alvarez, Thorup, Nalesso (bib56) 2021; 10
Narsinh, Sun, Sanchez-Freire, Lee, Almeida, Hu (bib10) 2011; 121
Gamradt, Wang (bib98) 2005; 5
Wu, Wang, Xiao, Crawford, Mao, Prasadam (bib17) 2020; 21
Hu, Dong, Bu, Shen, Luo, Zhang (bib63) 2020; 9
Ling, Li, Chen, Hu, Zhao, Wilson (bib71) 2020; 24
Kowal, Arras, Colombo, Jouve, Morath, Primdal-Bengtson (bib21) 2016; 113
Ankrum, Ong, Karp (bib8) 2014; 32
Thery, Witwer, Aikawa, Alcaraz, Anderson, Andriantsitohaina (bib20) 2018; 7
Gardiner, Di Vizio, Sahoo, Thery, Witwer, Wauben (bib19) 2016; 5
Chen, Wu, Huang, Suen, Cheng, Li (bib58) 2019; 11
Hunter, Matyas, Duncan (bib88) 2003; 9
Chen, Xue, Zhang, Zheng, Liu (bib35) 2018; 9
Maldonado, Oegema (bib89) 1992; 10
Jiang, Tian, Yang, Gao, Wang, Li (bib33) 2021; 6
Tao, Guo, Zhang (bib52) 2018; 5
Jiang, Zhang, Qi, Wang, Ouyang (bib9) 2011; 20
Song, Li, Geng, Luo, Liu, Tu (bib75) 2018; 19
Ding, Shao, Xiong (bib67) 2013; 18
Xiang, Su, Wu, Chen, Cong, Yang (bib85) 2020; 2020
Cocucci, Meldolesi (bib18) 2015; 25
Matsumoto, Stewart, Banks, Zhang (bib25) 2017; 23
Zhang, Zhang, Zhang, Liu, Ni, Huang (bib79) 2020; 24
Burger, Vinas, Akbari, Dehak, Knoll, Gutsol (bib26) 2015; 185
Zhang, Chuah, Lai, Hui, Lim, Toh (bib11) 2018; 156
Zhu, Shi, Liu, Wang, Shen, Yang (bib83) 2020; 19
Fiordalisi, Silva, Barbosa, Goncalves, Caldeira (bib94) 2020; 38
Liu, Lin, Zou, Wen, Wang, Lin (bib34) 2018; 17
Wang, Liu, Ma, Sun, Zhou, Wang (bib53) 2019; 18
McLaren (bib13) 2001; 414
Wong, Zhang, Wang, Ren, Afizah, Lai (bib65) 2020; 36
Zhang (10.1016/j.jot.2022.05.009_bib14) 2019; 15
Hopkins (10.1016/j.jot.2022.05.009_bib1) 2021; 26
Veceric-Haler (10.1016/j.jot.2022.05.009_bib7) 2017; 2017
Gardiner (10.1016/j.jot.2022.05.009_bib19) 2016; 5
Hu (10.1016/j.jot.2022.05.009_bib63) 2020; 9
Zhang (10.1016/j.jot.2022.05.009_bib91) 2021; 86
Sahu (10.1016/j.jot.2022.05.009_bib100) 2021; 1
Munagala (10.1016/j.jot.2022.05.009_bib105) 2016; 371
Yan (10.1016/j.jot.2022.05.009_bib104) 2020; 26
Song (10.1016/j.jot.2022.05.009_bib6) 2020; 24
Thery (10.1016/j.jot.2022.05.009_bib20) 2018; 7
McLaren (10.1016/j.jot.2022.05.009_bib13) 2001; 414
Tao (10.1016/j.jot.2022.05.009_bib55) 2021; 6
Zhang (10.1016/j.jot.2022.05.009_bib32) 2021; 278
Meurot (10.1016/j.jot.2022.05.009_bib3) 2022; 32
Kowal (10.1016/j.jot.2022.05.009_bib21) 2016; 113
Mao (10.1016/j.jot.2022.05.009_bib54) 2021; 12
Tao (10.1016/j.jot.2022.05.009_bib49) 2017; 7
Liu (10.1016/j.jot.2022.05.009_bib47) 2020; 15
Ankrum (10.1016/j.jot.2022.05.009_bib8) 2014; 32
Wu (10.1016/j.jot.2022.05.009_bib43) 2019; 206
Warnecke (10.1016/j.jot.2022.05.009_bib101) 2021; 10
Hunter (10.1016/j.jot.2022.05.009_bib88) 2003; 9
Wang (10.1016/j.jot.2022.05.009_bib42) 2021; 9
Gamradt (10.1016/j.jot.2022.05.009_bib98) 2005; 5
Zhang (10.1016/j.jot.2022.05.009_bib11) 2018; 156
Chu (10.1016/j.jot.2022.05.009_bib86) 2018; 6
Xiang (10.1016/j.jot.2022.05.009_bib85) 2020; 2020
Han (10.1016/j.jot.2022.05.009_bib90) 2014; 199
Jiang (10.1016/j.jot.2022.05.009_bib9) 2011; 20
Guillen (10.1016/j.jot.2022.05.009_bib15) 2021; 30
Rahmani (10.1016/j.jot.2022.05.009_bib103) 2020; 62
Li (10.1016/j.jot.2022.05.009_bib36) 2020; 523
Liang (10.1016/j.jot.2022.05.009_bib62) 2020; 12
Xing (10.1016/j.jot.2022.05.009_bib92) 2021; 19
Ling (10.1016/j.jot.2022.05.009_bib71) 2020; 24
Chen (10.1016/j.jot.2022.05.009_bib30) 2020; 22
Liu (10.1016/j.jot.2022.05.009_bib64) 2017; 9
Mercuri (10.1016/j.jot.2022.05.009_bib93) 2013; 19
Smyth (10.1016/j.jot.2022.05.009_bib60) 2015; 199
Zhang (10.1016/j.jot.2022.05.009_bib66) 2022; 50
Song (10.1016/j.jot.2022.05.009_bib75) 2018; 19
Chen (10.1016/j.jot.2022.05.009_bib45) 2019; 9
Liu (10.1016/j.jot.2022.05.009_bib34) 2018; 17
Lu (10.1016/j.jot.2022.05.009_bib68) 2017; 8
Zhu (10.1016/j.jot.2022.05.009_bib80) 2020; 393
Wong (10.1016/j.jot.2022.05.009_bib65) 2020; 36
Ding (10.1016/j.jot.2022.05.009_bib67) 2013; 18
de Miguel-Beriain (10.1016/j.jot.2022.05.009_bib12) 2015; 82-83
Liao (10.1016/j.jot.2022.05.009_bib84) 2019; 9
Wu (10.1016/j.jot.2022.05.009_bib97) 2021; 41
Chen (10.1016/j.jot.2022.05.009_bib58) 2019; 11
Tao (10.1016/j.jot.2022.05.009_bib41) 2021; 113
Song (10.1016/j.jot.2022.05.009_bib74) 2017; 21
Wang (10.1016/j.jot.2022.05.009_bib53) 2019; 18
Chen (10.1016/j.jot.2022.05.009_bib35) 2018; 9
Sun (10.1016/j.jot.2022.05.009_bib87) 2020; 22
Cosenza (10.1016/j.jot.2022.05.009_bib38) 2017; 7
Chen (10.1016/j.jot.2022.05.009_bib2) 2022; 32
Zhang (10.1016/j.jot.2022.05.009_bib39) 2020; 12
Clouet (10.1016/j.jot.2022.05.009_bib96) 2019; 146
Zhang (10.1016/j.jot.2022.05.009_bib40) 2014; 23
Iturriaga (10.1016/j.jot.2022.05.009_bib5) 2018; 18
Marote (10.1016/j.jot.2022.05.009_bib22) 2016; 7
Xia (10.1016/j.jot.2022.05.009_bib78) 2019; 143
Jiang (10.1016/j.jot.2022.05.009_bib33) 2021; 6
Xie (10.1016/j.jot.2022.05.009_bib73) 2020; 22
Zhou (10.1016/j.jot.2022.05.009_bib50) 2021; 7
Maldonado (10.1016/j.jot.2022.05.009_bib89) 1992; 10
Horowitz (10.1016/j.jot.2022.05.009_bib99) 2020; 369
Yao (10.1016/j.jot.2022.05.009_bib23) 2019; 224
Luo (10.1016/j.jot.2022.05.009_bib72) 2021; 39
Cocucci (10.1016/j.jot.2022.05.009_bib18) 2015; 25
Guo (10.1016/j.jot.2022.05.009_bib69) 2021; 2021
Hu (10.1016/j.jot.2022.05.009_bib57) 2018; 71
Xu (10.1016/j.jot.2022.05.009_bib24) 2021; 269
Mao (10.1016/j.jot.2022.05.009_bib48) 2018; 9
Grishko (10.1016/j.jot.2022.05.009_bib44) 2009; 17
Risbud (10.1016/j.jot.2022.05.009_bib76) 2014; 10
Yan (10.1016/j.jot.2022.05.009_bib29) 2020; 36
Matsumoto (10.1016/j.jot.2022.05.009_bib25) 2017; 23
Cheng (10.1016/j.jot.2022.05.009_bib82) 2018; 22
Imai (10.1016/j.jot.2022.05.009_bib61) 2015; 4
Luo (10.1016/j.jot.2022.05.009_bib70) 2021; 9
Greene (10.1016/j.jot.2022.05.009_bib37) 2015; 23
Wu (10.1016/j.jot.2022.05.009_bib28) 2011; 17
Deng (10.1016/j.jot.2022.05.009_bib102) 2021; 28
Wu (10.1016/j.jot.2022.05.009_bib59) 2020; 111
Burger (10.1016/j.jot.2022.05.009_bib26) 2015; 185
Martel-Pelletier (10.1016/j.jot.2022.05.009_bib95) 2016; 2
Zhu (10.1016/j.jot.2022.05.009_bib83) 2020; 19
Richardson (10.1016/j.jot.2022.05.009_bib4) 2016; 99
Narsinh (10.1016/j.jot.2022.05.009_bib10) 2011; 121
ter Huurne (10.1016/j.jot.2022.05.009_bib77) 2012; 64
Fiordalisi (10.1016/j.jot.2022.05.009_bib94) 2020; 38
Wu (10.1016/j.jot.2022.05.009_bib17) 2020; 21
Won Lee (10.1016/j.jot.2022.05.009_bib51) 2020; 121
Yuan (10.1016/j.jot.2022.05.009_bib81) 2021; 27
Tao (10.1016/j.jot.2022.05.009_bib52) 2018; 5
Qi (10.1016/j.jot.2022.05.009_bib46) 2019; vol. 55
Zhang (10.1016/j.jot.2022.05.009_bib79) 2020; 24
Lai (10.1016/j.jot.2022.05.009_bib27) 2013; 3
Keshtkar (10.1016/j.jot.2022.05.009_bib16) 2018; 9
Thomas (10.1016/j.jot.2022.05.009_bib56) 2021; 10
Yan (10.1016/j.jot.2022.05.009_bib31) 2021; 26
References_xml – volume: vol. 55
  start-page: 203
  year: 2019
  end-page: 210
  ident: bib46
  article-title: Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways
  publication-title: Vitro cellular & developmental biology Animal
– volume: 22
  start-page: 1092
  year: 2020
  end-page: 1106
  ident: bib87
  article-title: Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/beta-Catenin Axis
  publication-title: Mol Ther Nucleic Acids
– volume: 20
  start-page: 593
  year: 2011
  end-page: 607
  ident: bib9
  article-title: Cell transplantation for articular cartilage defects: principles of past, present, and future practice
  publication-title: Cell Transplant
– volume: 27
  start-page: 91
  year: 2021
  ident: bib81
  article-title: Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3
  publication-title: Mol Med
– volume: 28
  start-page: 1041
  year: 2021
  end-page: 1061
  ident: bib102
  article-title: Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration
  publication-title: Cell Death Differ
– volume: 111
  start-page: 110757
  year: 2020
  ident: bib59
  article-title: Ginsenoside Rb1/TGF-beta1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 4
  start-page: 26238
  year: 2015
  ident: bib61
  article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice
  publication-title: J Extracell Vesicles
– volume: 18
  start-page: 883
  year: 2018
  end-page: 896
  ident: bib5
  article-title: Advances in stem cell therapy for cartilage regeneration in osteoarthritis
  publication-title: Expet Opin Biol Ther
– volume: 146
  start-page: 306
  year: 2019
  end-page: 324
  ident: bib96
  article-title: Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies
  publication-title: Adv Drug Deliv Rev
– volume: 11
  start-page: 14608
  year: 2019
  end-page: 14618
  ident: bib58
  article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl Mater Interfaces
– volume: 17
  start-page: 2411
  year: 2018
  end-page: 2422
  ident: bib34
  article-title: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis
  publication-title: Cell Cycle
– volume: 12
  start-page: 389
  year: 2021
  ident: bib54
  article-title: Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis
  publication-title: Stem Cell Res Ther
– volume: 6
  start-page: 4455
  year: 2021
  end-page: 4469
  ident: bib55
  article-title: Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis
  publication-title: Bioact Mater
– volume: 50
  start-page: 788
  year: 2022
  end-page: 800
  ident: bib66
  article-title: Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model
  publication-title: Am J Sports Med
– volume: 23
  start-page: 1233
  year: 2014
  end-page: 1244
  ident: bib40
  article-title: Mesenchymal stem cells secrete immunologically active exosomes
  publication-title: Stem Cell Dev
– volume: 10
  start-page: 44
  year: 2014
  end-page: 56
  ident: bib76
  article-title: Role of cytokines in intervertebral disc degeneration: pain and disc content
  publication-title: Nat Rev Rheumatol
– volume: 32
  start-page: 49
  year: 2022
  end-page: 58
  ident: bib2
  article-title: Global, regional and national burden of low back pain 1990-2019: a systematic analysis of the Global Burden of Disease study 2019
  publication-title: J Orthop Translat
– volume: 15
  start-page: 193
  year: 2019
  end-page: 203
  ident: bib14
  article-title: Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury
  publication-title: Nat Rev Neurol
– volume: 82-83
  start-page: 176
  year: 2015
  end-page: 180
  ident: bib12
  article-title: The ethics of stem cells revisited
  publication-title: Adv Drug Deliv Rev
– volume: 23
  start-page: 1966
  year: 2015
  end-page: 1971
  ident: bib37
  article-title: Aging-related inflammation in osteoarthritis
  publication-title: Osteoarthritis Cartilage
– volume: 206
  start-page: 87
  year: 2019
  end-page: 100
  ident: bib43
  article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis
  publication-title: Biomaterials
– volume: 32
  start-page: 121
  year: 2022
  end-page: 129
  ident: bib3
  article-title: Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: a new opportunity?
  publication-title: J Orthop Translat
– volume: 22
  start-page: 601
  year: 2020
  end-page: 614
  ident: bib73
  article-title: MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 Axis
  publication-title: Mol Ther Nucleic Acids
– volume: 8
  start-page: 108
  year: 2017
  ident: bib68
  article-title: Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells
  publication-title: Stem Cell Res Ther
– volume: 9
  start-page: 4084
  year: 2019
  end-page: 4100
  ident: bib84
  article-title: Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo
  publication-title: Theranostics
– volume: 278
  start-page: 121169
  year: 2021
  ident: bib32
  article-title: Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
  publication-title: Biomaterials
– volume: 369
  start-page: 167
  year: 2020
  end-page: 173
  ident: bib99
  article-title: Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain
  publication-title: Science
– volume: 19
  start-page: 1727
  year: 2020
  end-page: 1739
  ident: bib83
  article-title: Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases
  publication-title: Cell Cycle
– volume: 71
  start-page: 168
  year: 2018
  end-page: 183
  ident: bib57
  article-title: Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration
  publication-title: Acta Biomater
– volume: 1
  start-page: 1148
  year: 2021
  end-page: 1161
  ident: bib100
  article-title: Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles
  publication-title: Nature Aging
– volume: 10
  start-page: 677
  year: 1992
  end-page: 690
  ident: bib89
  article-title: Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres
  publication-title: J Orthop Res
– volume: 2020
  start-page: 6697577
  year: 2020
  ident: bib85
  article-title: Exosomes derived from human urine-derived stem cells inhibit intervertebral disc degeneration by ameliorating endoplasmic reticulum stress
  publication-title: Oxid Med Cell Longev
– volume: 23
  start-page: 6206
  year: 2017
  end-page: 6214
  ident: bib25
  article-title: The transport mechanism of extracellular vesicles at the blood-brain barrier
  publication-title: Curr Pharmaceut Des
– volume: 7
  start-page: 16214
  year: 2017
  ident: bib38
  article-title: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis
  publication-title: Sci Rep
– volume: 121
  start-page: 3642
  year: 2020
  end-page: 3652
  ident: bib51
  article-title: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration
  publication-title: J Cell Biochem
– volume: 10
  year: 2021
  ident: bib101
  article-title: First-in-human intracochlear application of human stromal cell-derived extracellular vesicles
  publication-title: J Extracell Vesicles
– volume: 7
  start-page: 231
  year: 2016
  ident: bib22
  article-title: MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential
  publication-title: Front Pharmacol
– volume: 26
  start-page: 1
  year: 2021
  end-page: 2
  ident: bib1
  article-title: Medicine and models of degenerative orthopaedic disorders
  publication-title: J Orthop Translat
– volume: 7
  start-page: 180
  year: 2017
  end-page: 195
  ident: bib49
  article-title: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model
  publication-title: Theranostics
– volume: 18
  start-page: 777
  year: 2013
  end-page: 785
  ident: bib67
  article-title: Cell death in intervertebral disc degeneration
  publication-title: Apoptosis
– volume: 36
  start-page: 165
  year: 2020
  end-page: 178
  ident: bib29
  article-title: Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity
  publication-title: Cell Biol Toxicol
– volume: 9
  start-page: 318
  year: 2018
  ident: bib35
  article-title: Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells
  publication-title: Stem Cell Res Ther
– volume: 523
  start-page: 506
  year: 2020
  end-page: 513
  ident: bib36
  article-title: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/beta-catenin pathways to promote chondrogenic differentiation of BMSCs
  publication-title: Biochem Biophys Res Commun
– volume: 26
  start-page: 263
  year: 2020
  end-page: 275
  ident: bib104
  article-title: Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion
  publication-title: Tissue Eng C Methods
– volume: 2017
  start-page: 7304643
  year: 2017
  ident: bib7
  article-title: (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity
  publication-title: Stem Cell Int
– volume: 26
  start-page: 111
  year: 2021
  end-page: 120
  ident: bib31
  article-title: Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19
  publication-title: J Orthop Translat
– volume: 41
  start-page: 1199
  year: 2021
  end-page: 1210
  ident: bib97
  article-title: A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative
  publication-title: Clin Rheumatol
– volume: 10
  year: 2021
  ident: bib56
  article-title: WNT3A-loaded exosomes enable cartilage repair
  publication-title: J Extracell Vesicles
– volume: 21
  start-page: 1373
  year: 2017
  end-page: 1387
  ident: bib74
  article-title: Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells
  publication-title: J Cell Mol Med
– volume: 121
  start-page: 1217
  year: 2011
  end-page: 1221
  ident: bib10
  article-title: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells
  publication-title: J Clin Invest
– volume: 393
  start-page: 112109
  year: 2020
  ident: bib80
  article-title: Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5
  publication-title: Exp Cell Res
– volume: 2
  start-page: 16072
  year: 2016
  ident: bib95
  article-title: Osteoarthritis
  publication-title: Nat Rev Dis Prim
– volume: 17
  start-page: 1425
  year: 2011
  end-page: 1436
  ident: bib28
  article-title: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation
  publication-title: Tissue Eng Part A
– volume: 19
  start-page: 264
  year: 2021
  ident: bib92
  article-title: Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration
  publication-title: J Nanobiotechnol
– volume: 143
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib78
  article-title: Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects
  publication-title: Free Radic Biol Med
– volume: 9
  start-page: 1778883
  year: 2020
  ident: bib63
  article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration
  publication-title: J Extracell Vesicles
– volume: 64
  start-page: 3604
  year: 2012
  end-page: 3613
  ident: bib77
  article-title: Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis
  publication-title: Arthritis Rheum
– volume: 5
  start-page: 95
  year: 2005
  end-page: 103
  ident: bib98
  article-title: Lumbar disc arthroplasty
  publication-title: Spine J
– volume: 5
  start-page: 32945
  year: 2016
  ident: bib19
  article-title: Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey
  publication-title: J Extracell Vesicles
– volume: 9
  start-page: 644380
  year: 2021
  ident: bib42
  article-title: Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p
  publication-title: Front Cell Dev Biol
– volume: 32
  start-page: 252
  year: 2014
  end-page: 260
  ident: bib8
  article-title: Mesenchymal stem cells: immune evasive, not immune privileged
  publication-title: Nat Biotechnol
– volume: 25
  start-page: 364
  year: 2015
  end-page: 372
  ident: bib18
  article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles
  publication-title: Trends Cell Biol
– volume: 414
  start-page: 129
  year: 2001
  end-page: 131
  ident: bib13
  article-title: Ethical and social considerations of stem cell research
  publication-title: Nature
– volume: 9
  start-page: 247
  year: 2018
  ident: bib48
  article-title: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A
  publication-title: Stem Cell Res Ther
– volume: 9
  start-page: 648201
  year: 2021
  ident: bib70
  article-title: Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes
  publication-title: Front Cell Dev Biol
– volume: 269
  start-page: 120539
  year: 2021
  ident: bib24
  article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration
  publication-title: Biomaterials
– volume: 24
  start-page: 121
  year: 2020
  end-page: 130
  ident: bib6
  article-title: Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis
  publication-title: J Orthop Translat
– volume: 224
  start-page: 119492
  year: 2019
  ident: bib23
  article-title: Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders
  publication-title: Biomaterials
– volume: 12
  start-page: 36938
  year: 2020
  end-page: 36947
  ident: bib62
  article-title: Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 15
  start-page: 273
  year: 2020
  end-page: 288
  ident: bib47
  article-title: Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair
  publication-title: Nanomedicine
– volume: 62
  start-page: 101106
  year: 2020
  ident: bib103
  article-title: Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke
  publication-title: Ageing Res Rev
– volume: 199
  start-page: 342
  year: 2014
  end-page: 352
  ident: bib90
  article-title: Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells
  publication-title: Cells Tissues Organs
– volume: 30
  start-page: 61
  year: 2021
  end-page: 69
  ident: bib15
  article-title: Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells
  publication-title: J Orthop Translat
– volume: 371
  start-page: 48
  year: 2016
  end-page: 61
  ident: bib105
  article-title: Bovine milk-derived exosomes for drug delivery
  publication-title: Cancer Lett
– volume: 21
  start-page: 73
  year: 2020
  end-page: 80
  ident: bib17
  article-title: Extracellular vesicles: potential role in osteoarthritis regenerative medicine
  publication-title: J Orthop Translat
– volume: 2021
  start-page: 5542241
  year: 2021
  ident: bib69
  article-title: Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-beta
  publication-title: Oxid Med Cell Longev
– volume: 17
  start-page: 107
  year: 2009
  end-page: 113
  ident: bib44
  article-title: Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes
  publication-title: Osteoarthritis Cartilage
– volume: 3
  start-page: 3553
  year: 2013
  ident: bib27
  article-title: Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels
  publication-title: Sci Rep
– volume: 36
  start-page: 2215
  year: 2020
  end-page: 22128 e2
  ident: bib65
  article-title: Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model
  publication-title: Arthroscopy
– volume: 9
  start-page: 2439
  year: 2019
  end-page: 2459
  ident: bib45
  article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration
  publication-title: Theranostics
– volume: 99
  start-page: 69
  year: 2016
  end-page: 80
  ident: bib4
  article-title: Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration
  publication-title: Methods
– volume: 9
  start-page: 63
  year: 2018
  ident: bib16
  article-title: Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine
  publication-title: Stem Cell Res Ther
– volume: 199
  start-page: 145
  year: 2015
  end-page: 155
  ident: bib60
  article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes
  publication-title: J Contr Release
– volume: 9
  start-page: 4430
  year: 2017
  end-page: 4438
  ident: bib64
  article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration
  publication-title: Nanoscale
– volume: 22
  start-page: 261
  year: 2018
  end-page: 276
  ident: bib82
  article-title: Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration
  publication-title: J Cell Mol Med
– volume: 6
  start-page: 90
  year: 2018
  ident: bib86
  article-title: Strategies for annulus fibrosus regeneration: from biological therapies to tissue engineering
  publication-title: Front Bioeng Biotechnol
– volume: 6
  start-page: 2711
  year: 2021
  end-page: 2728
  ident: bib33
  article-title: Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration
  publication-title: Bioact Mater
– volume: 12
  start-page: 25138
  year: 2020
  end-page: 25152
  ident: bib39
  article-title: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization
  publication-title: Aging (Albany NY)
– volume: 7
  start-page: 1535750
  year: 2018
  ident: bib20
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J Extracell Vesicles
– volume: 185
  start-page: 2309
  year: 2015
  end-page: 2323
  ident: bib26
  article-title: Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes
  publication-title: Am J Pathol
– volume: 22
  start-page: 256
  year: 2020
  ident: bib30
  article-title: Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3
  publication-title: Arthritis Res Ther
– volume: 156
  start-page: 16
  year: 2018
  end-page: 27
  ident: bib11
  article-title: MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity
  publication-title: Biomaterials
– volume: 24
  start-page: 11742
  year: 2020
  end-page: 11754
  ident: bib79
  article-title: Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis
  publication-title: J Cell Mol Med
– volume: 19
  start-page: 952
  year: 2013
  end-page: 966
  ident: bib93
  article-title: Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies
  publication-title: Tissue Eng Part A
– volume: 9
  start-page: 667
  year: 2003
  end-page: 677
  ident: bib88
  article-title: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering
  publication-title: Tissue Eng
– volume: 18
  start-page: 116
  year: 2019
  ident: bib53
  article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases
  publication-title: Mol Cancer
– volume: 24
  start-page: 23
  year: 2020
  end-page: 31
  ident: bib71
  article-title: Changes of the end plate cartilage are associated with intervertebral disc degeneration: a quantitative magnetic resonance imaging study in rhesus monkeys and humans
  publication-title: J Orthop Translat
– volume: 39
  start-page: 467
  year: 2021
  end-page: 481
  ident: bib72
  article-title: Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy
  publication-title: Stem Cell
– volume: 113
  start-page: 104978
  year: 2021
  ident: bib41
  article-title: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-kappaB signaling pathway
  publication-title: Bioorg Chem
– volume: 7
  start-page: 37
  year: 2021
  ident: bib50
  article-title: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis
  publication-title: Cell Death Dis
– volume: 5
  start-page: 1700449
  year: 2018
  ident: bib52
  article-title: Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine
  publication-title: Adv Sci
– volume: 86
  start-page: 110083
  year: 2021
  ident: bib91
  article-title: Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3
  publication-title: Cell Signal
– volume: 19
  start-page: 339
  year: 2018
  end-page: 353
  ident: bib75
  article-title: Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration
  publication-title: Redox Biol
– volume: 113
  start-page: E968
  year: 2016
  end-page: E977
  ident: bib21
  article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes
  publication-title: Proc Natl Acad Sci U S A
– volume: 38
  start-page: 947
  year: 2020
  end-page: 951
  ident: bib94
  article-title: Decellularized scaffolds for intervertebral disc regeneration
  publication-title: Trends Biotechnol
– volume: 50
  start-page: 788
  issue: 3
  year: 2022
  ident: 10.1016/j.jot.2022.05.009_bib66
  article-title: Mesenchymal stem cell exosomes promote functional osteochondral repair in a clinically relevant porcine model
  publication-title: Am J Sports Med
  doi: 10.1177/03635465211068129
– volume: 6
  start-page: 4455
  issue: 12
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib55
  article-title: Small extracellular vesicles in combination with sleep-related circRNA3503: a targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis
  publication-title: Bioact Mater
– volume: 4
  start-page: 26238
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib61
  article-title: Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v4.26238
– volume: 32
  start-page: 252
  issue: 3
  year: 2014
  ident: 10.1016/j.jot.2022.05.009_bib8
  article-title: Mesenchymal stem cells: immune evasive, not immune privileged
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2816
– volume: 17
  start-page: 2411
  issue: 21–22
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib34
  article-title: MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1526603
– volume: 2017
  start-page: 7304643
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib7
  article-title: (Mesenchymal) stem cell-based therapy in cisplatin-induced acute kidney injury animal model: risk of immunogenicity and tumorigenicity
  publication-title: Stem Cell Int
– volume: 7
  start-page: 16214
  issue: 1
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib38
  article-title: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15376-8
– volume: 6
  start-page: 2711
  issue: 9
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib33
  article-title: Enhancement of acellular cartilage matrix scaffold by Wharton's jelly mesenchymal stem cell-derived exosomes to promote osteochondral regeneration
  publication-title: Bioact Mater
– volume: 199
  start-page: 145
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib60
  article-title: Biodistribution and delivery efficiency of unmodified tumor-derived exosomes
  publication-title: J Contr Release
  doi: 10.1016/j.jconrel.2014.12.013
– volume: 113
  start-page: E968
  issue: 8
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib21
  article-title: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521230113
– volume: 369
  start-page: 167
  issue: 6500
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib99
  article-title: Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain
  publication-title: Science
  doi: 10.1126/science.aaw2622
– volume: 12
  start-page: 36938
  issue: 33
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib62
  article-title: Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c10458
– volume: 121
  start-page: 1217
  issue: 3
  year: 2011
  ident: 10.1016/j.jot.2022.05.009_bib10
  article-title: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI44635
– volume: 64
  start-page: 3604
  issue: 11
  year: 2012
  ident: 10.1016/j.jot.2022.05.009_bib77
  article-title: Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34626
– volume: 18
  start-page: 883
  issue: 8
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib5
  article-title: Advances in stem cell therapy for cartilage regeneration in osteoarthritis
  publication-title: Expet Opin Biol Ther
  doi: 10.1080/14712598.2018.1502266
– volume: 27
  start-page: 91
  issue: 1
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib81
  article-title: Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3
  publication-title: Mol Med
  doi: 10.1186/s10020-021-00355-7
– volume: 9
  start-page: 1778883
  issue: 1
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib63
  article-title: miR-23a-3p-abundant small extracellular vesicles released from Gelma/nanoclay hydrogel for cartilage regeneration
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2020.1778883
– volume: 7
  start-page: 37
  issue: 1
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib50
  article-title: Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis
  publication-title: Cell Death Dis
  doi: 10.1038/s41420-021-00418-y
– volume: 7
  start-page: 180
  issue: 1
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib49
  article-title: Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model
  publication-title: Theranostics
  doi: 10.7150/thno.17133
– volume: 5
  start-page: 32945
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib19
  article-title: Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey
  publication-title: J Extracell Vesicles
  doi: 10.3402/jev.v5.32945
– volume: 121
  start-page: 3642
  issue: 7
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib51
  article-title: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.29657
– volume: 26
  start-page: 263
  issue: 5
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib104
  article-title: Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion
  publication-title: Tissue Eng C Methods
  doi: 10.1089/ten.tec.2020.0039
– volume: 9
  start-page: 318
  issue: 1
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib35
  article-title: Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1047-2
– volume: 99
  start-page: 69
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib4
  article-title: Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration
  publication-title: Methods
  doi: 10.1016/j.ymeth.2015.09.015
– volume: 23
  start-page: 1233
  issue: 11
  year: 2014
  ident: 10.1016/j.jot.2022.05.009_bib40
  article-title: Mesenchymal stem cells secrete immunologically active exosomes
  publication-title: Stem Cell Dev
  doi: 10.1089/scd.2013.0479
– volume: 17
  start-page: 1425
  issue: 9–10
  year: 2011
  ident: 10.1016/j.jot.2022.05.009_bib28
  article-title: Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2010.0517
– volume: 36
  start-page: 2215
  issue: 8
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib65
  article-title: Intra-articular injections of mesenchymal stem cell exosomes and hyaluronic acid improve structural and mechanical properties of repaired cartilage in a rabbit model
  publication-title: Arthroscopy
  doi: 10.1016/j.arthro.2020.03.031
– volume: 156
  start-page: 16
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib11
  article-title: MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.11.028
– volume: 9
  start-page: 247
  issue: 1
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib48
  article-title: Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-1004-0
– volume: 22
  start-page: 1092
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib87
  article-title: Notochordal-cell-derived exosomes induced by compressive load inhibit angiogenesis via the miR-140-5p/Wnt/beta-Catenin Axis
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.10.021
– volume: 71
  start-page: 168
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib57
  article-title: Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2018.02.019
– volume: 185
  start-page: 2309
  issue: 8
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib26
  article-title: Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2015.04.010
– volume: 39
  start-page: 467
  issue: 4
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib72
  article-title: Cartilage endplate stem cells inhibit intervertebral disc degeneration by releasing exosomes to nucleus pulposus cells to activate Akt/autophagy
  publication-title: Stem Cell
  doi: 10.1002/stem.3322
– volume: 10
  issue: 8
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib101
  article-title: First-in-human intracochlear application of human stromal cell-derived extracellular vesicles
  publication-title: J Extracell Vesicles
– volume: 19
  start-page: 1727
  issue: 14
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib83
  article-title: Mesenchymal stem cells-derived exosomes ameliorate nucleus pulposus cells apoptosis via delivering miR-142-3p: therapeutic potential for intervertebral disc degenerative diseases
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2020.1769301
– volume: 9
  start-page: 667
  issue: 4
  year: 2003
  ident: 10.1016/j.jot.2022.05.009_bib88
  article-title: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering
  publication-title: Tissue Eng
  doi: 10.1089/107632703768247368
– volume: 414
  start-page: 129
  issue: 6859
  year: 2001
  ident: 10.1016/j.jot.2022.05.009_bib13
  article-title: Ethical and social considerations of stem cell research
  publication-title: Nature
  doi: 10.1038/35102194
– volume: 17
  start-page: 107
  issue: 1
  year: 2009
  ident: 10.1016/j.jot.2022.05.009_bib44
  article-title: Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2008.05.009
– volume: 19
  start-page: 952
  issue: 7–8
  year: 2013
  ident: 10.1016/j.jot.2022.05.009_bib93
  article-title: Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2012.0088
– volume: 18
  start-page: 116
  issue: 1
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib53
  article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1041-z
– volume: 11
  start-page: 14608
  issue: 16
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib58
  article-title: Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b01532
– volume: 8
  start-page: 108
  issue: 1
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib68
  article-title: Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0563-9
– volume: 22
  start-page: 256
  issue: 1
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib30
  article-title: Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-020-02325-6
– volume: 23
  start-page: 1966
  issue: 11
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib37
  article-title: Aging-related inflammation in osteoarthritis
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2015.01.008
– volume: vol. 55
  start-page: 203
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib46
  article-title: Exosomes derived from mesenchymal stem cells inhibit mitochondrial dysfunction-induced apoptosis of chondrocytes via p38, ERK, and Akt pathways
– volume: 224
  start-page: 119492
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib23
  article-title: Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119492
– volume: 269
  start-page: 120539
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib24
  article-title: Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120539
– volume: 199
  start-page: 342
  issue: 5–6
  year: 2014
  ident: 10.1016/j.jot.2022.05.009_bib90
  article-title: Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells
  publication-title: Cells Tissues Organs
  doi: 10.1159/000369452
– volume: 143
  start-page: 1
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib78
  article-title: Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2019.07.026
– volume: 21
  start-page: 73
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib17
  article-title: Extracellular vesicles: potential role in osteoarthritis regenerative medicine
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2019.10.012
– volume: 146
  start-page: 306
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib96
  article-title: Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.04.017
– volume: 9
  start-page: 63
  issue: 1
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib16
  article-title: Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-018-0791-7
– volume: 15
  start-page: 273
  issue: 3
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib47
  article-title: Kartogenin enhances the therapeutic effect of bone marrow mesenchymal stem cells derived exosomes in cartilage repair
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2019-0208
– volume: 22
  start-page: 261
  issue: 1
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib82
  article-title: Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13316
– volume: 86
  start-page: 110083
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib91
  article-title: Exosomes miR-15a promotes nucleus pulposus-mesenchymal stem cells chondrogenic differentiation by targeting MMP-3
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2021.110083
– volume: 278
  start-page: 121169
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib32
  article-title: Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121169
– volume: 206
  start-page: 87
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib43
  article-title: miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.022
– volume: 62
  start-page: 101106
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib103
  article-title: Mesenchymal stem cell-derived extracellular vesicle-based therapies protect against coupled degeneration of the central nervous and vascular systems in stroke
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2020.101106
– volume: 30
  start-page: 61
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib15
  article-title: Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2021.08.003
– volume: 371
  start-page: 48
  issue: 1
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib105
  article-title: Bovine milk-derived exosomes for drug delivery
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2015.10.020
– volume: 393
  start-page: 112109
  issue: 2
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib80
  article-title: Exosomal miR-532-5p from bone marrow mesenchymal stem cells reduce intervertebral disc degeneration by targeting RASSF5
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2020.112109
– volume: 32
  start-page: 49
  year: 2022
  ident: 10.1016/j.jot.2022.05.009_bib2
  article-title: Global, regional and national burden of low back pain 1990-2019: a systematic analysis of the Global Burden of Disease study 2019
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2021.07.005
– volume: 7
  start-page: 1535750
  issue: 1
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib20
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2018.1535750
– volume: 24
  start-page: 121
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib6
  article-title: Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2020.03.015
– volume: 32
  start-page: 121
  year: 2022
  ident: 10.1016/j.jot.2022.05.009_bib3
  article-title: Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: a new opportunity?
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2022.02.001
– volume: 12
  start-page: 25138
  issue: 24
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib39
  article-title: Bone marrow mesenchymal stem cell-derived exosomes prevent osteoarthritis by regulating synovial macrophage polarization
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.104110
– volume: 3
  start-page: 3553
  year: 2013
  ident: 10.1016/j.jot.2022.05.009_bib27
  article-title: Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels
  publication-title: Sci Rep
  doi: 10.1038/srep03553
– volume: 1
  start-page: 1148
  issue: 12
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib100
  article-title: Regulation of aged skeletal muscle regeneration by circulating extracellular vesicles
  publication-title: Nature Aging
  doi: 10.1038/s43587-021-00143-2
– volume: 2020
  start-page: 6697577
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib85
  article-title: Exosomes derived from human urine-derived stem cells inhibit intervertebral disc degeneration by ameliorating endoplasmic reticulum stress
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2020/6697577
– volume: 36
  start-page: 165
  issue: 2
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib29
  article-title: Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity
  publication-title: Cell Biol Toxicol
  doi: 10.1007/s10565-019-09504-5
– volume: 2021
  start-page: 5542241
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib69
  article-title: Exosomal MATN3 of urine-derived stem cells ameliorates intervertebral disc degeneration by antisenescence effects and promotes NPC proliferation and ECM synthesis by activating TGF-beta
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2021/5542241
– volume: 5
  start-page: 95
  issue: 1
  year: 2005
  ident: 10.1016/j.jot.2022.05.009_bib98
  article-title: Lumbar disc arthroplasty
  publication-title: Spine J
  doi: 10.1016/j.spinee.2004.09.006
– volume: 19
  start-page: 339
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib75
  article-title: Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2018.09.006
– volume: 24
  start-page: 23
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib71
  article-title: Changes of the end plate cartilage are associated with intervertebral disc degeneration: a quantitative magnetic resonance imaging study in rhesus monkeys and humans
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2020.04.004
– volume: 19
  start-page: 264
  issue: 1
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib92
  article-title: Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration
  publication-title: J Nanobiotechnol
  doi: 10.1186/s12951-021-00991-5
– volume: 9
  start-page: 4084
  issue: 14
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib84
  article-title: Exosomes from mesenchymal stem cells modulate endoplasmic reticulum stress to protect against nucleus pulposus cell death and ameliorate intervertebral disc degeneration in vivo
  publication-title: Theranostics
  doi: 10.7150/thno.33638
– volume: 12
  start-page: 389
  issue: 1
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib54
  article-title: Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-021-02431-5
– volume: 2
  start-page: 16072
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib95
  article-title: Osteoarthritis
  publication-title: Nat Rev Dis Prim
  doi: 10.1038/nrdp.2016.72
– volume: 9
  start-page: 4430
  issue: 13
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib64
  article-title: Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration
  publication-title: Nanoscale
  doi: 10.1039/C7NR00352H
– volume: 9
  start-page: 648201
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib70
  article-title: Cartilage endplate stem cells transdifferentiate into nucleus pulposus cells via autocrine exosomes
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.648201
– volume: 21
  start-page: 1373
  issue: 7
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib74
  article-title: Advanced glycation end products regulate anabolic and catabolic activities via NLRP3-inflammasome activation in human nucleus pulposus cells
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13067
– volume: 25
  start-page: 364
  issue: 6
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib18
  article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2015.01.004
– volume: 9
  start-page: 2439
  issue: 9
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib45
  article-title: Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration
  publication-title: Theranostics
  doi: 10.7150/thno.31017
– volume: 10
  start-page: 44
  issue: 1
  year: 2014
  ident: 10.1016/j.jot.2022.05.009_bib76
  article-title: Role of cytokines in intervertebral disc degeneration: pain and disc content
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2013.160
– volume: 9
  start-page: 644380
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib42
  article-title: Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.644380
– volume: 23
  start-page: 6206
  issue: 40
  year: 2017
  ident: 10.1016/j.jot.2022.05.009_bib25
  article-title: The transport mechanism of extracellular vesicles at the blood-brain barrier
  publication-title: Curr Pharmaceut Des
  doi: 10.2174/1381612823666170913164738
– volume: 22
  start-page: 601
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib73
  article-title: MSC-derived exosomes protect vertebral endplate chondrocytes against apoptosis and calcification via the miR-31-5p/ATF6 Axis
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.09.026
– volume: 82-83
  start-page: 176
  year: 2015
  ident: 10.1016/j.jot.2022.05.009_bib12
  article-title: The ethics of stem cells revisited
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.11.011
– volume: 113
  start-page: 104978
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib41
  article-title: Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-kappaB signaling pathway
  publication-title: Bioorg Chem
  doi: 10.1016/j.bioorg.2021.104978
– volume: 6
  start-page: 90
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib86
  article-title: Strategies for annulus fibrosus regeneration: from biological therapies to tissue engineering
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2018.00090
– volume: 10
  start-page: 677
  issue: 5
  year: 1992
  ident: 10.1016/j.jot.2022.05.009_bib89
  article-title: Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100100510
– volume: 28
  start-page: 1041
  issue: 3
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib102
  article-title: Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-020-00636-4
– volume: 523
  start-page: 506
  issue: 2
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib36
  article-title: Chondrocytes-derived exosomal miR-8485 regulated the Wnt/beta-catenin pathways to promote chondrogenic differentiation of BMSCs
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2019.12.065
– volume: 111
  start-page: 110757
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib59
  article-title: Ginsenoside Rb1/TGF-beta1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2020.110757
– volume: 38
  start-page: 947
  issue: 9
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib94
  article-title: Decellularized scaffolds for intervertebral disc regeneration
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2020.05.002
– volume: 41
  start-page: 1199
  issue: 4
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib97
  article-title: A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative
  publication-title: Clin Rheumatol
  doi: 10.1007/s10067-021-05986-z
– volume: 10
  issue: 7
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib56
  article-title: WNT3A-loaded exosomes enable cartilage repair
  publication-title: J Extracell Vesicles
– volume: 18
  start-page: 777
  issue: 7
  year: 2013
  ident: 10.1016/j.jot.2022.05.009_bib67
  article-title: Cell death in intervertebral disc degeneration
  publication-title: Apoptosis
  doi: 10.1007/s10495-013-0839-1
– volume: 15
  start-page: 193
  issue: 4
  year: 2019
  ident: 10.1016/j.jot.2022.05.009_bib14
  article-title: Exosomes - beyond stem cells for restorative therapy in stroke and neurological injury
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-018-0126-4
– volume: 24
  start-page: 11742
  issue: 20
  year: 2020
  ident: 10.1016/j.jot.2022.05.009_bib79
  article-title: Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.15784
– volume: 5
  start-page: 1700449
  issue: 2
  year: 2018
  ident: 10.1016/j.jot.2022.05.009_bib52
  article-title: Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine
  publication-title: Adv Sci
  doi: 10.1002/advs.201700449
– volume: 7
  start-page: 231
  year: 2016
  ident: 10.1016/j.jot.2022.05.009_bib22
  article-title: MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2016.00231
– volume: 26
  start-page: 1
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib1
  article-title: Medicine and models of degenerative orthopaedic disorders
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2020.12.002
– volume: 20
  start-page: 593
  issue: 5
  year: 2011
  ident: 10.1016/j.jot.2022.05.009_bib9
  article-title: Cell transplantation for articular cartilage defects: principles of past, present, and future practice
  publication-title: Cell Transplant
  doi: 10.3727/096368910X532738
– volume: 26
  start-page: 111
  year: 2021
  ident: 10.1016/j.jot.2022.05.009_bib31
  article-title: Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19
  publication-title: J Orthop Translat
  doi: 10.1016/j.jot.2020.03.005
SSID ssj0001140048
Score 2.331278
SecondaryResourceType review_article
Snippet Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The traditional medical...
Background: Degenerative diseases in orthopaedics have become a significant global public health issue with the aging of the population worldwide. The...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8
SubjectTerms Degenerative disease
Exosome
Orthopaedics
Review
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gECCWl4zUE1JE4tiOzQ1Qq6pSOVFpb8aPCWwFyYpsJfj3zDhJSS7lwiWHxLGd8djzOTP-hrGTqEuRGgWFD8EXEjfMhQW8BBlBU4qRUNF558tP-vxKXmzVdpHqi2LCRnrgUXBvQflaN1VLROyy9LVHPOA1WBlNasPIBIo2b7GZyn9XqqyblFlOVLJAzd3OLs0c3HXdUxylEJm1k4IRF0Ypc_evbNMCe64jJxem6OwBuz9hSP5-7PtDdg-6R-zL6a9-6H9AQXYp8WFknf3NEZTyBF8zuzQtbXxyyfBdx8ln0-_JVTO84wggsTmeA7Zw-eO-S3z_9yjm8JhdnZ1-_nheTOkTiiitPBTK-6SDMSh6BbW3ZZ3A2KQUlNHUiMwqr1pjfBMbr7yIJpgGLCQrcBMBsq2fsKOu7-Ap40FYCA3UNkrcT-KsjcLrUGHVNUK0ttmwcpafixO3OKW4-O7mILJrhyJ3JHJXKoci37A3t6_sR2KNuwp_oEG5LUic2PkGaoqbNMX9S1M2TM5D6iZ4McIGrGp3V9uv5-F3OPXIn-I76G8GJ7RVwmijyw1rVnqx6uj6Sbf7lkm8LeI6U-pn_-PLnrNj6vAY-vaCHR1-3sBLxEqH8CpPiz-yoRLK
  priority: 102
  providerName: Directory of Open Access Journals
Title Exosome-based strategy for degenerative disease in orthopedics: Recent progress and perspectives
URI https://dx.doi.org/10.1016/j.jot.2022.05.009
https://www.proquest.com/docview/2695286860
https://pubmed.ncbi.nlm.nih.gov/PMC9283806
https://doaj.org/article/e5a3671f857040a3a059a6e94c8dfb04
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqnrggECCWj8pInJDCJo7t2NxK1aoCgYSg0t6M7UzKVjRZNVuJXvjtzDhJu7n0wMVSEjuxxuPxc2bmmbG3UeeirhRkPgSfSdwwZxawCDKCpiNGQkH5zl--6tMz-WmlVnvsaMqFobDK0fYPNj1Z6_HOcpTmcrNeL78LQVxzxUqIlAJJCb9SVqTl7_8Wd_9ZiqSldMYc1s-oweTcTGFeFx1FVAqR-DspLHFneUos_rNVageFzmModxalk0fs4Ygm-eHQ4cdsD9on7Ofxn67vLiGjFarm_cA_e8MRnvIazhPPNBk5Pjpn-Lrl5L3pNuS06T9whJL4OZ5Ct9AQct_WfHOXlNk_ZWcnxz-OTrPxIIUsSiu3mfK-1sEYHAQFpbd5WYOxtVKQR1MiRiu8aozxVay88iKaYCqwUFuB2wmQTfmM7bddC88ZD8JCqKC0UeLOEudvFF6HAl9dIlhrqgXLJ_m5OLKM02EXv90UTnbhUOSORO5y5VDkC_butslmoNi4r_JHGpTbisSOnW50V-duVA8Hype6Khoi75e5Lz1iSK_BymjqJuRyweQ0pG6mbPiq9X3ffjMNv8NJSJ4V30J33TuhrRJGG50vWDXTi1lH50_a9a9E520R4Zlcv_i_Tr1kD-hqCHt7xfa3V9fwGnHSNhykiXCQ_jJg-fmb-QcneRUO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFFQFigYKROCGFTRzbsXuDqtUCbS-00t6M7ThtKkhWzVaCS387M07Sbi49cMnB3xp7xs-Z8TMhH7xMWVmIkFjnbMLhwJzoAB_HfZD4xIjL8L7z8YlcnPFvS7HcIvvjXRgMqxxsf2_To7UeUuaDNOerup7_YAy55rIlY_EKpHpAHnJQX9TOTzfZ3Y-WLC5TfGQOKiRYY_RuxjivyxZDKhmLBJ4Yl7ixP0Ua_8k2tQFDp0GUG7vS4Q55MsBJ-rkf8VOyFZpn5OfBn7Zrf4cEt6iSdj0B7V8K-JSW4TwSTaOVo4N3htYNRfdNu0KvTbdHAUtCdzTGboElpLYp6eruVmb3nJwdHpzuL5LhJYXEc83XibC2lE4pmAURcqvTvAxKl0KE1KscQFpmRaWULXxhhWVeOVUEHUrN4DwReJW_INtN24SXhDqmgytCrj2HoyUosGdWugyazgGtVcWMpKP8jB9oxvG1i19mjCe7NCBygyI3qTAg8hn5eFtl1XNs3Ff4C07KbUGkx44J7dW5GdaHCcLmssgqZO_nqc0tgEgrg-ZelZVL-YzwcUrNZLVBU_V9fb8fp9-AFqJrxTahve4Mk1owJZVMZ6SYrIvJQKc5TX0R-bw1QDyVylf_N6h35NHi9PjIHH09-f6aPMacPgbuDdleX12HXQBNa_c2KsU_-icWPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exosome-based+strategy+for+degenerative+disease+in+orthopedics%3A+Recent+progress+and+perspectives&rft.jtitle=Journal+of+orthopaedic+translation&rft.au=Wu%2C+Rongjie&rft.au=Li%2C+Haotao&rft.au=Sun%2C+Chuanwei&rft.au=Liu%2C+Jialin&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2214-031X&rft.volume=36&rft.spage=8&rft.epage=17&rft_id=info:doi/10.1016%2Fj.jot.2022.05.009&rft.externalDocID=S2214031X22000468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-031X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-031X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-031X&client=summon