Modular shape-changing tensegrity-blocks enable self-assembling robotic structures

Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 5888 - 16
Main Authors Zhao, Luyang, Jiang, Yitao, Chen, Muhao, Bekris, Kostas, Balkcom, Devin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality. Creating modular robots that can adapt to various tasks and construct temporary structures remains a challenge. The authors designed and tested lightweight, deformable, untethered robots capable of effective locomotion, versatile manipulation, and rotorcraft-assisted 3D assembly.
AbstractList Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality. Creating modular robots that can adapt to various tasks and construct temporary structures remains a challenge. The authors designed and tested lightweight, deformable, untethered robots capable of effective locomotion, versatile manipulation, and rotorcraft-assisted 3D assembly.
Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality.Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality.
Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality.
Abstract Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality.
Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid modules. However, the potential to integrate multiple functions, such as making each robot deployable and capable of building lattice structures for self-construction and infrastructure creation, remains largely unexplored. To advance the field, we hypothesize that combining tensegrity principles with modular robotics can create lightweight, deformable units capable of integrating three critical functions within a single design: navigating varied terrains, manipulating arbitrary shape objects, and assembling weight-sustainable, active large infrastructures. Here, we designed untethered modular robots that are deformable, lightweight, deployable, outdoor-scale, capable of bearing loads, and capable of 3D attachment and detachment. With these characteristics, the system can form various 3D structures using different assembly methods, such as walking into position or being transported by rotorcraft. The deformability and lightweight nature of each block enable the assembled structures to dynamically change shape, providing capabilities such as added compliance during locomotion and manipulation and the ability to interact with the environment in tasks like tent and bridge assemblies. In summary, we suggest that integrating lightweight and deformable properties into modular robot design offers potential improvements in their adaptability and multi-functionality.Creating modular robots that can adapt to various tasks and construct temporary structures remains a challenge. The authors designed and tested lightweight, deformable, untethered robots capable of effective locomotion, versatile manipulation, and rotorcraft-assisted 3D assembly.
ArticleNumber 5888
Author Balkcom, Devin
Bekris, Kostas
Jiang, Yitao
Zhao, Luyang
Chen, Muhao
Author_xml – sequence: 1
  givenname: Luyang
  orcidid: 0000-0001-9419-8289
  surname: Zhao
  fullname: Zhao, Luyang
  email: luyang.zhao.gr@dartmouth.edu
  organization: Department of Computer Science, Dartmouth College
– sequence: 2
  givenname: Yitao
  orcidid: 0009-0009-4052-1170
  surname: Jiang
  fullname: Jiang, Yitao
  organization: Department of Computer Science, Dartmouth College
– sequence: 3
  givenname: Muhao
  orcidid: 0000-0003-1812-6835
  surname: Chen
  fullname: Chen, Muhao
  organization: Department of Mechanical and Aerospace Engineering, University of Kentucky
– sequence: 4
  givenname: Kostas
  surname: Bekris
  fullname: Bekris, Kostas
  organization: Department of Computer Science, Rutgers University
– sequence: 5
  givenname: Devin
  surname: Balkcom
  fullname: Balkcom, Devin
  organization: Department of Computer Science, Dartmouth College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40593651$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEYhYmpsbX2D7gwk7hxg_I5M6yMaWxtUmNidE34eGfuXLlwhRmT_nvpnVpbF7KBwHMOJ3Ceo6OYIiD0kpK3lPD-XRFUtB0mTOKWqJ5h8gSdMCIoph3jRw_Wx-islC2pgyvaC_EMHQsiFW8lPUFfPye_BJObsjF7wG5j4jjFsZkhFhjzNN9gG5L7URqIxgZoCoQBm1JgZ8MtmJNN8-SaMufFzUuG8gI9HUwocHY3n6LvFx-_nX_C118ur84_XGMnlJixlMIZxa0diLK0V1LJnjHm2rYj3sjWE-KI570XTjrZtwIGpQbm3eCAO2_5KbpafX0yW73P087kG53MpA8bKY_a5BotgG6FMh3nwlLhBXCjlJIeBmCDGgCoq17vV6_9YnfgHcQ5m_DI9PFJnDZ6TL80ZYz2nMjq8ObOIaefC5RZ76biIAQTIS1Fc8ZaLpnqVEVf_4Nu05JjfasDxXqiFK3Uq4eR7rP8-bsKsBVwOZWSYbhHKNG3HdFrR3TtiD50RJMq4quoVDiOkP_e_R_Vb0aev4A
Cites_doi 10.1089/soro.2020.0123
10.1109/LRA.2021.3100599
10.24963/ijcai.2017/686
10.1002/aisy.202300191
10.1126/sciadv.abm7834
10.1109/BioRob.2012.6290290
10.1109/ROBOT.1998.676452
10.1109/TRO.2006.878980
10.1109/MRA.2007.339623
10.1109/MRA.2016.2580479
10.1109/LARS/SBR/WRE51543.2020.9307137
10.1109/LRA.2022.3160611
10.1089/soro.2017.0008
10.1007/978-4-431-54055-7_5
10.3390/biology10111079
10.1088/1748-3190/abb86d
10.1109/ICRA40945.2020.9196565
10.1002/aisy.202070060
10.1126/scirobotics.aaz0492
10.1089/soro.2017.0066
10.1126/scirobotics.abf1628
10.1111/evj.30_12595
10.1109/ICRA.2012.6224956
10.1016/S0047-2484(77)80135-8
10.1126/science.1245842
10.1002/adfm.201303047
10.1109/ICRA46639.2022.9811583
10.1561/2300000044
10.1126/scirobotics.adi2746
10.1016/j.mechrescom.2022.104026
10.1073/pnas.1512241112
10.1109/ICRA.2011.5979561
10.1016/j.ijsolstr.2022.111785
10.1098/rsif.2017.0101
10.1109/LRA.2023.3284361
10.46867/ijcp.2017.30.00.16
10.1038/s41567-018-0107-y
10.1007/s12369-009-0034-2
10.1109/IROS.2016.7759033
10.1088/1757-899X/309/1/012113
10.1007/978-3-319-63537-8_42
10.1023/A:1021134128038
10.1109/IROS.2013.6696971
10.1007/978-0-387-74242-7_1
10.1109/MCS.2014.2320359
10.1016/j.compstruct.2021.114838
10.1371/journal.pone.0169179
10.1109/LRA.2019.2930432
10.1109/LRA.2022.3153700
10.1007/978-3-319-32552-1_53
10.1089/soro.2017.0097
10.1109/IROS.2017.8206098
10.1109/FPM.2015.7337218
10.1109/LRA.2022.3227872
10.1126/scirobotics.aat4983
10.1126/scirobotics.aan6357
10.1109/LRA.2020.2979660
10.1109/ROBOT.2010.5509214
10.1177/02783649241283847
10.1016/j.autcon.2018.06.015
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-60982-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 16
ExternalDocumentID oai_doaj_org_article_649a7334b14d4e3a9995defe2f9fee1c
PMC12218305
40593651
10_1038_s41467_025_60982_0
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1954882
  funderid: 100000001
– fundername: National Science Foundation (NSF)
  grantid: 1954882
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
PPXIY
PQGLB
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-554ca93bbf09b1895958222c6670da56d00c0d38d4c5c5864ef99f2dcfce3cdb3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 00:59:03 EDT 2025
Thu Aug 21 18:33:13 EDT 2025
Tue Aug 26 08:58:37 EDT 2025
Sat Aug 23 12:35:29 EDT 2025
Mon Jul 07 01:54:48 EDT 2025
Thu Jul 10 08:36:08 EDT 2025
Wed Jul 02 02:44:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-554ca93bbf09b1895958222c6670da56d00c0d38d4c5c5864ef99f2dcfce3cdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1812-6835
0000-0001-9419-8289
0009-0009-4052-1170
OpenAccessLink https://doaj.org/article/649a7334b14d4e3a9995defe2f9fee1c
PMID 40593651
PQID 3226280991
PQPubID 546298
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_649a7334b14d4e3a9995defe2f9fee1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12218305
proquest_miscellaneous_3226352979
proquest_journals_3226280991
pubmed_primary_40593651
crossref_primary_10_1038_s41467_025_60982_0
springer_journals_10_1038_s41467_025_60982_0
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Li (60982_CR23) 2022; 9
60982_CR9
CR Reid (60982_CR2) 2015; 112
60982_CR8
J Daudelin (60982_CR59) 2018; 3
60982_CR25
ST Parker (60982_CR46) 1977; 6
60982_CR22
NS Usevitch (60982_CR24) 2020; 5
O Feinerman (60982_CR48) 2018; 14
60982_CR64
60982_CR63
J Schramel (60982_CR61) 2016; 48
CH White (60982_CR57) 2021; 16
L Zhao (60982_CR19) 2022; 7
V Tsounis (60982_CR55) 2020; 5
BJ Carr (60982_CR56) 2016; 6
60982_CR18
L Chin (60982_CR30) 2023; 8
60982_CR16
M Calisti (60982_CR53) 2017; 14
60982_CR14
60982_CR58
60982_CR13
60982_CR11
60982_CR52
60982_CR50
J Petrovic (60982_CR60) 2003; 38
SW Kwok (60982_CR37) 2014; 24
60982_CR4
J Sugihara (60982_CR12) 2023; 5
60982_CR3
60982_CR1
Y Ozkan-Aydin (60982_CR10) 2021; 6
MS Khaled (60982_CR45) 2022; 252
A Vergara (60982_CR40) 2017; 12
60982_CR49
60982_CR47
60982_CR44
G Liang (60982_CR6) 2025; 44
60982_CR43
MA Robertson (60982_CR36) 2017; 2
60982_CR42
J Or (60982_CR54) 2009; 1
S Goessens (60982_CR28) 2018; 94
R Kobayashi (60982_CR17) 2022; 7
S Kurumaya (60982_CR34) 2018; 5
F Augugliaro (60982_CR29) 2014; 34
C Paul (60982_CR15) 2006; 22
60982_CR38
CE Gregg (60982_CR27) 2024; 9
M Chen (60982_CR32) 2023; 127
S Ma (60982_CR31) 2022; 280
Q Ze (60982_CR35) 2022; 8
S Ceron (60982_CR21) 2021; 6
60982_CR33
J Zou (60982_CR41) 2018; 5
S Kim (60982_CR51) 2017; 5
M Yim (60982_CR5) 2007; 14
C Liu (60982_CR7) 2019; 4
J-Y Lee (60982_CR39) 2016; 23
J Werfel (60982_CR26) 2014; 343
L Zhao (60982_CR20) 2023; 8
A Lubis (60982_CR62) 2018; 309
References_xml – volume: 9
  start-page: 324
  year: 2022
  ident: 60982_CR23
  publication-title: Soft Robot.
  doi: 10.1089/soro.2020.0123
– volume: 6
  start-page: 7557
  year: 2021
  ident: 60982_CR21
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3100599
– ident: 60982_CR8
  doi: 10.24963/ijcai.2017/686
– volume: 5
  start-page: 2300191
  year: 2023
  ident: 60982_CR12
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202300191
– volume: 8
  start-page: eabm7834
  year: 2022
  ident: 60982_CR35
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm7834
– ident: 60982_CR1
– ident: 60982_CR38
  doi: 10.1109/BioRob.2012.6290290
– ident: 60982_CR43
  doi: 10.1109/ROBOT.1998.676452
– volume: 22
  start-page: 944
  year: 2006
  ident: 60982_CR15
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2006.878980
– volume: 14
  start-page: 43
  year: 2007
  ident: 60982_CR5
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2007.339623
– volume: 23
  start-page: 30
  year: 2016
  ident: 60982_CR39
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2016.2580479
– ident: 60982_CR49
  doi: 10.1109/LARS/SBR/WRE51543.2020.9307137
– volume: 7
  start-page: 5942
  year: 2022
  ident: 60982_CR19
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3160611
– volume: 5
  start-page: 164
  year: 2018
  ident: 60982_CR41
  publication-title: Soft Robot.
  doi: 10.1089/soro.2017.0008
– ident: 60982_CR3
  doi: 10.1007/978-4-431-54055-7_5
– ident: 60982_CR50
  doi: 10.3390/biology10111079
– volume: 16
  start-page: 026019
  year: 2021
  ident: 60982_CR57
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3190/abb86d
– ident: 60982_CR22
  doi: 10.1109/ICRA40945.2020.9196565
– ident: 60982_CR11
  doi: 10.1002/aisy.202070060
– volume: 5
  start-page: eaaz0492
  year: 2020
  ident: 60982_CR24
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaz0492
– ident: 60982_CR58
  doi: 10.1089/soro.2017.0066
– volume: 6
  start-page: eabf1628
  year: 2021
  ident: 60982_CR10
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abf1628
– volume: 48
  start-page: 18
  year: 2016
  ident: 60982_CR61
  publication-title: Equine Vet. J.
  doi: 10.1111/evj.30_12595
– ident: 60982_CR33
  doi: 10.1109/ICRA.2012.6224956
– volume: 6
  start-page: 623
  year: 1977
  ident: 60982_CR46
  publication-title: J. Hum. Evolut.
  doi: 10.1016/S0047-2484(77)80135-8
– volume: 343
  start-page: 754
  year: 2014
  ident: 60982_CR26
  publication-title: Science
  doi: 10.1126/science.1245842
– volume: 24
  start-page: 2180
  year: 2014
  ident: 60982_CR37
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303047
– ident: 60982_CR13
  doi: 10.1109/ICRA46639.2022.9811583
– volume: 5
  start-page: 117
  year: 2017
  ident: 60982_CR51
  publication-title: Found. Trends Robot.
  doi: 10.1561/2300000044
– volume: 9
  start-page: eadi2746
  year: 2024
  ident: 60982_CR27
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.adi2746
– volume: 127
  start-page: 104026
  year: 2023
  ident: 60982_CR32
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2022.104026
– ident: 60982_CR63
– volume: 112
  start-page: 15113
  year: 2015
  ident: 60982_CR2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1512241112
– ident: 60982_CR64
  doi: 10.1109/ICRA.2011.5979561
– volume: 252
  start-page: 111785
  year: 2022
  ident: 60982_CR45
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2022.111785
– volume: 14
  start-page: 20170101
  year: 2017
  ident: 60982_CR53
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0101
– volume: 8
  start-page: 4521
  year: 2023
  ident: 60982_CR20
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2023.3284361
– ident: 60982_CR47
  doi: 10.46867/ijcp.2017.30.00.16
– volume: 14
  start-page: 683
  year: 2018
  ident: 60982_CR48
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0107-y
– volume: 1
  start-page: 367
  year: 2009
  ident: 60982_CR54
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-009-0034-2
– volume: 6
  start-page: 93
  year: 2016
  ident: 60982_CR56
  publication-title: Today’s. Vet. Pract.
– ident: 60982_CR44
  doi: 10.1109/IROS.2016.7759033
– volume: 309
  start-page: 012113
  year: 2018
  ident: 60982_CR62
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/309/1/012113
– ident: 60982_CR18
  doi: 10.1007/978-3-319-63537-8_42
– volume: 38
  start-page: 1
  year: 2003
  ident: 60982_CR60
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1021134128038
– ident: 60982_CR42
  doi: 10.1109/IROS.2013.6696971
– ident: 60982_CR14
  doi: 10.1007/978-0-387-74242-7_1
– volume: 34
  start-page: 46
  year: 2014
  ident: 60982_CR29
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2014.2320359
– volume: 280
  start-page: 114838
  year: 2022
  ident: 60982_CR31
  publication-title: Composite Struct.
  doi: 10.1016/j.compstruct.2021.114838
– volume: 12
  start-page: e0169179
  year: 2017
  ident: 60982_CR40
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169179
– ident: 60982_CR16
– volume: 4
  start-page: 4231
  year: 2019
  ident: 60982_CR7
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2930432
– volume: 7
  start-page: 5349
  year: 2022
  ident: 60982_CR17
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3153700
– ident: 60982_CR4
  doi: 10.1007/978-3-319-32552-1_53
– volume: 5
  start-page: 399
  year: 2018
  ident: 60982_CR34
  publication-title: Soft Robot.
  doi: 10.1089/soro.2017.0097
– ident: 60982_CR25
  doi: 10.1109/IROS.2017.8206098
– ident: 60982_CR52
  doi: 10.1109/FPM.2015.7337218
– volume: 8
  start-page: 528
  year: 2023
  ident: 60982_CR30
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3227872
– volume: 3
  start-page: eaat4983
  year: 2018
  ident: 60982_CR59
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat4983
– volume: 2
  start-page: eaan6357
  year: 2017
  ident: 60982_CR36
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aan6357
– volume: 5
  start-page: 3699
  year: 2020
  ident: 60982_CR55
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2020.2979660
– ident: 60982_CR9
  doi: 10.1109/ROBOT.2010.5509214
– volume: 44
  start-page: 740
  year: 2025
  ident: 60982_CR6
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649241283847
– volume: 94
  start-page: 458
  year: 2018
  ident: 60982_CR28
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.06.015
SSID ssj0000391844
Score 2.4741602
Snippet Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of rigid...
Abstract Modular robots are currently designed to perform a variety of tasks, primarily focusing on locomotion or manipulation through the reconfiguration of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5888
SubjectTerms 639/166/988
639/705/117
Automation
Cables
Carbon fibers
Deformability
Deformation effects
Design
Formability
Humanities and Social Sciences
Locomotion
Modular structures
multidisciplinary
Reconfiguration
Robot dynamics
Robotics
Robots
Rotary wing aircraft
Science
Science (multidisciplinary)
Self-assembly
Temporary structures
Tensegrity
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXkG2ipI3MCqEz9inxAgqqpSOSAq7c3ys0WFZGnaQ_89M052q-V1jRPLmRnbn2fG3xDyukk5NY0yyHzMKOwQjPoAZx4tnTYx5NRmjOiefFZHp-J4IRezw22c0ypXa2JZqOMQ0Ed-AIanWg14pnm3_EmxahRGV-cSGnfJPaQuQ6vuFt3ax4Ls51qI-a4M4_pgFGVlwBquihkAl2xjPyq0_X_Dmn-mTP4WNy3b0eFDsj3jyPr9pPgdcif1j8j9qbLkzWPy5WSImGBaj-dumWi53gv91Jivns6wYB31sI1djHUql6fqMX3PFIB0-uHxgnp9OfgBuq4nftlrOJQ_IaeHn75-PKJz-QQahBFXFIBCcIZ7n5nxjQbxSEQDQamORSdVZCywyHUUQQaplUjZmNyCgkLiIXr-lGz1Q5-ek9oBzHOh7ZTkyA-XvWHojWpyBrhrsqrIm5UQ7XJiybAlus21nURuQeS2iNyyinxAOa_fRIbr8mC4PLPzhLFKGNdxLnwjokjcAZCVMaHtmJxSEyqyu9KSnafdaG-NpCKv1s0wYTAK4vo0XE_vAOo0nanIs0mp65GIUuBQwtd6Q90bQ91s6b-dF1LupkWwyWRF3q4s43Zc_5bFi___xkvyoEVjLfnBu2QLdJ72AAVd-f1i6r8A8qkF3g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEJRXoFRB4gYRdvxY-7ggqmqlcgAq9Wb5MW4RJamacui_79hJFi20h17jh6yZsf05M_MNIe8YJGBMmcx8TBu8IWjjA755tHTaxJCgTdmje_RVHR6L1Yk82SLtnAtTgvYLpWU5pufosI-DKFs6F19V1CAqxGf6TqZqR9veWS5X31frPyuZ81wLMWXIUK5vGbxxCxWy_tsQ5v-Bkv94S8sldPCYPJrQY70c1_uEbEG3Sx6M9SSvn5JvR33MYaX1cOYuoClJvThPnaPU4TSXqWs8Xl6_hhpKylQ9wHlqED7Db5_T0uvL3vc4dT2yyqJ4hmfk-ODLj8-HzVQ0oQnCiKsG4UFwhnufqPFMG2lkxgBBqQWNTqpIaaCR6yiCDFIrAcmY1KJaAvAQPX9Otru-g5ekdgjuXGgXSvLMCpe8ofkfFEsJQa5JqiLvZyHai5EbwxafNtd2FLlFkdsicksr8inLed0z81qXD_3lqZ30bJUwbsG58ExEAdwhfJURssWYBMBCRfZmLdlpsw0WzyTVaoS6rCJv1824TbLvw3XQ_xn7INY0C1ORF6NS1ysRpayhxNF6Q90bS91s6X6eFSpu1maISWVFPsyW8Xddd8vi1f26vyYP22y8JUp4j2yjDcAbxEJXfn8y_hvhRgUF
  priority: 102
  providerName: Springer Nature
Title Modular shape-changing tensegrity-blocks enable self-assembling robotic structures
URI https://link.springer.com/article/10.1038/s41467-025-60982-0
https://www.ncbi.nlm.nih.gov/pubmed/40593651
https://www.proquest.com/docview/3226280991
https://www.proquest.com/docview/3226352979
https://pubmed.ncbi.nlm.nih.gov/PMC12218305
https://doaj.org/article/649a7334b14d4e3a9995defe2f9fee1c
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERKXquUZWlZB4gZRnfgR-7hddalWaoUKlfZmxY5NETSpSHvg3zO2s0uXgrhwSSTbsUYz9sw38XgG4E3pvCtLoULmY1KghSCFsejzSN5I1VrvKh9OdE9OxfE5Wyz58laprxATltIDJ8YdCKaamlJmStYyRxsENLx1YQ7lnStt0L5o8245U1EHU4WuCxtvyRAqDwYWdUKo3iqIQlhJNixRTNj_J5R5N1jytxPTaIjmO7A9Ish8mijfhXuuewwPU03JH0_g7KRvQ2hpPlw0V66IF3txnjxEqrvPoVRdYdCAfR1yF69N5YP75guE0O7ShKvp-ffe9Dh1njLL3qA7_hTO50efZsfFWDihsEyx6wIhgm0UNcYTZUqpuOIBB1ghatI2XLSEWNJS2TLLLZeCOa-Ur1A01lHbGvoMtrq-cy8gbxDgNbaqBachM5w3ioT_UKX3CHSVFxm8XTFRX6X8GDqea1OpE8s1slxHlmuSwWHg83pkyG0dG1DiepS4_pfEM9hfSUmPG27QqJdEJRHulhm8XnfjVgnnH03n-ps0BvGmqlUGz5NQ15SwWNqQ49dyQ9wbpG72dF8uYjrusgowk_AM3q1Wxi-6_s6Ll_-DF3vwqApLOsYP78MWrgz3ClHStZnA_XpZ41PO30_gwXS6-LjA9-HR6YczbJ2J2SRumZ9_-BUq
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AgSDBCaI68TLxASG2YUo7PaBW6s3Ejt0iIBkmrVD_FL-R95zJVMN26zVOLOctfp_9NoAnuQ8-z5WmyscsQwvBMuvwzFPKqtS1C74I5NGd7qrJvvhwIA_W4OeQC0NhlcOeGDfqunV0R76JgqeKEvFM_nL2PaOuUeRdHVpo9GKx7U9_4JGte7H1Fvn7tCjG7_beTLJFV4HMCS2OM7SfrtLc2sC0zUsttSQj6ZQasbqSqmbMsZqXtXDSyVIJH7QOBa7bee5qy3HeC3BRcLTklJk-fr-806Fq66UQi9wcxsvNTsSdiHrGKqYRzLIV-xfbBPwN2_4Zovmbnzaav_E1uLrAremrXtCuw5pvbsClvpPl6U34OG1rCmhNu6Nq5rOYTozzpBQf7w-pQV5m0Wx-6VIfk7XSzn8NGQJ3_81SQnw6b22LU6d9PduTue9uwf65EPY2rDdt4-9CWiGsrFwxUpJTPbpgNaPbrzwEhNc6qASeDUQ0s74qh4nedF6anuQGSW4iyQ1L4DXRefkmVdSOD9r5oVkoqFFCVyPOhc1FLTyvEDjL2pOs6uB97hLYGLhkFmremTOhTODxchgVlLwuVePbk_4dRLl6pBO40zN1uRIRGypK_LpcYffKUldHms9HsQh4XhC4ZTKB54NknK3r37S49__feASXJ3vTHbOztbt9H64UJLgxNnkD1pH__gEisGP7MIp9Cp_OW89-AblaQ2o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ4jWSWxvfECI0q5aSldVRaXeTOzYbVXYLJtWqH-NX8eMk2y1vG69xonlzMPz2fMCeJk679JUKqp8zBK0ECwxFs88hSgLVVnvMk8e3d2J3DrgHw_F4Qr87HNhKKyy3xPDRl3Vlu7Ihyh4MisQz6RD34VF7G2M382-J9RBijytfTuNVkR23MUPPL41b7c3kNevsmy8-fnDVtJ1GEgsV_wsQVtqS5Ub45kyaaGEEmQwrZQjVpVCVoxZVuVFxa2wopDceaV8hv9gXW4rk-O812B1RKeiAayub0729hc3PFR7veC8y9RheTFseNiXqIOsZAqhLVuyhqFpwN-Q7p8Bm795bYMxHN-GWx2Kjd-3YncHVtz0Llxv-1pe3IP93bqi8Na4OS5nLgnJxThPTNHy7oja5SUGjehpE7uQuhU37qtPEMa7b4bS4-N5bWqcOm6r257PXXMfDq6EtA9gMK2n7hHEJYLM0mYjKXKqTueNYnQXlnqPYFt5GcHrnoh61tbo0MG3nhe6JblGkutAcs0iWCc6L96k-trhQT0_0p26aslVOcpzblJecZeXCKNF5UhylXcutRGs9VzSndI3-lJEI3ixGEZ1JR9MOXX1efsOYl41UhE8bJm6WAkP7RUFfl0ssXtpqcsj05PjUBI8zQjqMhHBm14yLtf1b1o8_v9vPIcbqGP60_Zk5wnczEhuQ6DyGgyQ_e4pwrEz86yT-xi-XLWq_QIeMkj8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+shape-changing+tensegrity-blocks+enable+self-assembling+robotic+structures&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Luyang&rft.au=Jiang%2C+Yitao&rft.au=Chen%2C+Muhao&rft.au=Bekris%2C+Kostas&rft.date=2025-07-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-60982-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_025_60982_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon