The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective

This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 9214 - 14
Main Authors Akolekar, Harshal, Jhamnani, Piyush, Kumar, Vikash, Tailor, Vinay, Pote, Aditya, Meena, Ankit, Kumar, Kamal, Challa, Jagat Sesh, Kumar, Dhruv
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-93871-z

Cover

Loading…
Abstract This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies.
AbstractList This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI's reliability in numerical tasks and its potential impact on students' problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI's role in engineering education and its implications for future learning methodologies.This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI's reliability in numerical tasks and its potential impact on students' problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI's role in engineering education and its implications for future learning methodologies.
This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies.
Abstract This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies.
ArticleNumber 9214
Author Kumar, Vikash
Akolekar, Harshal
Kumar, Dhruv
Meena, Ankit
Pote, Aditya
Jhamnani, Piyush
Challa, Jagat Sesh
Kumar, Kamal
Tailor, Vinay
Author_xml – sequence: 1
  givenname: Harshal
  surname: Akolekar
  fullname: Akolekar, Harshal
  organization: Department of Mechanical Engineering, Indian Institute of Technology, School of AI & Data Science, Indian Institute of Technology
– sequence: 2
  givenname: Piyush
  surname: Jhamnani
  fullname: Jhamnani, Piyush
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 3
  givenname: Vikash
  surname: Kumar
  fullname: Kumar, Vikash
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 4
  givenname: Vinay
  surname: Tailor
  fullname: Tailor, Vinay
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 5
  givenname: Aditya
  surname: Pote
  fullname: Pote, Aditya
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 6
  givenname: Ankit
  surname: Meena
  fullname: Meena, Ankit
  organization: Department of Mechanical Engineering, Indian Institute of Technology
– sequence: 7
  givenname: Kamal
  surname: Kumar
  fullname: Kumar, Kamal
  organization: Department of Electrical Engineering, Indian Institute of Technology
– sequence: 8
  givenname: Jagat Sesh
  surname: Challa
  fullname: Challa, Jagat Sesh
  email: jagatsesh@pilani.bits-pilani.ac.in
  organization: Department of Computer Science & Information Systems, Birla Institute of Technology & Science
– sequence: 9
  givenname: Dhruv
  surname: Kumar
  fullname: Kumar, Dhruv
  organization: Department of Computer Science & Information Systems, Birla Institute of Technology & Science, Department of Computer Science and Engineering, Indraprastha Institute of Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40097637$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAltiwCfiaxCtUVVyOVIlNWVuOPcnJUWIHO6nUPj3OSSktC7yxNf7m93jmf41OfPCA0FtKPlLC609JUKnqgjBZKF5XtLh_gc4YEbJgnLGTJ-dTdJHSgeQlmRJUvUKnghBVlbw6Q-PNHnAMA-DQ4g48RDP3t4Avd3gOYUi49zjtzdT7Do9g98b31gwYfNd7gLiGwS02JwWP2xhGbDxevIPYReMWMwOeIKYJ7Cr7Br1szZDg4mE_Rz-_frm5-l5c__i2u7q8LqxQYi4kLbkCSZWUTeusVEYJRyUQzhkvG8UdpYKYBmRZVZWhhGRAEkVVyx3P2DnabboumIOeYj-aeKeD6fUxEGKnTZx7O4CWtiKubttSNlaUpakNawSrLQXWNk3VZK3Pm9a0NCM4C36OZngm-vzG93vdhVtNqaK53SIrfHhQiOHXAmnWY58sDIPxEJakOa1qpiina-Hv_0EPYYk-9-pIkfztmmXq3dOSHmv5M9YMsA2wMaQUoX1EKNGrffRmH53to4_20fc5iW9JaVrnCvHv2__J-g0y_chB
Cites_doi 10.1080/08874417.2023.2261010
10.1016/j.procir.2023.04.001
10.1063/5.0209779
10.1038/s41598-024-82918-2
10.1155/2024/5546940
10.1109/EDUCON60312.2024.10578789
10.1145/3545945.3569830
10.1002/jee.20443
10.1145/3545945.3569823
10.1145/3636243.3636257
10.1191/1478088706qp063oa
10.1002/rev3.3489
10.4324/9780203764565
10.1145/3587102.3588815
10.1080/14703297.2023.2190148
10.1145/3587102.3588827
10.1002/j.2168-9830.2009.tb01005.x
10.47852/bonviewAIA3202939
10.1109/TII.2023.3280337
10.1111/jcal.13060
10.1108/LHTN-01-2023-0009
10.1145/3576123.3576134
10.1145/3587102.3588852
10.1145/3581791.3597297
10.1080/14703297.2023.2195846
10.1016/j.ece.2023.05.001
10.1109/EDUCON54358.2023.10125121
10.1002/jee.20372
10.1057/9780230239517_7
10.1145/3626252.3630803
10.37074/jalt.2023.6.1.23
10.1145/3587102.3588792
10.1038/s41598-023-42227-6
10.1007/978-3-031-31066-9_34
10.1002/jee.20539
10.21125/inted.2024.1608
10.1002/jee.20541
10.2147/DHPS.S425858
10.1002/cae.22781
10.1145/3580305.3599801
10.2307/798843
10.5089/9798400262548.006
10.3390/bdcc7010035
10.3390/app13106039
10.1186/s12909-024-05630-9
10.1002/cae.22747
10.1145/3587102.3588814
10.12989/acd.2016.1.1.079
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-93871-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_5c70d8ff65bc466a8a2b428c1e2fbb7b
PMC11914194
40097637
10_1038_s41598_025_93871_z
Genre Journal Article
GrantInformation_xml – fundername: Birla Institute of Technology and Science, Pilani
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
UKHRP
AASML
AAYXX
CITATION
PHGZM
SNYQT
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PUEGO
Q9U
7X8
AARCD
5PM
ID FETCH-LOGICAL-c494t-51639e51955bfdc59a94d15e033236b93d1140abe56777a100a9450919f3d3e03
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:18 EDT 2025
Thu Aug 21 18:39:26 EDT 2025
Tue Aug 05 11:13:05 EDT 2025
Wed Aug 27 09:42:18 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Tue Jul 01 05:18:06 EDT 2025
Tue Mar 18 01:11:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mechanical engineering
ChatGPT, Copilot, Gemini
Generative AI
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-51639e51955bfdc59a94d15e033236b93d1140abe56777a100a9450919f3d3e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/5c70d8ff65bc466a8a2b428c1e2fbb7b
PMID 40097637
PQID 3178014082
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_5c70d8ff65bc466a8a2b428c1e2fbb7b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914194
proquest_miscellaneous_3178291310
proquest_journals_3178014082
pubmed_primary_40097637
crossref_primary_10_1038_s41598_025_93871_z
springer_journals_10_1038_s41598_025_93871_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-17
PublicationDateYYYYMMDD 2025-03-17
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References M-L Tsai (93871_CR32) 2023; 44
93871_CR9
V Taecharungroj (93871_CR12) 2023; 7
93871_CR6
93871_CR7
93871_CR39
DR Cotton (93871_CR8) 2024; 61
93871_CR35
93871_CR36
L Jiang (93871_CR40) 2024; 40
93871_CR38
93871_CR33
X Wang (93871_CR31) 2023; 119
93871_CR30
T Fütterer (93871_CR16) 2023; 13
A Yusuf (93871_CR13) 2024; 12
BD Lund (93871_CR18) 2023; 40
BG Glaser (93871_CR53) 1965; 12
M Borrego (93871_CR29) 2009; 98
93871_CR4
93871_CR28
93871_CR5
93871_CR2
93871_CR3
93871_CR24
93871_CR1
93871_CR25
93871_CR26
93871_CR27
93871_CR20
93871_CR21
93871_CR22
93871_CR23
GG Tejani (93871_CR57) 2016; 1
M-L Tsai (93871_CR37) 2023; 44
93871_CR17
93871_CR19
93871_CR14
V Braun (93871_CR52) 2006; 3
93871_CR15
T Li (93871_CR42) 2025; 57
P Mehta (93871_CR59) 2024; 2024
93871_CR10
93871_CR54
93871_CR11
93871_CR55
93871_CR56
LM Sánchez-Ruiz (93871_CR34) 2023; 13
93871_CR50
93871_CR51
Y Qiao (93871_CR41) 2023; 20
G Rossettini (93871_CR47) 2024; 24
93871_CR46
93871_CR48
93871_CR49
93871_CR43
93871_CR44
GG Tejani (93871_CR58) 2024; 14
93871_CR45
References_xml – ident: 93871_CR1
  doi: 10.1080/08874417.2023.2261010
– volume: 119
  start-page: 7
  year: 2023
  ident: 93871_CR31
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2023.04.001
– ident: 93871_CR39
  doi: 10.1063/5.0209779
– volume: 14
  start-page: 31553
  year: 2024
  ident: 93871_CR58
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-82918-2
– volume: 2024
  start-page: 5546940
  year: 2024
  ident: 93871_CR59
  publication-title: J. Optimiz.
  doi: 10.1155/2024/5546940
– ident: 93871_CR30
  doi: 10.1109/EDUCON60312.2024.10578789
– ident: 93871_CR27
  doi: 10.1145/3545945.3569830
– ident: 93871_CR48
  doi: 10.1002/jee.20443
– ident: 93871_CR56
– ident: 93871_CR9
  doi: 10.1145/3545945.3569823
– ident: 93871_CR17
– ident: 93871_CR22
  doi: 10.1145/3636243.3636257
– volume: 3
  start-page: 77
  year: 2006
  ident: 93871_CR52
  publication-title: Qual. Res. Psychol.
  doi: 10.1191/1478088706qp063oa
– volume: 12
  year: 2024
  ident: 93871_CR13
  publication-title: Rev. Educ.
  doi: 10.1002/rev3.3489
– ident: 93871_CR51
  doi: 10.4324/9780203764565
– ident: 93871_CR5
– ident: 93871_CR25
  doi: 10.1145/3587102.3588815
– ident: 93871_CR55
– volume: 61
  start-page: 228
  year: 2024
  ident: 93871_CR8
  publication-title: Innov. Educ. Teach. Int.
  doi: 10.1080/14703297.2023.2190148
– ident: 93871_CR11
  doi: 10.1145/3587102.3588827
– volume: 98
  start-page: 53
  year: 2009
  ident: 93871_CR29
  publication-title: J. Eng. Educ.
  doi: 10.1002/j.2168-9830.2009.tb01005.x
– ident: 93871_CR15
  doi: 10.47852/bonviewAIA3202939
– volume: 20
  start-page: 2190
  year: 2023
  ident: 93871_CR41
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2023.3280337
– ident: 93871_CR6
– volume: 40
  start-page: 3098
  year: 2024
  ident: 93871_CR40
  publication-title: J. Comput. Assist. Learn.
  doi: 10.1111/jcal.13060
– volume: 40
  start-page: 26
  year: 2023
  ident: 93871_CR18
  publication-title: Library Hi Tech News
  doi: 10.1108/LHTN-01-2023-0009
– ident: 93871_CR10
  doi: 10.1145/3576123.3576134
– ident: 93871_CR23
  doi: 10.1145/3587102.3588852
– ident: 93871_CR44
  doi: 10.1145/3581791.3597297
– ident: 93871_CR28
– volume: 57
  start-page: 1
  year: 2025
  ident: 93871_CR42
  publication-title: ACM Comput. Surv.
– ident: 93871_CR7
  doi: 10.1080/14703297.2023.2195846
– volume: 44
  start-page: 71
  year: 2023
  ident: 93871_CR32
  publication-title: Educ. Chem. Eng.
  doi: 10.1016/j.ece.2023.05.001
– ident: 93871_CR54
– ident: 93871_CR20
  doi: 10.1109/EDUCON54358.2023.10125121
– ident: 93871_CR50
  doi: 10.1002/jee.20372
– ident: 93871_CR49
  doi: 10.1057/9780230239517_7
– ident: 93871_CR21
  doi: 10.1145/3626252.3630803
– ident: 93871_CR46
  doi: 10.37074/jalt.2023.6.1.23
– ident: 93871_CR3
– ident: 93871_CR26
  doi: 10.1145/3587102.3588792
– volume: 13
  start-page: 15310
  year: 2023
  ident: 93871_CR16
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-42227-6
– ident: 93871_CR36
  doi: 10.1007/978-3-031-31066-9_34
– ident: 93871_CR14
  doi: 10.1002/jee.20539
– volume: 44
  start-page: 71
  year: 2023
  ident: 93871_CR37
  publication-title: Educ. Chem. Eng.
  doi: 10.1016/j.ece.2023.05.001
– ident: 93871_CR35
  doi: 10.21125/inted.2024.1608
– ident: 93871_CR19
  doi: 10.1002/jee.20541
– ident: 93871_CR45
  doi: 10.2147/DHPS.S425858
– ident: 93871_CR33
  doi: 10.1002/cae.22781
– ident: 93871_CR43
  doi: 10.1145/3580305.3599801
– volume: 12
  start-page: 436
  year: 1965
  ident: 93871_CR53
  publication-title: Soc. Problems
  doi: 10.2307/798843
– ident: 93871_CR2
  doi: 10.5089/9798400262548.006
– volume: 7
  start-page: 35
  year: 2023
  ident: 93871_CR12
  publication-title: Big Data and Cognitive Computing
  doi: 10.3390/bdcc7010035
– volume: 13
  start-page: 6039
  year: 2023
  ident: 93871_CR34
  publication-title: Appl. Sci.
  doi: 10.3390/app13106039
– ident: 93871_CR4
– volume: 24
  start-page: 694
  year: 2024
  ident: 93871_CR47
  publication-title: BMC Med. Educ.
  doi: 10.1186/s12909-024-05630-9
– ident: 93871_CR38
  doi: 10.1002/cae.22747
– ident: 93871_CR24
  doi: 10.1145/3587102.3588814
– volume: 1
  start-page: 79
  year: 2016
  ident: 93871_CR57
  publication-title: Adv. Comput. Design
  doi: 10.12989/acd.2016.1.1.079
SSID ssj0000529419
Score 2.4429152
Snippet This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education...
Abstract This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 9214
SubjectTerms 639/166/988
639/705/117
Chatbots
ChatGPT, Copilot, Gemini
Engineering education
Generative AI
Generative artificial intelligence
Humanities and Social Sciences
Learning
Mechanical engineering
multidisciplinary
Multiple choice
Problem solving
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERIXVL7TFmQkbmA1ie3YPlUFURUkOFFpb5ad2NtKNFk2u4f219fjJLtavq6xD47f2DP2zHsGeBdKJ2rhGc053lY1TlOnlKe64sI5JrVNLNdv36vzC_51JmbjhVs_llVOe2LaqJuuxjvy4-jnUOgkeqyTxS-Kr0ZhdnV8QuM-PEDpMizpkjO5uWPBLBYv9MiVyZk67qO_Qk5ZKahm8axAb3f8UZLt_1us-WfJ5G950-SOzvbh8RhHktMB-Cdwz7dP4eHwsuTNM7iO8BOsHCRdIPMkLY37Gjn9QlZd97MnVy3pLy2Spci1R_YvgkX8Vp2Q-Kn0gyAFhdiWIN9sOV_aZh0DVLLY0jSfw8XZ5x-fzun4sgKtueYrKmIUpj0KywgXmlpoq3lTCJ8zVrLKadbEY1JunReVlNIWeR47YGihA2tY7PYC9tqu9a-ACOelV0XwMqnVM6e1s7YJ0TO6UhU-g_fT_JrFIKBhUuKbKTOgYSIaJqFhbjP4iBBseqL4dfrQLedmXEtG1DJvVAiVcDWvKqts6eIpqi58GZyTLoOjCUAzrsjebO0ng7eb5riWMEFiW9-thz6lLmLEm8HLAe_NSDgyXiomM1A7lrAz1N2W9uoy6XUnDb1C8ww-TEazHde_5-Lg_79xCI9KtGOsLZRHsLdarv3rGCCt3Ju0Cu4AMd4PZQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSISv30sq1YFCU5U6s2yE3tbiSbVPg7tr6_HSXa1tBy4xhNp5Bnbn-35PgN8itSLRgRWVhxPq1pvSq91KI3kwnumjMss15-_5Mkp_3EmzvaATlyYXLSfJS3zND1Vh31dpoUGyWBUlIYlkF_ePICHKN2OWT2Ts825Ct5c8dqM_JiK6Xt-3VmDslT_ffjybpnkX3eleQk6fgpPRuxIDgdvn8Fe6J7Do-E1yesXcJlCTrBakPSRzLOcNM5l5PA7WfX9nyW56Mjy3CFBilwGZPxigEjYKhKSMJV7EKSdENcR5Jgt5gvXrhMoJVdbauZLOD0--j07KcfXFMqGG74qRUJeJqCYjPCxbYRxhre1CBVjlElvWJu2RpXzQUillKurKhkgnDCRtSyZvYL9ru_CGyDCBxV0HYPKCvXMG-Oda2NaDT3VdSjg89S_9moQzbD5sptpO0TDpmjYHA17U8A3DMHGEgWv84d-MbdjAljRqKrVMUrhGy6l0476tHNq6kCj98oXcDAF0I6jcGkTNkJxnIRyCvi4aU7jBy9FXBf69WBDTZ1QbgGvh3hvPOHIcpFMFaB3MmHH1d2W7uI8a3Rn3bza8AK-TEmz9evfffH2_8zfwWOKeY31heoA9leLdXifQNLKf8ij4hbrSw3l
  priority: 102
  providerName: Springer Nature
Title The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective
URI https://link.springer.com/article/10.1038/s41598-025-93871-z
https://www.ncbi.nlm.nih.gov/pubmed/40097637
https://www.proquest.com/docview/3178014082
https://www.proquest.com/docview/3178291310
https://pubmed.ncbi.nlm.nih.gov/PMC11914194
https://doaj.org/article/5c70d8ff65bc466a8a2b428c1e2fbb7b
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxJtAWRmJG0RNYju2j9tVq7ISFQIq7c2yE6etRJNqHwf665lxsrtdHuLCKZLtw8gz9nyO5_sM8K4pvKxk4Gkm6G9V7U3qtQ6pKYX0nivjIsv102l5ciamMzm79dQX1YT18sD9xB3ISmW1bppS-kqUpdOu8AiZqzwUjffK0-6LOe_WYapX9S6MyM3Aksm4PlhgpiI2WSFTw_GUkN7sZKIo2P8nlPl7seQvN6YxER0_gocDgmTj3vLHcCe0T-B-_6bkj6dwhY5nVDPIuoadR1Fp2tHY-CNbdt33Bbts2eLCEU2KXQXi_ZKbWNjqErKwLvpgRD5hrmXENJufz129QmjKrrcEzWdwdnz0bXKSDm8qpJUwYplKxF8mkKSM9E1dSeOMqHMZMs4LXnrDazwgZc4HWSqlXJ5lOIBAhWl4zXHYc9hruza8BCZ9UEHnTVBRp557Y7xzdYM50Rc6Dwm8X8-vve6lM2y88uba9t6w6A0bvWFvEjgkF2xGkux1bMBgsEMw2H8FQwL7awfaYS0uLCIkkshBrJPA2003riK6GnFt6Fb9mMLkiHUTeNH7e2OJIK5LyVUCeicSdkzd7WkvL6JSd1TPy41I4MM6aLZ2_X0uXv2PuXgNDwqKdqo9VPuwt5yvwhsEUEs_grtqpkZwbzyefp3i9_Do9PMXbJ2Uk1FcRz8B43EeEg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThA1ie04PiDUQqtd2q4QaqXeXDtxtpVost2HUPuj-I14nGRXy-vWa2JFjmfsmfHM9w3AmzIxPOeWhhHD26rCyNBkmQ1lyrgxVEjtUa6Hw7R_zL6c8JM1-NlhYbCssjsT_UFd1DnekW85O4dEJ85ifRxfhtg1CrOrXQuNRi327dUPF7JNPww-O_m-TZK93aNP_bDtKhDmTLJZyJ0HIi2SqnBTFjmXWrIi5jaiNKGpkbRwIUKkjeWpEELHUeQGoFmVJS2oG-a-ewvWGXWhTA_Wd3aHX78tbnUwb8Zi2aJzIpptTZ2FRBRbwkNJXXQSXq9YQN8o4G_e7Z9Fmr9lar0B3LsP91rPlWw3qvYA1mz1EG43vSyvHsGFUziCtYqkLsnIk1njSUq2B2RW19-n5Lwi0zON8CxyYRFvjOpB7JIPkdiu2IQg6IXoiiDCbTKa6GLuXGIyXgJDH8Pxjaz6E-hVdWWfAeHGCpvFpRWeH58aKY3WRelssUmy2AbwrltfNW4oO5RPtdNMNdJQThrKS0NdB7CDIliMRLpt_6CejFS7exXPRVRkZZlyk7M01ZlOjIvb8tgmpTHCBLDZCVC1Z8BULTU2gNeL1273YkpGV7aeN2MSGTsfO4CnjbwXM2GIsUmpCCBb0YSVqa6-qc7PPEO4Z-2LJQvgfac0y3n9ey02_v8br-BO_-jwQB0MhvvP4W6COo2VjWITerPJ3L5w7tnMvGz3BIHTm96GvwBBxEsm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBt4kccHxAqlFWXQsWBSnszduJsK9Fk2YdQ-9P4dXicZFfL69ZrYkWOZ8Yz9sz3DcDzilpRCMfihONtVWlVbPPcxSrjwlomlQko109H2cEx_zAW4y342WNhsKyy3xPDRl02Bd6RD7yfQ6IT77EGVVcW8Xl_-Gb6PcYOUphp7dtptCpy6M5_-OPb_PVo38v6BaXD91_eHcRdh4G44IovYuGjEeWQYEXYqiyEMoqXqXAJY5RlVrHSHxcSY53IpJQmTRI_AF2sqljJ_DD_3StwVTKRoo3JsVzd72AGjaeqw-kkLB_Mva9EPBsVsWL-nBJfbPjC0DLgb3Hun-Wav-Vsgysc3oKbXQxL9lqluw1brr4D19qulud34cyrHsGqRdJUZBJorXFPJXsjsmiab3NyWpP5iUGgFjlziDxGRSFuzYxIXF92QhD-QkxNEOs2m8xMufTBMZmuIaL34PhS1vw-bNdN7R4AEdZJl6eVk4Epn1mlrDFl5b2ypXnqInjZr6-etuQdOiTdWa5baWgvDR2koS8ieIsiWI1E4u3woJlNdGfHWhQyKfOqyoQteJaZ3FDrT3BF6mhlrbQR7PYC1N1uMNdr3Y3g2eq1t2NMzpjaNct2DFWpj7Yj2GnlvZoJR7RNxmQE-YYmbEx18019ehK4wgN_X6p4BK96pVnP699r8fD_v_EUrnvj0x9HR4eP4AZFlcYSR7kL24vZ0j32cdrCPgkGQeDrZVvgLxQjTfY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+generative+AI+tools+in+shaping+mechanical+engineering+education+from+an+undergraduate+perspective&rft.jtitle=Scientific+reports&rft.au=Akolekar%2C+Harshal&rft.au=Jhamnani%2C+Piyush&rft.au=Kumar%2C+Vikash&rft.au=Tailor%2C+Vinay&rft.date=2025-03-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-93871-z&rft.externalDocID=PMC11914194
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon