The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective
This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choi...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 9214 - 14 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-93871-z |
Cover
Loading…
Abstract | This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies. |
---|---|
AbstractList | This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI's reliability in numerical tasks and its potential impact on students' problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI's role in engineering education and its implications for future learning methodologies.This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI's reliability in numerical tasks and its potential impact on students' problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI's role in engineering education and its implications for future learning methodologies. This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies. Abstract This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education using a mixed-methods approach. The performance of these tools was assessed on 800 questions spanning seven core subjects, covering multiple-choice, numerical, and theory-based formats. While all three AI tools demonstrated strong performance in theory-based questions, they struggled with numerical problem-solving, particularly in areas requiring deep conceptual understanding and complex calculations. Among them, Copilot achieved the highest accuracy (60.38%), followed by Gemini (57.13%) and ChatGPT (46.63%). To complement these findings, a survey of 172 students and interviews with 20 participants provided insights into user experiences, challenges, and perceptions of AI in academic settings. Thematic analysis revealed concerns regarding AI’s reliability in numerical tasks and its potential impact on students’ problem-solving abilities. Based on these results, this study offers strategic recommendations for integrating AI into mechanical engineering curricula, ensuring its responsible use to enhance learning without fostering dependency. Additionally, we propose instructional strategies to help educators adapt assessment methods in the era of AI-assisted learning. These findings contribute to the broader discussion on AI’s role in engineering education and its implications for future learning methodologies. |
ArticleNumber | 9214 |
Author | Kumar, Vikash Akolekar, Harshal Kumar, Dhruv Meena, Ankit Pote, Aditya Jhamnani, Piyush Challa, Jagat Sesh Kumar, Kamal Tailor, Vinay |
Author_xml | – sequence: 1 givenname: Harshal surname: Akolekar fullname: Akolekar, Harshal organization: Department of Mechanical Engineering, Indian Institute of Technology, School of AI & Data Science, Indian Institute of Technology – sequence: 2 givenname: Piyush surname: Jhamnani fullname: Jhamnani, Piyush organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 3 givenname: Vikash surname: Kumar fullname: Kumar, Vikash organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 4 givenname: Vinay surname: Tailor fullname: Tailor, Vinay organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 5 givenname: Aditya surname: Pote fullname: Pote, Aditya organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 6 givenname: Ankit surname: Meena fullname: Meena, Ankit organization: Department of Mechanical Engineering, Indian Institute of Technology – sequence: 7 givenname: Kamal surname: Kumar fullname: Kumar, Kamal organization: Department of Electrical Engineering, Indian Institute of Technology – sequence: 8 givenname: Jagat Sesh surname: Challa fullname: Challa, Jagat Sesh email: jagatsesh@pilani.bits-pilani.ac.in organization: Department of Computer Science & Information Systems, Birla Institute of Technology & Science – sequence: 9 givenname: Dhruv surname: Kumar fullname: Kumar, Dhruv organization: Department of Computer Science & Information Systems, Birla Institute of Technology & Science, Department of Computer Science and Engineering, Indraprastha Institute of Information Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40097637$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1UREvpC7BAltiwCfiaxCtUVVyOVIlNWVuOPcnJUWIHO6nUPj3OSSktC7yxNf7m93jmf41OfPCA0FtKPlLC609JUKnqgjBZKF5XtLh_gc4YEbJgnLGTJ-dTdJHSgeQlmRJUvUKnghBVlbw6Q-PNHnAMA-DQ4g48RDP3t4Avd3gOYUi49zjtzdT7Do9g98b31gwYfNd7gLiGwS02JwWP2xhGbDxevIPYReMWMwOeIKYJ7Cr7Br1szZDg4mE_Rz-_frm5-l5c__i2u7q8LqxQYi4kLbkCSZWUTeusVEYJRyUQzhkvG8UdpYKYBmRZVZWhhGRAEkVVyx3P2DnabboumIOeYj-aeKeD6fUxEGKnTZx7O4CWtiKubttSNlaUpakNawSrLQXWNk3VZK3Pm9a0NCM4C36OZngm-vzG93vdhVtNqaK53SIrfHhQiOHXAmnWY58sDIPxEJakOa1qpiina-Hv_0EPYYk-9-pIkfztmmXq3dOSHmv5M9YMsA2wMaQUoX1EKNGrffRmH53to4_20fc5iW9JaVrnCvHv2__J-g0y_chB |
Cites_doi | 10.1080/08874417.2023.2261010 10.1016/j.procir.2023.04.001 10.1063/5.0209779 10.1038/s41598-024-82918-2 10.1155/2024/5546940 10.1109/EDUCON60312.2024.10578789 10.1145/3545945.3569830 10.1002/jee.20443 10.1145/3545945.3569823 10.1145/3636243.3636257 10.1191/1478088706qp063oa 10.1002/rev3.3489 10.4324/9780203764565 10.1145/3587102.3588815 10.1080/14703297.2023.2190148 10.1145/3587102.3588827 10.1002/j.2168-9830.2009.tb01005.x 10.47852/bonviewAIA3202939 10.1109/TII.2023.3280337 10.1111/jcal.13060 10.1108/LHTN-01-2023-0009 10.1145/3576123.3576134 10.1145/3587102.3588852 10.1145/3581791.3597297 10.1080/14703297.2023.2195846 10.1016/j.ece.2023.05.001 10.1109/EDUCON54358.2023.10125121 10.1002/jee.20372 10.1057/9780230239517_7 10.1145/3626252.3630803 10.37074/jalt.2023.6.1.23 10.1145/3587102.3588792 10.1038/s41598-023-42227-6 10.1007/978-3-031-31066-9_34 10.1002/jee.20539 10.21125/inted.2024.1608 10.1002/jee.20541 10.2147/DHPS.S425858 10.1002/cae.22781 10.1145/3580305.3599801 10.2307/798843 10.5089/9798400262548.006 10.3390/bdcc7010035 10.3390/app13106039 10.1186/s12909-024-05630-9 10.1002/cae.22747 10.1145/3587102.3588814 10.12989/acd.2016.1.1.079 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-93871-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_5c70d8ff65bc466a8a2b428c1e2fbb7b PMC11914194 40097637 10_1038_s41598_025_93871_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Birla Institute of Technology and Science, Pilani |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM UKHRP AASML AAYXX CITATION PHGZM SNYQT NPM PJZUB PPXIY PQGLB 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PUEGO Q9U 7X8 AARCD 5PM |
ID | FETCH-LOGICAL-c494t-51639e51955bfdc59a94d15e033236b93d1140abe56777a100a9450919f3d3e03 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:18 EDT 2025 Thu Aug 21 18:39:26 EDT 2025 Tue Aug 05 11:13:05 EDT 2025 Wed Aug 27 09:42:18 EDT 2025 Mon Jul 21 06:00:36 EDT 2025 Tue Jul 01 05:18:06 EDT 2025 Tue Mar 18 01:11:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Mechanical engineering ChatGPT, Copilot, Gemini Generative AI |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-51639e51955bfdc59a94d15e033236b93d1140abe56777a100a9450919f3d3e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/5c70d8ff65bc466a8a2b428c1e2fbb7b |
PMID | 40097637 |
PQID | 3178014082 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c70d8ff65bc466a8a2b428c1e2fbb7b pubmedcentral_primary_oai_pubmedcentral_nih_gov_11914194 proquest_miscellaneous_3178291310 proquest_journals_3178014082 pubmed_primary_40097637 crossref_primary_10_1038_s41598_025_93871_z springer_journals_10_1038_s41598_025_93871_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-17 |
PublicationDateYYYYMMDD | 2025-03-17 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | M-L Tsai (93871_CR32) 2023; 44 93871_CR9 V Taecharungroj (93871_CR12) 2023; 7 93871_CR6 93871_CR7 93871_CR39 DR Cotton (93871_CR8) 2024; 61 93871_CR35 93871_CR36 L Jiang (93871_CR40) 2024; 40 93871_CR38 93871_CR33 X Wang (93871_CR31) 2023; 119 93871_CR30 T Fütterer (93871_CR16) 2023; 13 A Yusuf (93871_CR13) 2024; 12 BD Lund (93871_CR18) 2023; 40 BG Glaser (93871_CR53) 1965; 12 M Borrego (93871_CR29) 2009; 98 93871_CR4 93871_CR28 93871_CR5 93871_CR2 93871_CR3 93871_CR24 93871_CR1 93871_CR25 93871_CR26 93871_CR27 93871_CR20 93871_CR21 93871_CR22 93871_CR23 GG Tejani (93871_CR57) 2016; 1 M-L Tsai (93871_CR37) 2023; 44 93871_CR17 93871_CR19 93871_CR14 V Braun (93871_CR52) 2006; 3 93871_CR15 T Li (93871_CR42) 2025; 57 P Mehta (93871_CR59) 2024; 2024 93871_CR10 93871_CR54 93871_CR11 93871_CR55 93871_CR56 LM Sánchez-Ruiz (93871_CR34) 2023; 13 93871_CR50 93871_CR51 Y Qiao (93871_CR41) 2023; 20 G Rossettini (93871_CR47) 2024; 24 93871_CR46 93871_CR48 93871_CR49 93871_CR43 93871_CR44 GG Tejani (93871_CR58) 2024; 14 93871_CR45 |
References_xml | – ident: 93871_CR1 doi: 10.1080/08874417.2023.2261010 – volume: 119 start-page: 7 year: 2023 ident: 93871_CR31 publication-title: Procedia CIRP doi: 10.1016/j.procir.2023.04.001 – ident: 93871_CR39 doi: 10.1063/5.0209779 – volume: 14 start-page: 31553 year: 2024 ident: 93871_CR58 publication-title: Sci. Rep. doi: 10.1038/s41598-024-82918-2 – volume: 2024 start-page: 5546940 year: 2024 ident: 93871_CR59 publication-title: J. Optimiz. doi: 10.1155/2024/5546940 – ident: 93871_CR30 doi: 10.1109/EDUCON60312.2024.10578789 – ident: 93871_CR27 doi: 10.1145/3545945.3569830 – ident: 93871_CR48 doi: 10.1002/jee.20443 – ident: 93871_CR56 – ident: 93871_CR9 doi: 10.1145/3545945.3569823 – ident: 93871_CR17 – ident: 93871_CR22 doi: 10.1145/3636243.3636257 – volume: 3 start-page: 77 year: 2006 ident: 93871_CR52 publication-title: Qual. Res. Psychol. doi: 10.1191/1478088706qp063oa – volume: 12 year: 2024 ident: 93871_CR13 publication-title: Rev. Educ. doi: 10.1002/rev3.3489 – ident: 93871_CR51 doi: 10.4324/9780203764565 – ident: 93871_CR5 – ident: 93871_CR25 doi: 10.1145/3587102.3588815 – ident: 93871_CR55 – volume: 61 start-page: 228 year: 2024 ident: 93871_CR8 publication-title: Innov. Educ. Teach. Int. doi: 10.1080/14703297.2023.2190148 – ident: 93871_CR11 doi: 10.1145/3587102.3588827 – volume: 98 start-page: 53 year: 2009 ident: 93871_CR29 publication-title: J. Eng. Educ. doi: 10.1002/j.2168-9830.2009.tb01005.x – ident: 93871_CR15 doi: 10.47852/bonviewAIA3202939 – volume: 20 start-page: 2190 year: 2023 ident: 93871_CR41 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2023.3280337 – ident: 93871_CR6 – volume: 40 start-page: 3098 year: 2024 ident: 93871_CR40 publication-title: J. Comput. Assist. Learn. doi: 10.1111/jcal.13060 – volume: 40 start-page: 26 year: 2023 ident: 93871_CR18 publication-title: Library Hi Tech News doi: 10.1108/LHTN-01-2023-0009 – ident: 93871_CR10 doi: 10.1145/3576123.3576134 – ident: 93871_CR23 doi: 10.1145/3587102.3588852 – ident: 93871_CR44 doi: 10.1145/3581791.3597297 – ident: 93871_CR28 – volume: 57 start-page: 1 year: 2025 ident: 93871_CR42 publication-title: ACM Comput. Surv. – ident: 93871_CR7 doi: 10.1080/14703297.2023.2195846 – volume: 44 start-page: 71 year: 2023 ident: 93871_CR32 publication-title: Educ. Chem. Eng. doi: 10.1016/j.ece.2023.05.001 – ident: 93871_CR54 – ident: 93871_CR20 doi: 10.1109/EDUCON54358.2023.10125121 – ident: 93871_CR50 doi: 10.1002/jee.20372 – ident: 93871_CR49 doi: 10.1057/9780230239517_7 – ident: 93871_CR21 doi: 10.1145/3626252.3630803 – ident: 93871_CR46 doi: 10.37074/jalt.2023.6.1.23 – ident: 93871_CR3 – ident: 93871_CR26 doi: 10.1145/3587102.3588792 – volume: 13 start-page: 15310 year: 2023 ident: 93871_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-023-42227-6 – ident: 93871_CR36 doi: 10.1007/978-3-031-31066-9_34 – ident: 93871_CR14 doi: 10.1002/jee.20539 – volume: 44 start-page: 71 year: 2023 ident: 93871_CR37 publication-title: Educ. Chem. Eng. doi: 10.1016/j.ece.2023.05.001 – ident: 93871_CR35 doi: 10.21125/inted.2024.1608 – ident: 93871_CR19 doi: 10.1002/jee.20541 – ident: 93871_CR45 doi: 10.2147/DHPS.S425858 – ident: 93871_CR33 doi: 10.1002/cae.22781 – ident: 93871_CR43 doi: 10.1145/3580305.3599801 – volume: 12 start-page: 436 year: 1965 ident: 93871_CR53 publication-title: Soc. Problems doi: 10.2307/798843 – ident: 93871_CR2 doi: 10.5089/9798400262548.006 – volume: 7 start-page: 35 year: 2023 ident: 93871_CR12 publication-title: Big Data and Cognitive Computing doi: 10.3390/bdcc7010035 – volume: 13 start-page: 6039 year: 2023 ident: 93871_CR34 publication-title: Appl. Sci. doi: 10.3390/app13106039 – ident: 93871_CR4 – volume: 24 start-page: 694 year: 2024 ident: 93871_CR47 publication-title: BMC Med. Educ. doi: 10.1186/s12909-024-05630-9 – ident: 93871_CR38 doi: 10.1002/cae.22747 – ident: 93871_CR24 doi: 10.1145/3587102.3588814 – volume: 1 start-page: 79 year: 2016 ident: 93871_CR57 publication-title: Adv. Comput. Design doi: 10.12989/acd.2016.1.1.079 |
SSID | ssj0000529419 |
Score | 2.4429152 |
Snippet | This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering education... Abstract This study evaluates the effectiveness of three leading generative AI tools-ChatGPT, Gemini, and Copilot-in undergraduate mechanical engineering... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 9214 |
SubjectTerms | 639/166/988 639/705/117 Chatbots ChatGPT, Copilot, Gemini Engineering education Generative AI Generative artificial intelligence Humanities and Social Sciences Learning Mechanical engineering multidisciplinary Multiple choice Problem solving Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BERIXVL7TFmQkbmA1ie3YPlUFURUkOFFpb5ad2NtKNFk2u4f219fjJLtavq6xD47f2DP2zHsGeBdKJ2rhGc053lY1TlOnlKe64sI5JrVNLNdv36vzC_51JmbjhVs_llVOe2LaqJuuxjvy4-jnUOgkeqyTxS-Kr0ZhdnV8QuM-PEDpMizpkjO5uWPBLBYv9MiVyZk67qO_Qk5ZKahm8axAb3f8UZLt_1us-WfJ5G950-SOzvbh8RhHktMB-Cdwz7dP4eHwsuTNM7iO8BOsHCRdIPMkLY37Gjn9QlZd97MnVy3pLy2Spci1R_YvgkX8Vp2Q-Kn0gyAFhdiWIN9sOV_aZh0DVLLY0jSfw8XZ5x-fzun4sgKtueYrKmIUpj0KywgXmlpoq3lTCJ8zVrLKadbEY1JunReVlNIWeR47YGihA2tY7PYC9tqu9a-ACOelV0XwMqnVM6e1s7YJ0TO6UhU-g_fT_JrFIKBhUuKbKTOgYSIaJqFhbjP4iBBseqL4dfrQLedmXEtG1DJvVAiVcDWvKqts6eIpqi58GZyTLoOjCUAzrsjebO0ng7eb5riWMEFiW9-thz6lLmLEm8HLAe_NSDgyXiomM1A7lrAz1N2W9uoy6XUnDb1C8ww-TEazHde_5-Lg_79xCI9KtGOsLZRHsLdarv3rGCCt3Ju0Cu4AMd4PZQ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSISv30sq1YFCU5U6s2yE3tbiSbVPg7tr6_HSXa1tBy4xhNp5Bnbn-35PgN8itSLRgRWVhxPq1pvSq91KI3kwnumjMss15-_5Mkp_3EmzvaATlyYXLSfJS3zND1Vh31dpoUGyWBUlIYlkF_ePICHKN2OWT2Ts825Ct5c8dqM_JiK6Xt-3VmDslT_ffjybpnkX3eleQk6fgpPRuxIDgdvn8Fe6J7Do-E1yesXcJlCTrBakPSRzLOcNM5l5PA7WfX9nyW56Mjy3CFBilwGZPxigEjYKhKSMJV7EKSdENcR5Jgt5gvXrhMoJVdbauZLOD0--j07KcfXFMqGG74qRUJeJqCYjPCxbYRxhre1CBVjlElvWJu2RpXzQUillKurKhkgnDCRtSyZvYL9ru_CGyDCBxV0HYPKCvXMG-Oda2NaDT3VdSjg89S_9moQzbD5sptpO0TDpmjYHA17U8A3DMHGEgWv84d-MbdjAljRqKrVMUrhGy6l0476tHNq6kCj98oXcDAF0I6jcGkTNkJxnIRyCvi4aU7jBy9FXBf69WBDTZ1QbgGvh3hvPOHIcpFMFaB3MmHH1d2W7uI8a3Rn3bza8AK-TEmz9evfffH2_8zfwWOKeY31heoA9leLdXifQNLKf8ij4hbrSw3l priority: 102 providerName: Springer Nature |
Title | The role of generative AI tools in shaping mechanical engineering education from an undergraduate perspective |
URI | https://link.springer.com/article/10.1038/s41598-025-93871-z https://www.ncbi.nlm.nih.gov/pubmed/40097637 https://www.proquest.com/docview/3178014082 https://www.proquest.com/docview/3178291310 https://pubmed.ncbi.nlm.nih.gov/PMC11914194 https://doaj.org/article/5c70d8ff65bc466a8a2b428c1e2fbb7b |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BERIXxJtAWRmJG0RNYju2j9tVq7ISFQIq7c2yE6etRJNqHwf665lxsrtdHuLCKZLtw8gz9nyO5_sM8K4pvKxk4Gkm6G9V7U3qtQ6pKYX0nivjIsv102l5ciamMzm79dQX1YT18sD9xB3ISmW1bppS-kqUpdOu8AiZqzwUjffK0-6LOe_WYapX9S6MyM3Aksm4PlhgpiI2WSFTw_GUkN7sZKIo2P8nlPl7seQvN6YxER0_gocDgmTj3vLHcCe0T-B-_6bkj6dwhY5nVDPIuoadR1Fp2tHY-CNbdt33Bbts2eLCEU2KXQXi_ZKbWNjqErKwLvpgRD5hrmXENJufz129QmjKrrcEzWdwdnz0bXKSDm8qpJUwYplKxF8mkKSM9E1dSeOMqHMZMs4LXnrDazwgZc4HWSqlXJ5lOIBAhWl4zXHYc9hruza8BCZ9UEHnTVBRp557Y7xzdYM50Rc6Dwm8X8-vve6lM2y88uba9t6w6A0bvWFvEjgkF2xGkux1bMBgsEMw2H8FQwL7awfaYS0uLCIkkshBrJPA2003riK6GnFt6Fb9mMLkiHUTeNH7e2OJIK5LyVUCeicSdkzd7WkvL6JSd1TPy41I4MM6aLZ2_X0uXv2PuXgNDwqKdqo9VPuwt5yvwhsEUEs_grtqpkZwbzyefp3i9_Do9PMXbJ2Uk1FcRz8B43EeEg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThA1ie04PiDUQqtd2q4QaqXeXDtxtpVost2HUPuj-I14nGRXy-vWa2JFjmfsmfHM9w3AmzIxPOeWhhHD26rCyNBkmQ1lyrgxVEjtUa6Hw7R_zL6c8JM1-NlhYbCssjsT_UFd1DnekW85O4dEJ85ifRxfhtg1CrOrXQuNRi327dUPF7JNPww-O_m-TZK93aNP_bDtKhDmTLJZyJ0HIi2SqnBTFjmXWrIi5jaiNKGpkbRwIUKkjeWpEELHUeQGoFmVJS2oG-a-ewvWGXWhTA_Wd3aHX78tbnUwb8Zi2aJzIpptTZ2FRBRbwkNJXXQSXq9YQN8o4G_e7Z9Fmr9lar0B3LsP91rPlWw3qvYA1mz1EG43vSyvHsGFUziCtYqkLsnIk1njSUq2B2RW19-n5Lwi0zON8CxyYRFvjOpB7JIPkdiu2IQg6IXoiiDCbTKa6GLuXGIyXgJDH8Pxjaz6E-hVdWWfAeHGCpvFpRWeH58aKY3WRelssUmy2AbwrltfNW4oO5RPtdNMNdJQThrKS0NdB7CDIliMRLpt_6CejFS7exXPRVRkZZlyk7M01ZlOjIvb8tgmpTHCBLDZCVC1Z8BULTU2gNeL1273YkpGV7aeN2MSGTsfO4CnjbwXM2GIsUmpCCBb0YSVqa6-qc7PPEO4Z-2LJQvgfac0y3n9ey02_v8br-BO_-jwQB0MhvvP4W6COo2VjWITerPJ3L5w7tnMvGz3BIHTm96GvwBBxEsm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJThBt4kccHxAqlFWXQsWBSnszduJsK9Fk2YdQ-9P4dXicZFfL69ZrYkWOZ8Yz9sz3DcDzilpRCMfihONtVWlVbPPcxSrjwlomlQko109H2cEx_zAW4y342WNhsKyy3xPDRl02Bd6RD7yfQ6IT77EGVVcW8Xl_-Gb6PcYOUphp7dtptCpy6M5_-OPb_PVo38v6BaXD91_eHcRdh4G44IovYuGjEeWQYEXYqiyEMoqXqXAJY5RlVrHSHxcSY53IpJQmTRI_AF2sqljJ_DD_3StwVTKRoo3JsVzd72AGjaeqw-kkLB_Mva9EPBsVsWL-nBJfbPjC0DLgb3Hun-Wav-Vsgysc3oKbXQxL9lqluw1brr4D19qulud34cyrHsGqRdJUZBJorXFPJXsjsmiab3NyWpP5iUGgFjlziDxGRSFuzYxIXF92QhD-QkxNEOs2m8xMufTBMZmuIaL34PhS1vw-bNdN7R4AEdZJl6eVk4Epn1mlrDFl5b2ypXnqInjZr6-etuQdOiTdWa5baWgvDR2koS8ieIsiWI1E4u3woJlNdGfHWhQyKfOqyoQteJaZ3FDrT3BF6mhlrbQR7PYC1N1uMNdr3Y3g2eq1t2NMzpjaNct2DFWpj7Yj2GnlvZoJR7RNxmQE-YYmbEx18019ehK4wgN_X6p4BK96pVnP699r8fD_v_EUrnvj0x9HR4eP4AZFlcYSR7kL24vZ0j32cdrCPgkGQeDrZVvgLxQjTfY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+generative+AI+tools+in+shaping+mechanical+engineering+education+from+an+undergraduate+perspective&rft.jtitle=Scientific+reports&rft.au=Akolekar%2C+Harshal&rft.au=Jhamnani%2C+Piyush&rft.au=Kumar%2C+Vikash&rft.au=Tailor%2C+Vinay&rft.date=2025-03-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft_id=info:doi/10.1038%2Fs41598-025-93871-z&rft.externalDocID=PMC11914194 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |