MCRFS-Net: single image dehazing based on multi-scale contrastive regularization and frequency selection
The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on fea...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 25501 - 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-025-08690-z |
Cover
Loading…
Abstract | The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze. |
---|---|
AbstractList | The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze. The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze. Abstract The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze. |
ArticleNumber | 25501 |
Author | Song, Shaojing Qin, Qin Jiang, Jinhua Shui, Lin Zhang, Yanyan |
Author_xml | – sequence: 1 givenname: Qin surname: Qin fullname: Qin, Qin organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University – sequence: 2 givenname: Lin surname: Shui fullname: Shui, Lin email: 18783076292@163.com organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University – sequence: 3 givenname: Yanyan surname: Zhang fullname: Zhang, Yanyan organization: Baoshan District Meteorological Bureau – sequence: 4 givenname: Shaojing surname: Song fullname: Song, Shaojing organization: School of Computer and Information Engineering, Shanghai Polytechnic University – sequence: 5 givenname: Jinhua surname: Jiang fullname: Jiang, Jinhua organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40664785$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAQxyNUREvpF-CAInHhEvAzcbggtKJQqYDE42xNnHHWq6xd7KRS99Pj3ZTScsCSZWv8m7_n9bQ48sFjUTyn5DUlXL1JgspWVYTJiqi6JdXuUXHCiJAV44wd3bsfF2cpbUhekrWCtk-KY0HqWjRKnhTrz6tv59-rLzi9LZPzw4il28KAZY9r2GVD2UHCvgy-3M7j5KpkIDMm-ClCmtw1lhGHeYTodjC5jIHvSxvx14ze3JQJRzR7-7PisYUx4dnteVr8PP_wY_Wpuvz68WL1_rIyohVTJSnn1MqeYGeF5Xl3DZOtUMi4BG5qq5SA3qqO1FJCw1TTEKCgLDSC9YqfFheLbh9go69izibe6ABOHwwhDhri5MyI2lDJgDFGOisFila1PemIpF2DgB1i1nq3aF3N3RZ7g_ukxweiD1-8W-shXGvKWM2Volnh1a1CDLkiadJblwyOI3gMc9Kc8dyVmlGW0Zf_oJswR59rdaA4r9uGZOrF_ZDuYvnT0QywBTAxpBTR3iGU6P3k6GVydJ4cfZgcvctOfHFKGfYDxr9__8frN2HwxuI |
Cites_doi | 10.1109/TIP.2018.2867951 10.1609/aaai.v38i2.27907 10.1023/A:1016328200723 10.3390/s22041435 10.1007/978-3-031-19800-7_8 10.1007/978-3-030-58577-8_12 10.3390/s23135980 10.1109/TIP.2021.3104166 10.1109/TPAMI.2022.3148707 10.1109/TIP.2003.819861 10.1038/s43247-024-01314-w 10.1109/TPAMI.2024.3419007 10.1109/CVPR52729.2023.00560 10.1007/978-3-030-20873-8_38 10.1109/TPAMI.2023.3330416 10.1145/3474085.3475331 10.1109/CVPR.2018.00337 10.1609/aaai.v34i07.6865 10.1007/978-3-030-58621-8_45 10.1109/TIP.2024.3354108 10.1109/CVPR.2016.185 10.1109/TIP.2016.2598681 10.1007/s11263-024-02056-0 10.1109/ICIP.2009.5414620 10.1109/TPAMI.2025.3559891 10.1109/IJCNN60899.2024.10651326 10.1109/LSP.2019.2910403 10.1007/978-3-319-24574-4_28 10.1007/s00024-007-0211-x 10.1109/TIP.2015.2446191 10.1109/TIP.2023.3256763 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-08690-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_c152a2220bf54e4989d0b051b7eaebee PMC12263881 40664785 10_1038_s41598_025_08690_z |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK AARCD K9. M48 PJZUB PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-51331f5d0ebf4f3f4fb725948e235a3c6f884adf8b0655a728770a1a8fa742d83 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:41 EDT 2025 Thu Aug 21 18:22:53 EDT 2025 Thu Jul 17 01:58:13 EDT 2025 Wed Aug 13 08:08:05 EDT 2025 Sat Jul 19 01:30:27 EDT 2025 Wed Jul 16 16:49:27 EDT 2025 Wed Jul 16 06:29:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Image dehazing Multi-scale fusion mechanisms Contrastive learning Non-uniform haze |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-51331f5d0ebf4f3f4fb725948e235a3c6f884adf8b0655a728770a1a8fa742d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3230336970?pq-origsite=%requestingapplication% |
PMID | 40664785 |
PQID | 3230336970 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c152a2220bf54e4989d0b051b7eaebee pubmedcentral_primary_oai_pubmedcentral_nih_gov_12263881 proquest_miscellaneous_3230526212 proquest_journals_3230336970 pubmed_primary_40664785 crossref_primary_10_1038_s41598_025_08690_z springer_journals_10_1038_s41598_025_08690_z |
PublicationCentury | 2000 |
PublicationDate | 2025-07-15 |
PublicationDateYYYYMMDD | 2025-07-15 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 8690_CR37 Z Chen (8690_CR14) 2024; 33 8690_CR36 8690_CR39 8690_CR38 Y Song (8690_CR60) 2023; 32 Z Liu (8690_CR58) 2019; 26 8690_CR34 Y Cui (8690_CR46) 2024; 46 K Zhang (8690_CR31) 2022; 45 8690_CR30 I Gultepe (8690_CR1) 2007; 164 Q Zhu (8690_CR19) 2015; 24 8690_CR8 8690_CR6 8690_CR5 8690_CR4 Z Wang (8690_CR56) 2004; 13 8690_CR3 8690_CR29 T Wang (8690_CR35) 2024; 145 B Cai (8690_CR7) 2016; 25 8690_CR26 8690_CR28 8690_CR27 8690_CR22 8690_CR24 T Wang (8690_CR25) 2024; 132 8690_CR23 8690_CR62 8690_CR61 DK Smith (8690_CR2) 2024; 5 8690_CR18 8690_CR15 8690_CR59 8690_CR16 8690_CR11 8690_CR55 8690_CR54 8690_CR13 8690_CR57 8690_CR12 8690_CR51 8690_CR50 8690_CR53 SG Narasimhan (8690_CR10) 2002; 48 K Zhang (8690_CR32) 2021; 30 8690_CR48 8690_CR47 8690_CR49 8690_CR44 8690_CR43 B Li (8690_CR52) 2018; 28 8690_CR9 A Vaswani (8690_CR21) 2017; 30 8690_CR40 K He (8690_CR17) 2010; 33 8690_CR42 8690_CR41 G Yang (8690_CR33) 2023; 23 M Park (8690_CR20) 2022; 22 J Ho (8690_CR45) 2020; 33 |
References_xml | – volume: 28 start-page: 492 year: 2018 ident: 8690_CR52 publication-title: J. IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2867951 – volume: 33 start-page: 6840 year: 2020 ident: 8690_CR45 publication-title: J. Adv. Neural Inf. Process. Syst. – ident: 8690_CR59 – ident: 8690_CR9 – ident: 8690_CR49 doi: 10.1609/aaai.v38i2.27907 – volume: 48 start-page: 33 year: 2002 ident: 8690_CR10 publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1016328200723 – ident: 8690_CR55 – ident: 8690_CR5 – volume: 22 start-page: 1435 year: 2022 ident: 8690_CR20 publication-title: J. Sensors. doi: 10.3390/s22041435 – ident: 8690_CR22 – volume: 33 start-page: 2341 year: 2010 ident: 8690_CR17 publication-title: J IEEE Trans. Pattern Anal. Mach. Intell. – ident: 8690_CR12 doi: 10.1007/978-3-031-19800-7_8 – ident: 8690_CR8 doi: 10.1007/978-3-030-58577-8_12 – volume: 23 start-page: 5980 year: 2023 ident: 8690_CR33 publication-title: J. Sensors. doi: 10.3390/s23135980 – volume: 30 start-page: 7419 year: 2021 ident: 8690_CR32 publication-title: J. IEEE Trans.Image Process. doi: 10.1109/TIP.2021.3104166 – volume: 45 start-page: 1287 year: 2022 ident: 8690_CR31 publication-title: J IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3148707 – volume: 13 start-page: 600 year: 2004 ident: 8690_CR56 publication-title: J. IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: 8690_CR37 – volume: 5 start-page: 141 year: 2024 ident: 8690_CR2 publication-title: J. Commun. Earth Environ. doi: 10.1038/s43247-024-01314-w – ident: 8690_CR51 – ident: 8690_CR27 – ident: 8690_CR54 – volume: 46 start-page: 9423 issue: 2 year: 2024 ident: 8690_CR46 publication-title: J. IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2024.3419007 – ident: 8690_CR6 – ident: 8690_CR41 doi: 10.1109/CVPR52729.2023.00560 – ident: 8690_CR48 – ident: 8690_CR11 doi: 10.1007/978-3-030-20873-8_38 – ident: 8690_CR44 – ident: 8690_CR61 – ident: 8690_CR23 – ident: 8690_CR40 – ident: 8690_CR38 – ident: 8690_CR62 doi: 10.1109/TPAMI.2023.3330416 – ident: 8690_CR53 doi: 10.1145/3474085.3475331 – ident: 8690_CR57 – ident: 8690_CR50 – ident: 8690_CR16 doi: 10.1109/CVPR.2018.00337 – ident: 8690_CR30 – ident: 8690_CR28 – ident: 8690_CR13 doi: 10.1609/aaai.v34i07.6865 – ident: 8690_CR36 doi: 10.1007/978-3-030-58621-8_45 – ident: 8690_CR3 – volume: 145 year: 2024 ident: 8690_CR35 publication-title: J. Pattern Recogn. – volume: 33 start-page: 1002 year: 2024 ident: 8690_CR14 publication-title: J. IEEE Trans. Image Process. doi: 10.1109/TIP.2024.3354108 – ident: 8690_CR15 doi: 10.1109/CVPR.2016.185 – ident: 8690_CR47 – ident: 8690_CR43 – ident: 8690_CR24 – ident: 8690_CR39 – volume: 25 start-page: 5187 year: 2016 ident: 8690_CR7 publication-title: J. IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2598681 – volume: 132 start-page: 4541 year: 2024 ident: 8690_CR25 publication-title: J. Int. J. Comput. Vis. doi: 10.1007/s11263-024-02056-0 – ident: 8690_CR18 doi: 10.1109/ICIP.2009.5414620 – volume: 30 start-page: 1 year: 2017 ident: 8690_CR21 publication-title: J. Adv. Neural Inf. Process. Syst. – ident: 8690_CR26 doi: 10.1109/TPAMI.2025.3559891 – ident: 8690_CR29 doi: 10.1109/IJCNN60899.2024.10651326 – volume: 26 start-page: 833 year: 2019 ident: 8690_CR58 publication-title: J. IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2910403 – ident: 8690_CR34 doi: 10.1007/978-3-319-24574-4_28 – volume: 164 start-page: 1121 year: 2007 ident: 8690_CR1 publication-title: J. Pure Appl. Geophys. doi: 10.1007/s00024-007-0211-x – ident: 8690_CR4 – volume: 24 start-page: 3522 year: 2015 ident: 8690_CR19 publication-title: J. IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2446191 – ident: 8690_CR42 – volume: 32 start-page: 1927 year: 2023 ident: 8690_CR60 publication-title: J. IEEE Trans.Image Process. doi: 10.1109/TIP.2023.3256763 |
SSID | ssj0000529419 |
Score | 2.4521494 |
Snippet | The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models... Abstract The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 25501 |
SubjectTerms | 639/166/987 704/106/35 Contrastive learning Curricula Deep learning Fog Humanities and Social Sciences Image dehazing Light Multi-scale fusion mechanisms multidisciplinary Non-uniform haze Preservation Regularization methods Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSpW4IN4ESmUkbmA1jp3Y4UYrVhVSewAq9Wb5yVaCLNpsD-2vZ2xnt10e4sIhl8SH0czY30w88w3A6yi580J1lMVgqLCYoBjvBLXKN44ZH5lLzcknp93xmfh43p7fGvWVasIKPXBR3IFDgDEIYrWNrQiiV72vLXqSlcGgACGdvoh5t5Kpwurd9IL1U5dMzdXBiEiVusmaltZpChO93kKiTNj_pyjz92LJX25MMxDN7sO9KYIk74vkD-BOGB7CbpkpefUI5idHn2af6WlYvSPpP8C3QC6-46FBfJgnKumvJAGXJ4uB5GJCOqKVAskl62ZMhx9Z5vn0y6lDk5jBk7gsJddXZMyDc_D9YzibffhydEyncQrUiV6saJrkwmLr62CjiBwfK5vE1hIa3hruuqiUQOsoi2FJayTmUrI2zKhoMH_2ij-BnWExhGdAOJe9c5JFm8Z09JjzWdPwiLmVT9aVFbxZq1b_KKwZOt92c6WLITQaQmdD6OsKDpP2NysT43V-gX6gJz_Q__KDCvbWttPTNhw1xwSL866XdQWvNp9xA6VbETOExWVZ0zYdQngFT4upN5JgtJN6cdsK1JYTbIm6_WW4mGeSboZxLVeKVfB27S83cv1dF8__hy5ewN0mO7qkrN2DndXyMrzE2Gll9_M2-QkoVRgQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSzi2IkdbrBiVSG1B6BSb5af3Uoli5Ltof31jJ1k0UI5cMjFdiTL33genhfAmyi580I1lMVgqLBooBjvBLXKV44ZH5lLyclHx83hifhyWp_uQTXnwuSg_VzSMrPpOTrs_YCCJiWDVTUtUxMlen0LbqfS7YmqF81i-66SPFeCtVN-TMnVDb_uyKBcqv8m_fLvMMk_fKVZBC3vw71JdyQfx90-gL3QPYQ7YzfJq0ewOlp8XX6jx2HzgaQXgItAzn8guyA-rFIR6TOSRJYn647kMEI6ID6B5GB1MyS2R_rcmb6fcjOJ6TyJ_RhsfUWG3DIHxx_DyfLz98UhnRopUCdasaGphwuLtS-DjSJy_KysUp2WUPHacNdEpQTioiwqJLWRaEXJ0jCjokHL2Sv-BPa7dReeAeFcts5JFm1q0NGitWdNxSNaVT7hKgt4Ox-t_jnWy9DZz82VHoHQCITOQOjrAj6l09-uTLWu88C6P9MT9tqhimFQjSltrEUQrWp9aZGXWBkMkmAo4GDGTk8XcNAcTSvOm1aWBbzeTuPVSf4Q04X15bimrhoU3gU8HaHe7gT1nJSFWxegdohgZ6u7M935KpfnZqjRcqVYAe9mevm9r3-fxfP_W_4C7laZpCVl9QHsb_rL8BL1o419lS_ELx21DUE priority: 102 providerName: Springer Nature |
Title | MCRFS-Net: single image dehazing based on multi-scale contrastive regularization and frequency selection |
URI | https://link.springer.com/article/10.1038/s41598-025-08690-z https://www.ncbi.nlm.nih.gov/pubmed/40664785 https://www.proquest.com/docview/3230336970 https://www.proquest.com/docview/3230526212 https://pubmed.ncbi.nlm.nih.gov/PMC12263881 https://doaj.org/article/c152a2220bf54e4989d0b051b7eaebee |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdby2CXse-564IGu22itiVb8i4jDQ0l0DDaFXIzkiU1hc7u7PTQ_vV9T3ZSsq9DMMg-KHpP7_u9HyGfvOSVFSpniXeaCQMOiraVYEbZtEq09UmFzckn8_z4XMwW2WIIuHVDWeVaJgZBbZsKY-QHHGxlzvNCxt-ufzFEjcLs6gCh8Zjs4ugyLOmSC7mJsWAWSyTF0CsTc3XQgb7CnrI0YzFiMbG7LX0Uxvb_zdb8s2Tyt7xpUEfT5-TZYEfScU_4F-SRq1-SJz2y5O0rsjyZnE7P2NytvlKMBlw5evkTRAe1bokDpS8oqi9Lm5qGkkLWAa0cDYXrukMRSNuAUt8OfZpU15b6ti-8vqVdgM-B9dfkfHr0Y3LMBlAFVolCrBjiuSQ-s7EzXngOPyNTnNniUp5pXuVeKQE0UgaMk0xL8KhkrBOtvAYv2ir-huzUTe3eEcq5LKpKJt4gWEcBnp_RKffgYVmksYzI5_XRltf97Iwy5Ly5KntClECIMhCivIvIIZ7-5kucex0WmvaiHK5RWYG5ocGkiY3PhBOFKmxsQK4Y6TSwo4vI_pp25XAZu_KBdSLycfMarhHmRnTtmpv-myzNQZFH5G1P6s1OwObBjtwsImqLCba2uv2mvlyGUd0JWLdcqSQiX9b88rCvf5_F3v__xnvyNA0sLFmS7ZOdVXvjPoBttDKjcAFGZHc8np3N4Hl4NP9-CquTfDIK8YZ7WeYTxw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJnsBaEjuJg4QQG6s6tlZobNLePCe220mQjqYT6n4Uv5FjJ-lUbm97yEsSRY7P3efyAby0GSs1FymNrFGUFxigKF1yWggdl5HSNipdc_JwlA6O-Kfj5HgNfna9MK6sstOJXlHraenOyDcZ-sqMpXkWvj_7Th1qlMuudhAaDVvsmcUPDNnqd7sfkb6v4ri_c7g9oC2qAC15zufUAZpENtGhKSy3DK8ii93QEhOzRLEytUJwXKQo0DonKsOQIgtVpIRVGEZqwfC712CdMwxlerC-tTP6fLA81XF5Mx7lbXdOyMRmjRbSdbHFCQ0d-hO9WLGAHijgb97tn0Wav2VqvQHs34ZbredKPjSsdgfWTHUXrjdYlot7MBluH_S_0JGZvyXu_OGrIaffUFkRbSZuhPWYOIOpybQivoiR1sgdhvhSeVU7pUtmZuyKYtvOUKIqTeysKfVekNoD9uD9-3B0JRv-AHrVtDKPgDCW5WWZRbZw8CA5xpqFipnFmE47rsoCeN1trTxrpnVIn2VnQjaEkEgI6QkhLwLYcru_fNNN2vY3prOxbAVXlujgKHSiwsIm3PBc5DosUJMVmVEoACaAjY52shX_Wl4yawAvlo9RcF02RlVmet68k8Qpug4BPGxIvVwJelmuBzgJQKwwwcpSV59UpxM_HDxCf5oJEQXwpuOXy3X9ey8e__83nsONweFwX-7vjvaewM3Ys3NGo2QDevPZuXmKntm8eNaKA4GTq5bAXwXNTJY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEHcCA4wET2A1iZ3YQUIINqqNsQoBk_pmnNhuJ0E6mk6o-2n8Oo6dpFO5ve0hL0kUOT53n8sH8MQJVhkuc5o4qykvMUDRpuK0lCatEm1cUvnm5INRvnvI342z8Qb87HthfFllrxODojazyp-RDxj6yozlhYgHriuL-LAzfHX8nXoEKZ9p7eE0WhbZt8sfGL41L_d2kNZP03T49vP2Lu0QBmjFC76gHtwkcZmJbem4Y3iVIvUDTGzKMs2q3EnJccGyREudaYHhhYh1oqXTGFIayfC7F-CiYPghlCUxFqvzHZ9B40nR9enETA4atJW-ny3NaOxxoOjpmi0MkAF_83P_LNf8LWcbTOHwGlztfFjyumW667Bh6xtwqUW1XN6E6cH2x-EnOrKLF8SfRHy15Ogbqi1i7NQPs54QbzoNmdUklDPSBvnEklA0rxuvfsncTnx5bNcjSnRtiJu3Rd9L0gToHrx_Cw7PZbtvw2Y9q-1dIIyJoqpE4koPFFJg1FnqlDmM7oznLxHBs35r1XE7t0OFfDuTqiWEQkKoQAh1GsEbv_urN_3M7XBjNp-oToRVha6ORncqLl3GLS9kYeISdVoprEZRsBFs9bRTnSJo1BnbRvB49RhF2OdldG1nJ-07WZqjExHBnZbUq5Wgv-W7gbMI5BoTrC11_Ul9NA1jwhP0rJmUSQTPe345W9e_9-Le_3_jEVxGuVPv90b79-FKGrhZ0CTbgs3F_MQ-QBdtUT4MskDgy3kL3y_NV09m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCRFS-Net%3A+single+image+dehazing+based+on+multi-scale+contrastive+regularization+and+frequency+selection&rft.jtitle=Scientific+reports&rft.au=Qin%2C+Qin&rft.au=Shui%2C+Lin&rft.au=Zhang%2C+Yanyan&rft.au=Song%2C+Shaojing&rft.date=2025-07-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=25501&rft_id=info:doi/10.1038%2Fs41598-025-08690-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |