MCRFS-Net: single image dehazing based on multi-scale contrastive regularization and frequency selection

The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on fea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 25501 - 14
Main Authors Qin, Qin, Shui, Lin, Zhang, Yanyan, Song, Shaojing, Jiang, Jinhua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-025-08690-z

Cover

Loading…
Abstract The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.
AbstractList The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.
The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.
Abstract The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models remains a significant challenge. While some methods tackle image-level non-uniformity using multi-scale fusion mechanisms, others focus on feature-level non-uniformity with content-guided attention mechanisms. However, few approaches effectively address non-uniform haze at both the image and feature levels simultaneously. To overcome this limitation, this paper introduces a novel Adaptive Multi-Scale Frequency Selection (AMFS) module, which consists of an Adaptive Multi-Scale Module (AMSM) and a Frequency Selection Block (FSB). The AMSM dynamically integrates multi-scale features through weighted fusion, effectively mitigating issues caused by non-uniform dehazing. Meanwhile, the FSB processes features in the frequency domain, highlighting critical high-frequency and low-frequency components via an attention mechanism, thereby enhancing detail preservation and suppressing noise. Additionally, we propose a Multi-Scale Contrast Regularization (MSCR) loss function, which leverages cross-scale contrastive learning to improve feature consistency. Experimental results demonstrate that the proposed algorithm outperforms existing methods on four benchmark datasets, achieving superior detail preservation and enhanced robustness against non-uniform haze.
ArticleNumber 25501
Author Song, Shaojing
Qin, Qin
Jiang, Jinhua
Shui, Lin
Zhang, Yanyan
Author_xml – sequence: 1
  givenname: Qin
  surname: Qin
  fullname: Qin, Qin
  organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University
– sequence: 2
  givenname: Lin
  surname: Shui
  fullname: Shui, Lin
  email: 18783076292@163.com
  organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University
– sequence: 3
  givenname: Yanyan
  surname: Zhang
  fullname: Zhang, Yanyan
  organization: Baoshan District Meteorological Bureau
– sequence: 4
  givenname: Shaojing
  surname: Song
  fullname: Song, Shaojing
  organization: School of Computer and Information Engineering, Shanghai Polytechnic University
– sequence: 5
  givenname: Jinhua
  surname: Jiang
  fullname: Jiang, Jinhua
  organization: College of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40664785$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQxyNUREvpF-CAInHhEvAzcbggtKJQqYDE42xNnHHWq6xd7KRS99Pj3ZTScsCSZWv8m7_n9bQ48sFjUTyn5DUlXL1JgspWVYTJiqi6JdXuUXHCiJAV44wd3bsfF2cpbUhekrWCtk-KY0HqWjRKnhTrz6tv59-rLzi9LZPzw4il28KAZY9r2GVD2UHCvgy-3M7j5KpkIDMm-ClCmtw1lhGHeYTodjC5jIHvSxvx14ze3JQJRzR7-7PisYUx4dnteVr8PP_wY_Wpuvz68WL1_rIyohVTJSnn1MqeYGeF5Xl3DZOtUMi4BG5qq5SA3qqO1FJCw1TTEKCgLDSC9YqfFheLbh9go69izibe6ABOHwwhDhri5MyI2lDJgDFGOisFila1PemIpF2DgB1i1nq3aF3N3RZ7g_ukxweiD1-8W-shXGvKWM2Volnh1a1CDLkiadJblwyOI3gMc9Kc8dyVmlGW0Zf_oJswR59rdaA4r9uGZOrF_ZDuYvnT0QywBTAxpBTR3iGU6P3k6GVydJ4cfZgcvctOfHFKGfYDxr9__8frN2HwxuI
Cites_doi 10.1109/TIP.2018.2867951
10.1609/aaai.v38i2.27907
10.1023/A:1016328200723
10.3390/s22041435
10.1007/978-3-031-19800-7_8
10.1007/978-3-030-58577-8_12
10.3390/s23135980
10.1109/TIP.2021.3104166
10.1109/TPAMI.2022.3148707
10.1109/TIP.2003.819861
10.1038/s43247-024-01314-w
10.1109/TPAMI.2024.3419007
10.1109/CVPR52729.2023.00560
10.1007/978-3-030-20873-8_38
10.1109/TPAMI.2023.3330416
10.1145/3474085.3475331
10.1109/CVPR.2018.00337
10.1609/aaai.v34i07.6865
10.1007/978-3-030-58621-8_45
10.1109/TIP.2024.3354108
10.1109/CVPR.2016.185
10.1109/TIP.2016.2598681
10.1007/s11263-024-02056-0
10.1109/ICIP.2009.5414620
10.1109/TPAMI.2025.3559891
10.1109/IJCNN60899.2024.10651326
10.1109/LSP.2019.2910403
10.1007/978-3-319-24574-4_28
10.1007/s00024-007-0211-x
10.1109/TIP.2015.2446191
10.1109/TIP.2023.3256763
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-08690-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_c152a2220bf54e4989d0b051b7eaebee
PMC12263881
40664785
10_1038_s41598_025_08690_z
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PJZUB
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-51331f5d0ebf4f3f4fb725948e235a3c6f884adf8b0655a728770a1a8fa742d83
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:41 EDT 2025
Thu Aug 21 18:22:53 EDT 2025
Thu Jul 17 01:58:13 EDT 2025
Wed Aug 13 08:08:05 EDT 2025
Sat Jul 19 01:30:27 EDT 2025
Wed Jul 16 16:49:27 EDT 2025
Wed Jul 16 06:29:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image dehazing
Multi-scale fusion mechanisms
Contrastive learning
Non-uniform haze
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-51331f5d0ebf4f3f4fb725948e235a3c6f884adf8b0655a728770a1a8fa742d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3230336970?pq-origsite=%requestingapplication%
PMID 40664785
PQID 3230336970
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c152a2220bf54e4989d0b051b7eaebee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12263881
proquest_miscellaneous_3230526212
proquest_journals_3230336970
pubmed_primary_40664785
crossref_primary_10_1038_s41598_025_08690_z
springer_journals_10_1038_s41598_025_08690_z
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 8690_CR37
Z Chen (8690_CR14) 2024; 33
8690_CR36
8690_CR39
8690_CR38
Y Song (8690_CR60) 2023; 32
Z Liu (8690_CR58) 2019; 26
8690_CR34
Y Cui (8690_CR46) 2024; 46
K Zhang (8690_CR31) 2022; 45
8690_CR30
I Gultepe (8690_CR1) 2007; 164
Q Zhu (8690_CR19) 2015; 24
8690_CR8
8690_CR6
8690_CR5
8690_CR4
Z Wang (8690_CR56) 2004; 13
8690_CR3
8690_CR29
T Wang (8690_CR35) 2024; 145
B Cai (8690_CR7) 2016; 25
8690_CR26
8690_CR28
8690_CR27
8690_CR22
8690_CR24
T Wang (8690_CR25) 2024; 132
8690_CR23
8690_CR62
8690_CR61
DK Smith (8690_CR2) 2024; 5
8690_CR18
8690_CR15
8690_CR59
8690_CR16
8690_CR11
8690_CR55
8690_CR54
8690_CR13
8690_CR57
8690_CR12
8690_CR51
8690_CR50
8690_CR53
SG Narasimhan (8690_CR10) 2002; 48
K Zhang (8690_CR32) 2021; 30
8690_CR48
8690_CR47
8690_CR49
8690_CR44
8690_CR43
B Li (8690_CR52) 2018; 28
8690_CR9
A Vaswani (8690_CR21) 2017; 30
8690_CR40
K He (8690_CR17) 2010; 33
8690_CR42
8690_CR41
G Yang (8690_CR33) 2023; 23
M Park (8690_CR20) 2022; 22
J Ho (8690_CR45) 2020; 33
References_xml – volume: 28
  start-page: 492
  year: 2018
  ident: 8690_CR52
  publication-title: J. IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2867951
– volume: 33
  start-page: 6840
  year: 2020
  ident: 8690_CR45
  publication-title: J. Adv. Neural Inf. Process. Syst.
– ident: 8690_CR59
– ident: 8690_CR9
– ident: 8690_CR49
  doi: 10.1609/aaai.v38i2.27907
– volume: 48
  start-page: 33
  year: 2002
  ident: 8690_CR10
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1016328200723
– ident: 8690_CR55
– ident: 8690_CR5
– volume: 22
  start-page: 1435
  year: 2022
  ident: 8690_CR20
  publication-title: J. Sensors.
  doi: 10.3390/s22041435
– ident: 8690_CR22
– volume: 33
  start-page: 2341
  year: 2010
  ident: 8690_CR17
  publication-title: J IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 8690_CR12
  doi: 10.1007/978-3-031-19800-7_8
– ident: 8690_CR8
  doi: 10.1007/978-3-030-58577-8_12
– volume: 23
  start-page: 5980
  year: 2023
  ident: 8690_CR33
  publication-title: J. Sensors.
  doi: 10.3390/s23135980
– volume: 30
  start-page: 7419
  year: 2021
  ident: 8690_CR32
  publication-title: J. IEEE Trans.Image Process.
  doi: 10.1109/TIP.2021.3104166
– volume: 45
  start-page: 1287
  year: 2022
  ident: 8690_CR31
  publication-title: J IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3148707
– volume: 13
  start-page: 600
  year: 2004
  ident: 8690_CR56
  publication-title: J. IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– ident: 8690_CR37
– volume: 5
  start-page: 141
  year: 2024
  ident: 8690_CR2
  publication-title: J. Commun. Earth Environ.
  doi: 10.1038/s43247-024-01314-w
– ident: 8690_CR51
– ident: 8690_CR27
– ident: 8690_CR54
– volume: 46
  start-page: 9423
  issue: 2
  year: 2024
  ident: 8690_CR46
  publication-title: J. IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2024.3419007
– ident: 8690_CR6
– ident: 8690_CR41
  doi: 10.1109/CVPR52729.2023.00560
– ident: 8690_CR48
– ident: 8690_CR11
  doi: 10.1007/978-3-030-20873-8_38
– ident: 8690_CR44
– ident: 8690_CR61
– ident: 8690_CR23
– ident: 8690_CR40
– ident: 8690_CR38
– ident: 8690_CR62
  doi: 10.1109/TPAMI.2023.3330416
– ident: 8690_CR53
  doi: 10.1145/3474085.3475331
– ident: 8690_CR57
– ident: 8690_CR50
– ident: 8690_CR16
  doi: 10.1109/CVPR.2018.00337
– ident: 8690_CR30
– ident: 8690_CR28
– ident: 8690_CR13
  doi: 10.1609/aaai.v34i07.6865
– ident: 8690_CR36
  doi: 10.1007/978-3-030-58621-8_45
– ident: 8690_CR3
– volume: 145
  year: 2024
  ident: 8690_CR35
  publication-title: J. Pattern Recogn.
– volume: 33
  start-page: 1002
  year: 2024
  ident: 8690_CR14
  publication-title: J. IEEE Trans. Image Process.
  doi: 10.1109/TIP.2024.3354108
– ident: 8690_CR15
  doi: 10.1109/CVPR.2016.185
– ident: 8690_CR47
– ident: 8690_CR43
– ident: 8690_CR24
– ident: 8690_CR39
– volume: 25
  start-page: 5187
  year: 2016
  ident: 8690_CR7
  publication-title: J. IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2598681
– volume: 132
  start-page: 4541
  year: 2024
  ident: 8690_CR25
  publication-title: J. Int. J. Comput. Vis.
  doi: 10.1007/s11263-024-02056-0
– ident: 8690_CR18
  doi: 10.1109/ICIP.2009.5414620
– volume: 30
  start-page: 1
  year: 2017
  ident: 8690_CR21
  publication-title: J. Adv. Neural Inf. Process. Syst.
– ident: 8690_CR26
  doi: 10.1109/TPAMI.2025.3559891
– ident: 8690_CR29
  doi: 10.1109/IJCNN60899.2024.10651326
– volume: 26
  start-page: 833
  year: 2019
  ident: 8690_CR58
  publication-title: J. IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2910403
– ident: 8690_CR34
  doi: 10.1007/978-3-319-24574-4_28
– volume: 164
  start-page: 1121
  year: 2007
  ident: 8690_CR1
  publication-title: J. Pure Appl. Geophys.
  doi: 10.1007/s00024-007-0211-x
– ident: 8690_CR4
– volume: 24
  start-page: 3522
  year: 2015
  ident: 8690_CR19
  publication-title: J. IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2446191
– ident: 8690_CR42
– volume: 32
  start-page: 1927
  year: 2023
  ident: 8690_CR60
  publication-title: J. IEEE Trans.Image Process.
  doi: 10.1109/TIP.2023.3256763
SSID ssj0000529419
Score 2.4521494
Snippet The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering models...
Abstract The primary goal of image dehazing is to restore the clarity and detail of hazy images. However, addressing non-uniform haze in atmospheric scattering...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25501
SubjectTerms 639/166/987
704/106/35
Contrastive learning
Curricula
Deep learning
Fog
Humanities and Social Sciences
Image dehazing
Light
Multi-scale fusion mechanisms
multidisciplinary
Non-uniform haze
Preservation
Regularization methods
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSpW4IN4ESmUkbmA1jp3Y4UYrVhVSewAq9Wb5yVaCLNpsD-2vZ2xnt10e4sIhl8SH0czY30w88w3A6yi580J1lMVgqLCYoBjvBLXKN44ZH5lLzcknp93xmfh43p7fGvWVasIKPXBR3IFDgDEIYrWNrQiiV72vLXqSlcGgACGdvoh5t5Kpwurd9IL1U5dMzdXBiEiVusmaltZpChO93kKiTNj_pyjz92LJX25MMxDN7sO9KYIk74vkD-BOGB7CbpkpefUI5idHn2af6WlYvSPpP8C3QC6-46FBfJgnKumvJAGXJ4uB5GJCOqKVAskl62ZMhx9Z5vn0y6lDk5jBk7gsJddXZMyDc_D9YzibffhydEyncQrUiV6saJrkwmLr62CjiBwfK5vE1hIa3hruuqiUQOsoi2FJayTmUrI2zKhoMH_2ij-BnWExhGdAOJe9c5JFm8Z09JjzWdPwiLmVT9aVFbxZq1b_KKwZOt92c6WLITQaQmdD6OsKDpP2NysT43V-gX6gJz_Q__KDCvbWttPTNhw1xwSL866XdQWvNp9xA6VbETOExWVZ0zYdQngFT4upN5JgtJN6cdsK1JYTbIm6_WW4mGeSboZxLVeKVfB27S83cv1dF8__hy5ewN0mO7qkrN2DndXyMrzE2Gll9_M2-QkoVRgQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSzi2IkdbrBiVSG1B6BSb5af3Uoli5Ltof31jJ1k0UI5cMjFdiTL33genhfAmyi580I1lMVgqLBooBjvBLXKV44ZH5lLyclHx83hifhyWp_uQTXnwuSg_VzSMrPpOTrs_YCCJiWDVTUtUxMlen0LbqfS7YmqF81i-66SPFeCtVN-TMnVDb_uyKBcqv8m_fLvMMk_fKVZBC3vw71JdyQfx90-gL3QPYQ7YzfJq0ewOlp8XX6jx2HzgaQXgItAzn8guyA-rFIR6TOSRJYn647kMEI6ID6B5GB1MyS2R_rcmb6fcjOJ6TyJ_RhsfUWG3DIHxx_DyfLz98UhnRopUCdasaGphwuLtS-DjSJy_KysUp2WUPHacNdEpQTioiwqJLWRaEXJ0jCjokHL2Sv-BPa7dReeAeFcts5JFm1q0NGitWdNxSNaVT7hKgt4Ox-t_jnWy9DZz82VHoHQCITOQOjrAj6l09-uTLWu88C6P9MT9tqhimFQjSltrEUQrWp9aZGXWBkMkmAo4GDGTk8XcNAcTSvOm1aWBbzeTuPVSf4Q04X15bimrhoU3gU8HaHe7gT1nJSFWxegdohgZ6u7M935KpfnZqjRcqVYAe9mevm9r3-fxfP_W_4C7laZpCVl9QHsb_rL8BL1o419lS_ELx21DUE
  priority: 102
  providerName: Springer Nature
Title MCRFS-Net: single image dehazing based on multi-scale contrastive regularization and frequency selection
URI https://link.springer.com/article/10.1038/s41598-025-08690-z
https://www.ncbi.nlm.nih.gov/pubmed/40664785
https://www.proquest.com/docview/3230336970
https://www.proquest.com/docview/3230526212
https://pubmed.ncbi.nlm.nih.gov/PMC12263881
https://doaj.org/article/c152a2220bf54e4989d0b051b7eaebee
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdby2CXse-564IGu22itiVb8i4jDQ0l0DDaFXIzkiU1hc7u7PTQ_vV9T3ZSsq9DMMg-KHpP7_u9HyGfvOSVFSpniXeaCQMOiraVYEbZtEq09UmFzckn8_z4XMwW2WIIuHVDWeVaJgZBbZsKY-QHHGxlzvNCxt-ufzFEjcLs6gCh8Zjs4ugyLOmSC7mJsWAWSyTF0CsTc3XQgb7CnrI0YzFiMbG7LX0Uxvb_zdb8s2Tyt7xpUEfT5-TZYEfScU_4F-SRq1-SJz2y5O0rsjyZnE7P2NytvlKMBlw5evkTRAe1bokDpS8oqi9Lm5qGkkLWAa0cDYXrukMRSNuAUt8OfZpU15b6ti-8vqVdgM-B9dfkfHr0Y3LMBlAFVolCrBjiuSQ-s7EzXngOPyNTnNniUp5pXuVeKQE0UgaMk0xL8KhkrBOtvAYv2ir-huzUTe3eEcq5LKpKJt4gWEcBnp_RKffgYVmksYzI5_XRltf97Iwy5Ly5KntClECIMhCivIvIIZ7-5kucex0WmvaiHK5RWYG5ocGkiY3PhBOFKmxsQK4Y6TSwo4vI_pp25XAZu_KBdSLycfMarhHmRnTtmpv-myzNQZFH5G1P6s1OwObBjtwsImqLCba2uv2mvlyGUd0JWLdcqSQiX9b88rCvf5_F3v__xnvyNA0sLFmS7ZOdVXvjPoBttDKjcAFGZHc8np3N4Hl4NP9-CquTfDIK8YZ7WeYTxw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhgJnsBaEjuJg4QQG6s6tlZobNLePCe220mQjqYT6n4Uv5FjJ-lUbm97yEsSRY7P3efyAby0GSs1FymNrFGUFxigKF1yWggdl5HSNipdc_JwlA6O-Kfj5HgNfna9MK6sstOJXlHraenOyDcZ-sqMpXkWvj_7Th1qlMuudhAaDVvsmcUPDNnqd7sfkb6v4ri_c7g9oC2qAC15zufUAZpENtGhKSy3DK8ii93QEhOzRLEytUJwXKQo0DonKsOQIgtVpIRVGEZqwfC712CdMwxlerC-tTP6fLA81XF5Mx7lbXdOyMRmjRbSdbHFCQ0d-hO9WLGAHijgb97tn0Wav2VqvQHs34ZbredKPjSsdgfWTHUXrjdYlot7MBluH_S_0JGZvyXu_OGrIaffUFkRbSZuhPWYOIOpybQivoiR1sgdhvhSeVU7pUtmZuyKYtvOUKIqTeysKfVekNoD9uD9-3B0JRv-AHrVtDKPgDCW5WWZRbZw8CA5xpqFipnFmE47rsoCeN1trTxrpnVIn2VnQjaEkEgI6QkhLwLYcru_fNNN2vY3prOxbAVXlujgKHSiwsIm3PBc5DosUJMVmVEoACaAjY52shX_Wl4yawAvlo9RcF02RlVmet68k8Qpug4BPGxIvVwJelmuBzgJQKwwwcpSV59UpxM_HDxCf5oJEQXwpuOXy3X9ey8e__83nsONweFwX-7vjvaewM3Ys3NGo2QDevPZuXmKntm8eNaKA4GTq5bAXwXNTJY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQyBeEHcCA4wET2A1iZ3YQUIINqqNsQoBk_pmnNhuJ0E6mk6o-2n8Oo6dpFO5ve0hL0kUOT53n8sH8MQJVhkuc5o4qykvMUDRpuK0lCatEm1cUvnm5INRvnvI342z8Qb87HthfFllrxODojazyp-RDxj6yozlhYgHriuL-LAzfHX8nXoEKZ9p7eE0WhbZt8sfGL41L_d2kNZP03T49vP2Lu0QBmjFC76gHtwkcZmJbem4Y3iVIvUDTGzKMs2q3EnJccGyREudaYHhhYh1oqXTGFIayfC7F-CiYPghlCUxFqvzHZ9B40nR9enETA4atJW-ny3NaOxxoOjpmi0MkAF_83P_LNf8LWcbTOHwGlztfFjyumW667Bh6xtwqUW1XN6E6cH2x-EnOrKLF8SfRHy15Ogbqi1i7NQPs54QbzoNmdUklDPSBvnEklA0rxuvfsncTnx5bNcjSnRtiJu3Rd9L0gToHrx_Cw7PZbtvw2Y9q-1dIIyJoqpE4koPFFJg1FnqlDmM7oznLxHBs35r1XE7t0OFfDuTqiWEQkKoQAh1GsEbv_urN_3M7XBjNp-oToRVha6ORncqLl3GLS9kYeISdVoprEZRsBFs9bRTnSJo1BnbRvB49RhF2OdldG1nJ-07WZqjExHBnZbUq5Wgv-W7gbMI5BoTrC11_Ul9NA1jwhP0rJmUSQTPe345W9e_9-Le_3_jEVxGuVPv90b79-FKGrhZ0CTbgs3F_MQ-QBdtUT4MskDgy3kL3y_NV09m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MCRFS-Net%3A+single+image+dehazing+based+on+multi-scale+contrastive+regularization+and+frequency+selection&rft.jtitle=Scientific+reports&rft.au=Qin%2C+Qin&rft.au=Shui%2C+Lin&rft.au=Zhang%2C+Yanyan&rft.au=Song%2C+Shaojing&rft.date=2025-07-15&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=25501&rft_id=info:doi/10.1038%2Fs41598-025-08690-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon