Human-in-the-loop optimization of exoskeleton assistance during walking
Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 356; no. 6344; pp. 1280 - 1284 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
23.06.2017
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. |
---|---|
AbstractList | Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. Exoskeletons can be used to augment human abilities—for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al. ). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load. Science , this issue p. 1280 ; see also p. 1230 An exoskeleton control system can optimize itself by measuring and minimizing human energy use during walking. Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. Exoskeletons can be used to augment human abilities--for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al.). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load.Science, this issue p. 1280; see also p. 1230 Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. Optimum human inputExoskeletons can be used to augment human abilities-for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al.). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load.Science, this issue p. 1280; see also p. 1230 Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 plus or minus 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance. |
Author | Witte, Kirby A. Jackson, Rachel W. Collins, Steven H. Poggensee, Katherine L. Atkeson, Christopher G. Zhang, Juanjuan Fiers, Pieter |
Author_xml | – sequence: 1 givenname: Juanjuan surname: Zhang fullname: Zhang, Juanjuan – sequence: 2 givenname: Pieter surname: Fiers fullname: Fiers, Pieter – sequence: 3 givenname: Kirby A. surname: Witte fullname: Witte, Kirby A. – sequence: 4 givenname: Rachel W. surname: Jackson fullname: Jackson, Rachel W. – sequence: 5 givenname: Katherine L. surname: Poggensee fullname: Poggensee, Katherine L. – sequence: 6 givenname: Christopher G. surname: Atkeson fullname: Atkeson, Christopher G. – sequence: 7 givenname: Steven H. surname: Collins fullname: Collins, Steven H. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28642437$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1P3DAQhq1qUXehPfcEisSFS3bHsZ3YR4QoIK3EpT1HTjJpvST2Yjvqx6-vYbcg7QFxGo3meefrPSYz6ywS8oXCktKiXIXWoG1xqfUgQPAPZEFBiVwVwGZkAcDKXEIl5uQ4hA1Aqin2kcwLWfKCs2pBbm6nUdvc2Dz-xHxwbpu5bTSj-aujcTZzfYa_XXjAAWNKdQgmRJ1GZt3kjf2R_dLDQ4qfyFGvh4Cf9_GEfP96_e3qNl_f39xdXa7zlisec951HJtCSlWgUg3vZVmh6isGtOoAOaXQcKEQOikZbQE6XlbQ9KJr2p5RZCfkYtd3693jhCHWowktDoO26KZQU1UIKUHQ8h0oZUyxHXp-gG7c5G06JFEVV6oExRJ1tqemZsSu3nozav-n_v_NBKx2QOtdCB77F4RC_eRXvfer3vuVFOJA0Zr4_PnotRne0J3udJsQnX_dpGRKsXTQP9QQpXs |
CitedBy_id | crossref_primary_10_1051_matecconf_201816103008 crossref_primary_10_1017_S0263574722000029 crossref_primary_10_3390_machines10070572 crossref_primary_10_1159_000516910 crossref_primary_10_3389_fbioe_2024_1436702 crossref_primary_10_1109_TNSRE_2022_3187056 crossref_primary_10_1186_s12984_019_0599_4 crossref_primary_10_1016_j_cam_2021_113824 crossref_primary_10_1098_rsos_202020 crossref_primary_10_1038_d41586_024_01506_6 crossref_primary_10_1186_s10033_021_00535_w crossref_primary_10_1109_LRA_2020_3007455 crossref_primary_10_1109_TII_2020_2974232 crossref_primary_10_1109_TNSRE_2019_2924536 crossref_primary_10_1017_wtc_2024_9 crossref_primary_10_1109_TCYB_2019_2890974 crossref_primary_10_1186_s12984_022_01088_2 crossref_primary_10_1109_TMECH_2022_3214419 crossref_primary_10_3390_bioengineering11030275 crossref_primary_10_1242_jeb_181834 crossref_primary_10_1177_1071181322661447 crossref_primary_10_3390_s20010130 crossref_primary_10_1155_2020_5074858 crossref_primary_10_1109_TMRB_2020_2989321 crossref_primary_10_3389_fpsyg_2024_1327992 crossref_primary_10_1152_jn_00416_2020 crossref_primary_10_1109_LRA_2022_3141211 crossref_primary_10_1016_j_jbiomech_2024_112028 crossref_primary_10_1109_TCST_2022_3222728 crossref_primary_10_1109_TIM_2025_3545854 crossref_primary_10_1109_LRA_2024_3460415 crossref_primary_10_1109_TNSRE_2023_3287867 crossref_primary_10_1109_TCYB_2022_3224895 crossref_primary_10_1016_j_nanoen_2023_108293 crossref_primary_10_1109_TNSRE_2025_3530154 crossref_primary_10_1371_journal_pone_0237972 crossref_primary_10_1038_s41598_020_66760_w crossref_primary_10_1038_s41586_022_05191_1 crossref_primary_10_1115_1_4054724 crossref_primary_10_1126_science_aav7536 crossref_primary_10_1186_s12984_021_00893_5 crossref_primary_10_3389_fbioe_2023_1188685 crossref_primary_10_1089_soro_2023_0028 crossref_primary_10_1038_s41598_021_00451_y crossref_primary_10_1109_TPDS_2024_3437688 crossref_primary_10_1109_TII_2022_3215197 crossref_primary_10_1049_iet_cta_2019_1479 crossref_primary_10_1109_TBME_2019_2910071 crossref_primary_10_1126_scirobotics_ade0876 crossref_primary_10_1109_TCDS_2021_3126001 crossref_primary_10_1109_ACCESS_2021_3122160 crossref_primary_10_3390_biomimetics9040211 crossref_primary_10_1109_TMECH_2020_3044289 crossref_primary_10_3390_s24020414 crossref_primary_10_1109_TASE_2022_3229396 crossref_primary_10_1109_TMRB_2023_3328649 crossref_primary_10_1109_LRA_2024_3391695 crossref_primary_10_1098_rsif_2020_0487 crossref_primary_10_1109_ACCESS_2021_3110595 crossref_primary_10_1038_s41597_024_03444_4 crossref_primary_10_1109_TRO_2018_2794536 crossref_primary_10_1109_LRA_2019_2924852 crossref_primary_10_1109_TNSRE_2024_3425436 crossref_primary_10_1016_j_engappai_2021_104306 crossref_primary_10_1109_TNSRE_2020_2965029 crossref_primary_10_1109_LRA_2021_3092265 crossref_primary_10_1109_TNSRE_2022_3189038 crossref_primary_10_1186_s12984_021_00916_1 crossref_primary_10_1038_s41586_024_08157_7 crossref_primary_10_1109_TNSRE_2020_2989481 crossref_primary_10_1109_TMRB_2024_3377278 crossref_primary_10_1007_s11431_022_2145_x crossref_primary_10_1016_j_birob_2023_100087 crossref_primary_10_1152_jn_00311_2020 crossref_primary_10_1038_s41598_022_07736_w crossref_primary_10_1038_s44172_023_00091_2 crossref_primary_10_1080_13873954_2021_1879874 crossref_primary_10_3389_fnbot_2020_00037 crossref_primary_10_1109_TMRB_2023_3328654 crossref_primary_10_1186_s12984_021_00928_x crossref_primary_10_1109_ACCESS_2019_2933614 crossref_primary_10_1109_TBME_2022_3224026 crossref_primary_10_1126_scirobotics_adn3802 crossref_primary_10_1038_s41598_021_89640_3 crossref_primary_10_1109_JAS_2021_1003961 crossref_primary_10_1007_s41315_021_00178_z crossref_primary_10_3389_fnins_2018_01050 crossref_primary_10_3389_frobt_2024_1283080 crossref_primary_10_1038_s41598_025_85202_z crossref_primary_10_1007_s42235_023_00453_8 crossref_primary_10_1108_RIA_08_2022_0221 crossref_primary_10_1186_s12984_024_01386_x crossref_primary_10_1109_TOH_2023_3266726 crossref_primary_10_1017_S0263574721001600 crossref_primary_10_1016_j_mechmachtheory_2018_09_006 crossref_primary_10_1109_TMRB_2022_3176476 crossref_primary_10_1109_TCDS_2019_2954289 crossref_primary_10_1038_s41598_020_60360_4 crossref_primary_10_1126_scirobotics_aay9108 crossref_primary_10_1109_ACCESS_2020_2975223 crossref_primary_10_1126_scirobotics_abq1514 crossref_primary_10_1016_j_compbiomed_2024_108492 crossref_primary_10_1115_1_4065479 crossref_primary_10_1017_wtc_2025_3 crossref_primary_10_1038_s41598_018_33569_7 crossref_primary_10_1155_2021_6378514 crossref_primary_10_3389_fnbot_2020_00015 crossref_primary_10_1088_2631_8695_accb27 crossref_primary_10_1088_1748_3190_aad8d4 crossref_primary_10_1109_TMECH_2022_3204921 crossref_primary_10_1186_s12984_018_0455_y crossref_primary_10_1186_s12984_023_01205_9 crossref_primary_10_3389_fnhum_2022_1018160 crossref_primary_10_1038_d41586_024_03546_4 crossref_primary_10_1186_s12984_018_0379_6 crossref_primary_10_1017_wtc_2025_1 crossref_primary_10_1098_rspb_2021_1197 crossref_primary_10_1109_OJEMB_2023_3234431 crossref_primary_10_1113_JP278459 crossref_primary_10_7736_JKSPE_023_094 crossref_primary_10_1109_TNSRE_2020_3027501 crossref_primary_10_1177_1729881419890178 crossref_primary_10_1038_s41467_022_28725_7 crossref_primary_10_3390_app132312609 crossref_primary_10_1109_TNSRE_2019_2927094 crossref_primary_10_1016_j_gaitpost_2021_11_030 crossref_primary_10_1080_02564602_2021_1994477 crossref_primary_10_1177_0278364919853618 crossref_primary_10_1371_journal_pone_0205088 crossref_primary_10_1109_TNSRE_2020_3039962 crossref_primary_10_3389_frobt_2018_00058 crossref_primary_10_1109_JSEN_2023_3327723 crossref_primary_10_1109_TNSRE_2019_2944665 crossref_primary_10_1109_TCDS_2020_2968845 crossref_primary_10_1186_s12984_020_00663_9 crossref_primary_10_1098_rsos_211266 crossref_primary_10_1109_TIM_2021_3101317 crossref_primary_10_1109_JPROC_2021_3140049 crossref_primary_10_1115_1_4046835 crossref_primary_10_3389_fnins_2024_1472184 crossref_primary_10_3389_frobt_2023_1166248 crossref_primary_10_20965_jrm_2019_p0135 crossref_primary_10_3390_bioengineering11070683 crossref_primary_10_1002_ejsc_12054 crossref_primary_10_1109_TMECH_2022_3181261 crossref_primary_10_1371_journal_pone_0279300 crossref_primary_10_3390_s22187035 crossref_primary_10_1109_TBME_2019_2940241 crossref_primary_10_1177_20556683241280733 crossref_primary_10_1016_j_epidem_2024_100756 crossref_primary_10_3390_a14090253 crossref_primary_10_3390_nanoenergyadv3030014 crossref_primary_10_3390_nanoenergyadv3030015 crossref_primary_10_1123_jab_2018_0384 crossref_primary_10_1109_LRA_2019_2890896 crossref_primary_10_3389_fnbot_2018_00080 crossref_primary_10_1371_journal_pone_0242000 crossref_primary_10_3390_bioengineering11070695 crossref_primary_10_1038_s41528_023_00239_2 crossref_primary_10_1109_TMECH_2018_2822764 crossref_primary_10_1109_LRA_2022_3149568 crossref_primary_10_1109_TNSRE_2019_2942385 crossref_primary_10_1109_TNSRE_2023_3336713 crossref_primary_10_1109_ACCESS_2024_3401547 crossref_primary_10_1007_s00521_019_04639_2 crossref_primary_10_1098_rsif_2019_0027 crossref_primary_10_1126_sciadv_adq6290 crossref_primary_10_1098_rsif_2022_0035 crossref_primary_10_3389_fnbot_2021_653409 crossref_primary_10_1242_jeb_248125 crossref_primary_10_1038_s41598_023_28229_4 crossref_primary_10_3390_bios11100393 crossref_primary_10_3389_fnbot_2022_948093 crossref_primary_10_1016_j_gaitpost_2021_11_023 crossref_primary_10_1109_TRO_2022_3226365 crossref_primary_10_1109_TNSRE_2022_3186692 crossref_primary_10_1109_TNSRE_2022_3188870 crossref_primary_10_3389_fbioe_2022_832087 crossref_primary_10_1007_s10439_023_03151_y crossref_primary_10_1017_wtc_2022_18 crossref_primary_10_1109_TCST_2019_2928514 crossref_primary_10_1371_journal_pone_0200862 crossref_primary_10_1038_s41551_022_00984_1 crossref_primary_10_1017_wtc_2022_11 crossref_primary_10_1038_s41598_018_32175_x crossref_primary_10_3390_s22176596 crossref_primary_10_3389_fbioe_2022_842294 crossref_primary_10_1007_s41315_018_0047_9 crossref_primary_10_1098_rsos_191527 crossref_primary_10_1038_s42256_024_00894_8 crossref_primary_10_1016_j_fmre_2022_03_024 crossref_primary_10_1109_TNSRE_2018_2858204 crossref_primary_10_3389_fnins_2024_1418331 crossref_primary_10_1007_s10439_023_03217_x crossref_primary_10_1017_wtc_2021_14 crossref_primary_10_1038_s41591_021_01515_2 crossref_primary_10_1109_TNSRE_2020_3039923 crossref_primary_10_1115_1_4053218 crossref_primary_10_3390_s24175684 crossref_primary_10_1186_s12984_021_00890_8 crossref_primary_10_1109_LRA_2019_2935351 crossref_primary_10_1371_journal_pone_0281944 crossref_primary_10_1126_scirobotics_abm6369 crossref_primary_10_1109_TRO_2023_3324200 crossref_primary_10_1007_s42835_020_00475_w crossref_primary_10_1007_s42235_020_0101_9 crossref_primary_10_1038_s41586_024_07697_2 crossref_primary_10_1109_TASE_2021_3066403 crossref_primary_10_1109_TSMC_2023_3344879 crossref_primary_10_1109_RBME_2018_2830805 crossref_primary_10_1186_s12984_021_00946_9 crossref_primary_10_30658_hmc_4_10 crossref_primary_10_1017_S0263574719001073 crossref_primary_10_1109_LRA_2021_3062580 crossref_primary_10_1109_LRA_2021_3125723 crossref_primary_10_1109_TMRB_2021_3091519 crossref_primary_10_3390_s20133685 crossref_primary_10_3389_fbioe_2021_615358 crossref_primary_10_1016_j_ifacol_2024_12_008 crossref_primary_10_1109_TASE_2018_2841358 crossref_primary_10_1186_s12984_022_01118_z crossref_primary_10_1109_TNSRE_2018_2815656 crossref_primary_10_1109_TICPS_2024_3437347 crossref_primary_10_1177_00187208221113625 crossref_primary_10_1080_00140139_2024_2394511 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_1126_scirobotics_adg3705 crossref_primary_10_1109_TNSRE_2022_3226766 crossref_primary_10_7736_JKSPE_023_126 crossref_primary_10_1007_s41315_024_00403_5 crossref_primary_10_1126_science_aba9947 crossref_primary_10_3390_s22207913 crossref_primary_10_1016_j_exger_2021_111582 crossref_primary_10_1109_TCYB_2023_3240231 crossref_primary_10_1007_s40747_023_01319_6 crossref_primary_10_1016_j_jobe_2024_110542 crossref_primary_10_1109_TNSRE_2022_3155770 crossref_primary_10_1007_s42235_022_00172_6 crossref_primary_10_1038_s41598_022_14784_9 crossref_primary_10_1126_science_aan5367 crossref_primary_10_3389_fnbot_2017_00064 crossref_primary_10_1177_0018720819896898 crossref_primary_10_1371_journal_pone_0282800 crossref_primary_10_1109_TRO_2021_3084466 crossref_primary_10_3390_bioengineering10091082 crossref_primary_10_1080_17461391_2021_1923813 crossref_primary_10_1016_j_jbiomech_2023_111730 crossref_primary_10_1088_1748_3190_ab70ed crossref_primary_10_1364_AO_57_007883 crossref_primary_10_1109_TMECH_2023_3299117 crossref_primary_10_3389_fnbot_2023_1127694 crossref_primary_10_1109_TRO_2021_3078317 crossref_primary_10_1109_TMRB_2023_3240284 crossref_primary_10_1017_S0263574722000704 crossref_primary_10_1109_JSEN_2024_3486334 crossref_primary_10_1186_s12984_022_01092_6 crossref_primary_10_1109_TASE_2020_3027748 crossref_primary_10_3389_fnbot_2024_1410760 crossref_primary_10_1080_23311916_2022_2067026 crossref_primary_10_1038_s41598_017_15218_7 crossref_primary_10_1109_TSMC_2024_3454556 crossref_primary_10_1126_scirobotics_abj3487 crossref_primary_10_1016_j_arcontrol_2023_03_003 crossref_primary_10_1109_LRA_2022_3147565 crossref_primary_10_1109_LRA_2023_3290529 crossref_primary_10_1109_TITS_2022_3163615 crossref_primary_10_1016_j_apm_2021_03_049 crossref_primary_10_1109_TNSRE_2019_2929544 crossref_primary_10_1007_s11044_024_10040_2 crossref_primary_10_1109_LRA_2021_3066973 crossref_primary_10_1038_s41598_022_13386_9 crossref_primary_10_3389_fnbot_2021_797147 crossref_primary_10_1007_s10846_023_01854_x crossref_primary_10_3390_s20154333 crossref_primary_10_3390_electronics9020269 crossref_primary_10_1007_s42235_022_00299_6 crossref_primary_10_1177_1045389X18799474 crossref_primary_10_1186_s12984_019_0495_y crossref_primary_10_1109_ACCESS_2023_3299873 crossref_primary_10_1109_TNSRE_2020_2988619 crossref_primary_10_1186_s12984_023_01144_5 crossref_primary_10_3390_app11062851 crossref_primary_10_3390_s23146547 crossref_primary_10_1038_s41598_020_65626_5 crossref_primary_10_1371_journal_pone_0231996 crossref_primary_10_1007_s11432_019_2812_7 crossref_primary_10_1109_TRO_2024_3468768 crossref_primary_10_1016_j_jbiomech_2018_11_023 crossref_primary_10_1109_TRO_2023_3236958 crossref_primary_10_1002_adma_202404502 crossref_primary_10_1109_TRO_2022_3170287 crossref_primary_10_1038_s41524_022_00787_7 crossref_primary_10_3389_fnbot_2023_1127033 crossref_primary_10_1007_s42235_022_00289_8 crossref_primary_10_1186_s12984_019_0526_8 crossref_primary_10_1038_s41467_024_53416_w crossref_primary_10_1177_09596518221085793 crossref_primary_10_1016_j_jbiomech_2021_110905 crossref_primary_10_1146_annurev_control_070122_102501 crossref_primary_10_1038_s41598_022_23283_w crossref_primary_10_1109_LRA_2022_3194326 crossref_primary_10_1109_TNSRE_2022_3230795 crossref_primary_10_1109_TMRB_2020_3012471 crossref_primary_10_1097_JPO_0000000000000409 crossref_primary_10_1109_LRA_2022_3183790 crossref_primary_10_1126_scirobotics_adf1080 crossref_primary_10_1109_TNSRE_2018_2870756 crossref_primary_10_1186_s12984_020_00683_5 crossref_primary_10_1089_soro_2022_0065 crossref_primary_10_1016_j_cobme_2021_100314 crossref_primary_10_3390_s24217026 crossref_primary_10_1109_TBME_2022_3165547 crossref_primary_10_1186_s12984_024_01424_8 crossref_primary_10_1109_TBME_2022_3159094 crossref_primary_10_1109_LRA_2020_3011370 crossref_primary_10_1109_LRA_2021_3118473 crossref_primary_10_1007_s11044_024_10009_1 crossref_primary_10_1109_TSMC_2024_3369071 crossref_primary_10_1109_TNSRE_2023_3281409 crossref_primary_10_1109_JAS_2022_105620 crossref_primary_10_1017_S0263574719000511 crossref_primary_10_1109_LRA_2024_3350999 crossref_primary_10_1016_j_bspc_2023_105175 crossref_primary_10_1109_TNSRE_2022_3196361 crossref_primary_10_1073_pnas_2020327118 crossref_primary_10_1109_LRA_2018_2864352 crossref_primary_10_1038_s41467_024_46249_0 crossref_primary_10_1109_THMS_2024_3407984 crossref_primary_10_1186_s12984_023_01287_5 crossref_primary_10_3390_s23031670 crossref_primary_10_3390_app11010076 crossref_primary_10_1109_TRO_2021_3133137 crossref_primary_10_1109_LRA_2022_3182109 crossref_primary_10_1113_JP277725 crossref_primary_10_3233_THC_220190 crossref_primary_10_1109_ACCESS_2022_3205629 crossref_primary_10_1109_TNSRE_2019_2899970 crossref_primary_10_1109_TMECH_2022_3175731 crossref_primary_10_1088_1748_3190_ad79d0 crossref_primary_10_1080_00140139_2022_2059106 crossref_primary_10_1115_1_4046881 crossref_primary_10_1109_LRA_2025_3526558 crossref_primary_10_1186_s12984_021_00954_9 crossref_primary_10_1109_LRA_2024_3405381 crossref_primary_10_1186_s12877_018_0921_1 crossref_primary_10_1038_s41598_023_43115_9 crossref_primary_10_1146_annurev_control_060117_105043 crossref_primary_10_1109_TNSRE_2022_3196665 crossref_primary_10_1109_LRA_2021_3091953 crossref_primary_10_1109_TMRB_2023_3258505 crossref_primary_10_1186_s12984_018_0393_8 crossref_primary_10_1186_s12984_021_00943_y crossref_primary_10_3390_s23052698 crossref_primary_10_3389_fbioe_2024_1324587 crossref_primary_10_1016_j_isatra_2020_09_009 crossref_primary_10_1109_LRA_2020_3005629 crossref_primary_10_1371_journal_pone_0289811 crossref_primary_10_1109_TMRB_2022_3206609 crossref_primary_10_3390_s22062244 crossref_primary_10_1186_s12984_021_00966_5 crossref_primary_10_1038_s41598_022_14776_9 crossref_primary_10_1126_scirobotics_abj1362 crossref_primary_10_1088_1741_2552_abeead crossref_primary_10_3390_app7111182 crossref_primary_10_1002_aisy_202400171 crossref_primary_10_1016_j_mechmachtheory_2024_105753 crossref_primary_10_1017_S0263574723001030 crossref_primary_10_1186_s12984_021_00955_8 crossref_primary_10_1108_IR_02_2021_0038 crossref_primary_10_1080_15397734_2023_2252492 crossref_primary_10_1186_s12984_020_00703_4 crossref_primary_10_1109_LRA_2024_3438041 crossref_primary_10_1109_TNSRE_2022_3162213 crossref_primary_10_1186_s12984_022_01004_8 crossref_primary_10_3390_act13020054 crossref_primary_10_1007_s12206_021_0935_z crossref_primary_10_1109_JSEN_2020_3019053 crossref_primary_10_1109_TNSRE_2023_3322124 crossref_primary_10_1007_s11044_023_09877_w crossref_primary_10_1109_TMRB_2024_3385798 crossref_primary_10_1002_wcs_1486 crossref_primary_10_1016_j_jbiomech_2023_111695 crossref_primary_10_1109_TNSRE_2021_3065389 crossref_primary_10_1371_journal_pcbi_1011837 crossref_primary_10_1371_journal_pone_0184054 crossref_primary_10_1016_j_robot_2020_103495 crossref_primary_10_3390_s24248153 crossref_primary_10_1109_TNSRE_2024_3423696 crossref_primary_10_1109_TBME_2024_3443235 crossref_primary_10_1186_s12984_025_01556_5 crossref_primary_10_1109_TNSRE_2022_3209575 crossref_primary_10_1016_j_future_2022_05_014 crossref_primary_10_1186_s12984_021_00919_y crossref_primary_10_1126_scirobotics_abo5528 crossref_primary_10_1186_s12984_022_01002_w crossref_primary_10_1109_TNSRE_2019_2905979 crossref_primary_10_1126_scirobotics_adi8852 crossref_primary_10_3390_app13074198 crossref_primary_10_1186_s12984_020_00723_0 crossref_primary_10_1109_LRA_2023_3303094 crossref_primary_10_1186_s12984_019_0559_z crossref_primary_10_1186_s10033_020_00465_z crossref_primary_10_1186_s12984_019_0535_7 crossref_primary_10_1186_s12984_022_01122_3 crossref_primary_10_1016_j_mechatronics_2022_102906 crossref_primary_10_1016_j_mechatronics_2020_102469 crossref_primary_10_1098_rsos_230590 crossref_primary_10_1109_TMRB_2024_3407366 crossref_primary_10_1016_j_mechmachtheory_2022_105142 crossref_primary_10_1109_TRO_2021_3073836 crossref_primary_10_1038_s44172_024_00180_w crossref_primary_10_1186_s12984_021_00906_3 crossref_primary_10_1186_s12984_018_0410_y crossref_primary_10_3389_fnbot_2021_748148 crossref_primary_10_1016_j_neucom_2024_128797 crossref_primary_10_1109_TNSRE_2019_2936383 crossref_primary_10_1371_journal_pone_0294161 crossref_primary_10_3389_fnbot_2020_596019 crossref_primary_10_1109_TRO_2023_3235584 crossref_primary_10_2196_42901 crossref_primary_10_1109_TNNLS_2021_3071727 crossref_primary_10_1088_2516_1091_ada333 crossref_primary_10_1007_s10439_024_03614_w crossref_primary_10_1109_LRA_2022_3144790 crossref_primary_10_1109_TNSRE_2021_3082198 crossref_primary_10_1016_j_nanoen_2020_105548 crossref_primary_10_1155_2019_5823908 crossref_primary_10_1371_journal_pcbi_1010712 crossref_primary_10_1109_TBME_2021_3114737 crossref_primary_10_1109_TMRB_2019_2961749 crossref_primary_10_1007_s10514_021_09988_3 crossref_primary_10_3390_bioengineering11020172 crossref_primary_10_1109_LRA_2022_3196105 crossref_primary_10_3389_fnins_2018_00069 crossref_primary_10_3390_s24113305 crossref_primary_10_1109_TBME_2022_3188482 crossref_primary_10_1007_s11071_022_07876_8 crossref_primary_10_1016_j_neucom_2024_127485 crossref_primary_10_1109_JSEN_2024_3363439 crossref_primary_10_1109_LRA_2022_3143579 crossref_primary_10_1016_j_mechatronics_2022_102832 crossref_primary_10_1109_LRA_2024_3366010 crossref_primary_10_3390_mi13020157 crossref_primary_10_1109_TMRB_2024_3408308 crossref_primary_10_1242_jeb_202895 crossref_primary_10_3389_frobt_2021_720231 crossref_primary_10_58769_joinssr_1308638 crossref_primary_10_1109_TNSRE_2021_3074154 crossref_primary_10_1115_1_4049878 crossref_primary_10_3390_s19143196 crossref_primary_10_1007_s10439_020_02594_x crossref_primary_10_1109_TIE_2021_3068678 crossref_primary_10_1186_s12984_022_01000_y crossref_primary_10_1109_TMRB_2024_3464126 crossref_primary_10_1109_TNSRE_2020_3018786 crossref_primary_10_3389_fbioe_2023_1006326 crossref_primary_10_3390_bios11070215 crossref_primary_10_1080_17483107_2022_2134470 crossref_primary_10_1098_rsif_2020_0770 crossref_primary_10_1126_scirobotics_abf1078 crossref_primary_10_3390_bioengineering11020150 crossref_primary_10_1109_LRA_2019_2931427 crossref_primary_10_1109_TNSRE_2020_2979033 crossref_primary_10_1016_j_displa_2025_103038 crossref_primary_10_1038_s41597_021_01057_9 crossref_primary_10_1016_j_knosys_2024_112016 crossref_primary_10_1007_s12541_018_0217_6 crossref_primary_10_1109_LRA_2020_3001541 crossref_primary_10_1109_TBME_2019_2912466 crossref_primary_10_3389_frobt_2021_702860 crossref_primary_10_1242_jeb_244471 crossref_primary_10_1109_MRA_2019_2954108 crossref_primary_10_1016_j_neucom_2020_06_050 crossref_primary_10_1152_japplphysiol_00714_2018 crossref_primary_10_1016_j_neucom_2020_10_110 crossref_primary_10_3389_fbioe_2024_1442606 crossref_primary_10_1109_LRA_2021_3130639 crossref_primary_10_1371_journal_pone_0261318 crossref_primary_10_3390_act12110406 crossref_primary_10_1002_adfm_202008278 crossref_primary_10_1186_s12984_018_0424_5 crossref_primary_10_1002_aisy_202400333 crossref_primary_10_1109_LRA_2023_3331674 crossref_primary_10_1177_21695067231192634 crossref_primary_10_1186_s12984_022_01023_5 crossref_primary_10_1126_scirobotics_abg6594 crossref_primary_10_3389_frobt_2022_835237 crossref_primary_10_1109_TNSRE_2024_3506974 crossref_primary_10_1038_s41586_024_07382_4 crossref_primary_10_1126_scirobotics_aar5438 crossref_primary_10_3389_fnins_2024_1306054 crossref_primary_10_3389_fbioe_2025_1533001 crossref_primary_10_1126_sciadv_aay1950 crossref_primary_10_1177_0278364920961452 crossref_primary_10_3389_fbioe_2020_00362 crossref_primary_10_1109_TMRB_2022_3144025 crossref_primary_10_1126_scirobotics_abh1925 crossref_primary_10_1186_s12984_019_0600_2 |
Cites_doi | 10.1186/1475-925X-2-17 10.1109/TBME.2011.2161671 10.1098/rspb.2009.0664 10.1371/journal.pone.0163417 10.1371/journal.pone.0056137 10.1371/journal.pone.0009307 10.1152/japplphysiol.01133.2014 10.1310/6GL4-UM7X-519H-9JYD 10.1177/0278364906065505 10.1126/science.350.6258.270 10.1038/s41551-016-0014 10.1115/1.4026225 10.1038/srep19983 10.4324/9780203613771 10.1152/japplphysiol.00445.2014 10.1007/11007937_4 10.1242/jeb.150011 10.1007/s00421-014-2955-1 10.1152/japplphysiol.00253.2013 10.1162/106365601750190398 10.1016/j.cub.2015.08.016 10.1109/TNSRE.2007.903919 10.1126/science.1107799 10.1093/comjnl/7.4.308 10.1038/nature04113 10.1097/00003677-200504000-00006 10.1098/rspb.2011.1194 10.1109/ICRA.2015.7139347 10.1145/1553374.1553426 10.1152/physrev.1989.69.4.1199 10.1126/scirobotics.aah4416 10.1016/j.patrec.2017.04.007 10.1109/TNSRE.2011.2159018 10.1682/JRRD.2005.04.0073 10.1249/MSS.0000000000001012 10.1007/978-3-540-30217-9_29 10.1109/ICRA.2015.7139980 10.1186/s12984-015-0086-5 10.1249/mss.0b013e31802b3562 10.1186/1743-0003-11-151 10.1371/journal.pone.0135342 10.1038/nature14288 10.1109/MRA.2014.2360309 10.1126/science.1254486 10.1016/j.jbiomech.2006.12.006 10.1109/TBME.2015.2472533 10.1109/ICRA.2016.7487663 10.1016/j.jbiomech.2016.09.015 |
ContentType | Journal Article |
Copyright | Copyright © 2017 by the American Association for the Advancement of Science Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2017 by the American Association for the Advancement of Science – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aal5054 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Materials Research Database Solid State and Superconductivity Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1284 |
ExternalDocumentID | 28642437 10_1126_science_aal5054 26399316 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AADHG AAIKC AAMNW AANCE AAWTO ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O 0B8 CGR CUY CVF DOOOF ECM EIF ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c494t-4dd4eb28892e99b4f867e9f73017d0e4110b459e0d8831c00d4670bf5dbcf31e3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Jul 11 08:00:49 EDT 2025 Fri Jul 11 16:32:24 EDT 2025 Fri Jul 25 10:46:19 EDT 2025 Wed Feb 19 02:41:03 EST 2025 Tue Jul 01 00:37:29 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Thu Jul 03 22:08:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6344 |
Language | English |
License | Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c494t-4dd4eb28892e99b4f867e9f73017d0e4110b459e0d8831c00d4670bf5dbcf31e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1530-3800 0000-0002-0938-1300 0000-0002-5197-4740 0000-0002-3997-3374 0000-0002-2452-7072 0000-0002-3833-487X |
PMID | 28642437 |
PQID | 1974996093 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1925880516 proquest_miscellaneous_1913393516 proquest_journals_1974996093 pubmed_primary_28642437 crossref_primary_10_1126_science_aal5054 crossref_citationtrail_10_1126_science_aal5054 jstor_primary_26399316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-23 |
PublicationDateYYYYMMDD | 2017-06-23 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2017 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 Brockway J. M. (e_1_3_2_50_2) 1987; 41 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 28642394 - Science. 2017 Jun 23;356(6344):1230-1231 |
References_xml | – ident: e_1_3_2_10_2 doi: 10.1186/1475-925X-2-17 – ident: e_1_3_2_40_2 doi: 10.1109/TBME.2011.2161671 – ident: e_1_3_2_54_2 doi: 10.1098/rspb.2009.0664 – ident: e_1_3_2_12_2 doi: 10.1371/journal.pone.0163417 – ident: e_1_3_2_4_2 doi: 10.1371/journal.pone.0056137 – ident: e_1_3_2_13_2 doi: 10.1371/journal.pone.0009307 – ident: e_1_3_2_18_2 doi: 10.1152/japplphysiol.01133.2014 – ident: e_1_3_2_33_2 doi: 10.1310/6GL4-UM7X-519H-9JYD – ident: e_1_3_2_15_2 doi: 10.1177/0278364906065505 – volume: 41 start-page: 463 year: 1987 ident: e_1_3_2_50_2 article-title: Derivation of formulae used to calculate energy expenditure in man publication-title: Hum. Nutr. Clin. Nutr. – ident: e_1_3_2_2_2 doi: 10.1126/science.350.6258.270 – ident: e_1_3_2_24_2 doi: 10.1038/s41551-016-0014 – ident: e_1_3_2_36_2 doi: 10.1115/1.4026225 – ident: e_1_3_2_11_2 doi: 10.1038/srep19983 – ident: e_1_3_2_26_2 – ident: e_1_3_2_47_2 doi: 10.4324/9780203613771 – ident: e_1_3_2_23_2 doi: 10.1152/japplphysiol.00445.2014 – ident: e_1_3_2_29_2 doi: 10.1007/11007937_4 – ident: e_1_3_2_38_2 doi: 10.1242/jeb.150011 – ident: e_1_3_2_42_2 doi: 10.1007/s00421-014-2955-1 – ident: e_1_3_2_37_2 doi: 10.1152/japplphysiol.00253.2013 – ident: e_1_3_2_49_2 doi: 10.1162/106365601750190398 – ident: e_1_3_2_21_2 doi: 10.1016/j.cub.2015.08.016 – ident: e_1_3_2_35_2 doi: 10.1109/TNSRE.2007.903919 – ident: e_1_3_2_52_2 doi: 10.1126/science.1107799 – ident: e_1_3_2_46_2 doi: 10.1093/comjnl/7.4.308 – ident: e_1_3_2_28_2 doi: 10.1038/nature04113 – ident: e_1_3_2_30_2 doi: 10.1097/00003677-200504000-00006 – ident: e_1_3_2_3_2 doi: 10.1098/rspb.2011.1194 – ident: e_1_3_2_31_2 doi: 10.1109/ICRA.2015.7139347 – ident: e_1_3_2_53_2 doi: 10.1145/1553374.1553426 – ident: e_1_3_2_22_2 doi: 10.1152/physrev.1989.69.4.1199 – ident: e_1_3_2_9_2 doi: 10.1126/scirobotics.aah4416 – ident: e_1_3_2_43_2 doi: 10.1016/j.patrec.2017.04.007 – ident: e_1_3_2_17_2 doi: 10.1109/TNSRE.2011.2159018 – ident: e_1_3_2_34_2 doi: 10.1682/JRRD.2005.04.0073 – ident: e_1_3_2_41_2 doi: 10.1249/MSS.0000000000001012 – ident: e_1_3_2_45_2 – ident: e_1_3_2_48_2 doi: 10.1007/978-3-540-30217-9_29 – ident: e_1_3_2_44_2 doi: 10.1109/ICRA.2015.7139980 – ident: e_1_3_2_7_2 doi: 10.1186/s12984-015-0086-5 – ident: e_1_3_2_51_2 doi: 10.1249/mss.0b013e31802b3562 – ident: e_1_3_2_5_2 doi: 10.1186/1743-0003-11-151 – ident: e_1_3_2_25_2 doi: 10.1371/journal.pone.0135342 – ident: e_1_3_2_6_2 doi: 10.1038/nature14288 – ident: e_1_3_2_14_2 doi: 10.1109/MRA.2014.2360309 – ident: e_1_3_2_16_2 doi: 10.1126/science.1254486 – ident: e_1_3_2_20_2 doi: 10.1016/j.jbiomech.2006.12.006 – ident: e_1_3_2_32_2 – ident: e_1_3_2_39_2 doi: 10.1109/TBME.2015.2472533 – ident: e_1_3_2_8_2 doi: 10.1109/ICRA.2016.7487663 – ident: e_1_3_2_19_2 doi: 10.1016/j.jbiomech.2016.09.015 – reference: 28642394 - Science. 2017 Jun 23;356(6344):1230-1231 |
SSID | ssj0009593 |
Score | 2.6790063 |
Snippet | Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human... Exoskeletons can be used to augment human abilities—for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will... Exoskeletons can be used to augment human abilities--for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device... Optimum human inputExoskeletons can be used to augment human abilities-for example, to lift very heavy loads or to provide greater endurance. For each user,... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1280 |
SubjectTerms | Adjustment Ankle Biomechanical Phenomena Calorimetry Devices Energy consumption Energy Metabolism Exoskeleton Exoskeleton Device - standards Exoskeletons Human performance Humans Individual Needs Machine Learning Metabolism Models, Biological Muscles Optimization Prostheses Prosthesis Fitting - instrumentation Prosthesis Fitting - methods Prosthesis Fitting - standards Prosthetics Running Torque Walking Walking - physiology |
Title | Human-in-the-loop optimization of exoskeleton assistance during walking |
URI | https://www.jstor.org/stable/26399316 https://www.ncbi.nlm.nih.gov/pubmed/28642437 https://www.proquest.com/docview/1974996093 https://www.proquest.com/docview/1913393516 https://www.proquest.com/docview/1925880516 |
Volume | 356 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJiQuiA0GhYGCxGFoSpQ4rmsfO6BMQyAOm9gtimNH6haSaU20wZ_EX8lz7CQeLNLgErXpi5X0Pb_vs_N-IPSGsTyigkS-iGjoE0mkLzKKfTrX8BGnXFCdO_z5Cz08IUens9PJ5JcTtdTUIsh-3ppX8j9ahXOgV50l-w-a7QeFE_AZ9AtH0DAc76TjdgfeX5U-sDi_qKqL_Qo8wHebWql5oLqu1ueALLp4BtBkTRb1TLbJiVdpcd5BlyWo3VwH4tm_zHFU2EclLkzsQBdKYC9z9hX6neijJi3PmsEIl13z7a-rG7HBq9p06vu0ugRKvAj62B6nCoCuPl3sfwvcvYqoDawz6cSd_7Xljw36GJcb6m6ROIxdnxybauPW-GhMiONkAVJDB7A1wt4OBk77ShWkaQFsjwy4173r_wMO-yDFdnmEaWIHSOwA99AmhiUJ-NTNxcH7g-VoiWdbSMpJ0eru4QYHMmGw4wuclugcP0IP7QrFWxhz20ITVW6j-6Zn6Y9ttGVVvfb2bMnyt4_Rx78s0XMt0atyz7FEb7BEz1iiZy3xCTpZfjh-d-jbFh1-RjipYXJLogRmjGPFuSA5o3PFcw0bcxkqAuRSkBlXoWQsjrIwlADMochnUmR5HKl4B22UVameIU8wEGPpPONEkTzGKZYCvuNUyVxhyaco6P60JLP163UblSIZUdQU7fUXXJjSLeOiO60WejncEveITtFup5bETvx1EsEaXBc14vEUve5_Bres37WlpaoaLRPFOutdDzEug2cAn63MU6Py4QYYJbpW6PO7P8QL9GCYc7too75s1EtgzLV4ZU31NxzTxSo |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-in-the-loop+optimization+of+exoskeleton+assistance+during+walking&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Juanjuan&rft.au=Fiers%2C+Pieter&rft.au=Witte%2C+Kirby+A.&rft.au=Jackson%2C+Rachel+W.&rft.date=2017-06-23&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=356&rft.issue=6344&rft.spage=1280&rft.epage=1284&rft_id=info:doi/10.1126%2Fscience.aal5054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aal5054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |