Human-in-the-loop optimization of exoskeleton assistance during walking

Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 356; no. 6344; pp. 1280 - 1284
Main Authors Zhang, Juanjuan, Fiers, Pieter, Witte, Kirby A., Jackson, Rachel W., Poggensee, Katherine L., Atkeson, Christopher G., Collins, Steven H.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 23.06.2017
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
AbstractList Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Exoskeletons can be used to augment human abilities—for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al. ). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load. Science , this issue p. 1280 ; see also p. 1230 An exoskeleton control system can optimize itself by measuring and minimizing human energy use during walking. Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Exoskeletons can be used to augment human abilities--for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al.). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load.Science, this issue p. 1280; see also p. 1230 Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Optimum human inputExoskeletons can be used to augment human abilities-for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will need to be adjusted for optimum effect, which can be time-consuming. Zhang et al. show that the human can be included in the optimization process, with real-time adaptation of an ankle exoskeleton (see the Perspective by Malcolm et al.). By using indirect calorimetry to measure metabolic rates, the authors were able to adjust the torque provided by the device while users were walking, running, and carrying a load.Science, this issue p. 1280; see also p. 1230 Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 plus or minus 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human performance could lead to improved designs. We have developed a method for identifying the exoskeleton assistance that minimizes human energy cost during walking. Optimized torque patterns from an exoskeleton worn on one ankle reduced metabolic energy consumption by 24.2 ± 7.4% compared to no torque. The approach was effective with exoskeletons worn on one or both ankles, during a variety of walking conditions, during running, and when optimizing muscle activity. Finding a good generic assistance pattern, customizing it to individual needs, and helping users learn to take advantage of the device all contributed to improved economy. Optimization methods with these features can substantially improve performance.
Author Witte, Kirby A.
Jackson, Rachel W.
Collins, Steven H.
Poggensee, Katherine L.
Atkeson, Christopher G.
Zhang, Juanjuan
Fiers, Pieter
Author_xml – sequence: 1
  givenname: Juanjuan
  surname: Zhang
  fullname: Zhang, Juanjuan
– sequence: 2
  givenname: Pieter
  surname: Fiers
  fullname: Fiers, Pieter
– sequence: 3
  givenname: Kirby A.
  surname: Witte
  fullname: Witte, Kirby A.
– sequence: 4
  givenname: Rachel W.
  surname: Jackson
  fullname: Jackson, Rachel W.
– sequence: 5
  givenname: Katherine L.
  surname: Poggensee
  fullname: Poggensee, Katherine L.
– sequence: 6
  givenname: Christopher G.
  surname: Atkeson
  fullname: Atkeson, Christopher G.
– sequence: 7
  givenname: Steven H.
  surname: Collins
  fullname: Collins, Steven H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28642437$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1P3DAQhq1qUXehPfcEisSFS3bHsZ3YR4QoIK3EpT1HTjJpvST2Yjvqx6-vYbcg7QFxGo3meefrPSYz6ywS8oXCktKiXIXWoG1xqfUgQPAPZEFBiVwVwGZkAcDKXEIl5uQ4hA1Aqin2kcwLWfKCs2pBbm6nUdvc2Dz-xHxwbpu5bTSj-aujcTZzfYa_XXjAAWNKdQgmRJ1GZt3kjf2R_dLDQ4qfyFGvh4Cf9_GEfP96_e3qNl_f39xdXa7zlisec951HJtCSlWgUg3vZVmh6isGtOoAOaXQcKEQOikZbQE6XlbQ9KJr2p5RZCfkYtd3693jhCHWowktDoO26KZQU1UIKUHQ8h0oZUyxHXp-gG7c5G06JFEVV6oExRJ1tqemZsSu3nozav-n_v_NBKx2QOtdCB77F4RC_eRXvfer3vuVFOJA0Zr4_PnotRne0J3udJsQnX_dpGRKsXTQP9QQpXs
CitedBy_id crossref_primary_10_1051_matecconf_201816103008
crossref_primary_10_1017_S0263574722000029
crossref_primary_10_3390_machines10070572
crossref_primary_10_1159_000516910
crossref_primary_10_3389_fbioe_2024_1436702
crossref_primary_10_1109_TNSRE_2022_3187056
crossref_primary_10_1186_s12984_019_0599_4
crossref_primary_10_1016_j_cam_2021_113824
crossref_primary_10_1098_rsos_202020
crossref_primary_10_1038_d41586_024_01506_6
crossref_primary_10_1186_s10033_021_00535_w
crossref_primary_10_1109_LRA_2020_3007455
crossref_primary_10_1109_TII_2020_2974232
crossref_primary_10_1109_TNSRE_2019_2924536
crossref_primary_10_1017_wtc_2024_9
crossref_primary_10_1109_TCYB_2019_2890974
crossref_primary_10_1186_s12984_022_01088_2
crossref_primary_10_1109_TMECH_2022_3214419
crossref_primary_10_3390_bioengineering11030275
crossref_primary_10_1242_jeb_181834
crossref_primary_10_1177_1071181322661447
crossref_primary_10_3390_s20010130
crossref_primary_10_1155_2020_5074858
crossref_primary_10_1109_TMRB_2020_2989321
crossref_primary_10_3389_fpsyg_2024_1327992
crossref_primary_10_1152_jn_00416_2020
crossref_primary_10_1109_LRA_2022_3141211
crossref_primary_10_1016_j_jbiomech_2024_112028
crossref_primary_10_1109_TCST_2022_3222728
crossref_primary_10_1109_TIM_2025_3545854
crossref_primary_10_1109_LRA_2024_3460415
crossref_primary_10_1109_TNSRE_2023_3287867
crossref_primary_10_1109_TCYB_2022_3224895
crossref_primary_10_1016_j_nanoen_2023_108293
crossref_primary_10_1109_TNSRE_2025_3530154
crossref_primary_10_1371_journal_pone_0237972
crossref_primary_10_1038_s41598_020_66760_w
crossref_primary_10_1038_s41586_022_05191_1
crossref_primary_10_1115_1_4054724
crossref_primary_10_1126_science_aav7536
crossref_primary_10_1186_s12984_021_00893_5
crossref_primary_10_3389_fbioe_2023_1188685
crossref_primary_10_1089_soro_2023_0028
crossref_primary_10_1038_s41598_021_00451_y
crossref_primary_10_1109_TPDS_2024_3437688
crossref_primary_10_1109_TII_2022_3215197
crossref_primary_10_1049_iet_cta_2019_1479
crossref_primary_10_1109_TBME_2019_2910071
crossref_primary_10_1126_scirobotics_ade0876
crossref_primary_10_1109_TCDS_2021_3126001
crossref_primary_10_1109_ACCESS_2021_3122160
crossref_primary_10_3390_biomimetics9040211
crossref_primary_10_1109_TMECH_2020_3044289
crossref_primary_10_3390_s24020414
crossref_primary_10_1109_TASE_2022_3229396
crossref_primary_10_1109_TMRB_2023_3328649
crossref_primary_10_1109_LRA_2024_3391695
crossref_primary_10_1098_rsif_2020_0487
crossref_primary_10_1109_ACCESS_2021_3110595
crossref_primary_10_1038_s41597_024_03444_4
crossref_primary_10_1109_TRO_2018_2794536
crossref_primary_10_1109_LRA_2019_2924852
crossref_primary_10_1109_TNSRE_2024_3425436
crossref_primary_10_1016_j_engappai_2021_104306
crossref_primary_10_1109_TNSRE_2020_2965029
crossref_primary_10_1109_LRA_2021_3092265
crossref_primary_10_1109_TNSRE_2022_3189038
crossref_primary_10_1186_s12984_021_00916_1
crossref_primary_10_1038_s41586_024_08157_7
crossref_primary_10_1109_TNSRE_2020_2989481
crossref_primary_10_1109_TMRB_2024_3377278
crossref_primary_10_1007_s11431_022_2145_x
crossref_primary_10_1016_j_birob_2023_100087
crossref_primary_10_1152_jn_00311_2020
crossref_primary_10_1038_s41598_022_07736_w
crossref_primary_10_1038_s44172_023_00091_2
crossref_primary_10_1080_13873954_2021_1879874
crossref_primary_10_3389_fnbot_2020_00037
crossref_primary_10_1109_TMRB_2023_3328654
crossref_primary_10_1186_s12984_021_00928_x
crossref_primary_10_1109_ACCESS_2019_2933614
crossref_primary_10_1109_TBME_2022_3224026
crossref_primary_10_1126_scirobotics_adn3802
crossref_primary_10_1038_s41598_021_89640_3
crossref_primary_10_1109_JAS_2021_1003961
crossref_primary_10_1007_s41315_021_00178_z
crossref_primary_10_3389_fnins_2018_01050
crossref_primary_10_3389_frobt_2024_1283080
crossref_primary_10_1038_s41598_025_85202_z
crossref_primary_10_1007_s42235_023_00453_8
crossref_primary_10_1108_RIA_08_2022_0221
crossref_primary_10_1186_s12984_024_01386_x
crossref_primary_10_1109_TOH_2023_3266726
crossref_primary_10_1017_S0263574721001600
crossref_primary_10_1016_j_mechmachtheory_2018_09_006
crossref_primary_10_1109_TMRB_2022_3176476
crossref_primary_10_1109_TCDS_2019_2954289
crossref_primary_10_1038_s41598_020_60360_4
crossref_primary_10_1126_scirobotics_aay9108
crossref_primary_10_1109_ACCESS_2020_2975223
crossref_primary_10_1126_scirobotics_abq1514
crossref_primary_10_1016_j_compbiomed_2024_108492
crossref_primary_10_1115_1_4065479
crossref_primary_10_1017_wtc_2025_3
crossref_primary_10_1038_s41598_018_33569_7
crossref_primary_10_1155_2021_6378514
crossref_primary_10_3389_fnbot_2020_00015
crossref_primary_10_1088_2631_8695_accb27
crossref_primary_10_1088_1748_3190_aad8d4
crossref_primary_10_1109_TMECH_2022_3204921
crossref_primary_10_1186_s12984_018_0455_y
crossref_primary_10_1186_s12984_023_01205_9
crossref_primary_10_3389_fnhum_2022_1018160
crossref_primary_10_1038_d41586_024_03546_4
crossref_primary_10_1186_s12984_018_0379_6
crossref_primary_10_1017_wtc_2025_1
crossref_primary_10_1098_rspb_2021_1197
crossref_primary_10_1109_OJEMB_2023_3234431
crossref_primary_10_1113_JP278459
crossref_primary_10_7736_JKSPE_023_094
crossref_primary_10_1109_TNSRE_2020_3027501
crossref_primary_10_1177_1729881419890178
crossref_primary_10_1038_s41467_022_28725_7
crossref_primary_10_3390_app132312609
crossref_primary_10_1109_TNSRE_2019_2927094
crossref_primary_10_1016_j_gaitpost_2021_11_030
crossref_primary_10_1080_02564602_2021_1994477
crossref_primary_10_1177_0278364919853618
crossref_primary_10_1371_journal_pone_0205088
crossref_primary_10_1109_TNSRE_2020_3039962
crossref_primary_10_3389_frobt_2018_00058
crossref_primary_10_1109_JSEN_2023_3327723
crossref_primary_10_1109_TNSRE_2019_2944665
crossref_primary_10_1109_TCDS_2020_2968845
crossref_primary_10_1186_s12984_020_00663_9
crossref_primary_10_1098_rsos_211266
crossref_primary_10_1109_TIM_2021_3101317
crossref_primary_10_1109_JPROC_2021_3140049
crossref_primary_10_1115_1_4046835
crossref_primary_10_3389_fnins_2024_1472184
crossref_primary_10_3389_frobt_2023_1166248
crossref_primary_10_20965_jrm_2019_p0135
crossref_primary_10_3390_bioengineering11070683
crossref_primary_10_1002_ejsc_12054
crossref_primary_10_1109_TMECH_2022_3181261
crossref_primary_10_1371_journal_pone_0279300
crossref_primary_10_3390_s22187035
crossref_primary_10_1109_TBME_2019_2940241
crossref_primary_10_1177_20556683241280733
crossref_primary_10_1016_j_epidem_2024_100756
crossref_primary_10_3390_a14090253
crossref_primary_10_3390_nanoenergyadv3030014
crossref_primary_10_3390_nanoenergyadv3030015
crossref_primary_10_1123_jab_2018_0384
crossref_primary_10_1109_LRA_2019_2890896
crossref_primary_10_3389_fnbot_2018_00080
crossref_primary_10_1371_journal_pone_0242000
crossref_primary_10_3390_bioengineering11070695
crossref_primary_10_1038_s41528_023_00239_2
crossref_primary_10_1109_TMECH_2018_2822764
crossref_primary_10_1109_LRA_2022_3149568
crossref_primary_10_1109_TNSRE_2019_2942385
crossref_primary_10_1109_TNSRE_2023_3336713
crossref_primary_10_1109_ACCESS_2024_3401547
crossref_primary_10_1007_s00521_019_04639_2
crossref_primary_10_1098_rsif_2019_0027
crossref_primary_10_1126_sciadv_adq6290
crossref_primary_10_1098_rsif_2022_0035
crossref_primary_10_3389_fnbot_2021_653409
crossref_primary_10_1242_jeb_248125
crossref_primary_10_1038_s41598_023_28229_4
crossref_primary_10_3390_bios11100393
crossref_primary_10_3389_fnbot_2022_948093
crossref_primary_10_1016_j_gaitpost_2021_11_023
crossref_primary_10_1109_TRO_2022_3226365
crossref_primary_10_1109_TNSRE_2022_3186692
crossref_primary_10_1109_TNSRE_2022_3188870
crossref_primary_10_3389_fbioe_2022_832087
crossref_primary_10_1007_s10439_023_03151_y
crossref_primary_10_1017_wtc_2022_18
crossref_primary_10_1109_TCST_2019_2928514
crossref_primary_10_1371_journal_pone_0200862
crossref_primary_10_1038_s41551_022_00984_1
crossref_primary_10_1017_wtc_2022_11
crossref_primary_10_1038_s41598_018_32175_x
crossref_primary_10_3390_s22176596
crossref_primary_10_3389_fbioe_2022_842294
crossref_primary_10_1007_s41315_018_0047_9
crossref_primary_10_1098_rsos_191527
crossref_primary_10_1038_s42256_024_00894_8
crossref_primary_10_1016_j_fmre_2022_03_024
crossref_primary_10_1109_TNSRE_2018_2858204
crossref_primary_10_3389_fnins_2024_1418331
crossref_primary_10_1007_s10439_023_03217_x
crossref_primary_10_1017_wtc_2021_14
crossref_primary_10_1038_s41591_021_01515_2
crossref_primary_10_1109_TNSRE_2020_3039923
crossref_primary_10_1115_1_4053218
crossref_primary_10_3390_s24175684
crossref_primary_10_1186_s12984_021_00890_8
crossref_primary_10_1109_LRA_2019_2935351
crossref_primary_10_1371_journal_pone_0281944
crossref_primary_10_1126_scirobotics_abm6369
crossref_primary_10_1109_TRO_2023_3324200
crossref_primary_10_1007_s42835_020_00475_w
crossref_primary_10_1007_s42235_020_0101_9
crossref_primary_10_1038_s41586_024_07697_2
crossref_primary_10_1109_TASE_2021_3066403
crossref_primary_10_1109_TSMC_2023_3344879
crossref_primary_10_1109_RBME_2018_2830805
crossref_primary_10_1186_s12984_021_00946_9
crossref_primary_10_30658_hmc_4_10
crossref_primary_10_1017_S0263574719001073
crossref_primary_10_1109_LRA_2021_3062580
crossref_primary_10_1109_LRA_2021_3125723
crossref_primary_10_1109_TMRB_2021_3091519
crossref_primary_10_3390_s20133685
crossref_primary_10_3389_fbioe_2021_615358
crossref_primary_10_1016_j_ifacol_2024_12_008
crossref_primary_10_1109_TASE_2018_2841358
crossref_primary_10_1186_s12984_022_01118_z
crossref_primary_10_1109_TNSRE_2018_2815656
crossref_primary_10_1109_TICPS_2024_3437347
crossref_primary_10_1177_00187208221113625
crossref_primary_10_1080_00140139_2024_2394511
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_1126_scirobotics_adg3705
crossref_primary_10_1109_TNSRE_2022_3226766
crossref_primary_10_7736_JKSPE_023_126
crossref_primary_10_1007_s41315_024_00403_5
crossref_primary_10_1126_science_aba9947
crossref_primary_10_3390_s22207913
crossref_primary_10_1016_j_exger_2021_111582
crossref_primary_10_1109_TCYB_2023_3240231
crossref_primary_10_1007_s40747_023_01319_6
crossref_primary_10_1016_j_jobe_2024_110542
crossref_primary_10_1109_TNSRE_2022_3155770
crossref_primary_10_1007_s42235_022_00172_6
crossref_primary_10_1038_s41598_022_14784_9
crossref_primary_10_1126_science_aan5367
crossref_primary_10_3389_fnbot_2017_00064
crossref_primary_10_1177_0018720819896898
crossref_primary_10_1371_journal_pone_0282800
crossref_primary_10_1109_TRO_2021_3084466
crossref_primary_10_3390_bioengineering10091082
crossref_primary_10_1080_17461391_2021_1923813
crossref_primary_10_1016_j_jbiomech_2023_111730
crossref_primary_10_1088_1748_3190_ab70ed
crossref_primary_10_1364_AO_57_007883
crossref_primary_10_1109_TMECH_2023_3299117
crossref_primary_10_3389_fnbot_2023_1127694
crossref_primary_10_1109_TRO_2021_3078317
crossref_primary_10_1109_TMRB_2023_3240284
crossref_primary_10_1017_S0263574722000704
crossref_primary_10_1109_JSEN_2024_3486334
crossref_primary_10_1186_s12984_022_01092_6
crossref_primary_10_1109_TASE_2020_3027748
crossref_primary_10_3389_fnbot_2024_1410760
crossref_primary_10_1080_23311916_2022_2067026
crossref_primary_10_1038_s41598_017_15218_7
crossref_primary_10_1109_TSMC_2024_3454556
crossref_primary_10_1126_scirobotics_abj3487
crossref_primary_10_1016_j_arcontrol_2023_03_003
crossref_primary_10_1109_LRA_2022_3147565
crossref_primary_10_1109_LRA_2023_3290529
crossref_primary_10_1109_TITS_2022_3163615
crossref_primary_10_1016_j_apm_2021_03_049
crossref_primary_10_1109_TNSRE_2019_2929544
crossref_primary_10_1007_s11044_024_10040_2
crossref_primary_10_1109_LRA_2021_3066973
crossref_primary_10_1038_s41598_022_13386_9
crossref_primary_10_3389_fnbot_2021_797147
crossref_primary_10_1007_s10846_023_01854_x
crossref_primary_10_3390_s20154333
crossref_primary_10_3390_electronics9020269
crossref_primary_10_1007_s42235_022_00299_6
crossref_primary_10_1177_1045389X18799474
crossref_primary_10_1186_s12984_019_0495_y
crossref_primary_10_1109_ACCESS_2023_3299873
crossref_primary_10_1109_TNSRE_2020_2988619
crossref_primary_10_1186_s12984_023_01144_5
crossref_primary_10_3390_app11062851
crossref_primary_10_3390_s23146547
crossref_primary_10_1038_s41598_020_65626_5
crossref_primary_10_1371_journal_pone_0231996
crossref_primary_10_1007_s11432_019_2812_7
crossref_primary_10_1109_TRO_2024_3468768
crossref_primary_10_1016_j_jbiomech_2018_11_023
crossref_primary_10_1109_TRO_2023_3236958
crossref_primary_10_1002_adma_202404502
crossref_primary_10_1109_TRO_2022_3170287
crossref_primary_10_1038_s41524_022_00787_7
crossref_primary_10_3389_fnbot_2023_1127033
crossref_primary_10_1007_s42235_022_00289_8
crossref_primary_10_1186_s12984_019_0526_8
crossref_primary_10_1038_s41467_024_53416_w
crossref_primary_10_1177_09596518221085793
crossref_primary_10_1016_j_jbiomech_2021_110905
crossref_primary_10_1146_annurev_control_070122_102501
crossref_primary_10_1038_s41598_022_23283_w
crossref_primary_10_1109_LRA_2022_3194326
crossref_primary_10_1109_TNSRE_2022_3230795
crossref_primary_10_1109_TMRB_2020_3012471
crossref_primary_10_1097_JPO_0000000000000409
crossref_primary_10_1109_LRA_2022_3183790
crossref_primary_10_1126_scirobotics_adf1080
crossref_primary_10_1109_TNSRE_2018_2870756
crossref_primary_10_1186_s12984_020_00683_5
crossref_primary_10_1089_soro_2022_0065
crossref_primary_10_1016_j_cobme_2021_100314
crossref_primary_10_3390_s24217026
crossref_primary_10_1109_TBME_2022_3165547
crossref_primary_10_1186_s12984_024_01424_8
crossref_primary_10_1109_TBME_2022_3159094
crossref_primary_10_1109_LRA_2020_3011370
crossref_primary_10_1109_LRA_2021_3118473
crossref_primary_10_1007_s11044_024_10009_1
crossref_primary_10_1109_TSMC_2024_3369071
crossref_primary_10_1109_TNSRE_2023_3281409
crossref_primary_10_1109_JAS_2022_105620
crossref_primary_10_1017_S0263574719000511
crossref_primary_10_1109_LRA_2024_3350999
crossref_primary_10_1016_j_bspc_2023_105175
crossref_primary_10_1109_TNSRE_2022_3196361
crossref_primary_10_1073_pnas_2020327118
crossref_primary_10_1109_LRA_2018_2864352
crossref_primary_10_1038_s41467_024_46249_0
crossref_primary_10_1109_THMS_2024_3407984
crossref_primary_10_1186_s12984_023_01287_5
crossref_primary_10_3390_s23031670
crossref_primary_10_3390_app11010076
crossref_primary_10_1109_TRO_2021_3133137
crossref_primary_10_1109_LRA_2022_3182109
crossref_primary_10_1113_JP277725
crossref_primary_10_3233_THC_220190
crossref_primary_10_1109_ACCESS_2022_3205629
crossref_primary_10_1109_TNSRE_2019_2899970
crossref_primary_10_1109_TMECH_2022_3175731
crossref_primary_10_1088_1748_3190_ad79d0
crossref_primary_10_1080_00140139_2022_2059106
crossref_primary_10_1115_1_4046881
crossref_primary_10_1109_LRA_2025_3526558
crossref_primary_10_1186_s12984_021_00954_9
crossref_primary_10_1109_LRA_2024_3405381
crossref_primary_10_1186_s12877_018_0921_1
crossref_primary_10_1038_s41598_023_43115_9
crossref_primary_10_1146_annurev_control_060117_105043
crossref_primary_10_1109_TNSRE_2022_3196665
crossref_primary_10_1109_LRA_2021_3091953
crossref_primary_10_1109_TMRB_2023_3258505
crossref_primary_10_1186_s12984_018_0393_8
crossref_primary_10_1186_s12984_021_00943_y
crossref_primary_10_3390_s23052698
crossref_primary_10_3389_fbioe_2024_1324587
crossref_primary_10_1016_j_isatra_2020_09_009
crossref_primary_10_1109_LRA_2020_3005629
crossref_primary_10_1371_journal_pone_0289811
crossref_primary_10_1109_TMRB_2022_3206609
crossref_primary_10_3390_s22062244
crossref_primary_10_1186_s12984_021_00966_5
crossref_primary_10_1038_s41598_022_14776_9
crossref_primary_10_1126_scirobotics_abj1362
crossref_primary_10_1088_1741_2552_abeead
crossref_primary_10_3390_app7111182
crossref_primary_10_1002_aisy_202400171
crossref_primary_10_1016_j_mechmachtheory_2024_105753
crossref_primary_10_1017_S0263574723001030
crossref_primary_10_1186_s12984_021_00955_8
crossref_primary_10_1108_IR_02_2021_0038
crossref_primary_10_1080_15397734_2023_2252492
crossref_primary_10_1186_s12984_020_00703_4
crossref_primary_10_1109_LRA_2024_3438041
crossref_primary_10_1109_TNSRE_2022_3162213
crossref_primary_10_1186_s12984_022_01004_8
crossref_primary_10_3390_act13020054
crossref_primary_10_1007_s12206_021_0935_z
crossref_primary_10_1109_JSEN_2020_3019053
crossref_primary_10_1109_TNSRE_2023_3322124
crossref_primary_10_1007_s11044_023_09877_w
crossref_primary_10_1109_TMRB_2024_3385798
crossref_primary_10_1002_wcs_1486
crossref_primary_10_1016_j_jbiomech_2023_111695
crossref_primary_10_1109_TNSRE_2021_3065389
crossref_primary_10_1371_journal_pcbi_1011837
crossref_primary_10_1371_journal_pone_0184054
crossref_primary_10_1016_j_robot_2020_103495
crossref_primary_10_3390_s24248153
crossref_primary_10_1109_TNSRE_2024_3423696
crossref_primary_10_1109_TBME_2024_3443235
crossref_primary_10_1186_s12984_025_01556_5
crossref_primary_10_1109_TNSRE_2022_3209575
crossref_primary_10_1016_j_future_2022_05_014
crossref_primary_10_1186_s12984_021_00919_y
crossref_primary_10_1126_scirobotics_abo5528
crossref_primary_10_1186_s12984_022_01002_w
crossref_primary_10_1109_TNSRE_2019_2905979
crossref_primary_10_1126_scirobotics_adi8852
crossref_primary_10_3390_app13074198
crossref_primary_10_1186_s12984_020_00723_0
crossref_primary_10_1109_LRA_2023_3303094
crossref_primary_10_1186_s12984_019_0559_z
crossref_primary_10_1186_s10033_020_00465_z
crossref_primary_10_1186_s12984_019_0535_7
crossref_primary_10_1186_s12984_022_01122_3
crossref_primary_10_1016_j_mechatronics_2022_102906
crossref_primary_10_1016_j_mechatronics_2020_102469
crossref_primary_10_1098_rsos_230590
crossref_primary_10_1109_TMRB_2024_3407366
crossref_primary_10_1016_j_mechmachtheory_2022_105142
crossref_primary_10_1109_TRO_2021_3073836
crossref_primary_10_1038_s44172_024_00180_w
crossref_primary_10_1186_s12984_021_00906_3
crossref_primary_10_1186_s12984_018_0410_y
crossref_primary_10_3389_fnbot_2021_748148
crossref_primary_10_1016_j_neucom_2024_128797
crossref_primary_10_1109_TNSRE_2019_2936383
crossref_primary_10_1371_journal_pone_0294161
crossref_primary_10_3389_fnbot_2020_596019
crossref_primary_10_1109_TRO_2023_3235584
crossref_primary_10_2196_42901
crossref_primary_10_1109_TNNLS_2021_3071727
crossref_primary_10_1088_2516_1091_ada333
crossref_primary_10_1007_s10439_024_03614_w
crossref_primary_10_1109_LRA_2022_3144790
crossref_primary_10_1109_TNSRE_2021_3082198
crossref_primary_10_1016_j_nanoen_2020_105548
crossref_primary_10_1155_2019_5823908
crossref_primary_10_1371_journal_pcbi_1010712
crossref_primary_10_1109_TBME_2021_3114737
crossref_primary_10_1109_TMRB_2019_2961749
crossref_primary_10_1007_s10514_021_09988_3
crossref_primary_10_3390_bioengineering11020172
crossref_primary_10_1109_LRA_2022_3196105
crossref_primary_10_3389_fnins_2018_00069
crossref_primary_10_3390_s24113305
crossref_primary_10_1109_TBME_2022_3188482
crossref_primary_10_1007_s11071_022_07876_8
crossref_primary_10_1016_j_neucom_2024_127485
crossref_primary_10_1109_JSEN_2024_3363439
crossref_primary_10_1109_LRA_2022_3143579
crossref_primary_10_1016_j_mechatronics_2022_102832
crossref_primary_10_1109_LRA_2024_3366010
crossref_primary_10_3390_mi13020157
crossref_primary_10_1109_TMRB_2024_3408308
crossref_primary_10_1242_jeb_202895
crossref_primary_10_3389_frobt_2021_720231
crossref_primary_10_58769_joinssr_1308638
crossref_primary_10_1109_TNSRE_2021_3074154
crossref_primary_10_1115_1_4049878
crossref_primary_10_3390_s19143196
crossref_primary_10_1007_s10439_020_02594_x
crossref_primary_10_1109_TIE_2021_3068678
crossref_primary_10_1186_s12984_022_01000_y
crossref_primary_10_1109_TMRB_2024_3464126
crossref_primary_10_1109_TNSRE_2020_3018786
crossref_primary_10_3389_fbioe_2023_1006326
crossref_primary_10_3390_bios11070215
crossref_primary_10_1080_17483107_2022_2134470
crossref_primary_10_1098_rsif_2020_0770
crossref_primary_10_1126_scirobotics_abf1078
crossref_primary_10_3390_bioengineering11020150
crossref_primary_10_1109_LRA_2019_2931427
crossref_primary_10_1109_TNSRE_2020_2979033
crossref_primary_10_1016_j_displa_2025_103038
crossref_primary_10_1038_s41597_021_01057_9
crossref_primary_10_1016_j_knosys_2024_112016
crossref_primary_10_1007_s12541_018_0217_6
crossref_primary_10_1109_LRA_2020_3001541
crossref_primary_10_1109_TBME_2019_2912466
crossref_primary_10_3389_frobt_2021_702860
crossref_primary_10_1242_jeb_244471
crossref_primary_10_1109_MRA_2019_2954108
crossref_primary_10_1016_j_neucom_2020_06_050
crossref_primary_10_1152_japplphysiol_00714_2018
crossref_primary_10_1016_j_neucom_2020_10_110
crossref_primary_10_3389_fbioe_2024_1442606
crossref_primary_10_1109_LRA_2021_3130639
crossref_primary_10_1371_journal_pone_0261318
crossref_primary_10_3390_act12110406
crossref_primary_10_1002_adfm_202008278
crossref_primary_10_1186_s12984_018_0424_5
crossref_primary_10_1002_aisy_202400333
crossref_primary_10_1109_LRA_2023_3331674
crossref_primary_10_1177_21695067231192634
crossref_primary_10_1186_s12984_022_01023_5
crossref_primary_10_1126_scirobotics_abg6594
crossref_primary_10_3389_frobt_2022_835237
crossref_primary_10_1109_TNSRE_2024_3506974
crossref_primary_10_1038_s41586_024_07382_4
crossref_primary_10_1126_scirobotics_aar5438
crossref_primary_10_3389_fnins_2024_1306054
crossref_primary_10_3389_fbioe_2025_1533001
crossref_primary_10_1126_sciadv_aay1950
crossref_primary_10_1177_0278364920961452
crossref_primary_10_3389_fbioe_2020_00362
crossref_primary_10_1109_TMRB_2022_3144025
crossref_primary_10_1126_scirobotics_abh1925
crossref_primary_10_1186_s12984_019_0600_2
Cites_doi 10.1186/1475-925X-2-17
10.1109/TBME.2011.2161671
10.1098/rspb.2009.0664
10.1371/journal.pone.0163417
10.1371/journal.pone.0056137
10.1371/journal.pone.0009307
10.1152/japplphysiol.01133.2014
10.1310/6GL4-UM7X-519H-9JYD
10.1177/0278364906065505
10.1126/science.350.6258.270
10.1038/s41551-016-0014
10.1115/1.4026225
10.1038/srep19983
10.4324/9780203613771
10.1152/japplphysiol.00445.2014
10.1007/11007937_4
10.1242/jeb.150011
10.1007/s00421-014-2955-1
10.1152/japplphysiol.00253.2013
10.1162/106365601750190398
10.1016/j.cub.2015.08.016
10.1109/TNSRE.2007.903919
10.1126/science.1107799
10.1093/comjnl/7.4.308
10.1038/nature04113
10.1097/00003677-200504000-00006
10.1098/rspb.2011.1194
10.1109/ICRA.2015.7139347
10.1145/1553374.1553426
10.1152/physrev.1989.69.4.1199
10.1126/scirobotics.aah4416
10.1016/j.patrec.2017.04.007
10.1109/TNSRE.2011.2159018
10.1682/JRRD.2005.04.0073
10.1249/MSS.0000000000001012
10.1007/978-3-540-30217-9_29
10.1109/ICRA.2015.7139980
10.1186/s12984-015-0086-5
10.1249/mss.0b013e31802b3562
10.1186/1743-0003-11-151
10.1371/journal.pone.0135342
10.1038/nature14288
10.1109/MRA.2014.2360309
10.1126/science.1254486
10.1016/j.jbiomech.2006.12.006
10.1109/TBME.2015.2472533
10.1109/ICRA.2016.7487663
10.1016/j.jbiomech.2016.09.015
ContentType Journal Article
Copyright Copyright © 2017 by the American Association for the Advancement of Science
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2017 by the American Association for the Advancement of Science
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aal5054
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Materials Research Database
Solid State and Superconductivity Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1284
ExternalDocumentID 28642437
10_1126_science_aal5054
26399316
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
0B8
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c494t-4dd4eb28892e99b4f867e9f73017d0e4110b459e0d8831c00d4670bf5dbcf31e3
ISSN 0036-8075
1095-9203
IngestDate Fri Jul 11 08:00:49 EDT 2025
Fri Jul 11 16:32:24 EDT 2025
Fri Jul 25 10:46:19 EDT 2025
Wed Feb 19 02:41:03 EST 2025
Tue Jul 01 00:37:29 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Thu Jul 03 22:08:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6344
Language English
License Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-4dd4eb28892e99b4f867e9f73017d0e4110b459e0d8831c00d4670bf5dbcf31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1530-3800
0000-0002-0938-1300
0000-0002-5197-4740
0000-0002-3997-3374
0000-0002-2452-7072
0000-0002-3833-487X
PMID 28642437
PQID 1974996093
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_1925880516
proquest_miscellaneous_1913393516
proquest_journals_1974996093
pubmed_primary_28642437
crossref_primary_10_1126_science_aal5054
crossref_citationtrail_10_1126_science_aal5054
jstor_primary_26399316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-23
PublicationDateYYYYMMDD 2017-06-23
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
Brockway J. M. (e_1_3_2_50_2) 1987; 41
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
28642394 - Science. 2017 Jun 23;356(6344):1230-1231
References_xml – ident: e_1_3_2_10_2
  doi: 10.1186/1475-925X-2-17
– ident: e_1_3_2_40_2
  doi: 10.1109/TBME.2011.2161671
– ident: e_1_3_2_54_2
  doi: 10.1098/rspb.2009.0664
– ident: e_1_3_2_12_2
  doi: 10.1371/journal.pone.0163417
– ident: e_1_3_2_4_2
  doi: 10.1371/journal.pone.0056137
– ident: e_1_3_2_13_2
  doi: 10.1371/journal.pone.0009307
– ident: e_1_3_2_18_2
  doi: 10.1152/japplphysiol.01133.2014
– ident: e_1_3_2_33_2
  doi: 10.1310/6GL4-UM7X-519H-9JYD
– ident: e_1_3_2_15_2
  doi: 10.1177/0278364906065505
– volume: 41
  start-page: 463
  year: 1987
  ident: e_1_3_2_50_2
  article-title: Derivation of formulae used to calculate energy expenditure in man
  publication-title: Hum. Nutr. Clin. Nutr.
– ident: e_1_3_2_2_2
  doi: 10.1126/science.350.6258.270
– ident: e_1_3_2_24_2
  doi: 10.1038/s41551-016-0014
– ident: e_1_3_2_36_2
  doi: 10.1115/1.4026225
– ident: e_1_3_2_11_2
  doi: 10.1038/srep19983
– ident: e_1_3_2_26_2
– ident: e_1_3_2_47_2
  doi: 10.4324/9780203613771
– ident: e_1_3_2_23_2
  doi: 10.1152/japplphysiol.00445.2014
– ident: e_1_3_2_29_2
  doi: 10.1007/11007937_4
– ident: e_1_3_2_38_2
  doi: 10.1242/jeb.150011
– ident: e_1_3_2_42_2
  doi: 10.1007/s00421-014-2955-1
– ident: e_1_3_2_37_2
  doi: 10.1152/japplphysiol.00253.2013
– ident: e_1_3_2_49_2
  doi: 10.1162/106365601750190398
– ident: e_1_3_2_21_2
  doi: 10.1016/j.cub.2015.08.016
– ident: e_1_3_2_35_2
  doi: 10.1109/TNSRE.2007.903919
– ident: e_1_3_2_52_2
  doi: 10.1126/science.1107799
– ident: e_1_3_2_46_2
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_3_2_28_2
  doi: 10.1038/nature04113
– ident: e_1_3_2_30_2
  doi: 10.1097/00003677-200504000-00006
– ident: e_1_3_2_3_2
  doi: 10.1098/rspb.2011.1194
– ident: e_1_3_2_31_2
  doi: 10.1109/ICRA.2015.7139347
– ident: e_1_3_2_53_2
  doi: 10.1145/1553374.1553426
– ident: e_1_3_2_22_2
  doi: 10.1152/physrev.1989.69.4.1199
– ident: e_1_3_2_9_2
  doi: 10.1126/scirobotics.aah4416
– ident: e_1_3_2_43_2
  doi: 10.1016/j.patrec.2017.04.007
– ident: e_1_3_2_17_2
  doi: 10.1109/TNSRE.2011.2159018
– ident: e_1_3_2_34_2
  doi: 10.1682/JRRD.2005.04.0073
– ident: e_1_3_2_41_2
  doi: 10.1249/MSS.0000000000001012
– ident: e_1_3_2_45_2
– ident: e_1_3_2_48_2
  doi: 10.1007/978-3-540-30217-9_29
– ident: e_1_3_2_44_2
  doi: 10.1109/ICRA.2015.7139980
– ident: e_1_3_2_7_2
  doi: 10.1186/s12984-015-0086-5
– ident: e_1_3_2_51_2
  doi: 10.1249/mss.0b013e31802b3562
– ident: e_1_3_2_5_2
  doi: 10.1186/1743-0003-11-151
– ident: e_1_3_2_25_2
  doi: 10.1371/journal.pone.0135342
– ident: e_1_3_2_6_2
  doi: 10.1038/nature14288
– ident: e_1_3_2_14_2
  doi: 10.1109/MRA.2014.2360309
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1254486
– ident: e_1_3_2_20_2
  doi: 10.1016/j.jbiomech.2006.12.006
– ident: e_1_3_2_32_2
– ident: e_1_3_2_39_2
  doi: 10.1109/TBME.2015.2472533
– ident: e_1_3_2_8_2
  doi: 10.1109/ICRA.2016.7487663
– ident: e_1_3_2_19_2
  doi: 10.1016/j.jbiomech.2016.09.015
– reference: 28642394 - Science. 2017 Jun 23;356(6344):1230-1231
SSID ssj0009593
Score 2.6790063
Snippet Exoskeletons and active prostheses promise to enhance human mobility, but few have succeeded. Optimizing device characteristics on the basis of measured human...
Exoskeletons can be used to augment human abilities—for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device will...
Exoskeletons can be used to augment human abilities--for example, to lift very heavy loads or to provide greater endurance. For each user, though, a device...
Optimum human inputExoskeletons can be used to augment human abilities-for example, to lift very heavy loads or to provide greater endurance. For each user,...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1280
SubjectTerms Adjustment
Ankle
Biomechanical Phenomena
Calorimetry
Devices
Energy consumption
Energy Metabolism
Exoskeleton
Exoskeleton Device - standards
Exoskeletons
Human performance
Humans
Individual Needs
Machine Learning
Metabolism
Models, Biological
Muscles
Optimization
Prostheses
Prosthesis Fitting - instrumentation
Prosthesis Fitting - methods
Prosthesis Fitting - standards
Prosthetics
Running
Torque
Walking
Walking - physiology
Title Human-in-the-loop optimization of exoskeleton assistance during walking
URI https://www.jstor.org/stable/26399316
https://www.ncbi.nlm.nih.gov/pubmed/28642437
https://www.proquest.com/docview/1974996093
https://www.proquest.com/docview/1913393516
https://www.proquest.com/docview/1925880516
Volume 356
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKJiQuiA0GhYGCxGFoSpQ4rmsfO6BMQyAOm9gtimNH6haSaU20wZ_EX8lz7CQeLNLgErXpi5X0Pb_vs_N-IPSGsTyigkS-iGjoE0mkLzKKfTrX8BGnXFCdO_z5Cz08IUens9PJ5JcTtdTUIsh-3ppX8j9ahXOgV50l-w-a7QeFE_AZ9AtH0DAc76TjdgfeX5U-sDi_qKqL_Qo8wHebWql5oLqu1ueALLp4BtBkTRb1TLbJiVdpcd5BlyWo3VwH4tm_zHFU2EclLkzsQBdKYC9z9hX6neijJi3PmsEIl13z7a-rG7HBq9p06vu0ugRKvAj62B6nCoCuPl3sfwvcvYqoDawz6cSd_7Xljw36GJcb6m6ROIxdnxybauPW-GhMiONkAVJDB7A1wt4OBk77ShWkaQFsjwy4173r_wMO-yDFdnmEaWIHSOwA99AmhiUJ-NTNxcH7g-VoiWdbSMpJ0eru4QYHMmGw4wuclugcP0IP7QrFWxhz20ITVW6j-6Zn6Y9ttGVVvfb2bMnyt4_Rx78s0XMt0atyz7FEb7BEz1iiZy3xCTpZfjh-d-jbFh1-RjipYXJLogRmjGPFuSA5o3PFcw0bcxkqAuRSkBlXoWQsjrIwlADMochnUmR5HKl4B22UVameIU8wEGPpPONEkTzGKZYCvuNUyVxhyaco6P60JLP163UblSIZUdQU7fUXXJjSLeOiO60WejncEveITtFup5bETvx1EsEaXBc14vEUve5_Bres37WlpaoaLRPFOutdDzEug2cAn63MU6Py4QYYJbpW6PO7P8QL9GCYc7too75s1EtgzLV4ZU31NxzTxSo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human-in-the-loop+optimization+of+exoskeleton+assistance+during+walking&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhang%2C+Juanjuan&rft.au=Fiers%2C+Pieter&rft.au=Witte%2C+Kirby+A.&rft.au=Jackson%2C+Rachel+W.&rft.date=2017-06-23&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=356&rft.issue=6344&rft.spage=1280&rft.epage=1284&rft_id=info:doi/10.1126%2Fscience.aal5054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aal5054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon