Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells

The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial...

Full description

Saved in:
Bibliographic Details
Published inBiophysical reports Vol. 1; no. 2; p. 100024
Main Author Janshoff, Andreas
Format Journal Article
LanguageEnglish
Published Elsevier Inc 08.12.2021
Elsevier
Online AccessGet full text

Cover

Loading…
Abstract The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account. [Display omitted]
AbstractList The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.
The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account. [Display omitted]
The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.
ArticleNumber 100024
Author Janshoff, Andreas
Author_xml – sequence: 1
  givenname: Andreas
  orcidid: 0000-0002-0773-2963
  surname: Janshoff
  fullname: Janshoff, Andreas
  email: ajansho@gwdg.de
  organization: Department of Chemistry, Institute of Physical Chemistry, Göttingen
BookMark eNp9UduKFDEUDLKC67of4FsefZkxSaeTaQRBxtvgiiDqa8jlZM3Q3RmTnoH9G7_FL_O0vYLrwxJIck6qKoeqx-RszCMQ8pSzNWdcPd-v3aGsBRMca8aEfEDOhVJ6xbTUZ__cH5HLWvczRHeS6eacfP6Wqs_Q2zoln6YbmiN1ttqeHrA3WDrA4IodoVI7hl8_fS4IxCpASScINJY80I-vtx_obkc99H19Qh5G21e4vD0vyNe3b75s36-uPr3bbV9drbzs5LSSTRO4C1IEnCV6GVmQClSQbeBcWQ6i2YALQkeLO-c2qlZz55WSvLG4Lshu0Q3Z7s2hpMGWG5NtMn8auVwbOw_bg4n4A0Stgw8bGTl0rgmS8-Bj6BrXctR6uWgdjm6A4GGciu3viN59GdN3c51PplMbprVEgWe3AiX_OEKdzIDGoh1oXT5WI7RkLWuVEAjVC9SXXGuBaNB4O6U8K6fecGbmVM3eYKpmTtUsqSKT_8f8O-B9nBcLBzCKU4Jiqk8wegipgJ_Qq3QP-zeQUb5A
CitedBy_id crossref_primary_10_1016_j_bpj_2022_08_024
Cites_doi 10.1038/ncb3525
10.1016/0014-4827(92)90046-B
10.1039/C9NR10316C
10.1021/acsami.8b01990
10.1021/acs.nanolett.0c01769
10.1146/annurev-matsci-062910-100351
10.1016/j.ultramic.2012.12.018
10.1016/j.tcb.2012.07.001
10.1152/physrev.00004.2010
10.1038/nmat3574
10.1103/PhysRevLett.78.2020
10.1038/nrm3775
10.1242/jcs.186254
10.1515/znc-1973-11-1209
10.1098/rsob.140046
10.1039/C0SM00833H
10.1103/PhysRevLett.87.148102
10.1021/ja809165h
10.1039/c3sm51610e
10.1016/j.bpj.2016.12.032
10.1529/biophysj.106.081398
10.1103/PhysRevLett.125.068101
10.1103/PhysRevE.74.061914
10.1016/S0006-3495(84)84209-5
10.1016/j.bpj.2016.04.034
10.1021/la2003172
10.1016/S0022-5193(70)80032-7
10.1038/srep14700
10.1098/rsif.2014.1057
10.1016/j.bpj.2017.08.038
10.1146/annurev.cellbio.22.010305.104219
10.1039/c2jm31737k
10.1529/biophysj.105.063826
10.1016/j.bpj.2016.06.008
10.1038/s42254-018-0001-7
10.1126/science.1095087
10.1103/PhysRevLett.122.218102
10.1126/sciadv.1501337
10.1016/S0014-5793(98)01118-1
10.1103/PhysRevLett.105.238101
10.1039/C8NR05899G
10.1002/smll.200800930
10.1103/PhysRevE.65.041901
10.1103/PhysRevA.39.5280
ContentType Journal Article
Copyright 2021 The Author
2021 The Author.
2021 The Author 2021
Copyright_xml – notice: 2021 The Author
– notice: 2021 The Author.
– notice: 2021 The Author 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bpr.2021.100024
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2667-0747
ExternalDocumentID oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51
PMC9680774
10_1016_j_bpr_2021_100024
S2667074721000240
GroupedDBID 6I.
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
0R~
AALRI
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c494t-433d1bd42d794fc4f0d46e6d45d116a1e238ebd27fabd211af6571bc66413a3a3
IEDL.DBID DOA
ISSN 2667-0747
IngestDate Wed Aug 27 01:17:50 EDT 2025
Thu Aug 21 18:39:38 EDT 2025
Fri Jul 11 00:12:38 EDT 2025
Thu Apr 24 23:05:46 EDT 2025
Tue Jul 01 01:37:37 EDT 2025
Tue Jul 25 20:59:47 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-433d1bd42d794fc4f0d46e6d45d116a1e238ebd27fabd211af6571bc66413a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0773-2963
OpenAccessLink https://doaj.org/article/f94fef77dcd84f1e9b3d411dcfd93b51
PQID 2740505622
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9680774
proquest_miscellaneous_2740505622
crossref_citationtrail_10_1016_j_bpr_2021_100024
crossref_primary_10_1016_j_bpr_2021_100024
elsevier_sciencedirect_doi_10_1016_j_bpr_2021_100024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-08
PublicationDateYYYYMMDD 2021-12-08
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-08
  day: 08
PublicationDecade 2020
PublicationTitle Biophysical reports
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mey, Steinem, Janshoff (bib33) 2012; 22
Brückner, Nöding, Janshoff (bib8) 2017; 112
Nehls, Janshoff (bib9) 2017; 113
Sen, Subramanian, Discher (bib4) 2005; 89
Chugh, Paluch (bib18) 2018; 131
Cassel (bib38) 2013
Cartagena-Rivera, Logue, Chadwick (bib7) 2016; 110
Cordes, Witt, Janshoff (bib19) 2020; 125
Rouven Brückner, Pietuch, Janshoff (bib28) 2015; 5
Garcia, Garcia (bib11) 2018; 10
Kocun, Lazzara, Janshoff (bib39) 2011; 27
Kim, Riehemann, Fuchs (bib15) 2018; 10
Chugh, Clark, Paluch (bib17) 2017; 19
Lorenz, Mey, Janshoff (bib13) 2009; 5
Rother, Büchsenschütz-Göbeler, Janshoff (bib45) 2015; 12
Fischer-Friedrich, Toyoda, Jülicher (bib16) 2016; 111
Fritzsche, Erlenkämper, Kruse (bib21) 2016; 2
Powers, Huber, Goldstein (bib34) 2002; 65
Rother, Nöding, Janshoff (bib6) 2014; 4
Broedersz, Depken, MacKintosh (bib46) 2010; 105
Zhou, Martinez, Fredberg (bib25) 2013; 12
Mey, Stephan, Janshoff (bib32) 2009; 131
Garcia, Guerrero, Garcia (bib12) 2020; 12
Sollich, Lequeux, Cates (bib26) 1997; 78
Hubrich, Mey, Janshoff (bib27) 2020; 20
Ziegler, Vinckier, Groscurth (bib29) 1998; 436
Niessen, Leckband, Yap (bib2) 2011; 91
Salbreux, Charras, Paluch (bib20) 2012; 22
Pietuch, Brückner, Janshoff (bib5) 2013; 9
Fabry, Maksym, Fredberg (bib22) 2001; 87
Mulla, MacKintosh, Koenderink (bib43) 2019; 122
Krieg, Fläschner, Müller (bib10) 2018; 1
Shin, Fogg, Margolis (bib3) 2006; 22
Canham (bib35) 1970; 26
Kollmannsberger, Mierke, Fabry (bib24) 2011; 7
Steltenkamp, Müller, Janshoff (bib31) 2006; 91
Helfrich (bib36) 1973; 28
Daily, Elson, Zahalak (bib40) 1984; 45
Ott, Magnasco, Libchaber (bib42) 1993; 48
Butor, Davoust (bib44) 1992; 203
Gudzenko, Franz (bib14) 2013; 128
Kollmannsberger, Fabry (bib23) 2011; 41
Rodriguez-Boulan, Macara (bib1) 2014; 15
Gardel, Shin, Weitz (bib41) 2004; 304
Norouzi, Müller, Deserno (bib30) 2006; 74
Zhong-can, Helfrich (bib37) 1989; 39
Kim (10.1016/j.bpr.2021.100024_bib15) 2018; 10
Rother (10.1016/j.bpr.2021.100024_bib6) 2014; 4
Mey (10.1016/j.bpr.2021.100024_bib33) 2012; 22
Ott (10.1016/j.bpr.2021.100024_bib42) 1993; 48
Krieg (10.1016/j.bpr.2021.100024_bib10) 2018; 1
Fischer-Friedrich (10.1016/j.bpr.2021.100024_bib16) 2016; 111
Mey (10.1016/j.bpr.2021.100024_bib32) 2009; 131
Brückner (10.1016/j.bpr.2021.100024_bib8) 2017; 112
Gardel (10.1016/j.bpr.2021.100024_bib41) 2004; 304
Zhong-can (10.1016/j.bpr.2021.100024_bib37) 1989; 39
Mulla (10.1016/j.bpr.2021.100024_bib43) 2019; 122
Steltenkamp (10.1016/j.bpr.2021.100024_bib31) 2006; 91
Garcia (10.1016/j.bpr.2021.100024_bib11) 2018; 10
Garcia (10.1016/j.bpr.2021.100024_bib12) 2020; 12
Chugh (10.1016/j.bpr.2021.100024_bib18) 2018; 131
Kollmannsberger (10.1016/j.bpr.2021.100024_bib24) 2011; 7
Rother (10.1016/j.bpr.2021.100024_bib45) 2015; 12
Niessen (10.1016/j.bpr.2021.100024_bib2) 2011; 91
Cassel (10.1016/j.bpr.2021.100024_bib38) 2013
Sollich (10.1016/j.bpr.2021.100024_bib26) 1997; 78
Nehls (10.1016/j.bpr.2021.100024_bib9) 2017; 113
Ziegler (10.1016/j.bpr.2021.100024_bib29) 1998; 436
Sen (10.1016/j.bpr.2021.100024_bib4) 2005; 89
Gudzenko (10.1016/j.bpr.2021.100024_bib14) 2013; 128
Rouven Brückner (10.1016/j.bpr.2021.100024_bib28) 2015; 5
Norouzi (10.1016/j.bpr.2021.100024_bib30) 2006; 74
Hubrich (10.1016/j.bpr.2021.100024_bib27) 2020; 20
Chugh (10.1016/j.bpr.2021.100024_bib17) 2017; 19
Salbreux (10.1016/j.bpr.2021.100024_bib20) 2012; 22
Zhou (10.1016/j.bpr.2021.100024_bib25) 2013; 12
Fritzsche (10.1016/j.bpr.2021.100024_bib21) 2016; 2
Powers (10.1016/j.bpr.2021.100024_bib34) 2002; 65
Kocun (10.1016/j.bpr.2021.100024_bib39) 2011; 27
Pietuch (10.1016/j.bpr.2021.100024_bib5) 2013; 9
Rodriguez-Boulan (10.1016/j.bpr.2021.100024_bib1) 2014; 15
Broedersz (10.1016/j.bpr.2021.100024_bib46) 2010; 105
Fabry (10.1016/j.bpr.2021.100024_bib22) 2001; 87
Cartagena-Rivera (10.1016/j.bpr.2021.100024_bib7) 2016; 110
Lorenz (10.1016/j.bpr.2021.100024_bib13) 2009; 5
Helfrich (10.1016/j.bpr.2021.100024_bib36) 1973; 28
Shin (10.1016/j.bpr.2021.100024_bib3) 2006; 22
Daily (10.1016/j.bpr.2021.100024_bib40) 1984; 45
Canham (10.1016/j.bpr.2021.100024_bib35) 1970; 26
Kollmannsberger (10.1016/j.bpr.2021.100024_bib23) 2011; 41
Butor (10.1016/j.bpr.2021.100024_bib44) 1992; 203
Cordes (10.1016/j.bpr.2021.100024_bib19) 2020; 125
References_xml – volume: 15
  start-page: 225
  year: 2014
  end-page: 242
  ident: bib1
  article-title: Organization and execution of the epithelial polarity programme
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 74
  start-page: 061914
  year: 2006
  ident: bib30
  article-title: How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
– volume: 10
  start-page: 12485
  year: 2018
  end-page: 12490
  ident: bib15
  article-title: Force Spectroscopy on a Cell Drum: AFM Measurements on the Basolateral Side of Cells via Inverted Cell Cultures
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 536
  year: 2012
  end-page: 545
  ident: bib20
  article-title: Actin cortex mechanics and cellular morphogenesis
  publication-title: Trends Cell Biol.
– volume: 128
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib14
  article-title: Inverting adherent cells for visualizing ECM interactions at the basal cell side
  publication-title: Ultramicroscopy
– volume: 19
  start-page: 689
  year: 2017
  end-page: 697
  ident: bib17
  article-title: Actin cortex architecture regulates cell surface tension
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 3127
  year: 2011
  end-page: 3132
  ident: bib24
  article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension
  publication-title: Soft Matter
– volume: 48
  start-page: R1642
  year: 1993
  end-page: R1645
  ident: bib42
  article-title: Measurement of the persistence length of polymerized actin using fluorescence microscopy
  publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics
– volume: 105
  start-page: 238101
  year: 2010
  ident: bib46
  article-title: Cross-link-governed dynamics of biopolymer networks
  publication-title: Phys. Rev. Lett.
– volume: 122
  start-page: 218102
  year: 2019
  ident: bib43
  article-title: Origin of Slow Stress Relaxation in the Cytoskeleton
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 3203
  year: 2005
  end-page: 3213
  ident: bib4
  article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments
  publication-title: Biophys. J.
– volume: 113
  start-page: 1822
  year: 2017
  end-page: 1830
  ident: bib9
  article-title: Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells
  publication-title: Biophys. J.
– volume: 4
  start-page: 140046
  year: 2014
  ident: bib6
  article-title: Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines
  publication-title: Open Biol.
– volume: 20
  start-page: 6329
  year: 2020
  end-page: 6335
  ident: bib27
  article-title: Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments
  publication-title: Nano Lett.
– volume: 22
  start-page: 207
  year: 2006
  end-page: 235
  ident: bib3
  article-title: Tight junctions and cell polarity
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 111
  start-page: 589
  year: 2016
  end-page: 600
  ident: bib16
  article-title: Rheology of the Active Cell Cortex in Mitosis
  publication-title: Biophys. J.
– volume: 112
  start-page: 724
  year: 2017
  end-page: 735
  ident: bib8
  article-title: Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments
  publication-title: Biophys. J.
– volume: 12
  start-page: 9133
  year: 2020
  end-page: 9143
  ident: bib12
  article-title: Nanorheology of living cells measured by AFM-based force-distance curves
  publication-title: Nanoscale
– volume: 131
  start-page: jcs186254
  year: 2018
  ident: bib18
  article-title: The actin cortex at a glance
  publication-title: J. Cell Sci.
– volume: 436
  start-page: 179
  year: 1998
  end-page: 184
  ident: bib29
  article-title: Preparation of basal cell membranes for scanning probe microscopy
  publication-title: FEBS Lett.
– volume: 28
  start-page: 693
  year: 1973
  end-page: 703
  ident: bib36
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Z. Naturforsch. C
– volume: 203
  start-page: 115
  year: 1992
  end-page: 127
  ident: bib44
  article-title: Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports
  publication-title: Exp. Cell Res.
– volume: 1
  start-page: 41
  year: 2018
  end-page: 57
  ident: bib10
  article-title: Atomic force microscopy-based mechanobiology
  publication-title: Nat. Rev. Phys.
– volume: 87
  start-page: 148102
  year: 2001
  ident: bib22
  article-title: Scaling the microrheology of living cells
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 184
  year: 2013
  end-page: 185
  ident: bib25
  article-title: Cell rheology: mush rather than machine
  publication-title: Nat. Mater.
– volume: 22
  start-page: 19348
  year: 2012
  ident: bib33
  article-title: Biomimetic functionalization of porous substrates: towards model systems for cellular membranes
  publication-title: J. Mater. Chem.
– volume: 125
  start-page: 068101
  year: 2020
  ident: bib19
  article-title: Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 671
  year: 1984
  end-page: 682
  ident: bib40
  article-title: Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane
  publication-title: Biophys. J.
– volume: 110
  start-page: 2528
  year: 2016
  end-page: 2539
  ident: bib7
  article-title: Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy
  publication-title: Biophys. J.
– volume: 2
  start-page: e1501337
  year: 2016
  ident: bib21
  article-title: Actin kinetics shapes cortical network structure and mechanics
  publication-title: Sci. Adv.
– volume: 12
  start-page: 20141057
  year: 2015
  ident: bib45
  article-title: Cytoskeleton remodelling of confluent epithelial cells cultured on porous substrates
  publication-title: J. R. Soc. Interface
– volume: 131
  start-page: 7031
  year: 2009
  end-page: 7039
  ident: bib32
  article-title: Local membrane mechanics of pore-spanning bilayers
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 691
  year: 2011
  end-page: 731
  ident: bib2
  article-title: Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation
  publication-title: Physiol. Rev.
– volume: 91
  start-page: 217
  year: 2006
  end-page: 226
  ident: bib31
  article-title: Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy
  publication-title: Biophys. J.
– volume: 27
  start-page: 7672
  year: 2011
  end-page: 7680
  ident: bib39
  article-title: Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes
  publication-title: Langmuir
– volume: 5
  start-page: 14700
  year: 2015
  ident: bib28
  article-title: Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells
  publication-title: Sci. Rep.
– volume: 39
  start-page: 5280
  year: 1989
  end-page: 5288
  ident: bib37
  article-title: Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
  publication-title: Phys. Rev. A Gen. Phys.
– volume: 78
  start-page: 2020
  year: 1997
  end-page: 2023
  ident: bib26
  article-title: Rheology of Soft Glassy Materials
  publication-title: Phys. Rev. Lett.
– volume: 41
  start-page: 75
  year: 2011
  end-page: 97
  ident: bib23
  article-title: Linear and Nonlinear Rheology of Living Cells
  publication-title: Annu. Rev. Mater. Res.
– volume: 9
  start-page: 11490
  year: 2013
  ident: bib5
  article-title: Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation
  publication-title: Soft Matter
– volume: 65
  start-page: 041901
  year: 2002
  ident: bib34
  article-title: Fluid-membrane tethers: minimal surfaces and elastic boundary layers
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
– year: 2013
  ident: bib38
  article-title: Variational Methods with Applications in Science and Engineering
– volume: 26
  start-page: 61
  year: 1970
  end-page: 81
  ident: bib35
  article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell
  publication-title: J. Theor. Biol.
– volume: 5
  start-page: 832
  year: 2009
  end-page: 838
  ident: bib13
  article-title: Elasticity mapping of pore-suspending native cell membranes
  publication-title: Small
– volume: 10
  start-page: 19799
  year: 2018
  end-page: 19809
  ident: bib11
  article-title: Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy
  publication-title: Nanoscale
– volume: 304
  start-page: 1301
  year: 2004
  end-page: 1305
  ident: bib41
  article-title: Elastic behavior of cross-linked and bundled actin networks
  publication-title: Science
– volume: 19
  start-page: 689
  year: 2017
  ident: 10.1016/j.bpr.2021.100024_bib17
  article-title: Actin cortex architecture regulates cell surface tension
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3525
– volume: 203
  start-page: 115
  year: 1992
  ident: 10.1016/j.bpr.2021.100024_bib44
  article-title: Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(92)90046-B
– volume: 12
  start-page: 9133
  year: 2020
  ident: 10.1016/j.bpr.2021.100024_bib12
  article-title: Nanorheology of living cells measured by AFM-based force-distance curves
  publication-title: Nanoscale
  doi: 10.1039/C9NR10316C
– volume: 10
  start-page: 12485
  year: 2018
  ident: 10.1016/j.bpr.2021.100024_bib15
  article-title: Force Spectroscopy on a Cell Drum: AFM Measurements on the Basolateral Side of Cells via Inverted Cell Cultures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01990
– volume: 20
  start-page: 6329
  year: 2020
  ident: 10.1016/j.bpr.2021.100024_bib27
  article-title: Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01769
– volume: 41
  start-page: 75
  year: 2011
  ident: 10.1016/j.bpr.2021.100024_bib23
  article-title: Linear and Nonlinear Rheology of Living Cells
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-062910-100351
– volume: 128
  start-page: 1
  year: 2013
  ident: 10.1016/j.bpr.2021.100024_bib14
  article-title: Inverting adherent cells for visualizing ECM interactions at the basal cell side
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.12.018
– volume: 22
  start-page: 536
  year: 2012
  ident: 10.1016/j.bpr.2021.100024_bib20
  article-title: Actin cortex mechanics and cellular morphogenesis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.07.001
– volume: 91
  start-page: 691
  year: 2011
  ident: 10.1016/j.bpr.2021.100024_bib2
  article-title: Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00004.2010
– volume: 12
  start-page: 184
  year: 2013
  ident: 10.1016/j.bpr.2021.100024_bib25
  article-title: Cell rheology: mush rather than machine
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3574
– volume: 78
  start-page: 2020
  year: 1997
  ident: 10.1016/j.bpr.2021.100024_bib26
  article-title: Rheology of Soft Glassy Materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.2020
– volume: 15
  start-page: 225
  year: 2014
  ident: 10.1016/j.bpr.2021.100024_bib1
  article-title: Organization and execution of the epithelial polarity programme
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3775
– volume: 131
  start-page: jcs186254
  year: 2018
  ident: 10.1016/j.bpr.2021.100024_bib18
  article-title: The actin cortex at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.186254
– volume: 28
  start-page: 693
  year: 1973
  ident: 10.1016/j.bpr.2021.100024_bib36
  article-title: Elastic properties of lipid bilayers: theory and possible experiments
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-1973-11-1209
– volume: 4
  start-page: 140046
  year: 2014
  ident: 10.1016/j.bpr.2021.100024_bib6
  article-title: Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines
  publication-title: Open Biol.
  doi: 10.1098/rsob.140046
– volume: 48
  start-page: R1642
  year: 1993
  ident: 10.1016/j.bpr.2021.100024_bib42
  article-title: Measurement of the persistence length of polymerized actin using fluorescence microscopy
  publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics
– volume: 7
  start-page: 3127
  year: 2011
  ident: 10.1016/j.bpr.2021.100024_bib24
  article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension
  publication-title: Soft Matter
  doi: 10.1039/C0SM00833H
– volume: 87
  start-page: 148102
  year: 2001
  ident: 10.1016/j.bpr.2021.100024_bib22
  article-title: Scaling the microrheology of living cells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.148102
– volume: 131
  start-page: 7031
  year: 2009
  ident: 10.1016/j.bpr.2021.100024_bib32
  article-title: Local membrane mechanics of pore-spanning bilayers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809165h
– volume: 9
  start-page: 11490
  year: 2013
  ident: 10.1016/j.bpr.2021.100024_bib5
  article-title: Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation
  publication-title: Soft Matter
  doi: 10.1039/c3sm51610e
– volume: 112
  start-page: 724
  year: 2017
  ident: 10.1016/j.bpr.2021.100024_bib8
  article-title: Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.12.032
– volume: 91
  start-page: 217
  year: 2006
  ident: 10.1016/j.bpr.2021.100024_bib31
  article-title: Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.081398
– volume: 125
  start-page: 068101
  year: 2020
  ident: 10.1016/j.bpr.2021.100024_bib19
  article-title: Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.068101
– volume: 74
  start-page: 061914
  year: 2006
  ident: 10.1016/j.bpr.2021.100024_bib30
  article-title: How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.74.061914
– volume: 45
  start-page: 671
  year: 1984
  ident: 10.1016/j.bpr.2021.100024_bib40
  article-title: Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(84)84209-5
– volume: 110
  start-page: 2528
  year: 2016
  ident: 10.1016/j.bpr.2021.100024_bib7
  article-title: Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.04.034
– volume: 27
  start-page: 7672
  year: 2011
  ident: 10.1016/j.bpr.2021.100024_bib39
  article-title: Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes
  publication-title: Langmuir
  doi: 10.1021/la2003172
– year: 2013
  ident: 10.1016/j.bpr.2021.100024_bib38
– volume: 26
  start-page: 61
  year: 1970
  ident: 10.1016/j.bpr.2021.100024_bib35
  article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(70)80032-7
– volume: 5
  start-page: 14700
  year: 2015
  ident: 10.1016/j.bpr.2021.100024_bib28
  article-title: Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep14700
– volume: 12
  start-page: 20141057
  year: 2015
  ident: 10.1016/j.bpr.2021.100024_bib45
  article-title: Cytoskeleton remodelling of confluent epithelial cells cultured on porous substrates
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.1057
– volume: 113
  start-page: 1822
  year: 2017
  ident: 10.1016/j.bpr.2021.100024_bib9
  article-title: Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.08.038
– volume: 22
  start-page: 207
  year: 2006
  ident: 10.1016/j.bpr.2021.100024_bib3
  article-title: Tight junctions and cell polarity
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.22.010305.104219
– volume: 22
  start-page: 19348
  year: 2012
  ident: 10.1016/j.bpr.2021.100024_bib33
  article-title: Biomimetic functionalization of porous substrates: towards model systems for cellular membranes
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31737k
– volume: 89
  start-page: 3203
  year: 2005
  ident: 10.1016/j.bpr.2021.100024_bib4
  article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.063826
– volume: 111
  start-page: 589
  year: 2016
  ident: 10.1016/j.bpr.2021.100024_bib16
  article-title: Rheology of the Active Cell Cortex in Mitosis
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.06.008
– volume: 1
  start-page: 41
  year: 2018
  ident: 10.1016/j.bpr.2021.100024_bib10
  article-title: Atomic force microscopy-based mechanobiology
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0001-7
– volume: 304
  start-page: 1301
  year: 2004
  ident: 10.1016/j.bpr.2021.100024_bib41
  article-title: Elastic behavior of cross-linked and bundled actin networks
  publication-title: Science
  doi: 10.1126/science.1095087
– volume: 122
  start-page: 218102
  year: 2019
  ident: 10.1016/j.bpr.2021.100024_bib43
  article-title: Origin of Slow Stress Relaxation in the Cytoskeleton
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.218102
– volume: 2
  start-page: e1501337
  year: 2016
  ident: 10.1016/j.bpr.2021.100024_bib21
  article-title: Actin kinetics shapes cortical network structure and mechanics
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501337
– volume: 436
  start-page: 179
  year: 1998
  ident: 10.1016/j.bpr.2021.100024_bib29
  article-title: Preparation of basal cell membranes for scanning probe microscopy
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)01118-1
– volume: 105
  start-page: 238101
  year: 2010
  ident: 10.1016/j.bpr.2021.100024_bib46
  article-title: Cross-link-governed dynamics of biopolymer networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.238101
– volume: 10
  start-page: 19799
  year: 2018
  ident: 10.1016/j.bpr.2021.100024_bib11
  article-title: Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy
  publication-title: Nanoscale
  doi: 10.1039/C8NR05899G
– volume: 5
  start-page: 832
  year: 2009
  ident: 10.1016/j.bpr.2021.100024_bib13
  article-title: Elasticity mapping of pore-suspending native cell membranes
  publication-title: Small
  doi: 10.1002/smll.200800930
– volume: 65
  start-page: 041901
  year: 2002
  ident: 10.1016/j.bpr.2021.100024_bib34
  article-title: Fluid-membrane tethers: minimal surfaces and elastic boundary layers
  publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
  doi: 10.1103/PhysRevE.65.041901
– volume: 39
  start-page: 5280
  year: 1989
  ident: 10.1016/j.bpr.2021.100024_bib37
  article-title: Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders
  publication-title: Phys. Rev. A Gen. Phys.
  doi: 10.1103/PhysRevA.39.5280
SSID ssj0002794073
Score 2.2282774
Snippet The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile,...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100024
Title Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells
URI https://dx.doi.org/10.1016/j.bpr.2021.100024
https://www.proquest.com/docview/2740505622
https://pubmed.ncbi.nlm.nih.gov/PMC9680774
https://doaj.org/article/f94fef77dcd84f1e9b3d411dcfd93b51
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqTr1UBVp1y4-MVPVQKWocbCc5UijiR_RQlYqbZXtsdRGbXbG7SLwNz9InY8ZJ0OYCFxQph8ROnPE4883485ixL1pYgSggZAKiy2RQOnNeFlmunYpFbq1N3JyLX_rkUp5dqauVrb6IE9amB24F9z3WMoZYluChklGE2u2DFAJ8hHrfpcXTBdq8FWfqOk2n1eip0PQyGiCKxcmyn9JM5C43o1yghSCSQF7IgVFKufsHtmkFew6Zkyum6Pg9e9dhSH7Qtn2dvQnNBts8aNB_ntzzrzyxOlO4fJP9_jue-2lAjEz06cU9n0aOlgurz_DaxPJJmKDDjD88bhv4_4DOKNHh5hxQNe8CcFp_wi-ODs_56SmnMP_8A7s8_vnn8CTr9lHIvKzlghZFgXAgC0CpRC9jDlIHDVKBENqKgGY7OCjKaPEshI1alcJ5rdHCWTw-srVm2oRPjAcVSkUbUwPCAqegFsp7WYXcIY6rLIxY3gvS-C7JOO11cWN6Ntm1Qdkbkr1pZT9i356qzNoMG88V_kG981SQkmOnC6gyplMZ85LKjJjs-9Z0OKPFD_io8XPv3uv1wOAYJIlj70yXc4OefZ6QZDFi5UBBBg0d3mnG_1I271pXOWLwz6_xZVvsLTU40W2qbba2uF2GHQRNC7ebxsduimY9Av4uF9M
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viscoelasticity+of+basal+plasma+membranes+and%C2%A0cortices+derived+from+MDCK+II+cells&rft.jtitle=Biophysical+reports&rft.au=Andreas+Janshoff&rft.date=2021-12-08&rft.pub=Elsevier&rft.issn=2667-0747&rft.eissn=2667-0747&rft.volume=1&rft.issue=2&rft.spage=100024&rft_id=info:doi/10.1016%2Fj.bpr.2021.100024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0747&client=summon