Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells
The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial...
Saved in:
Published in | Biophysical reports Vol. 1; no. 2; p. 100024 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
08.12.2021
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.
[Display omitted] |
---|---|
AbstractList | The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account. The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account. [Display omitted] The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account.The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile, cross-linked actin mesh attached to the plasma membrane via linker proteins. Measuring the mechanical properties of adherent, polarized epithelial cells is usually limited to the upper, i.e., apical side, of the cells because of their accessibility on culture dishes. Therefore, less is known about the viscoelastic properties of basal membranes. Here, I investigate the viscoelastic properties of basolateral membranes derived from polarized MDCK II epithelia in response to external deformation and compare them to living cells probed at the apical side. MDCK II cells were grown on porous surfaces to confluence, and the upper cell body was removed via a squirting-lysis protocol. The free-standing, defoliated basal membranes were subject to force indentation and relaxation experiments permitting a precise assessment of cortical viscoelasticity. A new theoretical framework to describe the force cycles is developed and applied to obtain the time-dependent area compressibility modulus of cell cortices from adherent cells. Compared with the viscoelastic response of living cells, the basolateral membranes are substantially less fluid and stiffer but obey to the same universal scaling law if excess area is taken correctly into account. |
ArticleNumber | 100024 |
Author | Janshoff, Andreas |
Author_xml | – sequence: 1 givenname: Andreas orcidid: 0000-0002-0773-2963 surname: Janshoff fullname: Janshoff, Andreas email: ajansho@gwdg.de organization: Department of Chemistry, Institute of Physical Chemistry, Göttingen |
BookMark | eNp9UduKFDEUDLKC67of4FsefZkxSaeTaQRBxtvgiiDqa8jlZM3Q3RmTnoH9G7_FL_O0vYLrwxJIck6qKoeqx-RszCMQ8pSzNWdcPd-v3aGsBRMca8aEfEDOhVJ6xbTUZ__cH5HLWvczRHeS6eacfP6Wqs_Q2zoln6YbmiN1ttqeHrA3WDrA4IodoVI7hl8_fS4IxCpASScINJY80I-vtx_obkc99H19Qh5G21e4vD0vyNe3b75s36-uPr3bbV9drbzs5LSSTRO4C1IEnCV6GVmQClSQbeBcWQ6i2YALQkeLO-c2qlZz55WSvLG4Lshu0Q3Z7s2hpMGWG5NtMn8auVwbOw_bg4n4A0Stgw8bGTl0rgmS8-Bj6BrXctR6uWgdjm6A4GGciu3viN59GdN3c51PplMbprVEgWe3AiX_OEKdzIDGoh1oXT5WI7RkLWuVEAjVC9SXXGuBaNB4O6U8K6fecGbmVM3eYKpmTtUsqSKT_8f8O-B9nBcLBzCKU4Jiqk8wegipgJ_Qq3QP-zeQUb5A |
CitedBy_id | crossref_primary_10_1016_j_bpj_2022_08_024 |
Cites_doi | 10.1038/ncb3525 10.1016/0014-4827(92)90046-B 10.1039/C9NR10316C 10.1021/acsami.8b01990 10.1021/acs.nanolett.0c01769 10.1146/annurev-matsci-062910-100351 10.1016/j.ultramic.2012.12.018 10.1016/j.tcb.2012.07.001 10.1152/physrev.00004.2010 10.1038/nmat3574 10.1103/PhysRevLett.78.2020 10.1038/nrm3775 10.1242/jcs.186254 10.1515/znc-1973-11-1209 10.1098/rsob.140046 10.1039/C0SM00833H 10.1103/PhysRevLett.87.148102 10.1021/ja809165h 10.1039/c3sm51610e 10.1016/j.bpj.2016.12.032 10.1529/biophysj.106.081398 10.1103/PhysRevLett.125.068101 10.1103/PhysRevE.74.061914 10.1016/S0006-3495(84)84209-5 10.1016/j.bpj.2016.04.034 10.1021/la2003172 10.1016/S0022-5193(70)80032-7 10.1038/srep14700 10.1098/rsif.2014.1057 10.1016/j.bpj.2017.08.038 10.1146/annurev.cellbio.22.010305.104219 10.1039/c2jm31737k 10.1529/biophysj.105.063826 10.1016/j.bpj.2016.06.008 10.1038/s42254-018-0001-7 10.1126/science.1095087 10.1103/PhysRevLett.122.218102 10.1126/sciadv.1501337 10.1016/S0014-5793(98)01118-1 10.1103/PhysRevLett.105.238101 10.1039/C8NR05899G 10.1002/smll.200800930 10.1103/PhysRevE.65.041901 10.1103/PhysRevA.39.5280 |
ContentType | Journal Article |
Copyright | 2021 The Author 2021 The Author. 2021 The Author 2021 |
Copyright_xml | – notice: 2021 The Author – notice: 2021 The Author. – notice: 2021 The Author 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.bpr.2021.100024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2667-0747 |
ExternalDocumentID | oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51 PMC9680774 10_1016_j_bpr_2021_100024 S2667074721000240 |
GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM 0R~ AALRI AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c494t-433d1bd42d794fc4f0d46e6d45d116a1e238ebd27fabd211af6571bc66413a3a3 |
IEDL.DBID | DOA |
ISSN | 2667-0747 |
IngestDate | Wed Aug 27 01:17:50 EDT 2025 Thu Aug 21 18:39:38 EDT 2025 Fri Jul 11 00:12:38 EDT 2025 Thu Apr 24 23:05:46 EDT 2025 Tue Jul 01 01:37:37 EDT 2025 Tue Jul 25 20:59:47 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-433d1bd42d794fc4f0d46e6d45d116a1e238ebd27fabd211af6571bc66413a3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0773-2963 |
OpenAccessLink | https://doaj.org/article/f94fef77dcd84f1e9b3d411dcfd93b51 |
PQID | 2740505622 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9680774 proquest_miscellaneous_2740505622 crossref_citationtrail_10_1016_j_bpr_2021_100024 crossref_primary_10_1016_j_bpr_2021_100024 elsevier_sciencedirect_doi_10_1016_j_bpr_2021_100024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-08 |
PublicationDateYYYYMMDD | 2021-12-08 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Biophysical reports |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Mey, Steinem, Janshoff (bib33) 2012; 22 Brückner, Nöding, Janshoff (bib8) 2017; 112 Nehls, Janshoff (bib9) 2017; 113 Sen, Subramanian, Discher (bib4) 2005; 89 Chugh, Paluch (bib18) 2018; 131 Cassel (bib38) 2013 Cartagena-Rivera, Logue, Chadwick (bib7) 2016; 110 Cordes, Witt, Janshoff (bib19) 2020; 125 Rouven Brückner, Pietuch, Janshoff (bib28) 2015; 5 Garcia, Garcia (bib11) 2018; 10 Kocun, Lazzara, Janshoff (bib39) 2011; 27 Kim, Riehemann, Fuchs (bib15) 2018; 10 Chugh, Clark, Paluch (bib17) 2017; 19 Lorenz, Mey, Janshoff (bib13) 2009; 5 Rother, Büchsenschütz-Göbeler, Janshoff (bib45) 2015; 12 Fischer-Friedrich, Toyoda, Jülicher (bib16) 2016; 111 Fritzsche, Erlenkämper, Kruse (bib21) 2016; 2 Powers, Huber, Goldstein (bib34) 2002; 65 Rother, Nöding, Janshoff (bib6) 2014; 4 Broedersz, Depken, MacKintosh (bib46) 2010; 105 Zhou, Martinez, Fredberg (bib25) 2013; 12 Mey, Stephan, Janshoff (bib32) 2009; 131 Garcia, Guerrero, Garcia (bib12) 2020; 12 Sollich, Lequeux, Cates (bib26) 1997; 78 Hubrich, Mey, Janshoff (bib27) 2020; 20 Ziegler, Vinckier, Groscurth (bib29) 1998; 436 Niessen, Leckband, Yap (bib2) 2011; 91 Salbreux, Charras, Paluch (bib20) 2012; 22 Pietuch, Brückner, Janshoff (bib5) 2013; 9 Fabry, Maksym, Fredberg (bib22) 2001; 87 Mulla, MacKintosh, Koenderink (bib43) 2019; 122 Krieg, Fläschner, Müller (bib10) 2018; 1 Shin, Fogg, Margolis (bib3) 2006; 22 Canham (bib35) 1970; 26 Kollmannsberger, Mierke, Fabry (bib24) 2011; 7 Steltenkamp, Müller, Janshoff (bib31) 2006; 91 Helfrich (bib36) 1973; 28 Daily, Elson, Zahalak (bib40) 1984; 45 Ott, Magnasco, Libchaber (bib42) 1993; 48 Butor, Davoust (bib44) 1992; 203 Gudzenko, Franz (bib14) 2013; 128 Kollmannsberger, Fabry (bib23) 2011; 41 Rodriguez-Boulan, Macara (bib1) 2014; 15 Gardel, Shin, Weitz (bib41) 2004; 304 Norouzi, Müller, Deserno (bib30) 2006; 74 Zhong-can, Helfrich (bib37) 1989; 39 Kim (10.1016/j.bpr.2021.100024_bib15) 2018; 10 Rother (10.1016/j.bpr.2021.100024_bib6) 2014; 4 Mey (10.1016/j.bpr.2021.100024_bib33) 2012; 22 Ott (10.1016/j.bpr.2021.100024_bib42) 1993; 48 Krieg (10.1016/j.bpr.2021.100024_bib10) 2018; 1 Fischer-Friedrich (10.1016/j.bpr.2021.100024_bib16) 2016; 111 Mey (10.1016/j.bpr.2021.100024_bib32) 2009; 131 Brückner (10.1016/j.bpr.2021.100024_bib8) 2017; 112 Gardel (10.1016/j.bpr.2021.100024_bib41) 2004; 304 Zhong-can (10.1016/j.bpr.2021.100024_bib37) 1989; 39 Mulla (10.1016/j.bpr.2021.100024_bib43) 2019; 122 Steltenkamp (10.1016/j.bpr.2021.100024_bib31) 2006; 91 Garcia (10.1016/j.bpr.2021.100024_bib11) 2018; 10 Garcia (10.1016/j.bpr.2021.100024_bib12) 2020; 12 Chugh (10.1016/j.bpr.2021.100024_bib18) 2018; 131 Kollmannsberger (10.1016/j.bpr.2021.100024_bib24) 2011; 7 Rother (10.1016/j.bpr.2021.100024_bib45) 2015; 12 Niessen (10.1016/j.bpr.2021.100024_bib2) 2011; 91 Cassel (10.1016/j.bpr.2021.100024_bib38) 2013 Sollich (10.1016/j.bpr.2021.100024_bib26) 1997; 78 Nehls (10.1016/j.bpr.2021.100024_bib9) 2017; 113 Ziegler (10.1016/j.bpr.2021.100024_bib29) 1998; 436 Sen (10.1016/j.bpr.2021.100024_bib4) 2005; 89 Gudzenko (10.1016/j.bpr.2021.100024_bib14) 2013; 128 Rouven Brückner (10.1016/j.bpr.2021.100024_bib28) 2015; 5 Norouzi (10.1016/j.bpr.2021.100024_bib30) 2006; 74 Hubrich (10.1016/j.bpr.2021.100024_bib27) 2020; 20 Chugh (10.1016/j.bpr.2021.100024_bib17) 2017; 19 Salbreux (10.1016/j.bpr.2021.100024_bib20) 2012; 22 Zhou (10.1016/j.bpr.2021.100024_bib25) 2013; 12 Fritzsche (10.1016/j.bpr.2021.100024_bib21) 2016; 2 Powers (10.1016/j.bpr.2021.100024_bib34) 2002; 65 Kocun (10.1016/j.bpr.2021.100024_bib39) 2011; 27 Pietuch (10.1016/j.bpr.2021.100024_bib5) 2013; 9 Rodriguez-Boulan (10.1016/j.bpr.2021.100024_bib1) 2014; 15 Broedersz (10.1016/j.bpr.2021.100024_bib46) 2010; 105 Fabry (10.1016/j.bpr.2021.100024_bib22) 2001; 87 Cartagena-Rivera (10.1016/j.bpr.2021.100024_bib7) 2016; 110 Lorenz (10.1016/j.bpr.2021.100024_bib13) 2009; 5 Helfrich (10.1016/j.bpr.2021.100024_bib36) 1973; 28 Shin (10.1016/j.bpr.2021.100024_bib3) 2006; 22 Daily (10.1016/j.bpr.2021.100024_bib40) 1984; 45 Canham (10.1016/j.bpr.2021.100024_bib35) 1970; 26 Kollmannsberger (10.1016/j.bpr.2021.100024_bib23) 2011; 41 Butor (10.1016/j.bpr.2021.100024_bib44) 1992; 203 Cordes (10.1016/j.bpr.2021.100024_bib19) 2020; 125 |
References_xml | – volume: 15 start-page: 225 year: 2014 end-page: 242 ident: bib1 article-title: Organization and execution of the epithelial polarity programme publication-title: Nat. Rev. Mol. Cell Biol. – volume: 74 start-page: 061914 year: 2006 ident: bib30 article-title: How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 10 start-page: 12485 year: 2018 end-page: 12490 ident: bib15 article-title: Force Spectroscopy on a Cell Drum: AFM Measurements on the Basolateral Side of Cells via Inverted Cell Cultures publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 536 year: 2012 end-page: 545 ident: bib20 article-title: Actin cortex mechanics and cellular morphogenesis publication-title: Trends Cell Biol. – volume: 128 start-page: 1 year: 2013 end-page: 9 ident: bib14 article-title: Inverting adherent cells for visualizing ECM interactions at the basal cell side publication-title: Ultramicroscopy – volume: 19 start-page: 689 year: 2017 end-page: 697 ident: bib17 article-title: Actin cortex architecture regulates cell surface tension publication-title: Nat. Cell Biol. – volume: 7 start-page: 3127 year: 2011 end-page: 3132 ident: bib24 article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension publication-title: Soft Matter – volume: 48 start-page: R1642 year: 1993 end-page: R1645 ident: bib42 article-title: Measurement of the persistence length of polymerized actin using fluorescence microscopy publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics – volume: 105 start-page: 238101 year: 2010 ident: bib46 article-title: Cross-link-governed dynamics of biopolymer networks publication-title: Phys. Rev. Lett. – volume: 122 start-page: 218102 year: 2019 ident: bib43 article-title: Origin of Slow Stress Relaxation in the Cytoskeleton publication-title: Phys. Rev. Lett. – volume: 89 start-page: 3203 year: 2005 end-page: 3213 ident: bib4 article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments publication-title: Biophys. J. – volume: 113 start-page: 1822 year: 2017 end-page: 1830 ident: bib9 article-title: Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells publication-title: Biophys. J. – volume: 4 start-page: 140046 year: 2014 ident: bib6 article-title: Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines publication-title: Open Biol. – volume: 20 start-page: 6329 year: 2020 end-page: 6335 ident: bib27 article-title: Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments publication-title: Nano Lett. – volume: 22 start-page: 207 year: 2006 end-page: 235 ident: bib3 article-title: Tight junctions and cell polarity publication-title: Annu. Rev. Cell Dev. Biol. – volume: 111 start-page: 589 year: 2016 end-page: 600 ident: bib16 article-title: Rheology of the Active Cell Cortex in Mitosis publication-title: Biophys. J. – volume: 112 start-page: 724 year: 2017 end-page: 735 ident: bib8 article-title: Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments publication-title: Biophys. J. – volume: 12 start-page: 9133 year: 2020 end-page: 9143 ident: bib12 article-title: Nanorheology of living cells measured by AFM-based force-distance curves publication-title: Nanoscale – volume: 131 start-page: jcs186254 year: 2018 ident: bib18 article-title: The actin cortex at a glance publication-title: J. Cell Sci. – volume: 436 start-page: 179 year: 1998 end-page: 184 ident: bib29 article-title: Preparation of basal cell membranes for scanning probe microscopy publication-title: FEBS Lett. – volume: 28 start-page: 693 year: 1973 end-page: 703 ident: bib36 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Z. Naturforsch. C – volume: 203 start-page: 115 year: 1992 end-page: 127 ident: bib44 article-title: Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports publication-title: Exp. Cell Res. – volume: 1 start-page: 41 year: 2018 end-page: 57 ident: bib10 article-title: Atomic force microscopy-based mechanobiology publication-title: Nat. Rev. Phys. – volume: 87 start-page: 148102 year: 2001 ident: bib22 article-title: Scaling the microrheology of living cells publication-title: Phys. Rev. Lett. – volume: 12 start-page: 184 year: 2013 end-page: 185 ident: bib25 article-title: Cell rheology: mush rather than machine publication-title: Nat. Mater. – volume: 22 start-page: 19348 year: 2012 ident: bib33 article-title: Biomimetic functionalization of porous substrates: towards model systems for cellular membranes publication-title: J. Mater. Chem. – volume: 125 start-page: 068101 year: 2020 ident: bib19 article-title: Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells publication-title: Phys. Rev. Lett. – volume: 45 start-page: 671 year: 1984 end-page: 682 ident: bib40 article-title: Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane publication-title: Biophys. J. – volume: 110 start-page: 2528 year: 2016 end-page: 2539 ident: bib7 article-title: Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy publication-title: Biophys. J. – volume: 2 start-page: e1501337 year: 2016 ident: bib21 article-title: Actin kinetics shapes cortical network structure and mechanics publication-title: Sci. Adv. – volume: 12 start-page: 20141057 year: 2015 ident: bib45 article-title: Cytoskeleton remodelling of confluent epithelial cells cultured on porous substrates publication-title: J. R. Soc. Interface – volume: 131 start-page: 7031 year: 2009 end-page: 7039 ident: bib32 article-title: Local membrane mechanics of pore-spanning bilayers publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 691 year: 2011 end-page: 731 ident: bib2 article-title: Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation publication-title: Physiol. Rev. – volume: 91 start-page: 217 year: 2006 end-page: 226 ident: bib31 article-title: Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy publication-title: Biophys. J. – volume: 27 start-page: 7672 year: 2011 end-page: 7680 ident: bib39 article-title: Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes publication-title: Langmuir – volume: 5 start-page: 14700 year: 2015 ident: bib28 article-title: Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells publication-title: Sci. Rep. – volume: 39 start-page: 5280 year: 1989 end-page: 5288 ident: bib37 article-title: Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders publication-title: Phys. Rev. A Gen. Phys. – volume: 78 start-page: 2020 year: 1997 end-page: 2023 ident: bib26 article-title: Rheology of Soft Glassy Materials publication-title: Phys. Rev. Lett. – volume: 41 start-page: 75 year: 2011 end-page: 97 ident: bib23 article-title: Linear and Nonlinear Rheology of Living Cells publication-title: Annu. Rev. Mater. Res. – volume: 9 start-page: 11490 year: 2013 ident: bib5 article-title: Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation publication-title: Soft Matter – volume: 65 start-page: 041901 year: 2002 ident: bib34 article-title: Fluid-membrane tethers: minimal surfaces and elastic boundary layers publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – year: 2013 ident: bib38 article-title: Variational Methods with Applications in Science and Engineering – volume: 26 start-page: 61 year: 1970 end-page: 81 ident: bib35 article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell publication-title: J. Theor. Biol. – volume: 5 start-page: 832 year: 2009 end-page: 838 ident: bib13 article-title: Elasticity mapping of pore-suspending native cell membranes publication-title: Small – volume: 10 start-page: 19799 year: 2018 end-page: 19809 ident: bib11 article-title: Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy publication-title: Nanoscale – volume: 304 start-page: 1301 year: 2004 end-page: 1305 ident: bib41 article-title: Elastic behavior of cross-linked and bundled actin networks publication-title: Science – volume: 19 start-page: 689 year: 2017 ident: 10.1016/j.bpr.2021.100024_bib17 article-title: Actin cortex architecture regulates cell surface tension publication-title: Nat. Cell Biol. doi: 10.1038/ncb3525 – volume: 203 start-page: 115 year: 1992 ident: 10.1016/j.bpr.2021.100024_bib44 article-title: Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(92)90046-B – volume: 12 start-page: 9133 year: 2020 ident: 10.1016/j.bpr.2021.100024_bib12 article-title: Nanorheology of living cells measured by AFM-based force-distance curves publication-title: Nanoscale doi: 10.1039/C9NR10316C – volume: 10 start-page: 12485 year: 2018 ident: 10.1016/j.bpr.2021.100024_bib15 article-title: Force Spectroscopy on a Cell Drum: AFM Measurements on the Basolateral Side of Cells via Inverted Cell Cultures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01990 – volume: 20 start-page: 6329 year: 2020 ident: 10.1016/j.bpr.2021.100024_bib27 article-title: Viscoelasticity of Native and Artificial Actin Cortices Assessed by Nanoindentation Experiments publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01769 – volume: 41 start-page: 75 year: 2011 ident: 10.1016/j.bpr.2021.100024_bib23 article-title: Linear and Nonlinear Rheology of Living Cells publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-062910-100351 – volume: 128 start-page: 1 year: 2013 ident: 10.1016/j.bpr.2021.100024_bib14 article-title: Inverting adherent cells for visualizing ECM interactions at the basal cell side publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.018 – volume: 22 start-page: 536 year: 2012 ident: 10.1016/j.bpr.2021.100024_bib20 article-title: Actin cortex mechanics and cellular morphogenesis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.07.001 – volume: 91 start-page: 691 year: 2011 ident: 10.1016/j.bpr.2021.100024_bib2 article-title: Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation publication-title: Physiol. Rev. doi: 10.1152/physrev.00004.2010 – volume: 12 start-page: 184 year: 2013 ident: 10.1016/j.bpr.2021.100024_bib25 article-title: Cell rheology: mush rather than machine publication-title: Nat. Mater. doi: 10.1038/nmat3574 – volume: 78 start-page: 2020 year: 1997 ident: 10.1016/j.bpr.2021.100024_bib26 article-title: Rheology of Soft Glassy Materials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.2020 – volume: 15 start-page: 225 year: 2014 ident: 10.1016/j.bpr.2021.100024_bib1 article-title: Organization and execution of the epithelial polarity programme publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3775 – volume: 131 start-page: jcs186254 year: 2018 ident: 10.1016/j.bpr.2021.100024_bib18 article-title: The actin cortex at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.186254 – volume: 28 start-page: 693 year: 1973 ident: 10.1016/j.bpr.2021.100024_bib36 article-title: Elastic properties of lipid bilayers: theory and possible experiments publication-title: Z. Naturforsch. C doi: 10.1515/znc-1973-11-1209 – volume: 4 start-page: 140046 year: 2014 ident: 10.1016/j.bpr.2021.100024_bib6 article-title: Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines publication-title: Open Biol. doi: 10.1098/rsob.140046 – volume: 48 start-page: R1642 year: 1993 ident: 10.1016/j.bpr.2021.100024_bib42 article-title: Measurement of the persistence length of polymerized actin using fluorescence microscopy publication-title: Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics – volume: 7 start-page: 3127 year: 2011 ident: 10.1016/j.bpr.2021.100024_bib24 article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension publication-title: Soft Matter doi: 10.1039/C0SM00833H – volume: 87 start-page: 148102 year: 2001 ident: 10.1016/j.bpr.2021.100024_bib22 article-title: Scaling the microrheology of living cells publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.148102 – volume: 131 start-page: 7031 year: 2009 ident: 10.1016/j.bpr.2021.100024_bib32 article-title: Local membrane mechanics of pore-spanning bilayers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809165h – volume: 9 start-page: 11490 year: 2013 ident: 10.1016/j.bpr.2021.100024_bib5 article-title: Elastic properties of cells in the context of confluent cell monolayers: impact of tension and surface area regulation publication-title: Soft Matter doi: 10.1039/c3sm51610e – volume: 112 start-page: 724 year: 2017 ident: 10.1016/j.bpr.2021.100024_bib8 article-title: Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.12.032 – volume: 91 start-page: 217 year: 2006 ident: 10.1016/j.bpr.2021.100024_bib31 article-title: Mechanical properties of pore-spanning lipid bilayers probed by atomic force microscopy publication-title: Biophys. J. doi: 10.1529/biophysj.106.081398 – volume: 125 start-page: 068101 year: 2020 ident: 10.1016/j.bpr.2021.100024_bib19 article-title: Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.068101 – volume: 74 start-page: 061914 year: 2006 ident: 10.1016/j.bpr.2021.100024_bib30 article-title: How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.74.061914 – volume: 45 start-page: 671 year: 1984 ident: 10.1016/j.bpr.2021.100024_bib40 article-title: Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane publication-title: Biophys. J. doi: 10.1016/S0006-3495(84)84209-5 – volume: 110 start-page: 2528 year: 2016 ident: 10.1016/j.bpr.2021.100024_bib7 article-title: Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.04.034 – volume: 27 start-page: 7672 year: 2011 ident: 10.1016/j.bpr.2021.100024_bib39 article-title: Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes publication-title: Langmuir doi: 10.1021/la2003172 – year: 2013 ident: 10.1016/j.bpr.2021.100024_bib38 – volume: 26 start-page: 61 year: 1970 ident: 10.1016/j.bpr.2021.100024_bib35 article-title: The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell publication-title: J. Theor. Biol. doi: 10.1016/S0022-5193(70)80032-7 – volume: 5 start-page: 14700 year: 2015 ident: 10.1016/j.bpr.2021.100024_bib28 article-title: Ezrin is a Major Regulator of Membrane Tension in Epithelial Cells publication-title: Sci. Rep. doi: 10.1038/srep14700 – volume: 12 start-page: 20141057 year: 2015 ident: 10.1016/j.bpr.2021.100024_bib45 article-title: Cytoskeleton remodelling of confluent epithelial cells cultured on porous substrates publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.1057 – volume: 113 start-page: 1822 year: 2017 ident: 10.1016/j.bpr.2021.100024_bib9 article-title: Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.08.038 – volume: 22 start-page: 207 year: 2006 ident: 10.1016/j.bpr.2021.100024_bib3 article-title: Tight junctions and cell polarity publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.22.010305.104219 – volume: 22 start-page: 19348 year: 2012 ident: 10.1016/j.bpr.2021.100024_bib33 article-title: Biomimetic functionalization of porous substrates: towards model systems for cellular membranes publication-title: J. Mater. Chem. doi: 10.1039/c2jm31737k – volume: 89 start-page: 3203 year: 2005 ident: 10.1016/j.bpr.2021.100024_bib4 article-title: Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments publication-title: Biophys. J. doi: 10.1529/biophysj.105.063826 – volume: 111 start-page: 589 year: 2016 ident: 10.1016/j.bpr.2021.100024_bib16 article-title: Rheology of the Active Cell Cortex in Mitosis publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.06.008 – volume: 1 start-page: 41 year: 2018 ident: 10.1016/j.bpr.2021.100024_bib10 article-title: Atomic force microscopy-based mechanobiology publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0001-7 – volume: 304 start-page: 1301 year: 2004 ident: 10.1016/j.bpr.2021.100024_bib41 article-title: Elastic behavior of cross-linked and bundled actin networks publication-title: Science doi: 10.1126/science.1095087 – volume: 122 start-page: 218102 year: 2019 ident: 10.1016/j.bpr.2021.100024_bib43 article-title: Origin of Slow Stress Relaxation in the Cytoskeleton publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.218102 – volume: 2 start-page: e1501337 year: 2016 ident: 10.1016/j.bpr.2021.100024_bib21 article-title: Actin kinetics shapes cortical network structure and mechanics publication-title: Sci. Adv. doi: 10.1126/sciadv.1501337 – volume: 436 start-page: 179 year: 1998 ident: 10.1016/j.bpr.2021.100024_bib29 article-title: Preparation of basal cell membranes for scanning probe microscopy publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)01118-1 – volume: 105 start-page: 238101 year: 2010 ident: 10.1016/j.bpr.2021.100024_bib46 article-title: Cross-link-governed dynamics of biopolymer networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.238101 – volume: 10 start-page: 19799 year: 2018 ident: 10.1016/j.bpr.2021.100024_bib11 article-title: Determination of the viscoelastic properties of a single cell cultured on a rigid support by force microscopy publication-title: Nanoscale doi: 10.1039/C8NR05899G – volume: 5 start-page: 832 year: 2009 ident: 10.1016/j.bpr.2021.100024_bib13 article-title: Elasticity mapping of pore-suspending native cell membranes publication-title: Small doi: 10.1002/smll.200800930 – volume: 65 start-page: 041901 year: 2002 ident: 10.1016/j.bpr.2021.100024_bib34 article-title: Fluid-membrane tethers: minimal surfaces and elastic boundary layers publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. doi: 10.1103/PhysRevE.65.041901 – volume: 39 start-page: 5280 year: 1989 ident: 10.1016/j.bpr.2021.100024_bib37 article-title: Bending energy of vesicle membranes: General expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders publication-title: Phys. Rev. A Gen. Phys. doi: 10.1103/PhysRevA.39.5280 |
SSID | ssj0002794073 |
Score | 2.2282774 |
Snippet | The mechanical properties of cells are largely determined by the architecture and dynamics of their viscoelastic cortex, which consists of a contractile,... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100024 |
Title | Viscoelasticity of basal plasma membranes and cortices derived from MDCK II cells |
URI | https://dx.doi.org/10.1016/j.bpr.2021.100024 https://www.proquest.com/docview/2740505622 https://pubmed.ncbi.nlm.nih.gov/PMC9680774 https://doaj.org/article/f94fef77dcd84f1e9b3d411dcfd93b51 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqTr1UBVp1y4-MVPVQKWocbCc5UijiR_RQlYqbZXtsdRGbXbG7SLwNz9InY8ZJ0OYCFxQph8ROnPE4883485ixL1pYgSggZAKiy2RQOnNeFlmunYpFbq1N3JyLX_rkUp5dqauVrb6IE9amB24F9z3WMoZYluChklGE2u2DFAJ8hHrfpcXTBdq8FWfqOk2n1eip0PQyGiCKxcmyn9JM5C43o1yghSCSQF7IgVFKufsHtmkFew6Zkyum6Pg9e9dhSH7Qtn2dvQnNBts8aNB_ntzzrzyxOlO4fJP9_jue-2lAjEz06cU9n0aOlgurz_DaxPJJmKDDjD88bhv4_4DOKNHh5hxQNe8CcFp_wi-ODs_56SmnMP_8A7s8_vnn8CTr9lHIvKzlghZFgXAgC0CpRC9jDlIHDVKBENqKgGY7OCjKaPEshI1alcJ5rdHCWTw-srVm2oRPjAcVSkUbUwPCAqegFsp7WYXcIY6rLIxY3gvS-C7JOO11cWN6Ntm1Qdkbkr1pZT9i356qzNoMG88V_kG981SQkmOnC6gyplMZ85LKjJjs-9Z0OKPFD_io8XPv3uv1wOAYJIlj70yXc4OefZ6QZDFi5UBBBg0d3mnG_1I271pXOWLwz6_xZVvsLTU40W2qbba2uF2GHQRNC7ebxsduimY9Av4uF9M |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viscoelasticity+of+basal+plasma+membranes+and%C2%A0cortices+derived+from+MDCK+II+cells&rft.jtitle=Biophysical+reports&rft.au=Andreas+Janshoff&rft.date=2021-12-08&rft.pub=Elsevier&rft.issn=2667-0747&rft.eissn=2667-0747&rft.volume=1&rft.issue=2&rft.spage=100024&rft_id=info:doi/10.1016%2Fj.bpr.2021.100024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f94fef77dcd84f1e9b3d411dcfd93b51 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0747&client=summon |