Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensiti...
Saved in:
Published in | NPJ science of food Vol. 9; no. 1; pp. 31 - 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed. |
---|---|
AbstractList | Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed. Abstract Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed. Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed. |
ArticleNumber | 31 |
Author | Yin, Tianzhen Peng, Yankun Chao, Kuanglin Li, Yongyu |
Author_xml | – sequence: 1 givenname: Tianzhen surname: Yin fullname: Yin, Tianzhen organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University – sequence: 2 givenname: Yankun surname: Peng fullname: Peng, Yankun email: ypeng@cau.edu.cn organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University – sequence: 3 givenname: Kuanglin surname: Chao fullname: Chao, Kuanglin organization: Environmental Microbial and Food Safety Laboratory, USDA-ARS – sequence: 4 givenname: Yongyu surname: Li fullname: Li, Yongyu organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40089516$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhSNUREvpC7BAltiwCYz_4oQNQtUFKlVCorC2HHuSusp1LrZTiT497k0pLQtW9tjfnJmxz_PqIMwBq-olhbcUePsuCSp5WwOTNQDveH3zpDpivGvqlis4eLA_rE5SugIARgVIUM-qQwHQdpI2R1XabDGOPowkRwwuER_IxebbRd2bhI5cY8bog4m_iIvLSFyJbfZzeE-2y5T9sIR9aCaSlj7laDImYoIrOhmnyY8YMnEmG2J2uzgbe4npRfV0MFPCk7v1uPrxafP99Et9_vXz2enH89qKTuRaUKfogNIxK5GCbQUTSjI5YAtsAGn6FniPxiFtFDeAjeml7KlE26nBcn5cna26bjZXehf9tsyhZ-P1_mCOozYxezuhRtsPraN9A0wJFNAJh5IyTqniQ4mK1odVa7f0W3S2jBXN9Ej08U3wl3qcrzWlHQWpmqLw5k4hzj8XTFlvfbLljUzAeUmaU6WaUrGDgr7-B72al1geeaWkYFLcUq8etnTfy5_PLQBbARvnlCIO9wgFfWsivZpIFxPpvYn0TUnia1IqcBgx_q39n6zf9dnLZw |
Cites_doi | 10.1002/admi.201600214 10.1021/jp010657m 10.1016/j.saa.2022.121212 10.1038/s41598-021-97882-4 10.21437/Interspeech.2011-169 10.1021/acsami.2c12201 10.1016/j.watres.2023.119662 10.1002/bio.4148 10.1016/j.chemosphere.2021.130115 10.1515/nanoph-2019-0117 10.1016/j.snb.2024.136741 10.1016/j.foodcont.2010.09.020 10.1007/s11947-011-0774-5 10.1016/j.neucom.2016.06.014 10.1021/nl049604h 10.1177/0003702819888949 10.3390/ma16134620 10.1016/j.bios.2012.06.050 10.1016/j.optmat.2023.114241 10.1002/jrs.4050 10.1021/acs.jpcc.0c05995 10.1021/am5043092 10.1021/acs.jafc.2c00089 10.1016/j.trac.2019.115796 10.1016/j.aca.2022.340776 10.1126/scitranslmed.3010633 10.1021/acsnano.5b06206 10.1002/jrs.6559 10.1088/1361-6528/ac2769 10.1016/j.saa.2015.09.012 10.1039/D3AN00636K 10.3390/molecules27248764 10.1021/acs.jpclett.0c01598 10.3390/nano12010170 10.1021/acs.analchem.5b02832 10.1109/ACCESS.2020.3012132 10.1007/s00604-020-04567-2 10.1021/acsanm.1c00905 10.1016/j.vibspec.2022.103391 10.1039/C2JM15238J 10.1021/ja804115r 10.1002/adma.201501587 10.1088/2043-6262/7/3/033001 10.48550/arXiv.2307.00513 10.1016/j.talanta.2018.11.114 10.1016/j.saa.2021.120174 10.1007/s00158-023-03606-9 10.1021/acsnano.6b02903 10.1021/acsnano.9b09119 10.1016/j.snb.2017.09.197 10.1016/j.apsusc.2020.146953 10.1016/j.microc.2021.106532 10.1002/smll.201400527 10.1111/j.1750-3841.2008.00901.x 10.1016/j.talanta.2021.122819 10.1021/acs.analchem.5b04131 10.1145/3065386 10.1039/C6AN00807K 10.1007/s00339-015-9589-y 10.1177/0003702820978233 10.1021/acs.langmuir.5b04393 10.1021/acsami.6b10818 10.1073/pnas.1016530108 10.1016/j.optcom.2022.127977 10.1007/s00778-019-00552-1 10.1016/j.foodchem.2022.134078 10.1016/j.apsusc.2016.04.022 10.1016/j.apsusc.2017.05.052 10.1021/acs.nanolett.9b03971 10.3390/nano11030633 10.1016/j.saa.2022.122221 10.1002/jrs.1362 10.1002/smll.201400438 10.3390/bios12100859 10.1038/s41377-018-0060-7 10.1002/smll.201303773 10.1007/s00604-019-3543-1 10.1039/D2NA00608A 10.1038/s41596-021-00620-3 10.1016/j.snb.2023.133936 10.1021/jp050508u 10.1002/adfm.201601154 10.3390/nano9050672 10.1016/j.vibspec.2022.103444 10.1016/j.csbj.2022.09.031 10.1002/jrs.5846 10.1016/j.saa.2020.118908 10.1016/j.trac.2019.115673 10.3390/bios9020057 10.1002/adom.201200019 10.1016/j.saa.2017.03.040 10.1021/acsami.8b17847 10.1038/s41378-019-0069-y 10.1039/C6RA08608J 10.1016/j.saa.2022.122018 10.1021/acs.analchem.2c03082 10.1038/s41586-024-07218-1 10.1063/1.4824896 10.1117/12.3013243 10.1016/j.snb.2017.05.051 10.1016/j.apsusc.2020.148224 10.1007/s11468-018-00899-1 10.1039/C4CC09466B 10.3390/cancers14122860 10.1109/MSP.2012.2205597 10.1038/s41565-022-01284-0 10.1016/B978-0-08-100674-0.00006-0 10.3390/nano7010009 10.1088/1361-6528/acddee 10.1038/srep00987 10.1007/978-3-319-24574-4_28 10.3389/fchem.2019.00706 10.1016/j.optcom.2018.04.065 10.1002/jrs.4928 10.1016/j.microc.2021.106343 10.1016/j.tifs.2022.07.012 10.1109/TASL.2011.2109382 10.1002/adma.201702275 10.1021/acssuschemeng.1c00483 10.1109/TASL.2011.2134090 10.1016/j.saa.2021.120534 10.1016/j.foodchem.2024.141884 10.1038/s41598-018-25228-8 10.1088/0957-4484/25/23/235303 10.1039/D3AN00272A 10.1002/smll.201402630 10.1016/j.saa.2022.121308 10.1039/b705965p 10.1162/neco_a_01273 10.1021/acs.accounts.9b00163 10.1016/j.saa.2020.118994 10.1515/nanoph-2018-0074 10.1016/j.bios.2016.07.097 10.1016/j.apsusc.2017.11.288 10.1002/adom.201600247 10.1021/acsomega.1c07263 10.1016/j.jcis.2015.10.007 10.1016/j.cplett.2016.08.027 10.1038/s41746-017-0013-1 10.1038/nature14236 10.1007/s11164-023-05122-3 10.1021/jz4012383 10.1016/j.jmst.2019.05.055 10.1109/CVPR.2018.00131 10.1080/24725854.2021.1987593 10.1021/jp800692p 10.1016/j.saa.2021.119652 10.1146/annurev-food-022811-101227 10.1016/j.mtnano.2023.100305 10.1038/s42256-020-0190-5 10.1088/0957-4484/17/11/015 10.1002/jrs.4413 10.1021/acsanm.8b02308 10.1016/j.trac.2023.117341 10.1021/jp908423v 10.3390/mi14071343 10.1038/121501c0 10.1021/cm400298e 10.1109/TNNLS.2020.2978386 10.1021/la701610s 10.1039/C4EN00211C 10.1016/j.apsusc.2020.147454 10.1007/s11042-019-07820-w 10.1021/acs.analchem.2c00036 10.1016/j.heliyon.2022.e09576 10.1063/5.0055733 10.1038/nprot.2017.031 10.1088/0953-8984/4/5/001 10.1021/acsami.5b01524 10.1021/acs.analchem.8b04441 10.1016/j.watres.2016.01.038 10.1021/acs.analchem.0c05206 10.1021/nn504615a 10.1021/nl1012085 10.1039/C4RA09231G 10.1016/j.tifs.2021.01.058 10.1371/journal.pone.0192937 10.1021/acs.jafc.7b03075 10.1021/acs.analchem.9b03599 10.1021/nl070807q 10.1021/nl900321e 10.1002/adma.201602603 10.1021/acs.langmuir.8b02854 10.1038/s41565-018-0346-1 10.1016/j.saa.2023.123086 10.1021/acs.jcim.9b01037 10.3934/mbe.2019167 10.1007/s11468-019-01096-4 10.1007/s00604-017-2652-y 10.1016/j.saa.2023.123790 10.1007/s12274-014-0577-x 10.1145/3422622 10.1021/ja0578350 10.1016/0009-2614(74)85388-1 10.1021/la061163p 10.1515/nanoph-2021-0689 10.1039/c2cp43642f 10.1126/science.275.5303.1102 10.1021/acs.nanolett.5b03672 10.1016/j.lwt.2020.110017 10.1039/C9NR03450A 10.1021/nl402231z 10.1002/jrs.6509 10.4315/JFP-21-411 10.1016/j.snb.2023.133736 10.21437/Interspeech.2011-242 10.1021/ac034689c 10.1007/s13246-020-00865-4 10.1038/s41598-023-28076-3 10.1021/ja00457a071 10.1109/JPROC.2015.2460697 10.1039/C9ME00039A 10.1021/nl903414x 10.1039/D2RA06248H 10.1039/C8RA08818G 10.1016/j.bios.2022.114187 10.1016/j.foodchem.2020.128570 10.1016/j.bios.2013.03.048 10.1126/sciadv.aar4206 10.1039/C7NR09276H 10.1021/acsphotonics.7b01377 10.1038/srep25243 10.1063/1.2752026 10.1021/ja501951v 10.1364/AO.19.004159 10.1111/jfs.12967 10.3389/fmicb.2022.843417 10.1002/advs.201900925 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU COVID DWQXO HCIFZ M0K PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41538-025-00393-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central SciTech Premium Collection Agricultural Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Diet & Clinical Nutrition |
EISSN | 2396-8370 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_ecbf8d1b60274e4094de51231173f094 PMC11910576 40089516 10_1038_s41538_025_00393_z |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 32020103016; 32020103016; 32020103016; 32020103016 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 32020103016 |
GroupedDBID | 0R~ 7X2 AAHBH AAJSJ ACGFS ADBBV ADMLS AEUYN AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BCNDV BENPR BHPHI C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ HYE M0K M~E NAO NO~ OK1 PGMZT PHGZT PIMPY RNT RPM AASML AAYXX CITATION PHGZM SNYQT NPM 3V. 8FE 8FH 8FK ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-41d71fe5d2c5e10c84247525fe802f05ab803beade1673a0e6ab55b15ec97fc33 |
IEDL.DBID | BENPR |
ISSN | 2396-8370 |
IngestDate | Wed Aug 27 01:06:07 EDT 2025 Thu Aug 21 18:34:06 EDT 2025 Fri Jul 11 10:08:45 EDT 2025 Mon Jun 30 12:09:44 EDT 2025 Wed Mar 19 01:28:50 EDT 2025 Sun Jul 06 05:04:59 EDT 2025 Sun Mar 16 01:11:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-41d71fe5d2c5e10c84247525fe802f05ab803beade1673a0e6ab55b15ec97fc33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/3177542540?pq-origsite=%requestingapplication% |
PMID | 40089516 |
PQID | 3177542540 |
PQPubID | 4669712 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ecbf8d1b60274e4094de51231173f094 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11910576 proquest_miscellaneous_3177623190 proquest_journals_3177542540 pubmed_primary_40089516 crossref_primary_10_1038_s41538_025_00393_z springer_journals_10_1038_s41538_025_00393_z |
PublicationCentury | 2000 |
PublicationDate | 2025-03-15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ science of food |
PublicationTitleAbbrev | npj Sci Food |
PublicationTitleAlternate | NPJ Sci Food |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Q-H Wei (393_CR44) 2004; 4 R Shi (393_CR86) 2018; 66 X Liu (393_CR112) 2016; 26 393_CR38 J Jeong (393_CR110) 2016; 28 Y Zhang (393_CR126) 2019; 14 M Alamri (393_CR59) 2019; 2 X-B Zheng (393_CR152) 2023; 54 CV Raman (393_CR16) 1928; 121 G Kawamura (393_CR43) 2007; 90 GC Phan-Quang (393_CR68) 2019; 52 EM Gil (393_CR13) 2023; 54 KJ Si (393_CR91) 2014; 8 J Gerretzen (393_CR161) 2015; 87 M Jing (393_CR96) 2021; 255 G Dikmen (393_CR4) 2022; 278 A Otto (393_CR19) 1992; 4 S Almaviva (393_CR139) 2014; 45 Y-L Li (393_CR77) 2023; 390 D Lahat (393_CR229) 2015; 103 J Zhu (393_CR213) 2021; 246 V Mnih (393_CR194) 2015; 518 J Gao (393_CR227) 2020; 32 J Li (393_CR171) 2023; 290 A Krizhevsky (393_CR182) 2017; 60 W Fan (393_CR32) 2022; 37 M Kerker (393_CR21) 1980; 180 H Zhao (393_CR55) 2018; 7 Q Guo (393_CR92) 2016; 32 Q Ding (393_CR130) 2019; 186 393_CR51 F Li (393_CR85) 2013; 39 393_CR215 Q Chen (393_CR136) 2022; 207 M Kazemzadeh (393_CR209) 2022; 510 393_CR214 M Lin (393_CR98) 2008; 73 S Atta (393_CR165) 2023; 148 393_CR217 Y Zhu (393_CR64) 2012; 22 393_CR216 SJ Lee (393_CR49) 2006; 128 L Polavarapu (393_CR108) 2013; 15 Q Luo (393_CR88) 2023; 143 S Guo (393_CR160) 2021; 16 M Liu (393_CR56) 2020; 51 G Fu (393_CR146) 2019; 195 Y Jia (393_CR207) 2021; 9 393_CR226 393_CR222 393_CR221 393_CR224 393_CR223 R De Waele (393_CR42) 2007; 7 Q Bao (393_CR170) 2023; 34 W Fan (393_CR153) 2021; 169 Y Yang (393_CR45) 2006; 17 P Ndokoye (393_CR61) 2016; 462 JH Shin (393_CR90) 2016; 6 Y Chen (393_CR125) 2018; 436 393_CR75 Y Huang (393_CR168) 2023; 232 G Das (393_CR116) 2016; 47 X Bi (393_CR141) 2024; 628 D Zhang (393_CR120) 2021; 109 J Shen (393_CR6) 2022; 121 K Ji (393_CR240) 2023; 386 J Houston (393_CR210) 2020; 60 A González Fá (393_CR154) 2019; 121 G Zheng (393_CR132) 2015; 51 Z Zuo (393_CR113) 2016; 379 L Wali (393_CR40) 2020; 15 Y Miao (393_CR148) 2021; 4 393_CR191 393_CR193 HG Svavarsson (393_CR89) 2016; 122 Z Yang (393_CR158) 2023; 401 B Xue (393_CR206) 2023; 66 B Liu (393_CR100) 2013; 6 PR Wiecha (393_CR233) 2020; 20 K Xu (393_CR135) 2019; 6 S Kang (393_CR25) 2022; 12 M Tiwari (393_CR159) 2022; 236 C Han (393_CR102) 2017; 251 Q Guo (393_CR35) 2022; 8 M Kerker (393_CR33) 1980; 19 C Zhu (393_CR72) 2015; 8 Q Guo (393_CR236) 2022; 123 N-Y Kim (393_CR54) 2019; 11 M Sun (393_CR121) 2019; 35 393_CR11 L Wang (393_CR163) 2022; 20 T Yin (393_CR14) 2025; 464 J-W Liu (393_CR62) 2012; 2 G Hinton (393_CR178) 2012; 29 H Im (393_CR103) 2010; 10 W Thrift (393_CR220) 2019; 91 H Takei (393_CR27) 2023; 148 GC Shi (393_CR129) 2018; 8 M Jain (393_CR190) 2020; 2 D Liu (393_CR234) 2018; 5 RM Jarvis (393_CR84) 2004; 76 M Wang (393_CR131) 2019; 9 Z Yang (393_CR124) 2021; 75 C Gao (393_CR10) 2023; 302 C Zhang (393_CR37) 2018; 185 A Ratner (393_CR225) 2020; 29 393_CR24 P Chen (393_CR114) 2016; 660 393_CR7 393_CR1 C Muehlethaler (393_CR138) 2016; 88 X Qiu (393_CR39) 2022; 276 H Zhang (393_CR94) 2015; 11 X Zhao (393_CR204) 2022; 94 J He (393_CR197) 2019; 11 S Nie (393_CR22) 1997; 275 I Choi (393_CR74) 2016; 10 C Song (393_CR105) 2017; 87 J Zhang (393_CR196) 2019; 16 J Peurifoy (393_CR8) 2018; 4 Y Yang (393_CR50) 2007; 23 M Çulha (393_CR17) 2012; 2012 G Shi (393_CR128) 2018; 425 N Zhou (393_CR118) 2016; 141 Z Yang (393_CR76) 2022; 267 M Behvarmanesh (393_CR155) 2022; 42 N Gaw (393_CR228) 2022; 54 H Liu (393_CR67) 2014; 136 Z Wu (393_CR195) 2021; 32 L Ma (393_CR109) 2016; 8 F Lussier (393_CR200) 2020; 124 L Alzubaidi (393_CR188) 2020; 79 JA Arzola-Flores (393_CR167) 2020; 124 Y Wang (393_CR137) 2016; 92 H-E Lee (393_CR66) 2014; 10 S Harmsen (393_CR219) 2017; 12 C He (393_CR203) 2022; 7 A Nilghaz (393_CR31) 2022; 70 393_CR166 C Zhang (393_CR36) 2016; 6 F Zeng (393_CR122) 2019; 91 GE Dahl (393_CR181) 2012; 20 D Raj (393_CR156) 2023; 16 B Diederich (393_CR211) 2018; 13 J Leem (393_CR79) 2015; 15 SY Lee (393_CR81) 2013; 25 A Hussain (393_CR157) 2021; 245 M Fleischmann (393_CR15) 1974; 26 393_CR164 S Su (393_CR57) 2014; 6 H Wei (393_CR142) 2015; 2 J Wahl (393_CR5) 2020; 74 Y Song (393_CR58) 2021; 344 393_CR177 M Yang (393_CR70) 2018; 256 393_CR179 P Wang (393_CR150) 2022; 27 PR Wiecha (393_CR208) 2019; 14 PA Mosier-Boss (393_CR238) 2016; 153 A Dasgupta (393_CR48) 2013; 103 I Apostolopoulos (393_CR189) 2020; 43 393_CR175 D Li (393_CR212) 2021; 539 L Chen (393_CR101) 2010; 114 393_CR172 PPP Kumar (393_CR201) 2023; 168 H Zhang (393_CR239) 2022; 14 Z Li (393_CR73) 2018; 10 AS Urban (393_CR78) 2013; 13 L Yang (393_CR23) 2014; 4 I Goodfellow (393_CR192) 2020; 63 KL Genson (393_CR237) 2006; 22 M Chen (393_CR46) 2018; 34 SEJ Bell (393_CR83) 2008; 37 S So (393_CR169) 2019; 8 T Yan (393_CR133) 2017; 419 Q Guo (393_CR34) 2022; 12 Y Cheng (393_CR97) 2011; 22 A Madani (393_CR173) 2018; 1 393_CR185 M Fleischmann (393_CR147) 1974; 26 393_CR184 Q He (393_CR9) 2023; 22 393_CR187 M Moskovits (393_CR18) 2005; 36 393_CR183 Q Zhou (393_CR95) 2017; 7 393_CR111 393_CR235 X Ling (393_CR53) 2010; 10 E Satheeshkumar (393_CR69) 2017; 181 C Zong (393_CR106) 2019; 9 A Prieto (393_CR186) 2016; 214 Y Fang (393_CR47) 2009; 9 S-G Park (393_CR80) 2015; 27 S Harmsen (393_CR218) 2015; 7 X Xu (393_CR63) 2013; 47 G Kawamura (393_CR41) 2008; 112 CL Haynes (393_CR20) 2001; 105 393_CR230 D-Y Lin (393_CR30) 2023; 14 W Nam (393_CR144) 2021; 93 X Tian (393_CR134) 2021; 263 393_CR87 Y Zhang (393_CR99) 2012; 43 I Sajedian (393_CR176) 2019; 5 J-F Masson (393_CR199) 2023; 18 Q Zhang (393_CR232) 2023; 287 393_CR123 Q Du (393_CR205) 2021; 32 S Xu (393_CR52) 2023; 1240 Q Zhang (393_CR82) 2014; 10 R Pilot (393_CR26) 2019; 9 H Zhou (393_CR231) 2023; 5 M Chirumamilla (393_CR60) 2014; 25 Q Shi (393_CR93) 2016; 10 BH Nguyen (393_CR29) 2016; 7 L Polavarapu (393_CR119) 2014; 10 RA Alvarez-Puebla (393_CR71) 2011; 108 M Kazemzadeh (393_CR12) 2022; 94 D Li (393_CR115) 2016; 4 M Albrecht (393_CR145) 1977; 99 Y Yang (393_CR2) 2022; 85 X Li (393_CR107) 2023; 49 AD McFarland (393_CR104) 2005; 109 C Liu (393_CR28) 2022; 128 393_CR149 N Valley (393_CR140) 2013; 4 J Li (393_CR202) 2022; 11 AP Craig (393_CR3) 2013; 4 A Mohamed (393_CR180) 2012; 20 S Verma (393_CR198) 2023; 13 Q Fu (393_CR117) 2015; 7 W Niu (393_CR65) 2009; 131 Y Li (393_CR174) 2020; 8 B-B Xu (393_CR127) 2013; 1 393_CR143 H Shin (393_CR162) 2020; 14 S Bi (393_CR151) 2021; 167 |
References_xml | – ident: 393_CR111 doi: 10.1002/admi.201600214 – volume: 105 start-page: 5599 year: 2001 ident: 393_CR20 publication-title: J. Phys. Chem. B doi: 10.1021/jp010657m – volume: 276 start-page: 121212 year: 2022 ident: 393_CR39 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2022.121212 – ident: 393_CR214 doi: 10.1038/s41598-021-97882-4 – ident: 393_CR179 doi: 10.21437/Interspeech.2011-169 – volume: 14 start-page: 51253 year: 2022 ident: 393_CR239 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c12201 – volume: 2012 start-page: 1 year: 2012 ident: 393_CR17 publication-title: J. Nanotechnol. – volume: 232 start-page: 119662 year: 2023 ident: 393_CR168 publication-title: Water Res. doi: 10.1016/j.watres.2023.119662 – ident: 393_CR191 – volume: 37 start-page: 82 year: 2022 ident: 393_CR32 publication-title: Lumin. J. Biol. Chem. Lumin. doi: 10.1002/bio.4148 – ident: 393_CR51 doi: 10.1016/j.chemosphere.2021.130115 – volume: 8 start-page: 1255 year: 2019 ident: 393_CR169 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0117 – ident: 393_CR216 doi: 10.1016/j.snb.2024.136741 – volume: 22 start-page: 685 year: 2011 ident: 393_CR97 publication-title: Food Control doi: 10.1016/j.foodcont.2010.09.020 – volume: 6 start-page: 710 year: 2013 ident: 393_CR100 publication-title: Food Bioprocess. Technol. doi: 10.1007/s11947-011-0774-5 – volume: 214 start-page: 242 year: 2016 ident: 393_CR186 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.014 – volume: 4 start-page: 1067 year: 2004 ident: 393_CR44 publication-title: Nano Lett. doi: 10.1021/nl049604h – volume: 74 start-page: 427 year: 2020 ident: 393_CR5 publication-title: Appl. Spectrosc. doi: 10.1177/0003702819888949 – volume: 16 start-page: 4620 year: 2023 ident: 393_CR156 publication-title: Materials doi: 10.3390/ma16134620 – volume: 39 start-page: 82 year: 2013 ident: 393_CR85 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.06.050 – volume: 143 start-page: 114241 year: 2023 ident: 393_CR88 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2023.114241 – volume: 43 start-page: 1208 year: 2012 ident: 393_CR99 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4050 – volume: 124 start-page: 25447 year: 2020 ident: 393_CR167 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05995 – volume: 6 start-page: 18735 year: 2014 ident: 393_CR57 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5043092 – volume: 70 start-page: 5463 year: 2022 ident: 393_CR31 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.2c00089 – volume: 124 start-page: 115796 year: 2020 ident: 393_CR200 publication-title: TrAC Trends in Analytical Chemistry doi: 10.1016/j.trac.2019.115796 – volume: 1240 start-page: 340776 year: 2023 ident: 393_CR52 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340776 – ident: 393_CR185 – volume: 7 start-page: 271ra7 year: 2015 ident: 393_CR218 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3010633 – volume: 10 start-page: 967 year: 2016 ident: 393_CR93 publication-title: ACS Nano doi: 10.1021/acsnano.5b06206 – volume: 54 start-page: 814 year: 2023 ident: 393_CR13 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.6559 – volume: 32 start-page: 505607 year: 2021 ident: 393_CR205 publication-title: Nanotechnology doi: 10.1088/1361-6528/ac2769 – volume: 153 start-page: 591 year: 2016 ident: 393_CR238 publication-title: Spectrochim. Acta Part A doi: 10.1016/j.saa.2015.09.012 – volume: 148 start-page: 5105 year: 2023 ident: 393_CR165 publication-title: Analyst doi: 10.1039/D3AN00636K – volume: 27 start-page: 8764 year: 2022 ident: 393_CR150 publication-title: Molecules doi: 10.3390/molecules27248764 – ident: 393_CR215 doi: 10.1021/acs.jpclett.0c01598 – ident: 393_CR175 doi: 10.3390/nano12010170 – volume: 87 start-page: 12096 year: 2015 ident: 393_CR161 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02832 – volume: 8 start-page: 139983 year: 2020 ident: 393_CR174 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012132 – ident: 393_CR87 doi: 10.1007/s00604-020-04567-2 – volume: 4 start-page: 6844 year: 2021 ident: 393_CR148 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00905 – ident: 393_CR184 – volume: 121 start-page: 103391 year: 2022 ident: 393_CR6 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2022.103391 – volume: 22 start-page: 2387 year: 2012 ident: 393_CR64 publication-title: J. Mater. Chem. doi: 10.1039/C2JM15238J – volume: 131 start-page: 697 year: 2009 ident: 393_CR65 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804115r – volume: 27 start-page: 4290 year: 2015 ident: 393_CR80 publication-title: Adv. Mater. doi: 10.1002/adma.201501587 – volume: 7 start-page: 033001 year: 2016 ident: 393_CR29 publication-title: Adv. Nat. Sci Nanosci. Nanotechnol. doi: 10.1088/2043-6262/7/3/033001 – ident: 393_CR11 doi: 10.48550/arXiv.2307.00513 – volume: 195 start-page: 841 year: 2019 ident: 393_CR146 publication-title: Talanta doi: 10.1016/j.talanta.2018.11.114 – volume: 263 start-page: 120174 year: 2021 ident: 393_CR134 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.120174 – ident: 393_CR230 – volume: 66 start-page: 154 year: 2023 ident: 393_CR206 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-023-03606-9 – volume: 10 start-page: 7639 year: 2016 ident: 393_CR74 publication-title: ACS Nano doi: 10.1021/acsnano.6b02903 – volume: 14 start-page: 5435 year: 2020 ident: 393_CR162 publication-title: ACS Nano doi: 10.1021/acsnano.9b09119 – volume: 256 start-page: 268 year: 2018 ident: 393_CR70 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.09.197 – ident: 393_CR143 doi: 10.1016/j.apsusc.2020.146953 – volume: 169 start-page: 106532 year: 2021 ident: 393_CR153 publication-title: Microchem. J. doi: 10.1016/j.microc.2021.106532 – volume: 10 start-page: 3007 year: 2014 ident: 393_CR66 publication-title: Small doi: 10.1002/smll.201400527 – volume: 73 start-page: T129 year: 2008 ident: 393_CR98 publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2008.00901.x – volume: 236 start-page: 122819 year: 2022 ident: 393_CR159 publication-title: Talanta doi: 10.1016/j.talanta.2021.122819 – volume: 88 start-page: 152 year: 2016 ident: 393_CR138 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04131 – volume: 60 start-page: 84 year: 2017 ident: 393_CR182 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 141 start-page: 5864 year: 2016 ident: 393_CR118 publication-title: Analyst doi: 10.1039/C6AN00807K – volume: 122 year: 2016 ident: 393_CR89 publication-title: Appl. Phys. A doi: 10.1007/s00339-015-9589-y – volume: 75 start-page: 589 year: 2021 ident: 393_CR124 publication-title: Appl. Spectrosc. doi: 10.1177/0003702820978233 – volume: 32 start-page: 4530 year: 2016 ident: 393_CR92 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b04393 – volume: 8 start-page: 27162 year: 2016 ident: 393_CR109 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10818 – volume: 108 start-page: 8157 year: 2011 ident: 393_CR71 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1016530108 – volume: 510 start-page: 127977 year: 2022 ident: 393_CR209 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2022.127977 – volume: 29 start-page: 709 year: 2020 ident: 393_CR225 publication-title: VLDB J. doi: 10.1007/s00778-019-00552-1 – volume: 401 start-page: 134078 year: 2023 ident: 393_CR158 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134078 – volume: 379 start-page: 66 year: 2016 ident: 393_CR113 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.04.022 – volume: 419 start-page: 373 year: 2017 ident: 393_CR133 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.052 – volume: 20 start-page: 329 year: 2020 ident: 393_CR233 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03971 – ident: 393_CR166 doi: 10.3390/nano11030633 – volume: 290 start-page: 122221 year: 2023 ident: 393_CR171 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2022.122221 – volume: 36 start-page: 485 year: 2005 ident: 393_CR18 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1362 – volume: 10 start-page: 3065 year: 2014 ident: 393_CR119 publication-title: Small doi: 10.1002/smll.201400438 – volume: 12 start-page: 859 year: 2022 ident: 393_CR34 publication-title: Biosensors doi: 10.3390/bios12100859 – ident: 393_CR235 doi: 10.1038/s41377-018-0060-7 – volume: 10 start-page: 2703 year: 2014 ident: 393_CR82 publication-title: Small doi: 10.1002/smll.201303773 – volume: 186 start-page: 453 year: 2019 ident: 393_CR130 publication-title: Mikrochim. Acta doi: 10.1007/s00604-019-3543-1 – volume: 5 start-page: 538 year: 2023 ident: 393_CR231 publication-title: Nanoscale Adv. doi: 10.1039/D2NA00608A – volume: 16 start-page: 5426 year: 2021 ident: 393_CR160 publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00620-3 – volume: 390 start-page: 133936 year: 2023 ident: 393_CR77 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.133936 – volume: 109 start-page: 11279 year: 2005 ident: 393_CR104 publication-title: J. Phys. Chem., B doi: 10.1021/jp050508u – volume: 26 start-page: 5515 year: 2016 ident: 393_CR112 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601154 – volume: 9 start-page: 672 year: 2019 ident: 393_CR131 publication-title: Nanomaterials doi: 10.3390/nano9050672 – volume: 123 start-page: 103444 year: 2022 ident: 393_CR236 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2022.103444 – volume: 20 start-page: 5364 year: 2022 ident: 393_CR163 publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.09.031 – volume: 51 start-page: 750 year: 2020 ident: 393_CR56 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5846 – volume: 245 start-page: 118908 year: 2021 ident: 393_CR157 publication-title: Spectrochim. Acta Part A doi: 10.1016/j.saa.2020.118908 – volume: 121 start-page: 115673 year: 2019 ident: 393_CR154 publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2019.115673 – volume: 9 start-page: 57 year: 2019 ident: 393_CR26 publication-title: Biosensors doi: 10.3390/bios9020057 – volume: 1 start-page: 56 year: 2013 ident: 393_CR127 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201200019 – volume: 181 start-page: 91 year: 2017 ident: 393_CR69 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2017.03.040 – volume: 11 start-page: 6363 year: 2019 ident: 393_CR54 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17847 – volume: 5 start-page: 1 year: 2019 ident: 393_CR176 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0069-y – volume: 6 start-page: 70756 year: 2016 ident: 393_CR90 publication-title: RSC Adv. doi: 10.1039/C6RA08608J – volume: 287 start-page: 122018 year: 2023 ident: 393_CR232 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2022.122018 – volume: 94 start-page: 12907 year: 2022 ident: 393_CR12 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03082 – volume: 628 start-page: 771 year: 2024 ident: 393_CR141 publication-title: Nature doi: 10.1038/s41586-024-07218-1 – volume: 103 start-page: 151114 year: 2013 ident: 393_CR48 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824896 – ident: 393_CR38 doi: 10.1117/12.3013243 – volume: 251 start-page: 272 year: 2017 ident: 393_CR102 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.05.051 – volume: 539 start-page: 148224 year: 2021 ident: 393_CR212 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148224 – volume: 14 start-page: 1105 year: 2019 ident: 393_CR126 publication-title: Plasmonics doi: 10.1007/s11468-018-00899-1 – ident: 393_CR223 – volume: 51 start-page: 4572 year: 2015 ident: 393_CR132 publication-title: Chem. Commun. doi: 10.1039/C4CC09466B – ident: 393_CR7 doi: 10.3390/cancers14122860 – volume: 29 start-page: 82 year: 2012 ident: 393_CR178 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – volume: 18 start-page: 111 year: 2023 ident: 393_CR199 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01284-0 – ident: 393_CR1 doi: 10.1016/B978-0-08-100674-0.00006-0 – volume: 7 start-page: 9 year: 2017 ident: 393_CR95 publication-title: Nanomaterials doi: 10.3390/nano7010009 – volume: 34 start-page: 365204 year: 2023 ident: 393_CR170 publication-title: Nanotechnology doi: 10.1088/1361-6528/acddee – volume: 2 year: 2012 ident: 393_CR62 publication-title: Sci. Rep. doi: 10.1038/srep00987 – ident: 393_CR193 doi: 10.1007/978-3-319-24574-4_28 – ident: 393_CR221 doi: 10.3389/fchem.2019.00706 – volume: 425 start-page: 49 year: 2018 ident: 393_CR128 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2018.04.065 – ident: 393_CR24 – volume: 47 start-page: 895 year: 2016 ident: 393_CR116 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4928 – volume: 167 start-page: 106343 year: 2021 ident: 393_CR151 publication-title: Microchem. J. doi: 10.1016/j.microc.2021.106343 – volume: 128 start-page: 90 year: 2022 ident: 393_CR28 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2022.07.012 – volume: 20 start-page: 14 year: 2012 ident: 393_CR180 publication-title: IEEE Audio Speech Language Process. doi: 10.1109/TASL.2011.2109382 – ident: 393_CR75 doi: 10.1002/adma.201702275 – volume: 9 start-page: 6130 year: 2021 ident: 393_CR207 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c00483 – volume: 20 start-page: 30 year: 2012 ident: 393_CR181 publication-title: IEEE Audio Speech Language Process. doi: 10.1109/TASL.2011.2134090 – volume: 267 start-page: 120534 year: 2022 ident: 393_CR76 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.120534 – volume: 464 start-page: 141884 year: 2025 ident: 393_CR14 publication-title: Food Chem. doi: 10.1016/j.foodchem.2024.141884 – volume: 8 start-page: 6916 year: 2018 ident: 393_CR129 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25228-8 – volume: 25 start-page: 235303 year: 2014 ident: 393_CR60 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/23/235303 – volume: 148 start-page: 2801 year: 2023 ident: 393_CR27 publication-title: Analyst doi: 10.1039/D3AN00272A – volume: 11 start-page: 844 year: 2015 ident: 393_CR94 publication-title: Small doi: 10.1002/smll.201402630 – volume: 278 start-page: 121308 year: 2022 ident: 393_CR4 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2022.121308 – volume: 37 start-page: 1012 year: 2008 ident: 393_CR83 publication-title: Chem. Soc. Rev. doi: 10.1039/b705965p – volume: 32 start-page: 829 year: 2020 ident: 393_CR227 publication-title: Neural Comput. doi: 10.1162/neco_a_01273 – volume: 52 start-page: 1844 year: 2019 ident: 393_CR68 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00163 – volume: 246 start-page: 118994 year: 2021 ident: 393_CR213 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2020.118994 – volume: 7 start-page: 1651 year: 2018 ident: 393_CR55 publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0074 – volume: 87 start-page: 59 year: 2017 ident: 393_CR105 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.097 – volume: 436 start-page: 111 year: 2018 ident: 393_CR125 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.288 – volume: 4 start-page: 1475 year: 2016 ident: 393_CR115 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600247 – volume: 7 start-page: 10458 year: 2022 ident: 393_CR203 publication-title: ACS Omega doi: 10.1021/acsomega.1c07263 – volume: 462 start-page: 341 year: 2016 ident: 393_CR61 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.10.007 – volume: 660 start-page: 169 year: 2016 ident: 393_CR114 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.08.027 – volume: 1 start-page: 1 year: 2018 ident: 393_CR173 publication-title: Npj Digital Med. doi: 10.1038/s41746-017-0013-1 – volume: 518 start-page: 529 year: 2015 ident: 393_CR194 publication-title: Nature doi: 10.1038/nature14236 – volume: 49 start-page: 5083 year: 2023 ident: 393_CR107 publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-023-05122-3 – volume: 4 start-page: 2599 year: 2013 ident: 393_CR140 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4012383 – volume: 35 start-page: 2207 year: 2019 ident: 393_CR121 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.05.055 – ident: 393_CR224 doi: 10.1109/CVPR.2018.00131 – volume: 54 start-page: 1098 year: 2022 ident: 393_CR228 publication-title: IISE Trans. doi: 10.1080/24725854.2021.1987593 – volume: 112 start-page: 10632 year: 2008 ident: 393_CR41 publication-title: J. Phys. Chem. C doi: 10.1021/jp800692p – volume: 255 start-page: 119652 year: 2021 ident: 393_CR96 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.119652 – volume: 4 start-page: 369 year: 2013 ident: 393_CR3 publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-022811-101227 – volume: 22 start-page: 100305 year: 2023 ident: 393_CR9 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2023.100305 – volume: 2 start-page: 356 year: 2020 ident: 393_CR190 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-020-0190-5 – volume: 17 start-page: 2821 year: 2006 ident: 393_CR45 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/11/015 – volume: 45 start-page: 41 year: 2014 ident: 393_CR139 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4413 – volume: 2 start-page: 1412 year: 2019 ident: 393_CR59 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02308 – volume: 168 start-page: 117341 year: 2023 ident: 393_CR201 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2023.117341 – volume: 114 start-page: 93 year: 2010 ident: 393_CR101 publication-title: J. Phys. Chem. C doi: 10.1021/jp908423v – volume: 14 start-page: 1343 year: 2023 ident: 393_CR30 publication-title: Micromachines doi: 10.3390/mi14071343 – volume: 121 start-page: 501 year: 1928 ident: 393_CR16 publication-title: Nature doi: 10.1038/121501c0 – volume: 25 start-page: 2421 year: 2013 ident: 393_CR81 publication-title: Chem. Mater. doi: 10.1021/cm400298e – volume: 32 start-page: 4 year: 2021 ident: 393_CR195 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.2978386 – volume: 23 start-page: 12042 year: 2007 ident: 393_CR50 publication-title: Langmuir doi: 10.1021/la701610s – volume: 2 start-page: 120 year: 2015 ident: 393_CR142 publication-title: Environ. Sci. Nano doi: 10.1039/C4EN00211C – ident: 393_CR187 – ident: 393_CR123 doi: 10.1016/j.apsusc.2020.147454 – volume: 79 start-page: 15655 year: 2020 ident: 393_CR188 publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-07820-w – volume: 94 start-page: 4484 year: 2022 ident: 393_CR204 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00036 – volume: 8 start-page: e09576 year: 2022 ident: 393_CR35 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e09576 – ident: 393_CR172 doi: 10.1063/5.0055733 – volume: 12 start-page: 1400 year: 2017 ident: 393_CR219 publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.031 – volume: 4 start-page: 1143 year: 1992 ident: 393_CR19 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/4/5/001 – volume: 7 start-page: 13322 year: 2015 ident: 393_CR117 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01524 – volume: 91 start-page: 1064 year: 2019 ident: 393_CR122 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04441 – volume: 92 start-page: 104 year: 2016 ident: 393_CR137 publication-title: Water Res. doi: 10.1016/j.watres.2016.01.038 – volume: 93 start-page: 4601 year: 2021 ident: 393_CR144 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05206 – volume: 8 start-page: 11086 year: 2014 ident: 393_CR91 publication-title: ACS Nano doi: 10.1021/nn504615a – volume: 10 start-page: 2231 year: 2010 ident: 393_CR103 publication-title: Nano Lett. doi: 10.1021/nl1012085 – volume: 4 start-page: 49635 year: 2014 ident: 393_CR23 publication-title: RSC Adv. doi: 10.1039/C4RA09231G – volume: 109 start-page: 690 year: 2021 ident: 393_CR120 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2021.01.058 – volume: 13 start-page: e0192937 year: 2018 ident: 393_CR211 publication-title: PLOS ONE doi: 10.1371/journal.pone.0192937 – volume: 66 start-page: 6525 year: 2018 ident: 393_CR86 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b03075 – volume: 91 start-page: 13337 year: 2019 ident: 393_CR220 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03599 – volume: 7 start-page: 2004 year: 2007 ident: 393_CR42 publication-title: Nano Lett. doi: 10.1021/nl070807q – volume: 9 start-page: 2049 year: 2009 ident: 393_CR47 publication-title: Nano Lett. doi: 10.1021/nl900321e – volume: 28 start-page: 8695 year: 2016 ident: 393_CR110 publication-title: Adv. Mater. doi: 10.1002/adma.201602603 – volume: 34 start-page: 15160 year: 2018 ident: 393_CR46 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02854 – volume: 14 start-page: 237 year: 2019 ident: 393_CR208 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0346-1 – volume: 302 start-page: 123086 year: 2023 ident: 393_CR10 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2023.123086 – volume: 60 start-page: 1936 year: 2020 ident: 393_CR210 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b01037 – volume: 16 start-page: 3345 year: 2019 ident: 393_CR196 publication-title: Math. Biosci. Eng doi: 10.3934/mbe.2019167 – volume: 15 start-page: 985 year: 2020 ident: 393_CR40 publication-title: Plasmonics doi: 10.1007/s11468-019-01096-4 – volume: 185 start-page: 90 year: 2018 ident: 393_CR37 publication-title: Microchim. Acta doi: 10.1007/s00604-017-2652-y – ident: 393_CR217 doi: 10.1016/j.saa.2023.123790 – volume: 8 start-page: 957 year: 2015 ident: 393_CR72 publication-title: Nano Res. doi: 10.1007/s12274-014-0577-x – volume: 63 start-page: 139 year: 2020 ident: 393_CR192 publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 128 start-page: 2200 year: 2006 ident: 393_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0578350 – volume: 26 start-page: 163 year: 1974 ident: 393_CR15 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 22 start-page: 7011 year: 2006 ident: 393_CR237 publication-title: Langmuir doi: 10.1021/la061163p – volume: 11 start-page: 1549 year: 2022 ident: 393_CR202 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0689 – volume: 15 start-page: 5288 year: 2013 ident: 393_CR108 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43642f – volume: 275 start-page: 1102 year: 1997 ident: 393_CR22 publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 15 start-page: 7684 year: 2015 ident: 393_CR79 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03672 – ident: 393_CR149 doi: 10.1016/j.lwt.2020.110017 – volume: 11 start-page: 17444 year: 2019 ident: 393_CR197 publication-title: Nanoscale doi: 10.1039/C9NR03450A – volume: 13 start-page: 4399 year: 2013 ident: 393_CR78 publication-title: Nano Lett. doi: 10.1021/nl402231z – volume: 54 start-page: 468 year: 2023 ident: 393_CR152 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.6509 – volume: 85 start-page: 815 year: 2022 ident: 393_CR2 publication-title: J. Food Prot. doi: 10.4315/JFP-21-411 – volume: 386 start-page: 133736 year: 2023 ident: 393_CR240 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2023.133736 – volume: 26 start-page: 163 year: 1974 ident: 393_CR147 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – ident: 393_CR226 – ident: 393_CR183 doi: 10.21437/Interspeech.2011-242 – volume: 76 start-page: 40 year: 2004 ident: 393_CR84 publication-title: Anal. Chem. doi: 10.1021/ac034689c – volume: 43 start-page: 635 year: 2020 ident: 393_CR189 publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00865-4 – volume: 13 year: 2023 ident: 393_CR198 publication-title: Sci. Rep. doi: 10.1038/s41598-023-28076-3 – volume: 99 start-page: 5215 year: 1977 ident: 393_CR145 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 103 start-page: 1449 year: 2015 ident: 393_CR229 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2460697 – ident: 393_CR222 doi: 10.1039/C9ME00039A – ident: 393_CR177 – volume: 10 start-page: 553 year: 2010 ident: 393_CR53 publication-title: Nano Lett. doi: 10.1021/nl903414x – volume: 12 start-page: 32803 year: 2022 ident: 393_CR25 publication-title: RSC Adv. doi: 10.1039/D2RA06248H – volume: 9 start-page: 2857 year: 2019 ident: 393_CR106 publication-title: RSC Adv. doi: 10.1039/C8RA08818G – volume: 207 start-page: 114187 year: 2022 ident: 393_CR136 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2022.114187 – volume: 344 start-page: 128570 year: 2021 ident: 393_CR58 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128570 – volume: 47 start-page: 361 year: 2013 ident: 393_CR63 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.03.048 – volume: 4 start-page: eaar4206 year: 2018 ident: 393_CR8 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar4206 – volume: 10 start-page: 5897 year: 2018 ident: 393_CR73 publication-title: Nanoscale doi: 10.1039/C7NR09276H – volume: 5 start-page: 1365 year: 2018 ident: 393_CR234 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01377 – volume: 6 year: 2016 ident: 393_CR36 publication-title: Sci. Rep. doi: 10.1038/srep25243 – volume: 90 start-page: 261908 year: 2007 ident: 393_CR43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2752026 – volume: 136 start-page: 5332 year: 2014 ident: 393_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501951v – volume: 180 start-page: 159 year: 1980 ident: 393_CR21 publication-title: Abstr. Pap. Am. Chem. S. – volume: 19 start-page: 4159 year: 1980 ident: 393_CR33 publication-title: Appl. Opt. doi: 10.1364/AO.19.004159 – volume: 42 start-page: e12967 year: 2022 ident: 393_CR155 publication-title: J. Food Saf. doi: 10.1111/jfs.12967 – ident: 393_CR164 doi: 10.3389/fmicb.2022.843417 – volume: 6 start-page: 1900925 year: 2019 ident: 393_CR135 publication-title: Adv. Sci. doi: 10.1002/advs.201900925 |
SSID | ssj0002140507 |
Score | 2.305845 |
SecondaryResourceType | review_article |
Snippet | Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods.... Abstract Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 31 |
SubjectTerms | 692/499 706/1143 Chemistry Chemistry and Materials Science Chemistry/Food Science Deep learning Design optimization Food Microbiology Food safety Food Science Livestock Nutrition Optical properties Qualitative analysis Raman spectra Residues Review Substrates Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQlFdoQUZCXMBqbMeOlxuFVhUSPVAq9WbF8RhWQilqsj3013fGSbZdHuLCMS_J8sx4vok_f8PYK0ma4w2AqGIbBULqRjQuaoG5wATlQIKkA86fj-3RafXpzJzdavVFnLBRHnicuD1oQ3JRBkv1E1A1EgGTlJay1gmvaPXFnHermKI1WGHdgEhnOiVTarfXVzm2qXtrPo8qrjYyURbs_xPK_J0s-cuOaU5Eh_fZvQlB8vfjyB-wO9Bts-LjEgb-mk8ynz_48ayy_5D19OOJehHxIRNg-bLjJwdfTgRlsMgviRCTT-XyeLH6xiMMmZ7VveOZbUiZb_xhyHtcZbKabc-bLvLlWs5z4MQ05bNAOfSP2OnhwdcPR2LqtSDaalENopKxlglMVK0BWbauUlVtlEngSpVK0wRX6kDsamlr3ZRgm2BMkAbaRZ1arR-zre68g6eMp7BYQEJsYFXActGGMjnMldYSQyWpULA387z7n6Okhs9b4dr50UoereSzlfxVwfbJNOs3SQ4730An8ZOT-H85ScF2Z8P6KUZ7j8iJ2v8iZC3Yy_VjjC7aMmk6OF-N7yBARNRUsCejH6xHgqufQ3xqC-Y2PGRjqJtPuuX3rOBNqnoIlPHTt7Mz3Yzr73Px7H_MxQ67q3IUaCHNLtsaLlbwHIHVEF7kGLoGBPUgyQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VcoALgvIVKMhIiAtYxHaceLnB0qpCogdKpd6sOLbLSiiLNlkO_fXMOB9ooRw4JrElKzP2PNtv3gC8FKQ5XofAC994jpC65rXximMs0E6aIIKgBOfPp-XJefHpQl_sgZxyYRJpP0lapmV6Yoe97Yo0Nan4akon5Vc34CZJt5NXL8vlfK4icceAGGfMj8mVuabrTgxKUv3X4cu_aZJ_3JWmEHR8F-6M2JG9H0Z7D_ZCewC3llPJtgPIPq5Cz16xUezzOzudtPbvQ0fHT1SRiPWJBstWLTs7-nLGKY559pNoMSk3l_nN9pL50CeSVvuOJc4hxb_h2JB1uNYkTduO1a1nq1nUs2fEN2WTTHnoHsD58dHX5QkfKy7wplgUPS-Er0QM2stGB5E3ppBFpaWOweQy5rp2JleOONairFSdh7J2WjuhQ7OoYqPUQ9hv1214DCy6xSJERAildLhpLF0eDUbMsiSeSpQug9eTDeyPQVjDpgtxZexgMYsWs8li9iqDD2SmuSWJYqcX682lHZ3EhsZF44UraasdaOPqA-IZJUSlIj5lcDgZ2Y4ztbOIn6gIMALXDF7Mn9FudHFSt2G9HdogTETslMGjwSfmkeAaaBCllhmYHW_ZGerul3b1Lel4k7YewmXs-mZyrN_j-ve_ePJ_zZ_CbZl8X3GhD2G_32zDMwRSvXueZs4vXTQbIA priority: 102 providerName: Springer Nature |
Title | Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches |
URI | https://link.springer.com/article/10.1038/s41538-025-00393-z https://www.ncbi.nlm.nih.gov/pubmed/40089516 https://www.proquest.com/docview/3177542540 https://www.proquest.com/docview/3177623190 https://pubmed.ncbi.nlm.nih.gov/PMC11910576 https://doaj.org/article/ecbf8d1b60274e4094de51231173f094 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeuGC-CYwKiMhLmAtjuPE5YK60mmqRIVWJu0WxbG9VULpaFIO--t5z3Eyla9jmlRy8r5-7_n59wh5y5FzvLSWpaYyDCB1yUplBINYIHWiLLccDzh_WWZnF-niUl6GglsT2ip7n-gdtdlUWCM_hjiHw1oBYHy6-cFwahTuroYRGgdkBC5YQfI1Opkvv54PVZYE8gdAPOG0TCzUcZN6G8cprv5cKrvdi0ieuP9vaPPPpsnfdk59QDp9SB4EJEmnnegfkXu2fkyiz2vb0nc00H1-p8uebf8JabAAhTOJaOsbYem6pqv5-YphJDP0JzbG-NO51Gx3V9TY1rdp1R-p7zrECNgVDmkD3saz2ja0rA1dD7SeLcWOU9oTldvmKbk4nX-bnbEwc4FV6SRtWcpNzp2VJqmk5XGl0iTNZSKdVXHiYllqFQuNXdY8y0UZ26zUUmoubTXJXSXEM3JYb2r7glCnJxPrACNkiYa0MdOxUxAzsww7VVyiI_K-_-7FTUetUfgtcaGKTkoFSKnwUipuI3KCohmeRFps_8Nme1UEKytspZ0yXGeYbFtMXY0FRCM4z4WDq4gc9YItgq02xZ1mReTNcBusDLdOytpudt0zABQBPUXkeacHw0rACyrAqVlE1J6G7C11_069vvZM3siuB4AZ_vqhV6a7df37W7z8_2u8IvcTr9-CcXlEDtvtzr4G6NTqMRlNp4vVYhzsZEwOZtls7AsRvwB-1x26 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiDehBYwEXMBq7MSJFwkhSrfa0naF-pB6c-PYKSuhbLvJguiP4jcy4zyq5XXrMZus5GTGM9-MZ74h5AVHzvHMORbb3DKA1BnLlI0Y-AJphHLccWxw3p8k4-P404k8WSE_u14YLKvsbKI31HaWY458A_wcDmsFgPH-_ILh1Cg8Xe1GaDRqset-fIeQrXq3swXyfSnE9ujo45i1UwVYHg_jmsXcprxw0opcOh7mKhZxKoUsnApFEcrMqDAyWEfMkzTKQpdkRkrDpcuHaZFjAhRM_mocQSgzIKubo8nngz6rIyBeAYTVdueEkdqoYm9TcGqs74Nll0se0A8K-Bu6_bNI87eTWu8At2-TWy1ypR8aVbtDVlx5lwRbU1fTV7SlF_1KJx27_z1SYcILZyDR2hfe0mlJD0cHhww9p6XfsBDHdwNTO1-cUetqXxZWvqW-yhE9bpOopBVYN8-iW9GstHTa04jWFCtcaUeM7qr75PhapPGADMpZ6R4RWpjh0BWASRJhIExNTFgo8NFJgpUxhTABed19d33eUHlofwQfKd1ISYOUtJeSvgzIJoqmfxJpuP0Ps_mZbne1drkplOUmweDeYahsHSCoiPM0KuAqIOudYHVrGyp9pckBed7fhl2NRzVZ6WaL5hkApoDWAvKw0YN-JWB1FeDiJCBqSUOWlrp8p5x-8czhyOYHAB3--qZTpqt1_ftbPP7_azwjN8ZH-3t6b2eyu0ZuCq_rEeNynQzq-cI9AdhWm6ftXqHk9Lq35y-mo1ej |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEXBOUVKGAkxAVc4jh2vNxg21V5rRClUm9WHNvtSlW22mQ59Nczdh5ooRw4JrElK2N7vrG_-QbgJQua46VzNLeVpQipS1oqyyn6AmEy5ZhjIcH561weHuefTsTJFsghFyaS9qOkZdymB3bY2yaPSzMUX43ppPRy78L6a3Ad8XYagq6pnI5nKxlGDfi2z5FJubqi-4YfinL9V2HMv6mSf9yXRjc0uwO3e_xI3ncjvgtbrt6Bm9OhbNsOJPsL15JXpBf8PCfzQW__HjThCCpUJSJtpMKSRU2ODr4f0eDLLPkZqDExP5fY1fqUWNdGolb9jkTeYfCB3dEhaXC_ibq2DSlrSxajsGdLAueUDFLlrrkPx7ODH9ND2lddoFU-yVuaM1sw74TNKuFYWqk8ywuRCe9UmvlUlEal3ASeNZMFL1MnSyOEYcJVk8JXnD-A7XpZu0dAvJlMnEeUIDODgaM0qVfoNaUMXBWfmQReDzbQF524ho6X4lzpzmIaLaajxfRlAh-CmcaWQRg7vliuTnU_UbSrjFeWGRnCbReCV-sQ03DGCu7xKYHdwci6X62NRgwVCgEjeE3gxfgZ7RYuT8raLdddG4SKiJ8SeNjNiXEkuA8qRKoyAbUxWzaGuvmlXpxFLe-gr4eQGbu-GSbW73H9-188_r_mz-HGt_2Z_vJx_vkJ3MriMuCUiV3Ybldr9xRxVWuexUX0C80ZHxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+trends+in+SERS-based+veterinary+drug+detection%3A+multifunctional+substrates+and+intelligent+data+approaches&rft.jtitle=NPJ+science+of+food&rft.date=2025-03-15&rft.pub=Nature+Publishing+Group&rft.eissn=2396-8370&rft.volume=9&rft.issue=1&rft.spage=31&rft_id=info:doi/10.1038%2Fs41538-025-00393-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8370&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8370&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8370&client=summon |