Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches

Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensiti...

Full description

Saved in:
Bibliographic Details
Published inNPJ science of food Vol. 9; no. 1; pp. 31 - 21
Main Authors Yin, Tianzhen, Peng, Yankun, Chao, Kuanglin, Li, Yongyu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
AbstractList Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Abstract Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods. Surface-enhanced Raman scattering (SERS) has been identified as a powerful tool for veterinary drug residue analysis due to its high sensitivity and specificity. However, the development of reliable SERS substrates and the interpretation of complex spectral data remain significant obstacles. This review summarizes the development process of SERS substrates, categorizing them into metal-based, rigid, and flexible substrates, and highlighting the emerging trend of multifunctional substrates. The diverse application scenarios and detection requirements for these substrates are also discussed, with a focus on their use in veterinary drug detection. Furthermore, the integration of deep learning techniques into SERS-based detection is explored, including substrate structure design optimization, optical property prediction, spectral preprocessing, and both qualitative and quantitative spectral analyses. Finally, key limitations are briefly outlined, such as challenges in selecting reporter molecules, data imbalance, and computational demands. Future trends and directions for improving SERS-based veterinary drug detection are proposed.
ArticleNumber 31
Author Yin, Tianzhen
Peng, Yankun
Chao, Kuanglin
Li, Yongyu
Author_xml – sequence: 1
  givenname: Tianzhen
  surname: Yin
  fullname: Yin, Tianzhen
  organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University
– sequence: 2
  givenname: Yankun
  surname: Peng
  fullname: Peng, Yankun
  email: ypeng@cau.edu.cn
  organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University
– sequence: 3
  givenname: Kuanglin
  surname: Chao
  fullname: Chao, Kuanglin
  organization: Environmental Microbial and Food Safety Laboratory, USDA-ARS
– sequence: 4
  givenname: Yongyu
  surname: Li
  fullname: Li, Yongyu
  organization: National R & D Center for Agro-processing Equipment, College of Engineering, China Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40089516$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhSNUREvpC7BAltiwCYz_4oQNQtUFKlVCorC2HHuSusp1LrZTiT497k0pLQtW9tjfnJmxz_PqIMwBq-olhbcUePsuCSp5WwOTNQDveH3zpDpivGvqlis4eLA_rE5SugIARgVIUM-qQwHQdpI2R1XabDGOPowkRwwuER_IxebbRd2bhI5cY8bog4m_iIvLSFyJbfZzeE-2y5T9sIR9aCaSlj7laDImYoIrOhmnyY8YMnEmG2J2uzgbe4npRfV0MFPCk7v1uPrxafP99Et9_vXz2enH89qKTuRaUKfogNIxK5GCbQUTSjI5YAtsAGn6FniPxiFtFDeAjeml7KlE26nBcn5cna26bjZXehf9tsyhZ-P1_mCOozYxezuhRtsPraN9A0wJFNAJh5IyTqniQ4mK1odVa7f0W3S2jBXN9Ej08U3wl3qcrzWlHQWpmqLw5k4hzj8XTFlvfbLljUzAeUmaU6WaUrGDgr7-B72al1geeaWkYFLcUq8etnTfy5_PLQBbARvnlCIO9wgFfWsivZpIFxPpvYn0TUnia1IqcBgx_q39n6zf9dnLZw
Cites_doi 10.1002/admi.201600214
10.1021/jp010657m
10.1016/j.saa.2022.121212
10.1038/s41598-021-97882-4
10.21437/Interspeech.2011-169
10.1021/acsami.2c12201
10.1016/j.watres.2023.119662
10.1002/bio.4148
10.1016/j.chemosphere.2021.130115
10.1515/nanoph-2019-0117
10.1016/j.snb.2024.136741
10.1016/j.foodcont.2010.09.020
10.1007/s11947-011-0774-5
10.1016/j.neucom.2016.06.014
10.1021/nl049604h
10.1177/0003702819888949
10.3390/ma16134620
10.1016/j.bios.2012.06.050
10.1016/j.optmat.2023.114241
10.1002/jrs.4050
10.1021/acs.jpcc.0c05995
10.1021/am5043092
10.1021/acs.jafc.2c00089
10.1016/j.trac.2019.115796
10.1016/j.aca.2022.340776
10.1126/scitranslmed.3010633
10.1021/acsnano.5b06206
10.1002/jrs.6559
10.1088/1361-6528/ac2769
10.1016/j.saa.2015.09.012
10.1039/D3AN00636K
10.3390/molecules27248764
10.1021/acs.jpclett.0c01598
10.3390/nano12010170
10.1021/acs.analchem.5b02832
10.1109/ACCESS.2020.3012132
10.1007/s00604-020-04567-2
10.1021/acsanm.1c00905
10.1016/j.vibspec.2022.103391
10.1039/C2JM15238J
10.1021/ja804115r
10.1002/adma.201501587
10.1088/2043-6262/7/3/033001
10.48550/arXiv.2307.00513
10.1016/j.talanta.2018.11.114
10.1016/j.saa.2021.120174
10.1007/s00158-023-03606-9
10.1021/acsnano.6b02903
10.1021/acsnano.9b09119
10.1016/j.snb.2017.09.197
10.1016/j.apsusc.2020.146953
10.1016/j.microc.2021.106532
10.1002/smll.201400527
10.1111/j.1750-3841.2008.00901.x
10.1016/j.talanta.2021.122819
10.1021/acs.analchem.5b04131
10.1145/3065386
10.1039/C6AN00807K
10.1007/s00339-015-9589-y
10.1177/0003702820978233
10.1021/acs.langmuir.5b04393
10.1021/acsami.6b10818
10.1073/pnas.1016530108
10.1016/j.optcom.2022.127977
10.1007/s00778-019-00552-1
10.1016/j.foodchem.2022.134078
10.1016/j.apsusc.2016.04.022
10.1016/j.apsusc.2017.05.052
10.1021/acs.nanolett.9b03971
10.3390/nano11030633
10.1016/j.saa.2022.122221
10.1002/jrs.1362
10.1002/smll.201400438
10.3390/bios12100859
10.1038/s41377-018-0060-7
10.1002/smll.201303773
10.1007/s00604-019-3543-1
10.1039/D2NA00608A
10.1038/s41596-021-00620-3
10.1016/j.snb.2023.133936
10.1021/jp050508u
10.1002/adfm.201601154
10.3390/nano9050672
10.1016/j.vibspec.2022.103444
10.1016/j.csbj.2022.09.031
10.1002/jrs.5846
10.1016/j.saa.2020.118908
10.1016/j.trac.2019.115673
10.3390/bios9020057
10.1002/adom.201200019
10.1016/j.saa.2017.03.040
10.1021/acsami.8b17847
10.1038/s41378-019-0069-y
10.1039/C6RA08608J
10.1016/j.saa.2022.122018
10.1021/acs.analchem.2c03082
10.1038/s41586-024-07218-1
10.1063/1.4824896
10.1117/12.3013243
10.1016/j.snb.2017.05.051
10.1016/j.apsusc.2020.148224
10.1007/s11468-018-00899-1
10.1039/C4CC09466B
10.3390/cancers14122860
10.1109/MSP.2012.2205597
10.1038/s41565-022-01284-0
10.1016/B978-0-08-100674-0.00006-0
10.3390/nano7010009
10.1088/1361-6528/acddee
10.1038/srep00987
10.1007/978-3-319-24574-4_28
10.3389/fchem.2019.00706
10.1016/j.optcom.2018.04.065
10.1002/jrs.4928
10.1016/j.microc.2021.106343
10.1016/j.tifs.2022.07.012
10.1109/TASL.2011.2109382
10.1002/adma.201702275
10.1021/acssuschemeng.1c00483
10.1109/TASL.2011.2134090
10.1016/j.saa.2021.120534
10.1016/j.foodchem.2024.141884
10.1038/s41598-018-25228-8
10.1088/0957-4484/25/23/235303
10.1039/D3AN00272A
10.1002/smll.201402630
10.1016/j.saa.2022.121308
10.1039/b705965p
10.1162/neco_a_01273
10.1021/acs.accounts.9b00163
10.1016/j.saa.2020.118994
10.1515/nanoph-2018-0074
10.1016/j.bios.2016.07.097
10.1016/j.apsusc.2017.11.288
10.1002/adom.201600247
10.1021/acsomega.1c07263
10.1016/j.jcis.2015.10.007
10.1016/j.cplett.2016.08.027
10.1038/s41746-017-0013-1
10.1038/nature14236
10.1007/s11164-023-05122-3
10.1021/jz4012383
10.1016/j.jmst.2019.05.055
10.1109/CVPR.2018.00131
10.1080/24725854.2021.1987593
10.1021/jp800692p
10.1016/j.saa.2021.119652
10.1146/annurev-food-022811-101227
10.1016/j.mtnano.2023.100305
10.1038/s42256-020-0190-5
10.1088/0957-4484/17/11/015
10.1002/jrs.4413
10.1021/acsanm.8b02308
10.1016/j.trac.2023.117341
10.1021/jp908423v
10.3390/mi14071343
10.1038/121501c0
10.1021/cm400298e
10.1109/TNNLS.2020.2978386
10.1021/la701610s
10.1039/C4EN00211C
10.1016/j.apsusc.2020.147454
10.1007/s11042-019-07820-w
10.1021/acs.analchem.2c00036
10.1016/j.heliyon.2022.e09576
10.1063/5.0055733
10.1038/nprot.2017.031
10.1088/0953-8984/4/5/001
10.1021/acsami.5b01524
10.1021/acs.analchem.8b04441
10.1016/j.watres.2016.01.038
10.1021/acs.analchem.0c05206
10.1021/nn504615a
10.1021/nl1012085
10.1039/C4RA09231G
10.1016/j.tifs.2021.01.058
10.1371/journal.pone.0192937
10.1021/acs.jafc.7b03075
10.1021/acs.analchem.9b03599
10.1021/nl070807q
10.1021/nl900321e
10.1002/adma.201602603
10.1021/acs.langmuir.8b02854
10.1038/s41565-018-0346-1
10.1016/j.saa.2023.123086
10.1021/acs.jcim.9b01037
10.3934/mbe.2019167
10.1007/s11468-019-01096-4
10.1007/s00604-017-2652-y
10.1016/j.saa.2023.123790
10.1007/s12274-014-0577-x
10.1145/3422622
10.1021/ja0578350
10.1016/0009-2614(74)85388-1
10.1021/la061163p
10.1515/nanoph-2021-0689
10.1039/c2cp43642f
10.1126/science.275.5303.1102
10.1021/acs.nanolett.5b03672
10.1016/j.lwt.2020.110017
10.1039/C9NR03450A
10.1021/nl402231z
10.1002/jrs.6509
10.4315/JFP-21-411
10.1016/j.snb.2023.133736
10.21437/Interspeech.2011-242
10.1021/ac034689c
10.1007/s13246-020-00865-4
10.1038/s41598-023-28076-3
10.1021/ja00457a071
10.1109/JPROC.2015.2460697
10.1039/C9ME00039A
10.1021/nl903414x
10.1039/D2RA06248H
10.1039/C8RA08818G
10.1016/j.bios.2022.114187
10.1016/j.foodchem.2020.128570
10.1016/j.bios.2013.03.048
10.1126/sciadv.aar4206
10.1039/C7NR09276H
10.1021/acsphotonics.7b01377
10.1038/srep25243
10.1063/1.2752026
10.1021/ja501951v
10.1364/AO.19.004159
10.1111/jfs.12967
10.3389/fmicb.2022.843417
10.1002/advs.201900925
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
COVID
DWQXO
HCIFZ
M0K
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41538-025-00393-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Agricultural Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Diet & Clinical Nutrition
EISSN 2396-8370
EndPage 21
ExternalDocumentID oai_doaj_org_article_ecbf8d1b60274e4094de51231173f094
PMC11910576
40089516
10_1038_s41538_025_00393_z
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32020103016; 32020103016; 32020103016; 32020103016
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 32020103016
GroupedDBID 0R~
7X2
AAHBH
AAJSJ
ACGFS
ADBBV
ADMLS
AEUYN
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BCNDV
BENPR
BHPHI
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
HYE
M0K
M~E
NAO
NO~
OK1
PGMZT
PHGZT
PIMPY
RNT
RPM
AASML
AAYXX
CITATION
PHGZM
SNYQT
NPM
3V.
8FE
8FH
8FK
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-41d71fe5d2c5e10c84247525fe802f05ab803beade1673a0e6ab55b15ec97fc33
IEDL.DBID BENPR
ISSN 2396-8370
IngestDate Wed Aug 27 01:06:07 EDT 2025
Thu Aug 21 18:34:06 EDT 2025
Fri Jul 11 10:08:45 EDT 2025
Mon Jun 30 12:09:44 EDT 2025
Wed Mar 19 01:28:50 EDT 2025
Sun Jul 06 05:04:59 EDT 2025
Sun Mar 16 01:11:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-41d71fe5d2c5e10c84247525fe802f05ab803beade1673a0e6ab55b15ec97fc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/3177542540?pq-origsite=%requestingapplication%
PMID 40089516
PQID 3177542540
PQPubID 4669712
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_ecbf8d1b60274e4094de51231173f094
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11910576
proquest_miscellaneous_3177623190
proquest_journals_3177542540
pubmed_primary_40089516
crossref_primary_10_1038_s41538_025_00393_z
springer_journals_10_1038_s41538_025_00393_z
PublicationCentury 2000
PublicationDate 2025-03-15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ science of food
PublicationTitleAbbrev npj Sci Food
PublicationTitleAlternate NPJ Sci Food
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Q-H Wei (393_CR44) 2004; 4
R Shi (393_CR86) 2018; 66
X Liu (393_CR112) 2016; 26
393_CR38
J Jeong (393_CR110) 2016; 28
Y Zhang (393_CR126) 2019; 14
M Alamri (393_CR59) 2019; 2
X-B Zheng (393_CR152) 2023; 54
CV Raman (393_CR16) 1928; 121
G Kawamura (393_CR43) 2007; 90
GC Phan-Quang (393_CR68) 2019; 52
EM Gil (393_CR13) 2023; 54
KJ Si (393_CR91) 2014; 8
J Gerretzen (393_CR161) 2015; 87
M Jing (393_CR96) 2021; 255
G Dikmen (393_CR4) 2022; 278
A Otto (393_CR19) 1992; 4
S Almaviva (393_CR139) 2014; 45
Y-L Li (393_CR77) 2023; 390
D Lahat (393_CR229) 2015; 103
J Zhu (393_CR213) 2021; 246
V Mnih (393_CR194) 2015; 518
J Gao (393_CR227) 2020; 32
J Li (393_CR171) 2023; 290
A Krizhevsky (393_CR182) 2017; 60
W Fan (393_CR32) 2022; 37
M Kerker (393_CR21) 1980; 180
H Zhao (393_CR55) 2018; 7
Q Guo (393_CR92) 2016; 32
Q Ding (393_CR130) 2019; 186
393_CR51
F Li (393_CR85) 2013; 39
393_CR215
Q Chen (393_CR136) 2022; 207
M Kazemzadeh (393_CR209) 2022; 510
393_CR214
M Lin (393_CR98) 2008; 73
S Atta (393_CR165) 2023; 148
393_CR217
Y Zhu (393_CR64) 2012; 22
393_CR216
SJ Lee (393_CR49) 2006; 128
L Polavarapu (393_CR108) 2013; 15
Q Luo (393_CR88) 2023; 143
S Guo (393_CR160) 2021; 16
M Liu (393_CR56) 2020; 51
G Fu (393_CR146) 2019; 195
Y Jia (393_CR207) 2021; 9
393_CR226
393_CR222
393_CR221
393_CR224
393_CR223
R De Waele (393_CR42) 2007; 7
Q Bao (393_CR170) 2023; 34
W Fan (393_CR153) 2021; 169
Y Yang (393_CR45) 2006; 17
P Ndokoye (393_CR61) 2016; 462
JH Shin (393_CR90) 2016; 6
Y Chen (393_CR125) 2018; 436
393_CR75
Y Huang (393_CR168) 2023; 232
G Das (393_CR116) 2016; 47
X Bi (393_CR141) 2024; 628
D Zhang (393_CR120) 2021; 109
J Shen (393_CR6) 2022; 121
K Ji (393_CR240) 2023; 386
J Houston (393_CR210) 2020; 60
A González Fá (393_CR154) 2019; 121
G Zheng (393_CR132) 2015; 51
Z Zuo (393_CR113) 2016; 379
L Wali (393_CR40) 2020; 15
Y Miao (393_CR148) 2021; 4
393_CR191
393_CR193
HG Svavarsson (393_CR89) 2016; 122
Z Yang (393_CR158) 2023; 401
B Xue (393_CR206) 2023; 66
B Liu (393_CR100) 2013; 6
PR Wiecha (393_CR233) 2020; 20
K Xu (393_CR135) 2019; 6
S Kang (393_CR25) 2022; 12
M Tiwari (393_CR159) 2022; 236
C Han (393_CR102) 2017; 251
Q Guo (393_CR35) 2022; 8
M Kerker (393_CR33) 1980; 19
C Zhu (393_CR72) 2015; 8
Q Guo (393_CR236) 2022; 123
N-Y Kim (393_CR54) 2019; 11
M Sun (393_CR121) 2019; 35
393_CR11
L Wang (393_CR163) 2022; 20
T Yin (393_CR14) 2025; 464
J-W Liu (393_CR62) 2012; 2
G Hinton (393_CR178) 2012; 29
H Im (393_CR103) 2010; 10
W Thrift (393_CR220) 2019; 91
H Takei (393_CR27) 2023; 148
GC Shi (393_CR129) 2018; 8
M Jain (393_CR190) 2020; 2
D Liu (393_CR234) 2018; 5
RM Jarvis (393_CR84) 2004; 76
M Wang (393_CR131) 2019; 9
Z Yang (393_CR124) 2021; 75
C Gao (393_CR10) 2023; 302
C Zhang (393_CR37) 2018; 185
A Ratner (393_CR225) 2020; 29
393_CR24
P Chen (393_CR114) 2016; 660
393_CR7
393_CR1
C Muehlethaler (393_CR138) 2016; 88
X Qiu (393_CR39) 2022; 276
H Zhang (393_CR94) 2015; 11
X Zhao (393_CR204) 2022; 94
J He (393_CR197) 2019; 11
S Nie (393_CR22) 1997; 275
I Choi (393_CR74) 2016; 10
C Song (393_CR105) 2017; 87
J Zhang (393_CR196) 2019; 16
J Peurifoy (393_CR8) 2018; 4
Y Yang (393_CR50) 2007; 23
M Çulha (393_CR17) 2012; 2012
G Shi (393_CR128) 2018; 425
N Zhou (393_CR118) 2016; 141
Z Yang (393_CR76) 2022; 267
M Behvarmanesh (393_CR155) 2022; 42
N Gaw (393_CR228) 2022; 54
H Liu (393_CR67) 2014; 136
Z Wu (393_CR195) 2021; 32
L Ma (393_CR109) 2016; 8
F Lussier (393_CR200) 2020; 124
L Alzubaidi (393_CR188) 2020; 79
JA Arzola-Flores (393_CR167) 2020; 124
Y Wang (393_CR137) 2016; 92
H-E Lee (393_CR66) 2014; 10
S Harmsen (393_CR219) 2017; 12
C He (393_CR203) 2022; 7
A Nilghaz (393_CR31) 2022; 70
393_CR166
C Zhang (393_CR36) 2016; 6
F Zeng (393_CR122) 2019; 91
GE Dahl (393_CR181) 2012; 20
D Raj (393_CR156) 2023; 16
B Diederich (393_CR211) 2018; 13
J Leem (393_CR79) 2015; 15
SY Lee (393_CR81) 2013; 25
A Hussain (393_CR157) 2021; 245
M Fleischmann (393_CR15) 1974; 26
393_CR164
S Su (393_CR57) 2014; 6
H Wei (393_CR142) 2015; 2
J Wahl (393_CR5) 2020; 74
Y Song (393_CR58) 2021; 344
393_CR177
M Yang (393_CR70) 2018; 256
393_CR179
P Wang (393_CR150) 2022; 27
PR Wiecha (393_CR208) 2019; 14
PA Mosier-Boss (393_CR238) 2016; 153
A Dasgupta (393_CR48) 2013; 103
I Apostolopoulos (393_CR189) 2020; 43
393_CR175
D Li (393_CR212) 2021; 539
L Chen (393_CR101) 2010; 114
393_CR172
PPP Kumar (393_CR201) 2023; 168
H Zhang (393_CR239) 2022; 14
Z Li (393_CR73) 2018; 10
AS Urban (393_CR78) 2013; 13
L Yang (393_CR23) 2014; 4
I Goodfellow (393_CR192) 2020; 63
KL Genson (393_CR237) 2006; 22
M Chen (393_CR46) 2018; 34
SEJ Bell (393_CR83) 2008; 37
S So (393_CR169) 2019; 8
T Yan (393_CR133) 2017; 419
Q Guo (393_CR34) 2022; 12
Y Cheng (393_CR97) 2011; 22
A Madani (393_CR173) 2018; 1
393_CR185
M Fleischmann (393_CR147) 1974; 26
393_CR184
Q He (393_CR9) 2023; 22
393_CR187
M Moskovits (393_CR18) 2005; 36
393_CR183
Q Zhou (393_CR95) 2017; 7
393_CR111
393_CR235
X Ling (393_CR53) 2010; 10
E Satheeshkumar (393_CR69) 2017; 181
C Zong (393_CR106) 2019; 9
A Prieto (393_CR186) 2016; 214
Y Fang (393_CR47) 2009; 9
S-G Park (393_CR80) 2015; 27
S Harmsen (393_CR218) 2015; 7
X Xu (393_CR63) 2013; 47
G Kawamura (393_CR41) 2008; 112
CL Haynes (393_CR20) 2001; 105
393_CR230
D-Y Lin (393_CR30) 2023; 14
W Nam (393_CR144) 2021; 93
X Tian (393_CR134) 2021; 263
393_CR87
Y Zhang (393_CR99) 2012; 43
I Sajedian (393_CR176) 2019; 5
J-F Masson (393_CR199) 2023; 18
Q Zhang (393_CR232) 2023; 287
393_CR123
Q Du (393_CR205) 2021; 32
S Xu (393_CR52) 2023; 1240
Q Zhang (393_CR82) 2014; 10
R Pilot (393_CR26) 2019; 9
H Zhou (393_CR231) 2023; 5
M Chirumamilla (393_CR60) 2014; 25
Q Shi (393_CR93) 2016; 10
BH Nguyen (393_CR29) 2016; 7
L Polavarapu (393_CR119) 2014; 10
RA Alvarez-Puebla (393_CR71) 2011; 108
M Kazemzadeh (393_CR12) 2022; 94
D Li (393_CR115) 2016; 4
M Albrecht (393_CR145) 1977; 99
Y Yang (393_CR2) 2022; 85
X Li (393_CR107) 2023; 49
AD McFarland (393_CR104) 2005; 109
C Liu (393_CR28) 2022; 128
393_CR149
N Valley (393_CR140) 2013; 4
J Li (393_CR202) 2022; 11
AP Craig (393_CR3) 2013; 4
A Mohamed (393_CR180) 2012; 20
S Verma (393_CR198) 2023; 13
Q Fu (393_CR117) 2015; 7
W Niu (393_CR65) 2009; 131
Y Li (393_CR174) 2020; 8
B-B Xu (393_CR127) 2013; 1
393_CR143
H Shin (393_CR162) 2020; 14
S Bi (393_CR151) 2021; 167
References_xml – ident: 393_CR111
  doi: 10.1002/admi.201600214
– volume: 105
  start-page: 5599
  year: 2001
  ident: 393_CR20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp010657m
– volume: 276
  start-page: 121212
  year: 2022
  ident: 393_CR39
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2022.121212
– ident: 393_CR214
  doi: 10.1038/s41598-021-97882-4
– ident: 393_CR179
  doi: 10.21437/Interspeech.2011-169
– volume: 14
  start-page: 51253
  year: 2022
  ident: 393_CR239
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c12201
– volume: 2012
  start-page: 1
  year: 2012
  ident: 393_CR17
  publication-title: J. Nanotechnol.
– volume: 232
  start-page: 119662
  year: 2023
  ident: 393_CR168
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119662
– ident: 393_CR191
– volume: 37
  start-page: 82
  year: 2022
  ident: 393_CR32
  publication-title: Lumin. J. Biol. Chem. Lumin.
  doi: 10.1002/bio.4148
– ident: 393_CR51
  doi: 10.1016/j.chemosphere.2021.130115
– volume: 8
  start-page: 1255
  year: 2019
  ident: 393_CR169
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0117
– ident: 393_CR216
  doi: 10.1016/j.snb.2024.136741
– volume: 22
  start-page: 685
  year: 2011
  ident: 393_CR97
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2010.09.020
– volume: 6
  start-page: 710
  year: 2013
  ident: 393_CR100
  publication-title: Food Bioprocess. Technol.
  doi: 10.1007/s11947-011-0774-5
– volume: 214
  start-page: 242
  year: 2016
  ident: 393_CR186
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.014
– volume: 4
  start-page: 1067
  year: 2004
  ident: 393_CR44
  publication-title: Nano Lett.
  doi: 10.1021/nl049604h
– volume: 74
  start-page: 427
  year: 2020
  ident: 393_CR5
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702819888949
– volume: 16
  start-page: 4620
  year: 2023
  ident: 393_CR156
  publication-title: Materials
  doi: 10.3390/ma16134620
– volume: 39
  start-page: 82
  year: 2013
  ident: 393_CR85
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.06.050
– volume: 143
  start-page: 114241
  year: 2023
  ident: 393_CR88
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2023.114241
– volume: 43
  start-page: 1208
  year: 2012
  ident: 393_CR99
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4050
– volume: 124
  start-page: 25447
  year: 2020
  ident: 393_CR167
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c05995
– volume: 6
  start-page: 18735
  year: 2014
  ident: 393_CR57
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5043092
– volume: 70
  start-page: 5463
  year: 2022
  ident: 393_CR31
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.2c00089
– volume: 124
  start-page: 115796
  year: 2020
  ident: 393_CR200
  publication-title: TrAC Trends in Analytical Chemistry
  doi: 10.1016/j.trac.2019.115796
– volume: 1240
  start-page: 340776
  year: 2023
  ident: 393_CR52
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340776
– ident: 393_CR185
– volume: 7
  start-page: 271ra7
  year: 2015
  ident: 393_CR218
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3010633
– volume: 10
  start-page: 967
  year: 2016
  ident: 393_CR93
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06206
– volume: 54
  start-page: 814
  year: 2023
  ident: 393_CR13
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.6559
– volume: 32
  start-page: 505607
  year: 2021
  ident: 393_CR205
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ac2769
– volume: 153
  start-page: 591
  year: 2016
  ident: 393_CR238
  publication-title: Spectrochim. Acta Part A
  doi: 10.1016/j.saa.2015.09.012
– volume: 148
  start-page: 5105
  year: 2023
  ident: 393_CR165
  publication-title: Analyst
  doi: 10.1039/D3AN00636K
– volume: 27
  start-page: 8764
  year: 2022
  ident: 393_CR150
  publication-title: Molecules
  doi: 10.3390/molecules27248764
– ident: 393_CR215
  doi: 10.1021/acs.jpclett.0c01598
– ident: 393_CR175
  doi: 10.3390/nano12010170
– volume: 87
  start-page: 12096
  year: 2015
  ident: 393_CR161
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02832
– volume: 8
  start-page: 139983
  year: 2020
  ident: 393_CR174
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012132
– ident: 393_CR87
  doi: 10.1007/s00604-020-04567-2
– volume: 4
  start-page: 6844
  year: 2021
  ident: 393_CR148
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00905
– ident: 393_CR184
– volume: 121
  start-page: 103391
  year: 2022
  ident: 393_CR6
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2022.103391
– volume: 22
  start-page: 2387
  year: 2012
  ident: 393_CR64
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2JM15238J
– volume: 131
  start-page: 697
  year: 2009
  ident: 393_CR65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804115r
– volume: 27
  start-page: 4290
  year: 2015
  ident: 393_CR80
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501587
– volume: 7
  start-page: 033001
  year: 2016
  ident: 393_CR29
  publication-title: Adv. Nat. Sci Nanosci. Nanotechnol.
  doi: 10.1088/2043-6262/7/3/033001
– ident: 393_CR11
  doi: 10.48550/arXiv.2307.00513
– volume: 195
  start-page: 841
  year: 2019
  ident: 393_CR146
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.11.114
– volume: 263
  start-page: 120174
  year: 2021
  ident: 393_CR134
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.120174
– ident: 393_CR230
– volume: 66
  start-page: 154
  year: 2023
  ident: 393_CR206
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-023-03606-9
– volume: 10
  start-page: 7639
  year: 2016
  ident: 393_CR74
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02903
– volume: 14
  start-page: 5435
  year: 2020
  ident: 393_CR162
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09119
– volume: 256
  start-page: 268
  year: 2018
  ident: 393_CR70
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.09.197
– ident: 393_CR143
  doi: 10.1016/j.apsusc.2020.146953
– volume: 169
  start-page: 106532
  year: 2021
  ident: 393_CR153
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2021.106532
– volume: 10
  start-page: 3007
  year: 2014
  ident: 393_CR66
  publication-title: Small
  doi: 10.1002/smll.201400527
– volume: 73
  start-page: T129
  year: 2008
  ident: 393_CR98
  publication-title: J. Food Sci.
  doi: 10.1111/j.1750-3841.2008.00901.x
– volume: 236
  start-page: 122819
  year: 2022
  ident: 393_CR159
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122819
– volume: 88
  start-page: 152
  year: 2016
  ident: 393_CR138
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04131
– volume: 60
  start-page: 84
  year: 2017
  ident: 393_CR182
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 141
  start-page: 5864
  year: 2016
  ident: 393_CR118
  publication-title: Analyst
  doi: 10.1039/C6AN00807K
– volume: 122
  year: 2016
  ident: 393_CR89
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-015-9589-y
– volume: 75
  start-page: 589
  year: 2021
  ident: 393_CR124
  publication-title: Appl. Spectrosc.
  doi: 10.1177/0003702820978233
– volume: 32
  start-page: 4530
  year: 2016
  ident: 393_CR92
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b04393
– volume: 8
  start-page: 27162
  year: 2016
  ident: 393_CR109
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10818
– volume: 108
  start-page: 8157
  year: 2011
  ident: 393_CR71
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1016530108
– volume: 510
  start-page: 127977
  year: 2022
  ident: 393_CR209
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2022.127977
– volume: 29
  start-page: 709
  year: 2020
  ident: 393_CR225
  publication-title: VLDB J.
  doi: 10.1007/s00778-019-00552-1
– volume: 401
  start-page: 134078
  year: 2023
  ident: 393_CR158
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134078
– volume: 379
  start-page: 66
  year: 2016
  ident: 393_CR113
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.04.022
– volume: 419
  start-page: 373
  year: 2017
  ident: 393_CR133
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.052
– volume: 20
  start-page: 329
  year: 2020
  ident: 393_CR233
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03971
– ident: 393_CR166
  doi: 10.3390/nano11030633
– volume: 290
  start-page: 122221
  year: 2023
  ident: 393_CR171
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2022.122221
– volume: 36
  start-page: 485
  year: 2005
  ident: 393_CR18
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1362
– volume: 10
  start-page: 3065
  year: 2014
  ident: 393_CR119
  publication-title: Small
  doi: 10.1002/smll.201400438
– volume: 12
  start-page: 859
  year: 2022
  ident: 393_CR34
  publication-title: Biosensors
  doi: 10.3390/bios12100859
– ident: 393_CR235
  doi: 10.1038/s41377-018-0060-7
– volume: 10
  start-page: 2703
  year: 2014
  ident: 393_CR82
  publication-title: Small
  doi: 10.1002/smll.201303773
– volume: 186
  start-page: 453
  year: 2019
  ident: 393_CR130
  publication-title: Mikrochim. Acta
  doi: 10.1007/s00604-019-3543-1
– volume: 5
  start-page: 538
  year: 2023
  ident: 393_CR231
  publication-title: Nanoscale Adv.
  doi: 10.1039/D2NA00608A
– volume: 16
  start-page: 5426
  year: 2021
  ident: 393_CR160
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-021-00620-3
– volume: 390
  start-page: 133936
  year: 2023
  ident: 393_CR77
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.133936
– volume: 109
  start-page: 11279
  year: 2005
  ident: 393_CR104
  publication-title: J. Phys. Chem., B
  doi: 10.1021/jp050508u
– volume: 26
  start-page: 5515
  year: 2016
  ident: 393_CR112
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601154
– volume: 9
  start-page: 672
  year: 2019
  ident: 393_CR131
  publication-title: Nanomaterials
  doi: 10.3390/nano9050672
– volume: 123
  start-page: 103444
  year: 2022
  ident: 393_CR236
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2022.103444
– volume: 20
  start-page: 5364
  year: 2022
  ident: 393_CR163
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.09.031
– volume: 51
  start-page: 750
  year: 2020
  ident: 393_CR56
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5846
– volume: 245
  start-page: 118908
  year: 2021
  ident: 393_CR157
  publication-title: Spectrochim. Acta Part A
  doi: 10.1016/j.saa.2020.118908
– volume: 121
  start-page: 115673
  year: 2019
  ident: 393_CR154
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.115673
– volume: 9
  start-page: 57
  year: 2019
  ident: 393_CR26
  publication-title: Biosensors
  doi: 10.3390/bios9020057
– volume: 1
  start-page: 56
  year: 2013
  ident: 393_CR127
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201200019
– volume: 181
  start-page: 91
  year: 2017
  ident: 393_CR69
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2017.03.040
– volume: 11
  start-page: 6363
  year: 2019
  ident: 393_CR54
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b17847
– volume: 5
  start-page: 1
  year: 2019
  ident: 393_CR176
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-019-0069-y
– volume: 6
  start-page: 70756
  year: 2016
  ident: 393_CR90
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08608J
– volume: 287
  start-page: 122018
  year: 2023
  ident: 393_CR232
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2022.122018
– volume: 94
  start-page: 12907
  year: 2022
  ident: 393_CR12
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03082
– volume: 628
  start-page: 771
  year: 2024
  ident: 393_CR141
  publication-title: Nature
  doi: 10.1038/s41586-024-07218-1
– volume: 103
  start-page: 151114
  year: 2013
  ident: 393_CR48
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824896
– ident: 393_CR38
  doi: 10.1117/12.3013243
– volume: 251
  start-page: 272
  year: 2017
  ident: 393_CR102
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.05.051
– volume: 539
  start-page: 148224
  year: 2021
  ident: 393_CR212
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.148224
– volume: 14
  start-page: 1105
  year: 2019
  ident: 393_CR126
  publication-title: Plasmonics
  doi: 10.1007/s11468-018-00899-1
– ident: 393_CR223
– volume: 51
  start-page: 4572
  year: 2015
  ident: 393_CR132
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC09466B
– ident: 393_CR7
  doi: 10.3390/cancers14122860
– volume: 29
  start-page: 82
  year: 2012
  ident: 393_CR178
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 18
  start-page: 111
  year: 2023
  ident: 393_CR199
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01284-0
– ident: 393_CR1
  doi: 10.1016/B978-0-08-100674-0.00006-0
– volume: 7
  start-page: 9
  year: 2017
  ident: 393_CR95
  publication-title: Nanomaterials
  doi: 10.3390/nano7010009
– volume: 34
  start-page: 365204
  year: 2023
  ident: 393_CR170
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/acddee
– volume: 2
  year: 2012
  ident: 393_CR62
  publication-title: Sci. Rep.
  doi: 10.1038/srep00987
– ident: 393_CR193
  doi: 10.1007/978-3-319-24574-4_28
– ident: 393_CR221
  doi: 10.3389/fchem.2019.00706
– volume: 425
  start-page: 49
  year: 2018
  ident: 393_CR128
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2018.04.065
– ident: 393_CR24
– volume: 47
  start-page: 895
  year: 2016
  ident: 393_CR116
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4928
– volume: 167
  start-page: 106343
  year: 2021
  ident: 393_CR151
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2021.106343
– volume: 128
  start-page: 90
  year: 2022
  ident: 393_CR28
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2022.07.012
– volume: 20
  start-page: 14
  year: 2012
  ident: 393_CR180
  publication-title: IEEE Audio Speech Language Process.
  doi: 10.1109/TASL.2011.2109382
– ident: 393_CR75
  doi: 10.1002/adma.201702275
– volume: 9
  start-page: 6130
  year: 2021
  ident: 393_CR207
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c00483
– volume: 20
  start-page: 30
  year: 2012
  ident: 393_CR181
  publication-title: IEEE Audio Speech Language Process.
  doi: 10.1109/TASL.2011.2134090
– volume: 267
  start-page: 120534
  year: 2022
  ident: 393_CR76
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.120534
– volume: 464
  start-page: 141884
  year: 2025
  ident: 393_CR14
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2024.141884
– volume: 8
  start-page: 6916
  year: 2018
  ident: 393_CR129
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25228-8
– volume: 25
  start-page: 235303
  year: 2014
  ident: 393_CR60
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/23/235303
– volume: 148
  start-page: 2801
  year: 2023
  ident: 393_CR27
  publication-title: Analyst
  doi: 10.1039/D3AN00272A
– volume: 11
  start-page: 844
  year: 2015
  ident: 393_CR94
  publication-title: Small
  doi: 10.1002/smll.201402630
– volume: 278
  start-page: 121308
  year: 2022
  ident: 393_CR4
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2022.121308
– volume: 37
  start-page: 1012
  year: 2008
  ident: 393_CR83
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b705965p
– volume: 32
  start-page: 829
  year: 2020
  ident: 393_CR227
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01273
– volume: 52
  start-page: 1844
  year: 2019
  ident: 393_CR68
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00163
– volume: 246
  start-page: 118994
  year: 2021
  ident: 393_CR213
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2020.118994
– volume: 7
  start-page: 1651
  year: 2018
  ident: 393_CR55
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0074
– volume: 87
  start-page: 59
  year: 2017
  ident: 393_CR105
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.097
– volume: 436
  start-page: 111
  year: 2018
  ident: 393_CR125
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.288
– volume: 4
  start-page: 1475
  year: 2016
  ident: 393_CR115
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600247
– volume: 7
  start-page: 10458
  year: 2022
  ident: 393_CR203
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c07263
– volume: 462
  start-page: 341
  year: 2016
  ident: 393_CR61
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.10.007
– volume: 660
  start-page: 169
  year: 2016
  ident: 393_CR114
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.08.027
– volume: 1
  start-page: 1
  year: 2018
  ident: 393_CR173
  publication-title: Npj Digital Med.
  doi: 10.1038/s41746-017-0013-1
– volume: 518
  start-page: 529
  year: 2015
  ident: 393_CR194
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 49
  start-page: 5083
  year: 2023
  ident: 393_CR107
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-023-05122-3
– volume: 4
  start-page: 2599
  year: 2013
  ident: 393_CR140
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4012383
– volume: 35
  start-page: 2207
  year: 2019
  ident: 393_CR121
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.05.055
– ident: 393_CR224
  doi: 10.1109/CVPR.2018.00131
– volume: 54
  start-page: 1098
  year: 2022
  ident: 393_CR228
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2021.1987593
– volume: 112
  start-page: 10632
  year: 2008
  ident: 393_CR41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp800692p
– volume: 255
  start-page: 119652
  year: 2021
  ident: 393_CR96
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.119652
– volume: 4
  start-page: 369
  year: 2013
  ident: 393_CR3
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-022811-101227
– volume: 22
  start-page: 100305
  year: 2023
  ident: 393_CR9
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2023.100305
– volume: 2
  start-page: 356
  year: 2020
  ident: 393_CR190
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0190-5
– volume: 17
  start-page: 2821
  year: 2006
  ident: 393_CR45
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/11/015
– volume: 45
  start-page: 41
  year: 2014
  ident: 393_CR139
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4413
– volume: 2
  start-page: 1412
  year: 2019
  ident: 393_CR59
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.8b02308
– volume: 168
  start-page: 117341
  year: 2023
  ident: 393_CR201
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2023.117341
– volume: 114
  start-page: 93
  year: 2010
  ident: 393_CR101
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908423v
– volume: 14
  start-page: 1343
  year: 2023
  ident: 393_CR30
  publication-title: Micromachines
  doi: 10.3390/mi14071343
– volume: 121
  start-page: 501
  year: 1928
  ident: 393_CR16
  publication-title: Nature
  doi: 10.1038/121501c0
– volume: 25
  start-page: 2421
  year: 2013
  ident: 393_CR81
  publication-title: Chem. Mater.
  doi: 10.1021/cm400298e
– volume: 32
  start-page: 4
  year: 2021
  ident: 393_CR195
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.2978386
– volume: 23
  start-page: 12042
  year: 2007
  ident: 393_CR50
  publication-title: Langmuir
  doi: 10.1021/la701610s
– volume: 2
  start-page: 120
  year: 2015
  ident: 393_CR142
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C4EN00211C
– ident: 393_CR187
– ident: 393_CR123
  doi: 10.1016/j.apsusc.2020.147454
– volume: 79
  start-page: 15655
  year: 2020
  ident: 393_CR188
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-07820-w
– volume: 94
  start-page: 4484
  year: 2022
  ident: 393_CR204
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c00036
– volume: 8
  start-page: e09576
  year: 2022
  ident: 393_CR35
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e09576
– ident: 393_CR172
  doi: 10.1063/5.0055733
– volume: 12
  start-page: 1400
  year: 2017
  ident: 393_CR219
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2017.031
– volume: 4
  start-page: 1143
  year: 1992
  ident: 393_CR19
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/4/5/001
– volume: 7
  start-page: 13322
  year: 2015
  ident: 393_CR117
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01524
– volume: 91
  start-page: 1064
  year: 2019
  ident: 393_CR122
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b04441
– volume: 92
  start-page: 104
  year: 2016
  ident: 393_CR137
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.01.038
– volume: 93
  start-page: 4601
  year: 2021
  ident: 393_CR144
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05206
– volume: 8
  start-page: 11086
  year: 2014
  ident: 393_CR91
  publication-title: ACS Nano
  doi: 10.1021/nn504615a
– volume: 10
  start-page: 2231
  year: 2010
  ident: 393_CR103
  publication-title: Nano Lett.
  doi: 10.1021/nl1012085
– volume: 4
  start-page: 49635
  year: 2014
  ident: 393_CR23
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09231G
– volume: 109
  start-page: 690
  year: 2021
  ident: 393_CR120
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2021.01.058
– volume: 13
  start-page: e0192937
  year: 2018
  ident: 393_CR211
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0192937
– volume: 66
  start-page: 6525
  year: 2018
  ident: 393_CR86
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b03075
– volume: 91
  start-page: 13337
  year: 2019
  ident: 393_CR220
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b03599
– volume: 7
  start-page: 2004
  year: 2007
  ident: 393_CR42
  publication-title: Nano Lett.
  doi: 10.1021/nl070807q
– volume: 9
  start-page: 2049
  year: 2009
  ident: 393_CR47
  publication-title: Nano Lett.
  doi: 10.1021/nl900321e
– volume: 28
  start-page: 8695
  year: 2016
  ident: 393_CR110
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602603
– volume: 34
  start-page: 15160
  year: 2018
  ident: 393_CR46
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02854
– volume: 14
  start-page: 237
  year: 2019
  ident: 393_CR208
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0346-1
– volume: 302
  start-page: 123086
  year: 2023
  ident: 393_CR10
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2023.123086
– volume: 60
  start-page: 1936
  year: 2020
  ident: 393_CR210
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b01037
– volume: 16
  start-page: 3345
  year: 2019
  ident: 393_CR196
  publication-title: Math. Biosci. Eng
  doi: 10.3934/mbe.2019167
– volume: 15
  start-page: 985
  year: 2020
  ident: 393_CR40
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-01096-4
– volume: 185
  start-page: 90
  year: 2018
  ident: 393_CR37
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-017-2652-y
– ident: 393_CR217
  doi: 10.1016/j.saa.2023.123790
– volume: 8
  start-page: 957
  year: 2015
  ident: 393_CR72
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0577-x
– volume: 63
  start-page: 139
  year: 2020
  ident: 393_CR192
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 128
  start-page: 2200
  year: 2006
  ident: 393_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0578350
– volume: 26
  start-page: 163
  year: 1974
  ident: 393_CR15
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 22
  start-page: 7011
  year: 2006
  ident: 393_CR237
  publication-title: Langmuir
  doi: 10.1021/la061163p
– volume: 11
  start-page: 1549
  year: 2022
  ident: 393_CR202
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0689
– volume: 15
  start-page: 5288
  year: 2013
  ident: 393_CR108
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43642f
– volume: 275
  start-page: 1102
  year: 1997
  ident: 393_CR22
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 15
  start-page: 7684
  year: 2015
  ident: 393_CR79
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03672
– ident: 393_CR149
  doi: 10.1016/j.lwt.2020.110017
– volume: 11
  start-page: 17444
  year: 2019
  ident: 393_CR197
  publication-title: Nanoscale
  doi: 10.1039/C9NR03450A
– volume: 13
  start-page: 4399
  year: 2013
  ident: 393_CR78
  publication-title: Nano Lett.
  doi: 10.1021/nl402231z
– volume: 54
  start-page: 468
  year: 2023
  ident: 393_CR152
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.6509
– volume: 85
  start-page: 815
  year: 2022
  ident: 393_CR2
  publication-title: J. Food Prot.
  doi: 10.4315/JFP-21-411
– volume: 386
  start-page: 133736
  year: 2023
  ident: 393_CR240
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2023.133736
– volume: 26
  start-page: 163
  year: 1974
  ident: 393_CR147
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– ident: 393_CR226
– ident: 393_CR183
  doi: 10.21437/Interspeech.2011-242
– volume: 76
  start-page: 40
  year: 2004
  ident: 393_CR84
  publication-title: Anal. Chem.
  doi: 10.1021/ac034689c
– volume: 43
  start-page: 635
  year: 2020
  ident: 393_CR189
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– volume: 13
  year: 2023
  ident: 393_CR198
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28076-3
– volume: 99
  start-page: 5215
  year: 1977
  ident: 393_CR145
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 103
  start-page: 1449
  year: 2015
  ident: 393_CR229
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2460697
– ident: 393_CR222
  doi: 10.1039/C9ME00039A
– ident: 393_CR177
– volume: 10
  start-page: 553
  year: 2010
  ident: 393_CR53
  publication-title: Nano Lett.
  doi: 10.1021/nl903414x
– volume: 12
  start-page: 32803
  year: 2022
  ident: 393_CR25
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06248H
– volume: 9
  start-page: 2857
  year: 2019
  ident: 393_CR106
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08818G
– volume: 207
  start-page: 114187
  year: 2022
  ident: 393_CR136
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2022.114187
– volume: 344
  start-page: 128570
  year: 2021
  ident: 393_CR58
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.128570
– volume: 47
  start-page: 361
  year: 2013
  ident: 393_CR63
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.03.048
– volume: 4
  start-page: eaar4206
  year: 2018
  ident: 393_CR8
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar4206
– volume: 10
  start-page: 5897
  year: 2018
  ident: 393_CR73
  publication-title: Nanoscale
  doi: 10.1039/C7NR09276H
– volume: 5
  start-page: 1365
  year: 2018
  ident: 393_CR234
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01377
– volume: 6
  year: 2016
  ident: 393_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/srep25243
– volume: 90
  start-page: 261908
  year: 2007
  ident: 393_CR43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2752026
– volume: 136
  start-page: 5332
  year: 2014
  ident: 393_CR67
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501951v
– volume: 180
  start-page: 159
  year: 1980
  ident: 393_CR21
  publication-title: Abstr. Pap. Am. Chem. S.
– volume: 19
  start-page: 4159
  year: 1980
  ident: 393_CR33
  publication-title: Appl. Opt.
  doi: 10.1364/AO.19.004159
– volume: 42
  start-page: e12967
  year: 2022
  ident: 393_CR155
  publication-title: J. Food Saf.
  doi: 10.1111/jfs.12967
– ident: 393_CR164
  doi: 10.3389/fmicb.2022.843417
– volume: 6
  start-page: 1900925
  year: 2019
  ident: 393_CR135
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900925
SSID ssj0002140507
Score 2.305845
SecondaryResourceType review_article
Snippet Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection methods....
Abstract Veterinary drug residues in poultry and livestock products present persistent challenges to food safety, necessitating precise and efficient detection...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31
SubjectTerms 692/499
706/1143
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deep learning
Design optimization
Food Microbiology
Food safety
Food Science
Livestock
Nutrition
Optical properties
Qualitative analysis
Raman spectra
Residues
Review
Substrates
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQlFdoQUZCXMBqbMeOlxuFVhUSPVAq9WbF8RhWQilqsj3013fGSbZdHuLCMS_J8sx4vok_f8PYK0ma4w2AqGIbBULqRjQuaoG5wATlQIKkA86fj-3RafXpzJzdavVFnLBRHnicuD1oQ3JRBkv1E1A1EgGTlJay1gmvaPXFnHermKI1WGHdgEhnOiVTarfXVzm2qXtrPo8qrjYyURbs_xPK_J0s-cuOaU5Eh_fZvQlB8vfjyB-wO9Bts-LjEgb-mk8ynz_48ayy_5D19OOJehHxIRNg-bLjJwdfTgRlsMgviRCTT-XyeLH6xiMMmZ7VveOZbUiZb_xhyHtcZbKabc-bLvLlWs5z4MQ05bNAOfSP2OnhwdcPR2LqtSDaalENopKxlglMVK0BWbauUlVtlEngSpVK0wRX6kDsamlr3ZRgm2BMkAbaRZ1arR-zre68g6eMp7BYQEJsYFXActGGMjnMldYSQyWpULA387z7n6Okhs9b4dr50UoereSzlfxVwfbJNOs3SQ4730An8ZOT-H85ScF2Z8P6KUZ7j8iJ2v8iZC3Yy_VjjC7aMmk6OF-N7yBARNRUsCejH6xHgqufQ3xqC-Y2PGRjqJtPuuX3rOBNqnoIlPHTt7Mz3Yzr73Px7H_MxQ67q3IUaCHNLtsaLlbwHIHVEF7kGLoGBPUgyQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VcoALgvIVKMhIiAtYxHaceLnB0qpCogdKpd6sOLbLSiiLNlkO_fXMOB9ooRw4JrElKzP2PNtv3gC8FKQ5XofAC994jpC65rXximMs0E6aIIKgBOfPp-XJefHpQl_sgZxyYRJpP0lapmV6Yoe97Yo0Nan4akon5Vc34CZJt5NXL8vlfK4icceAGGfMj8mVuabrTgxKUv3X4cu_aZJ_3JWmEHR8F-6M2JG9H0Z7D_ZCewC3llPJtgPIPq5Cz16xUezzOzudtPbvQ0fHT1SRiPWJBstWLTs7-nLGKY559pNoMSk3l_nN9pL50CeSVvuOJc4hxb_h2JB1uNYkTduO1a1nq1nUs2fEN2WTTHnoHsD58dHX5QkfKy7wplgUPS-Er0QM2stGB5E3ppBFpaWOweQy5rp2JleOONairFSdh7J2WjuhQ7OoYqPUQ9hv1214DCy6xSJERAildLhpLF0eDUbMsiSeSpQug9eTDeyPQVjDpgtxZexgMYsWs8li9iqDD2SmuSWJYqcX682lHZ3EhsZF44UraasdaOPqA-IZJUSlIj5lcDgZ2Y4ztbOIn6gIMALXDF7Mn9FudHFSt2G9HdogTETslMGjwSfmkeAaaBCllhmYHW_ZGerul3b1Lel4k7YewmXs-mZyrN_j-ve_ePJ_zZ_CbZl8X3GhD2G_32zDMwRSvXueZs4vXTQbIA
  priority: 102
  providerName: Springer Nature
Title Emerging trends in SERS-based veterinary drug detection: multifunctional substrates and intelligent data approaches
URI https://link.springer.com/article/10.1038/s41538-025-00393-z
https://www.ncbi.nlm.nih.gov/pubmed/40089516
https://www.proquest.com/docview/3177542540
https://www.proquest.com/docview/3177623190
https://pubmed.ncbi.nlm.nih.gov/PMC11910576
https://doaj.org/article/ecbf8d1b60274e4094de51231173f094
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLfYeuGC-CYwKiMhLmAtjuPE5YK60mmqRIVWJu0WxbG9VULpaFIO--t5z3Eyla9jmlRy8r5-7_n59wh5y5FzvLSWpaYyDCB1yUplBINYIHWiLLccDzh_WWZnF-niUl6GglsT2ip7n-gdtdlUWCM_hjiHw1oBYHy6-cFwahTuroYRGgdkBC5YQfI1Opkvv54PVZYE8gdAPOG0TCzUcZN6G8cprv5cKrvdi0ieuP9vaPPPpsnfdk59QDp9SB4EJEmnnegfkXu2fkyiz2vb0nc00H1-p8uebf8JabAAhTOJaOsbYem6pqv5-YphJDP0JzbG-NO51Gx3V9TY1rdp1R-p7zrECNgVDmkD3saz2ja0rA1dD7SeLcWOU9oTldvmKbk4nX-bnbEwc4FV6SRtWcpNzp2VJqmk5XGl0iTNZSKdVXHiYllqFQuNXdY8y0UZ26zUUmoubTXJXSXEM3JYb2r7glCnJxPrACNkiYa0MdOxUxAzsww7VVyiI_K-_-7FTUetUfgtcaGKTkoFSKnwUipuI3KCohmeRFps_8Nme1UEKytspZ0yXGeYbFtMXY0FRCM4z4WDq4gc9YItgq02xZ1mReTNcBusDLdOytpudt0zABQBPUXkeacHw0rACyrAqVlE1J6G7C11_069vvZM3siuB4AZ_vqhV6a7df37W7z8_2u8IvcTr9-CcXlEDtvtzr4G6NTqMRlNp4vVYhzsZEwOZtls7AsRvwB-1x26
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiDehBYwEXMBq7MSJFwkhSrfa0naF-pB6c-PYKSuhbLvJguiP4jcy4zyq5XXrMZus5GTGM9-MZ74h5AVHzvHMORbb3DKA1BnLlI0Y-AJphHLccWxw3p8k4-P404k8WSE_u14YLKvsbKI31HaWY458A_wcDmsFgPH-_ILh1Cg8Xe1GaDRqset-fIeQrXq3swXyfSnE9ujo45i1UwVYHg_jmsXcprxw0opcOh7mKhZxKoUsnApFEcrMqDAyWEfMkzTKQpdkRkrDpcuHaZFjAhRM_mocQSgzIKubo8nngz6rIyBeAYTVdueEkdqoYm9TcGqs74Nll0se0A8K-Bu6_bNI87eTWu8At2-TWy1ypR8aVbtDVlx5lwRbU1fTV7SlF_1KJx27_z1SYcILZyDR2hfe0mlJD0cHhww9p6XfsBDHdwNTO1-cUetqXxZWvqW-yhE9bpOopBVYN8-iW9GstHTa04jWFCtcaUeM7qr75PhapPGADMpZ6R4RWpjh0BWASRJhIExNTFgo8NFJgpUxhTABed19d33eUHlofwQfKd1ISYOUtJeSvgzIJoqmfxJpuP0Ps_mZbne1drkplOUmweDeYahsHSCoiPM0KuAqIOudYHVrGyp9pckBed7fhl2NRzVZ6WaL5hkApoDWAvKw0YN-JWB1FeDiJCBqSUOWlrp8p5x-8czhyOYHAB3--qZTpqt1_ftbPP7_azwjN8ZH-3t6b2eyu0ZuCq_rEeNynQzq-cI9AdhWm6ftXqHk9Lq35y-mo1ej
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEXBOUVKGAkxAVc4jh2vNxg21V5rRClUm9WHNvtSlW22mQ59Nczdh5ooRw4JrElK2N7vrG_-QbgJQua46VzNLeVpQipS1oqyyn6AmEy5ZhjIcH561weHuefTsTJFsghFyaS9qOkZdymB3bY2yaPSzMUX43ppPRy78L6a3Ad8XYagq6pnI5nKxlGDfi2z5FJubqi-4YfinL9V2HMv6mSf9yXRjc0uwO3e_xI3ncjvgtbrt6Bm9OhbNsOJPsL15JXpBf8PCfzQW__HjThCCpUJSJtpMKSRU2ODr4f0eDLLPkZqDExP5fY1fqUWNdGolb9jkTeYfCB3dEhaXC_ibq2DSlrSxajsGdLAueUDFLlrrkPx7ODH9ND2lddoFU-yVuaM1sw74TNKuFYWqk8ywuRCe9UmvlUlEal3ASeNZMFL1MnSyOEYcJVk8JXnD-A7XpZu0dAvJlMnEeUIDODgaM0qVfoNaUMXBWfmQReDzbQF524ho6X4lzpzmIaLaajxfRlAh-CmcaWQRg7vliuTnU_UbSrjFeWGRnCbReCV-sQ03DGCu7xKYHdwci6X62NRgwVCgEjeE3gxfgZ7RYuT8raLdddG4SKiJ8SeNjNiXEkuA8qRKoyAbUxWzaGuvmlXpxFLe-gr4eQGbu-GSbW73H9-188_r_mz-HGt_2Z_vJx_vkJ3MriMuCUiV3Ybldr9xRxVWuexUX0C80ZHxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+trends+in+SERS-based+veterinary+drug+detection%3A+multifunctional+substrates+and+intelligent+data+approaches&rft.jtitle=NPJ+science+of+food&rft.date=2025-03-15&rft.pub=Nature+Publishing+Group&rft.eissn=2396-8370&rft.volume=9&rft.issue=1&rft.spage=31&rft_id=info:doi/10.1038%2Fs41538-025-00393-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8370&client=summon