A synergistic approach for enhanced eye blink detection using wavelet analysis, autoencoding and Crow-Search optimized k-NN algorithm

This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink dete...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 11949 - 21
Main Authors Chandralekha, M., Jayadurga, N. Priyadharshini, Chen, Thomas M., Sathiyanarayanan, Mithileysh, Saleem, Kasif, Orgun, Mehmet A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink detection from EEG signals. This procedure is initiated by escalating the robustness of EEG data through jittering, which integrates noise into the dataset. Consequently, the wavelet transform is highly demanded during feature extraction in identifying the essential time–frequency components of the signals. These features are further distilled using an autoencoder to provide a dense, yet informative representation. Prior to introducing these features into the machine learning system, they were adjusted. Evidently, the hyperparameters of the k-Nearest Neighbors model have been fine-tuned using Crow Search Algorithm, inspired by the hunting characteristics of crows. This optimization method actively samples the search space to balance exploration and exploitation to identify the optimal configuration for the model. The k-NN model that has been optimized using the proposed method demonstrates significantly higher performance in the eye blink detection process in comparison to the deep learning models when equipped with decorous feature extraction and fine tuning. The effectiveness of the developed system has been ascertained according to the assessment indices such as accuracy, classification reports, and confusion matrix. Thus, the present work offers an optimal method of detecting the eye blink from the EEG signals assisting in the development of further EEG applications including user interfaces, fatigue level identification, and neurological disorders analysis through the enhancement of signal processing and optimization methods. It becomes evident after a detailed evaluation that conventional machine learning algorithms if implemented with correct feature extraction and fine-tuning surpass the deep learning approaches including the frameworks composed of Convolutional Neural Network and Principal Component Analysis and empirical mode decomposition by approximately 96% across all datasets. This proves the advantage of optimized traditional Machine Learning models over the Deep Learning models in realistic EEG-based eye blink detection.
AbstractList This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink detection from EEG signals. This procedure is initiated by escalating the robustness of EEG data through jittering, which integrates noise into the dataset. Consequently, the wavelet transform is highly demanded during feature extraction in identifying the essential time–frequency components of the signals. These features are further distilled using an autoencoder to provide a dense, yet informative representation. Prior to introducing these features into the machine learning system, they were adjusted. Evidently, the hyperparameters of the k-Nearest Neighbors model have been fine-tuned using Crow Search Algorithm, inspired by the hunting characteristics of crows. This optimization method actively samples the search space to balance exploration and exploitation to identify the optimal configuration for the model. The k-NN model that has been optimized using the proposed method demonstrates significantly higher performance in the eye blink detection process in comparison to the deep learning models when equipped with decorous feature extraction and fine tuning. The effectiveness of the developed system has been ascertained according to the assessment indices such as accuracy, classification reports, and confusion matrix. Thus, the present work offers an optimal method of detecting the eye blink from the EEG signals assisting in the development of further EEG applications including user interfaces, fatigue level identification, and neurological disorders analysis through the enhancement of signal processing and optimization methods. It becomes evident after a detailed evaluation that conventional machine learning algorithms if implemented with correct feature extraction and fine-tuning surpass the deep learning approaches including the frameworks composed of Convolutional Neural Network and Principal Component Analysis and empirical mode decomposition by approximately 96% across all datasets. This proves the advantage of optimized traditional Machine Learning models over the Deep Learning models in realistic EEG-based eye blink detection.
Abstract This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink detection from EEG signals. This procedure is initiated by escalating the robustness of EEG data through jittering, which integrates noise into the dataset. Consequently, the wavelet transform is highly demanded during feature extraction in identifying the essential time–frequency components of the signals. These features are further distilled using an autoencoder to provide a dense, yet informative representation. Prior to introducing these features into the machine learning system, they were adjusted. Evidently, the hyperparameters of the k-Nearest Neighbors model have been fine-tuned using Crow Search Algorithm, inspired by the hunting characteristics of crows. This optimization method actively samples the search space to balance exploration and exploitation to identify the optimal configuration for the model. The k-NN model that has been optimized using the proposed method demonstrates significantly higher performance in the eye blink detection process in comparison to the deep learning models when equipped with decorous feature extraction and fine tuning. The effectiveness of the developed system has been ascertained according to the assessment indices such as accuracy, classification reports, and confusion matrix. Thus, the present work offers an optimal method of detecting the eye blink from the EEG signals assisting in the development of further EEG applications including user interfaces, fatigue level identification, and neurological disorders analysis through the enhancement of signal processing and optimization methods. It becomes evident after a detailed evaluation that conventional machine learning algorithms if implemented with correct feature extraction and fine-tuning surpass the deep learning approaches including the frameworks composed of Convolutional Neural Network and Principal Component Analysis and empirical mode decomposition by approximately 96% across all datasets. This proves the advantage of optimized traditional Machine Learning models over the Deep Learning models in realistic EEG-based eye blink detection.
This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink detection from EEG signals. This procedure is initiated by escalating the robustness of EEG data through jittering, which integrates noise into the dataset. Consequently, the wavelet transform is highly demanded during feature extraction in identifying the essential time-frequency components of the signals. These features are further distilled using an autoencoder to provide a dense, yet informative representation. Prior to introducing these features into the machine learning system, they were adjusted. Evidently, the hyperparameters of the k-Nearest Neighbors model have been fine-tuned using Crow Search Algorithm, inspired by the hunting characteristics of crows. This optimization method actively samples the search space to balance exploration and exploitation to identify the optimal configuration for the model. The k-NN model that has been optimized using the proposed method demonstrates significantly higher performance in the eye blink detection process in comparison to the deep learning models when equipped with decorous feature extraction and fine tuning. The effectiveness of the developed system has been ascertained according to the assessment indices such as accuracy, classification reports, and confusion matrix. Thus, the present work offers an optimal method of detecting the eye blink from the EEG signals assisting in the development of further EEG applications including user interfaces, fatigue level identification, and neurological disorders analysis through the enhancement of signal processing and optimization methods. It becomes evident after a detailed evaluation that conventional machine learning algorithms if implemented with correct feature extraction and fine-tuning surpass the deep learning approaches including the frameworks composed of Convolutional Neural Network and Principal Component Analysis and empirical mode decomposition by approximately 96% across all datasets. This proves the advantage of optimized traditional Machine Learning models over the Deep Learning models in realistic EEG-based eye blink detection.This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the prominent strategies of wavelet analysis, autoencoding, and a Crow-Search-optimized k-Nearest Neighbors to enhance the performance of eye blink detection from EEG signals. This procedure is initiated by escalating the robustness of EEG data through jittering, which integrates noise into the dataset. Consequently, the wavelet transform is highly demanded during feature extraction in identifying the essential time-frequency components of the signals. These features are further distilled using an autoencoder to provide a dense, yet informative representation. Prior to introducing these features into the machine learning system, they were adjusted. Evidently, the hyperparameters of the k-Nearest Neighbors model have been fine-tuned using Crow Search Algorithm, inspired by the hunting characteristics of crows. This optimization method actively samples the search space to balance exploration and exploitation to identify the optimal configuration for the model. The k-NN model that has been optimized using the proposed method demonstrates significantly higher performance in the eye blink detection process in comparison to the deep learning models when equipped with decorous feature extraction and fine tuning. The effectiveness of the developed system has been ascertained according to the assessment indices such as accuracy, classification reports, and confusion matrix. Thus, the present work offers an optimal method of detecting the eye blink from the EEG signals assisting in the development of further EEG applications including user interfaces, fatigue level identification, and neurological disorders analysis through the enhancement of signal processing and optimization methods. It becomes evident after a detailed evaluation that conventional machine learning algorithms if implemented with correct feature extraction and fine-tuning surpass the deep learning approaches including the frameworks composed of Convolutional Neural Network and Principal Component Analysis and empirical mode decomposition by approximately 96% across all datasets. This proves the advantage of optimized traditional Machine Learning models over the Deep Learning models in realistic EEG-based eye blink detection.
ArticleNumber 11949
Author Orgun, Mehmet A.
Sathiyanarayanan, Mithileysh
Chen, Thomas M.
Saleem, Kasif
Chandralekha, M.
Jayadurga, N. Priyadharshini
Author_xml – sequence: 1
  givenname: M.
  surname: Chandralekha
  fullname: Chandralekha, M.
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham
– sequence: 2
  givenname: N. Priyadharshini
  surname: Jayadurga
  fullname: Jayadurga, N. Priyadharshini
  email: np_jayadurga@ch.students.amrita.edu
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham
– sequence: 3
  givenname: Thomas M.
  surname: Chen
  fullname: Chen, Thomas M.
  organization: School of Science & Technology, City, University of London
– sequence: 4
  givenname: Mithileysh
  surname: Sathiyanarayanan
  fullname: Sathiyanarayanan, Mithileysh
  organization: School of Science & Technology, City, University of London, Research & Innovation, MIT Square
– sequence: 5
  givenname: Kasif
  surname: Saleem
  fullname: Saleem, Kasif
  organization: Department of Computer Sciences and Engineering, College of Applied Studies and Community Service, King Saud University
– sequence: 6
  givenname: Mehmet A.
  surname: Orgun
  fullname: Orgun, Mehmet A.
  organization: Department of Computing, Macquarie University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40199999$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHpgYC_0sQnVK34qFSVA3C2xs4k623WXuyk1XLnf-N0l9JyYC62PO88Hs28z4sDHzwWxUtG3zIqmndJsko1JeVVqSrGVMmfFEecyqrkgvODB_fD4iSlFc1RcSWZelYcSsrUHEfFr3OSth5j79LoLIHNJgawS9KFSNAvwVtsCW6RmMH5a9LiiHZ0wZMpOd-TW7jBAUcCHoZtcukNgWkM6G1o5zT4lixiuC2_IsRMDZvRrd3PjLwur64IDH2IblyuXxRPOxgSnuzP4-L7xw_fFp_Lyy-fLhbnl6WVSo6lZKDalmIt5xvtkLYVmo51dc1V11hqGBjTGVrntOBd1SpUlgpmUHZopDguLnbcNsBKb6JbQ9zqAE7fPYTYa4h5DgPqGkHUlYFaCZBYUcMFE_JMNPKMQ24is97vWJvJrLG16McIwyPo44x3S92HG52XVTeKzoTTPSGGHxOmUa9dsjgM4DFMSQvWNLQRFW-y9PU_0lWYYh76XlVlS_CsevWwpfte_qw7C_hOYGNIKWJ3L2FUz7bSO1vpbCt9Zys9U8WuKGWx7zH-_fs_Vb8B74bRlg
Cites_doi 10.1109/InCACCT57535.2023.10141807
10.1109/TNSRE.2021.3054733
10.1016/j.imu.2021.100721
10.3233/JIFS-17275
10.1007/s00500-023-08122-y
10.1007/s00500-021-05827-w
10.1109/CCSII.2012.6470489
10.1109/ICSEIET58677.2023.10303404
10.15837/ijccc.2019.3.3516
10.1109/ALLERTON.2019.8919795
10.1109/SITIS57111.2022.00051
10.3390/s150818209
10.1109/TRO.2012.2201310
10.1016/j.neubiorev.2014.12.010
10.1145/3313831.3376738
10.1049/iet-spr.2018.5111
10.1016/j.neucom.2015.08.112
10.1109/ACCESS.2020.3024108
10.1016/j.asoc.2018.03.019
10.1101/2023.12.17.572046
10.1145/3319532
10.3390/brainsci9120352
10.1016/j.bspc.2022.104005
10.1109/TNSRE.2023.3267114
10.2018/EJERS.2021.6.4.2438
10.9790/4200-0702010109
10.1016/j.jobe.2020.102142
10.3390/s18072314
10.1109/JBHI.2021.3057891
10.1109/TNSRE.2023.3246989
10.1109/SoutheastCon51012.2023.10115167
10.1016/j.bandc.2016.06.004
10.1186/1743-0003-9-5
10.1016/j.patrec.2015.07.034
10.1109/TITS.2023.3347075
10.1109/JSEN.2019.2906572
10.1016/j.bspc.2023.104657
10.1016/j.bspc.2018.05.034
10.1109/PERVASIVE.2015.7087077
10.1109/ICC40277.2020.9148741
10.1049/IET-SPR.2018.5111
10.1109/LPT.2016.2555857
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-95119-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 21
ExternalDocumentID oai_doaj_org_article_7ea375ba793a4e50b23134638462add0
PMC11978900
40199999
10_1038_s41598_025_95119_2
Genre Journal Article
GrantInformation_xml – fundername: King Saud University, Riyadh, Saudi Arabia
  grantid: RSPD2024R697
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-41a9dd0e7441a90fe0d5ebf1f7729f8c0b1abbfb071a932f5d9e9c031be4feb43
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:21:10 EDT 2025
Thu Aug 21 18:36:37 EDT 2025
Fri Jul 11 18:45:38 EDT 2025
Sat Aug 23 12:36:06 EDT 2025
Mon Jul 21 05:56:49 EDT 2025
Tue Jul 01 05:13:37 EDT 2025
Mon Jul 21 06:06:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electroencephalogram
Autoencoder
Signal processing
Wavelet analysis
Feature extraction
k-Nearest neighbors
Eye blink detection
Crow Search algorithm
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-41a9dd0e7441a90fe0d5ebf1f7729f8c0b1abbfb071a932f5d9e9c031be4feb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-95119-2
PMID 40199999
PQID 3188050382
PQPubID 2041939
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_7ea375ba793a4e50b23134638462add0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11978900
proquest_miscellaneous_3188083528
proquest_journals_3188050382
pubmed_primary_40199999
crossref_primary_10_1038_s41598_025_95119_2
springer_journals_10_1038_s41598_025_95119_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-08
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 95119_CR30
M Miranda (95119_CR35) 2019; 14
J Cao (95119_CR23) 2021; 25
D-K Tran (95119_CR19) 2021; 6
P Gong (95119_CR27) 2024; 25
M Ferdous (95119_CR32) 2017; 07
M Shahbakhti (95119_CR31) 2023; 31
S Jamal (95119_CR8) 2023; 2023
J Gou (95119_CR39) 2019; 10
AR Nikolaev (95119_CR25) 2016; 107
M Jain (95119_CR17) 2017; 33
Y Chae (95119_CR43) 2012; 28
K Durga Bhavani (95119_CR2) 2020; 29
K Medhi (95119_CR24) 2022; 78
M Shahbakhti (95119_CR22) 2019; 9
95119_CR33
D Wang (95119_CR36) 2016; 28
95119_CR42
G Belonosov (95119_CR10) 2023
L-D Liao (95119_CR41) 2012; 9
J Gholami (95119_CR14) 2021; 25
A Hussien (95119_CR16) 2020; 8
M Wang (95119_CR12) 2023; 83
R Ghosh (95119_CR34) 2019; 13
AR Khanna (95119_CR7) 2015; 49
J Kim (95119_CR13) 2018; 46
G Florimbi (95119_CR37) 2018; 18
RV Aswiga (95119_CR3) 2023; 27
R Ghosh (95119_CR21) 2019; 13
Y Han (95119_CR40) 2015; 15
Z Deng (95119_CR38) 2016; 195
LC Djoufack Nkengfack (95119_CR4) 2021; 26
P Gong (95119_CR26) 2023; 31
RM Rizk-Allah (95119_CR15) 2018; 71
95119_CR29
95119_CR1
95119_CR28
M Shahbakhti (95119_CR20) 2021; 29
95119_CR6
Y Ke (95119_CR18) 2021; 38
95119_CR5
X Chen (95119_CR9) 2019; 19
M Abo-Zahhad (95119_CR11) 2015
95119_CR44
References_xml – ident: 95119_CR1
  doi: 10.1109/InCACCT57535.2023.10141807
– volume: 29
  start-page: 408
  year: 2021
  ident: 95119_CR20
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3054733
– volume: 26
  start-page: 100721
  year: 2021
  ident: 95119_CR4
  publication-title: Inform. Med. Unlock.
  doi: 10.1016/j.imu.2021.100721
– volume: 33
  start-page: 3597
  year: 2017
  ident: 95119_CR17
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-17275
– volume: 27
  start-page: 6869
  issue: 10
  year: 2023
  ident: 95119_CR3
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08122-y
– volume: 25
  start-page: 9441
  year: 2021
  ident: 95119_CR14
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05827-w
– ident: 95119_CR42
  doi: 10.1109/CCSII.2012.6470489
– ident: 95119_CR6
  doi: 10.1109/ICSEIET58677.2023.10303404
– volume: 14
  start-page: 375
  year: 2019
  ident: 95119_CR35
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2019.3.3516
– ident: 95119_CR28
  doi: 10.1109/ALLERTON.2019.8919795
– ident: 95119_CR5
  doi: 10.1109/SITIS57111.2022.00051
– volume: 15
  start-page: 18209
  year: 2015
  ident: 95119_CR40
  publication-title: Sensors
  doi: 10.3390/s150818209
– volume: 28
  start-page: 1131
  year: 2012
  ident: 95119_CR43
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2201310
– ident: 95119_CR44
– volume: 49
  start-page: 105
  year: 2015
  ident: 95119_CR7
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2014.12.010
– ident: 95119_CR29
  doi: 10.1145/3313831.3376738
– volume: 13
  start-page: 141
  issue: 2
  year: 2019
  ident: 95119_CR34
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2018.5111
– volume: 195
  start-page: 143
  year: 2016
  ident: 95119_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.112
– volume: 8
  start-page: 173548
  year: 2020
  ident: 95119_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024108
– volume: 71
  start-page: 1161
  year: 2018
  ident: 95119_CR15
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.03.019
– year: 2023
  ident: 95119_CR10
  publication-title: BioRxiv.
  doi: 10.1101/2023.12.17.572046
– volume: 10
  start-page: 1
  year: 2019
  ident: 95119_CR39
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3319532
– volume: 9
  start-page: 352
  year: 2019
  ident: 95119_CR22
  publication-title: Brain Sci.
  doi: 10.3390/brainsci9120352
– volume: 78
  start-page: 104005
  year: 2022
  ident: 95119_CR24
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104005
– volume: 31
  start-page: 2037
  year: 2023
  ident: 95119_CR31
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3267114
– volume: 6
  start-page: 6
  year: 2021
  ident: 95119_CR19
  publication-title: Eur. J. Eng. Technol. Res.
  doi: 10.2018/EJERS.2021.6.4.2438
– volume: 07
  start-page: 01
  year: 2017
  ident: 95119_CR32
  publication-title: IOSR J. VLSI Signal Process.
  doi: 10.9790/4200-0702010109
– volume: 38
  start-page: 102142
  year: 2021
  ident: 95119_CR18
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2020.102142
– volume: 18
  start-page: 314
  year: 2018
  ident: 95119_CR37
  publication-title: Sensors
  doi: 10.3390/s18072314
– volume: 25
  start-page: 2895
  year: 2021
  ident: 95119_CR23
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3057891
– volume: 31
  start-page: 1440
  year: 2023
  ident: 95119_CR26
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3246989
– volume: 2023
  start-page: 209
  year: 2023
  ident: 95119_CR8
  publication-title: SoutheastCon
  doi: 10.1109/SoutheastCon51012.2023.10115167
– volume: 107
  start-page: 55
  year: 2016
  ident: 95119_CR25
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2016.06.004
– volume: 9
  start-page: 5
  year: 2012
  ident: 95119_CR41
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-5
– year: 2015
  ident: 95119_CR11
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2015.07.034
– volume: 25
  start-page: 7004
  issue: 7
  year: 2024
  ident: 95119_CR27
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3347075
– volume: 19
  start-page: 5353
  year: 2019
  ident: 95119_CR9
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2906572
– volume: 83
  start-page: 104657
  year: 2023
  ident: 95119_CR12
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104657
– volume: 46
  start-page: 302
  year: 2018
  ident: 95119_CR13
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.05.034
– ident: 95119_CR33
  doi: 10.1109/PERVASIVE.2015.7087077
– ident: 95119_CR30
  doi: 10.1109/ICC40277.2020.9148741
– volume: 29
  start-page: 2466
  year: 2020
  ident: 95119_CR2
  publication-title: Int. J. Adv. Sci. Technol.
– volume: 13
  start-page: 141
  year: 2019
  ident: 95119_CR21
  publication-title: IET Signal Process.
  doi: 10.1049/IET-SPR.2018.5111
– volume: 28
  start-page: 2102
  year: 2016
  ident: 95119_CR36
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2016.2555857
SSID ssj0000529419
Score 2.4501216
Snippet This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines the...
Abstract This research endeavor introduces a state-of-the-art, assimilated approach for eye blink detection from Electroencephalography signals. It combines...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11949
SubjectTerms 639/166
692/700
Adult
Algorithms
Autoencoder
Blinking - physiology
Crow Search algorithm
Deep Learning
EEG
Electroencephalogram
Electroencephalography
Electroencephalography - methods
Eye blink detection
Humanities and Social Sciences
Humans
k-Nearest neighbors
Learning algorithms
Machine Learning
multidisciplinary
Neural networks
Neural Networks, Computer
Neurological diseases
Principal components analysis
Science
Science (multidisciplinary)
Signal processing
Signal Processing, Computer-Assisted
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYMKvTUitiXZ0jENCaHQPTWQm5DW4-zSxi5ZL2Fz7__ujOTdZvugl-5psYfdYR6eT57RJ8beaYTUugq1qEFLoZoShKlUEHmLztdN7Zspve_4NKnOL9THS31576gvmglL9MDJcEc1eFnr4DGOvAKdBwQkUmHUqKrE3Iyrdax59xZTidW7tKqw4y6ZXJqjBVYq2k1WamGpdybKrUoUCfv_hDJ_H5b8pWMaC9HZE_Z4RJD8OGm-yx5A95Q9TGdKrp6x78d8saINfZGBma85wzmCUw7dLDb8OayAB-rd8gaGOIzVcZqAv-K3nk6iGLgfyUoOuV8OPbFdUpHDyw0_wZW7SGPKvMcnzvX8Dn_yi5hMuP961d_Mh9n1c3Zxdvr55FyMZy2IqbJqEKrwFq0JtaJveQt5oyG0RUvouzXTPBQ-hDYgIvEI-VrdWLBTfCIEUC0EJV-wna7v4BXjujKyAIlyRiqUDKpGUNRIZQJKNiFj79d2d98SpYaLrXBpXPKSQy-56CVXZuwDuWYjSXTY8QIGiRuDxP0rSDK2v3asG3N04SRR0REbDv7H281tzC5qmfgO-uUoQyDVZOxlioONJrgytfTJmNmKkC1Vt-9081lk8KberbE56nW4Dqafev3dFq__hy322KOSsoCmj8w-2xlulvAGgdUQDmIO_QDnih_5
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxo1aT2I6dEyoVVYXEnqi0N8uOnd2KNindrNBy538z4zhbLa-comQSOZ7x-Itn_A0hbyVAalk5xVSQnAlfBqYr4VjegvKlV9Y3uN7xeVadnolPczlPC26rlFY5-cToqH3f4Br5IUfiMOQuKd9ffWNYNQqjq6mExm1yB6nLMKVLzdV2jQWjWKKo014ZePZwBfMV7ikrJasxgsbKnfko0vb_DWv-mTL5W9w0TkcnD8j9hCPp0aj4h-RW6B6Ru2Nlyc1j8vOIrja4rS_yMNOJOZwCRKWhW8awPw2bQB1GcKkPQ0zJ6ijmwS_od4v1KAZqE2XJAbXroUfOS5zq4LKnx_D_zsZkZdqD37k8_wGv_MpmM2ovFtBzw_LyCTk7-fjl-JSligusEbUYmChs7X0elMCzvA25l8G1RYsYvNVN7grrXOsAl1gAfq30dagb8AsuiDY4wZ-Sva7vwnNCZaV5ETjIaS5A0gkF0MhzoR1IepeRd1O_m6uRWMPEgDjXZtSSAS2ZqCVTZuQDqmYriaTY8UJ_vTBpjBkVLFfSWXA5VgSZO8CuXICDEVUJbjzPyP6kWJNG6src2FVG3mxvwxjDwIntQr9OMghVdUaejXawbQn8n9Z4ZETvWMhOU3fvdOfLyOONEVxd59Cug8mYbtr177548f_PeEnulWjfmF2k98necL0OrwA4De51HB2_AM08GDQ
  priority: 102
  providerName: ProQuest
Title A synergistic approach for enhanced eye blink detection using wavelet analysis, autoencoding and Crow-Search optimized k-NN algorithm
URI https://link.springer.com/article/10.1038/s41598-025-95119-2
https://www.ncbi.nlm.nih.gov/pubmed/40199999
https://www.proquest.com/docview/3188050382
https://www.proquest.com/docview/3188083528
https://pubmed.ncbi.nlm.nih.gov/PMC11978900
https://doaj.org/article/7ea375ba793a4e50b23134638462add0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGJiReEL8XGJWReGMWSWwnzmNXbZoqUSFgUt8su3baCpZMbSpU3vd_785Jigrjgbw0Sq7tyXc-f_adPxPyXgKklpnNWe4lZ8KlnqlMWBaXYHzpcuNmuN7xaZJdXonxVE4PSNrvhQlF-4HSMoTpvjrs4xoGGtwMlkpWYOqLQdg9Qup29OpRNtqtq2DmSiRFtz8m5uqer-6NQYGq_z58-XeZ5B-50jAEXTwhjzvsSIettk_Jga-ekYftaZLb5-R2SNdb3MoXuJdpzxZOAZZSXy1Cqp_6racWs7bU-SaUYVUUa9_n9KfBMygaajqaklNqNk2NPJc4vMFjR0cwZ2dtgTKtIdZcL3_BT35nkwk1P-b1atksrl-Qq4vzb6NL1p2ywGaiEA0TiSmciz20JdzFpY-d9LZMSsTdpZrFNjHWlhawiAGwV0pX-GIGscB6UXor-EtyWNWVPyZUZoonnoOc4gIkrcgBDjkulAVJZyPyoW93fdOSaeiQBOdKt1bSYCUdrKTTiJyhaXaSSIQdHtSrue4cQ-fe8FxaA2HGCC9jC3iVCwgqIkshdMcROekNq7veudYcSeiQBwf-493uNfQrTJaYytebTgbhqYrIq9YPdprAnLTAKyJqz0P2VN1_Uy0Xgbsbs7aqiEGv096Zfuv177Z4_X_ib8ijFP0dK4zUCTlsVhv_FsBTYwfkQT7NB-RoOBx_HcPn2fnk85dB6EODsCBxByt0Gxg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEN8EBhgJnpi1NLab5AGhbWza2FYhtEl78-zaaSdYMtpUVXnn3-Fv5C4fncrX2_IUxafokjvf_ew73wG8VgipVc_GPPZKcOkiz5OetDzMUPjKxcYNaL_jqN_bO5EfT9XpCvxsz8JQWmVrEytD7YoB7ZFvCCocRrVLoveX3zh1jaLoattCo1aLAz-f4ZJt8m7_A8r3TRTt7hxv7_GmqwAfyFSWXHZN6lzoY0l3YeZDp7zNuhnhzCwZhLZrrM0s-l6D4CZTLvXpAHXfepl5KwW-9wasSoFLmQ6sbu30P31e7OpQ3Ex20-Z0DnK7MUEPSafYIsVTitnxaMkDVo0C_oZu_0zS_C1SWznA3btwp0GubLNWtXuw4vP7cLPuZTl_AD822WROBwmrys-srVXOEBQzn4-qRAPm555Zihkz58sqCSxnlHk_ZDNDHTBKZpoiKevMTMuCqmySc8XHjm2Pixmv06NZgZbu4vw7vvIL7_eZ-TpEWZWji4dwci3SeASdvMj9E2Cql4iuF0iXCImUVsYIxpyQiUVKZwN42_53fVmX8tBVCF4kupaSRinpSko6CmCLRLOgpDLc1YNiPNTNrNaxNyJW1qCRM9Kr0CJaFhJNmuxF6DjCANZawerGNkz0lSYH8GoxjLOaQjUm98W0oSFwnATwuNaDBSe4Ik7pCiBZ0pAlVpdH8vNRVTmcYsZJGiJf660yXfH173_x9P-f8RJu7R0fHerD_f7BM7gdka5TblOyBp1yPPXPEbaV9kUzVxicXff0_AVFx1hp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4llSChgJTtTaJLY3yQGh0rJqKaw4UGlvxo6d3QqatLtZrZY7f4pfx4yTbLW8bs0pSkbRJPP64hnPEPJCAqSWfZOwxEnOhI0dS_vCsLAA4UubaJvjesfHYf_wRLwfydEG-dnthcGyys4nekdtqxzXyHscG4dh75K4V7RlEZ8OBm_OLxhOkMJMazdOo1GRY7dcwO_b7PXRAcj6ZRwP3n3eP2TthAGWi0zUTEQ6szZ0icCzsHChlc4UUYGYs0jz0ETamMJAHNYAdAppM5flYAfGicIZweG518j1hMsIbSwZJav1HcygiShr9-kA370ZxErczxZLlmH2jsVrsdCPDPgbzv2zXPO3nK0PhYM75HaLYeleo3R3yYYr75EbzVTL5X3yY4_Olril0PeApl3XcgrwmLpy4ksOqFs6ajB7TK2rfTlYSbEGf0wXGmdh1FS37VJ2qZ7XFfbbxDALly3dn1YL1hRK0wp83tnpd3jkVzYcUv1tDJKqJ2cPyMmVyOIh2Syr0j0iVPZTHjkOdCkXQGlEArDMcpEaoLQmIK-6767Om6YeyifjeaoaKSmQkvJSUnFA3qJoVpTYkNtfqKZj1dq3SpzmiTQa3J0WToYGcDMX4NxEP4YQEgZkpxOsar3ETF3qdECer26DfWPSRpeumrc0CJPTgGw1erDiBP6NMzwCkq5pyBqr63fK04nvIY7Z4zQLga_dTpku-fr3t9j-_2s8IzfBKNWHo-HxY3IrRlXHIqd0h2zW07l7AvitNk-9oVDy5aot8xdODls5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+synergistic+approach+for+enhanced+eye+blink+detection+using+wavelet+analysis%2C+autoencoding+and+Crow-Search+optimized+k-NN+algorithm&rft.jtitle=Scientific+reports&rft.au=Chandralekha%2C+M.&rft.au=Jayadurga%2C+N.+Priyadharshini&rft.au=Chen%2C+Thomas+M.&rft.au=Sathiyanarayanan%2C+Mithileysh&rft.date=2025-04-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-95119-2&rft.externalDocID=10_1038_s41598_025_95119_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon