Prediction of superconductivity in bilayer borophenes

Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by ap...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 11; no. 63; pp. 422 - 4227
Main Authors Yan, Luo, Ku, Ruiqi, Zou, Jing, Zhou, Liujiang, Zhao, Jijun, Jiang, Xue, Wang, Bao-Tian
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 17.12.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen-Cooper-Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures ( T c ) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm −1 ) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron-phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family. Bilayer borophene B8 and B30 are BCS-superconductors with T c of 11.9 and 4.9 K, respectively.
AbstractList Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen–Cooper–Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures ( T c ) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm −1 ) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron–phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.
Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen–Cooper–Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures (Tc) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm−1) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron–phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.
Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen-Cooper-Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures (T c) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm-1) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron-phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen-Cooper-Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures (T c) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm-1) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron-phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.
Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen–Cooper–Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures ( T c ) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm −1 ) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the Γ point in BL-B8, leading to substantial electron–phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family. Bilayer borophene B8 and B30 are BCS-superconductors with T c of 11.9 and 4.9 K, respectively.
Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of single-layer borophene is suppressed by the strains or doping from its substrates. Intriguingly, bilayer (BL) borophenes can be stabilized by appropriate pillar density and hexagonal holes density, rather than being supported by Ag(111) or Cu(111) substrates. Thus, we studied the two most stable structures, namely BL-B8 and BL-B30, stabilized by the above-mentioned two methods. Within density functional theory and Bardeen-Cooper-Schrieffer theory framework, their stability, electron structures, and phonon properties, as well as possible superconductivity are systematically scrutinized. The metallic BL-B8 and BL-B30 exhibit intrinsic superconducting features with superconductivity transition temperatures ( ) of 11.9 and 4.9 K, respectively. The low frequency (below 400 cm ) consisting of out-of-plane vibrations of boron atoms plays crucial rule in their superconductivity. In particular, a Kohn anomaly appears at the point in BL-B8, leading to substantial electron-phonon coupling. Here, our findings will provide instructive clues for experimentally determining the superconductivity of borophene and will broaden the two-dimensional superconductor family.
Author Jiang, Xue
Wang, Bao-Tian
Yan, Luo
Zou, Jing
Zhou, Liujiang
Zhao, Jijun
Ku, Ruiqi
AuthorAffiliation Chinese Academy of Science (CAS)
Harbin Institute of Technology
Ministry of Education
Spallation Neutron Source Science Center
Shanxi University
School of Physics
Yangtze Delta Region Institute (Huzhou)
Collaborative Innovation Center of Extreme Optics
Dalian University of Technology
Institute of High Energy Physics
University of Electronic Science and Technology of China
Key Laboratory of Material Modification by Laser, Ion and Electron Beams
AuthorAffiliation_xml – name: Spallation Neutron Source Science Center
– name: Institute of High Energy Physics
– name: University of Electronic Science and Technology of China
– name: Shanxi University
– name: Chinese Academy of Science (CAS)
– name: Key Laboratory of Material Modification by Laser, Ion and Electron Beams
– name: School of Physics
– name: Ministry of Education
– name: Collaborative Innovation Center of Extreme Optics
– name: Yangtze Delta Region Institute (Huzhou)
– name: Dalian University of Technology
– name: Harbin Institute of Technology
Author_xml – sequence: 1
  givenname: Luo
  surname: Yan
  fullname: Yan, Luo
– sequence: 2
  givenname: Ruiqi
  surname: Ku
  fullname: Ku, Ruiqi
– sequence: 3
  givenname: Jing
  surname: Zou
  fullname: Zou, Jing
– sequence: 4
  givenname: Liujiang
  surname: Zhou
  fullname: Zhou, Liujiang
– sequence: 5
  givenname: Jijun
  surname: Zhao
  fullname: Zhao, Jijun
– sequence: 6
  givenname: Xue
  surname: Jiang
  fullname: Jiang, Xue
– sequence: 7
  givenname: Bao-Tian
  surname: Wang
  fullname: Wang, Bao-Tian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35494119$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtLAzEUhYNUfFQ37pUBNyJU8-5kI4ivCgVFdB0yScamTJOazAj990Zb6-MSuJfcj8NJzi7o-eAtAAcIniFIxLlBUcESIjrZADsYUj7AkIver3kb7Kc0hbk4Q5ijLbBNGBUUIbED2GO0xunWBV-Eukjd3EYdvOny1btrF4XzReUatbCxqEIM84n1Nu2BzVo1ye6veh-83N48X40G44e7-6vL8UBn_XZAYSm0tmVdIoahoAqyillSw9pgNTRGqxoPaU01IkITVvHSQDPkFdJMEIM16YOLpe68q2bWaOvbqBo5j26m4kIG5eTfjXcT-RrepYCUDkuWBU5WAjG8dTa1cuaStk2jvA1dkpizklNOOMno8T90Grro8_MyhTDNB5aZOl1SOoaUoq3XZhCUn4HIa_R0-RXIKMNHv-2v0e_vz8DhEohJr7c_iZIPrAuRvw
CitedBy_id crossref_primary_10_1002_adts_202200925
crossref_primary_10_1002_smll_202403656
crossref_primary_10_1016_j_mtphys_2023_101144
crossref_primary_10_1016_j_pmatsci_2024_101331
crossref_primary_10_1021_acs_jpcc_3c05508
crossref_primary_10_1103_PhysRevMaterials_7_114802
crossref_primary_10_1021_acs_jpcc_4c00497
crossref_primary_10_1380_ejssnt_2023_058
crossref_primary_10_1016_j_ijhydene_2024_06_031
crossref_primary_10_1021_acsnano_2c11612
crossref_primary_10_3390_ma17091967
crossref_primary_10_1016_j_commatsci_2023_112390
crossref_primary_10_1021_acs_jpclett_3c02684
crossref_primary_10_1016_j_nanoms_2024_03_007
crossref_primary_10_1088_1367_2630_ad57e4
Cites_doi 10.1021/jacs.8b13075
10.1039/b919260c
10.1016/j.ijhydene.2017.06.143
10.1002/adma.201900353
10.1002/adfm.201603300
10.1103/PhysRevB.90.224104
10.1103/PhysRevLett.98.166804
10.1016/j.nanoen.2016.03.013
10.1103/PhysRevB.102.075431
10.1103/PhysRevB.54.11169
10.1039/C9TC05783H
10.1103/PhysRevB.100.024503
10.1038/s41699-017-0018-2
10.1039/C8TC06123H
10.1039/c2nr12018f
10.1038/nchem.1999
10.1103/PhysRevB.90.045409
10.1103/RevModPhys.73.515
10.1021/acs.nanolett.6b00070
10.1126/science.1194975
10.1021/acs.jpcc.7b09552
10.1021/acsnano.9b08296
10.1103/PhysRevB.104.054504
10.1073/pnas.0502848102
10.1016/j.jpowsour.2016.08.109
10.1103/PhysRevB.12.905
10.1088/2053-1583/aa5e1b
10.1016/j.flatc.2017.08.008
10.1021/acsami.5b09949
10.1063/1.4793790
10.1021/nl3004754
10.1126/science.aad1080
10.1103/PhysRevLett.99.115501
10.1039/C8TC04165B
10.1103/RevModPhys.89.015003
10.1103/PhysRevB.95.024505
10.1038/s41524-020-00365-9
10.1103/PhysRevB.102.155406
10.1016/j.pmatsci.2016.04.001
10.1038/s41598-017-00079-x
10.1103/PhysRevB.49.16223
10.1126/science.1102896
10.1021/acsami.9b17896
10.1002/adfm.201605059
10.1039/C5NR00355E
10.1002/anie.199718081
10.1103/PhysRev.108.1175
10.1088/1361-6528/aac320
10.1103/PhysRevB.50.17953
10.1002/anie.201207972
10.1039/C9CP02727K
10.1038/s41563-021-01084-2
10.1103/PhysRevB.98.054104
10.1063/1.4953775
10.1103/PhysRevB.59.1758
10.1039/C7TA09244J
10.1016/j.scib.2018.02.006
10.1021/nn302696v
10.1103/PhysRevB.101.054518
10.1021/acs.jpcc.7b02582
10.1021/acsnano.8b09339
10.1021/acsami.6b05747
10.1088/1367-2630/18/7/073016
10.1021/jp305545z
10.1038/s41467-019-13993-7
10.1038/ncomms4113
10.1021/acs.jpcc.8b12385
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.104.195123
10.1063/1.447334
10.1002/adfm.201904349
10.1038/nmat1012
10.1039/D0CP01540G
10.1038/s41557-021-00813-z
10.1103/PhysRevB.102.155133
10.1038/nchem.2491
10.1080/21663831.2017.1298539
10.1016/j.apsusc.2017.08.178
10.1021/acs.jpcc.9b11426
10.1016/j.cpc.2021.108033
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d1ra08014h
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 4227
ExternalDocumentID 10_1039_D1RA08014H
35494119
d1ra08014h
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 12074381
– fundername: ;
  grantid: Unassigned
GroupedDBID 0-7
0R
AAGNR
AAIWI
ABGFH
ACGFS
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
CKLOX
EBS
EE0
EF-
GROUPED_DOAJ
HZ
H~N
J3I
JG
O9-
OK1
R7C
R7G
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
-JG
0R~
53G
AAFWJ
AAHBH
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
H13
HZ~
M~E
NPM
PGMZT
RPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c494t-4089cce8f8152094a05b5e3f0fd2a7ddcaf274f4c139c35b68d0d76b1c593d2c3
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Sep 17 21:15:47 EDT 2024
Tue Aug 27 17:11:23 EDT 2024
Fri Sep 13 08:05:20 EDT 2024
Fri Aug 23 02:57:36 EDT 2024
Wed Oct 02 05:22:45 EDT 2024
Mon Apr 18 07:58:27 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 63
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-4089cce8f8152094a05b5e3f0fd2a7ddcaf274f4c139c35b68d0d76b1c593d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4700-0641
0000-0002-3563-0489
0000-0002-4032-3344
0000-0001-5814-4486
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044785/
PMID 35494119
PQID 2612412408
PQPubID 2047525
PageCount 8
ParticipantIDs rsc_primary_d1ra08014h
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9044785
crossref_primary_10_1039_D1RA08014H
pubmed_primary_35494119
proquest_journals_2612412408
proquest_miscellaneous_2658646363
PublicationCentury 2000
PublicationDate 2021-12-17
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Coleman (D1RA08014H/cit3/1) 2011; 331
Zhou (D1RA08014H/cit27/1) 2017; 1
Kresse (D1RA08014H/cit61/1) 1999; 59
Giannozzi (D1RA08014H/cit69/1) 2017; 29
Xu (D1RA08014H/cit59/1) 2019; 123
Feng (D1RA08014H/cit18/1) 2016; 8
Wu (D1RA08014H/cit12/1) 2012; 6
Piazza (D1RA08014H/cit6/1) 2014; 5
Peng (D1RA08014H/cit73/1) 2017; 5
Gao (D1RA08014H/cit45/1) 2019; 100
Yu (D1RA08014H/cit53/1) 2020; 22
Liu (D1RA08014H/cit83/1) 2018; 6
Qu (D1RA08014H/cit54/1) 2020; 102
Novoselov (D1RA08014H/cit1/1) 2004; 306
Zhai (D1RA08014H/cit7/1) 2003; 2
Huang (D1RA08014H/cit5/1) 2020; 11
Gao (D1RA08014H/cit42/1) 2019; 11
Huang (D1RA08014H/cit84/1) 2014; 90
Blöchl (D1RA08014H/cit62/1) 1994; 50
Penev (D1RA08014H/cit40/1) 2016; 16
Huang (D1RA08014H/cit82/1) 2014; 90
Liu (D1RA08014H/cit23/1) 2021
Kresse (D1RA08014H/cit60/1) 1996; 54
Wu (D1RA08014H/cit47/1) 2016; 8
Penev (D1RA08014H/cit13/1) 2012; 12
Perdew (D1RA08014H/cit64/1) 1996; 77
Chen (D1RA08014H/cit55/1) 2020; 101
Liu (D1RA08014H/cit88/1) 2020; 102
Bardeen (D1RA08014H/cit67/1) 1957; 108
Wang (D1RA08014H/cit72/1) 2017; 121
Blöchl (D1RA08014H/cit63/1) 1994; 49
Mortazavi (D1RA08014H/cit31/1) 2016; 329
Allen (D1RA08014H/cit89/1) 1975; 12
Shukla (D1RA08014H/cit34/1) 2017; 121
Tang (D1RA08014H/cit78/1) 2009; 21
Grimvall (D1RA08014H/cit87/1) 1981; 8
Nosé (D1RA08014H/cit71/1) 1984; 81
Gao (D1RA08014H/cit22/1) 2018; 7
Liu (D1RA08014H/cit15/1) 2013; 52
Giustino (D1RA08014H/cit86/1) 2017; 89
Mouhat (D1RA08014H/cit75/1) 2014; 90
Born (D1RA08014H/cit74/1) 1954
Zhong (D1RA08014H/cit57/1) 2018; 98
Wang (D1RA08014H/cit26/1) 2016; 18
Liu (D1RA08014H/cit10/1) 2010; 20
Sun (D1RA08014H/cit37/1) 2017; 27
Yan (D1RA08014H/cit44/1) 2019; 21
Cheng (D1RA08014H/cit56/1) 2017; 4
Zhai (D1RA08014H/cit9/1) 2014; 6
Chen (D1RA08014H/cit46/1) 2020; 124
Wang (D1RA08014H/cit76/1) 2015; 7
Mannix (D1RA08014H/cit17/1) 2015; 350
Bychkov (D1RA08014H/cit79/1) 1984; 39
Chen (D1RA08014H/cit24/1) 2021
Zhao (D1RA08014H/cit41/1) 2016; 108
Song (D1RA08014H/cit49/1) 2019; 141
Wang (D1RA08014H/cit65/1) 2021; 267
Cui (D1RA08014H/cit70/1) 2020; 102
Zhao (D1RA08014H/cit4/1) 2016; 83
Yu (D1RA08014H/cit14/1) 2012; 116
Gao (D1RA08014H/cit39/1) 2017; 95
Li (D1RA08014H/cit25/1) 2020; 30
Chen (D1RA08014H/cit36/1) 2017; 42
Modak (D1RA08014H/cit80/1) 2021; 104
Zhang (D1RA08014H/cit58/1) 2018; 29
Feng Huang (D1RA08014H/cit81/1) 2013; 113
Yan (D1RA08014H/cit51/1) 2020; 6
Huang (D1RA08014H/cit85/1) 2013; 113
Zhang (D1RA08014H/cit29/1) 2016; 8
Savin (D1RA08014H/cit77/1) 1997; 36
Wang (D1RA08014H/cit52/1) 2021; 104
Li (D1RA08014H/cit20/1) 2018; 63
Ranjan (D1RA08014H/cit35/1) 2019; 31
Dai (D1RA08014H/cit48/1) 2012; 4
Liu (D1RA08014H/cit16/1) 2013; 3
Tang (D1RA08014H/cit11/1) 2007; 99
Yan (D1RA08014H/cit50/1) 2020; 8
Kiraly (D1RA08014H/cit21/1) 2019; 13
Novoselov (D1RA08014H/cit2/1) 2005; 102
Giannozzi (D1RA08014H/cit68/1) 2009; 21
Zhang (D1RA08014H/cit38/1) 2017; 27
Yan (D1RA08014H/cit43/1) 2019; 7
Jiang (D1RA08014H/cit28/1) 2018; 6
Szwacki (D1RA08014H/cit8/1) 2007; 98
Chen (D1RA08014H/cit30/1) 2018; 427
Xiao (D1RA08014H/cit33/1) 2017; 7
Baroni (D1RA08014H/cit66/1) 2001; 73
Jiang (D1RA08014H/cit32/1) 2016; 23
Vinogradov (D1RA08014H/cit19/1) 2019; 13
References_xml – issn: 1981
  issue: vol. 8
  publication-title: The electron-phonon interaction in metals
  doi: Grimvall
– issn: 1954
  publication-title: Dynamical theory of crystal lattices
  doi: Born Huang
– volume: 141
  start-page: 3630
  year: 2019
  ident: D1RA08014H/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13075
  contributor:
    fullname: Song
– volume: 20
  start-page: 2197
  year: 2010
  ident: D1RA08014H/cit10/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/b919260c
  contributor:
    fullname: Liu
– volume: 42
  start-page: 20036
  year: 2017
  ident: D1RA08014H/cit36/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.143
  contributor:
    fullname: Chen
– volume: 31
  start-page: 1900353
  year: 2019
  ident: D1RA08014H/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900353
  contributor:
    fullname: Ranjan
– volume: 27
  start-page: 1603300
  year: 2017
  ident: D1RA08014H/cit37/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603300
  contributor:
    fullname: Sun
– volume: 90
  start-page: 224104
  year: 2014
  ident: D1RA08014H/cit75/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.224104
  contributor:
    fullname: Mouhat
– volume: 98
  start-page: 166804
  year: 2007
  ident: D1RA08014H/cit8/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.166804
  contributor:
    fullname: Szwacki
– volume: 23
  start-page: 97
  year: 2016
  ident: D1RA08014H/cit32/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.03.013
  contributor:
    fullname: Jiang
– volume: 102
  start-page: 075431
  year: 2020
  ident: D1RA08014H/cit54/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.075431
  contributor:
    fullname: Qu
– volume: 54
  start-page: 11169
  year: 1996
  ident: D1RA08014H/cit60/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– volume: 8
  start-page: 1704
  year: 2020
  ident: D1RA08014H/cit50/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05783H
  contributor:
    fullname: Yan
– volume: 100
  start-page: 024503
  year: 2019
  ident: D1RA08014H/cit45/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.024503
  contributor:
    fullname: Gao
– volume: 1
  start-page: 1
  year: 2017
  ident: D1RA08014H/cit27/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-017-0018-2
  contributor:
    fullname: Zhou
– volume: 7
  start-page: 2589
  year: 2019
  ident: D1RA08014H/cit43/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06123H
  contributor:
    fullname: Yan
– volume: 4
  start-page: 3032
  year: 2012
  ident: D1RA08014H/cit48/1
  publication-title: Nanoscale
  doi: 10.1039/c2nr12018f
  contributor:
    fullname: Dai
– volume: 21
  start-page: 084
  year: 2009
  ident: D1RA08014H/cit78/1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Tang
– volume: 6
  start-page: 727
  year: 2014
  ident: D1RA08014H/cit9/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1999
  contributor:
    fullname: Zhai
– volume: 90
  start-page: 045409
  year: 2014
  ident: D1RA08014H/cit82/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.045409
  contributor:
    fullname: Huang
– volume: 90
  start-page: 045409
  year: 2014
  ident: D1RA08014H/cit84/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.045409
  contributor:
    fullname: Huang
– volume: 73
  start-page: 515
  year: 2001
  ident: D1RA08014H/cit66/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.515
  contributor:
    fullname: Baroni
– volume: 16
  start-page: 2522
  year: 2016
  ident: D1RA08014H/cit40/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00070
  contributor:
    fullname: Penev
– volume: 39
  start-page: 78
  year: 1984
  ident: D1RA08014H/cit79/1
  publication-title: JETP Lett.
  contributor:
    fullname: Bychkov
– volume: 331
  start-page: 568
  year: 2011
  ident: D1RA08014H/cit3/1
  publication-title: Science
  doi: 10.1126/science.1194975
  contributor:
    fullname: Coleman
– volume: 121
  start-page: 26869
  year: 2017
  ident: D1RA08014H/cit34/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09552
  contributor:
    fullname: Shukla
– volume: 13
  start-page: 14511
  year: 2019
  ident: D1RA08014H/cit19/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08296
  contributor:
    fullname: Vinogradov
– volume: 104
  start-page: 054504
  year: 2021
  ident: D1RA08014H/cit80/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.054504
  contributor:
    fullname: Modak
– volume: 102
  start-page: 10451
  year: 2005
  ident: D1RA08014H/cit2/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502848102
  contributor:
    fullname: Novoselov
– volume: 329
  start-page: 456
  year: 2016
  ident: D1RA08014H/cit31/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.109
  contributor:
    fullname: Mortazavi
– volume: 12
  start-page: 905
  year: 1975
  ident: D1RA08014H/cit89/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.12.905
  contributor:
    fullname: Allen
– volume: 4
  start-page: 025032
  year: 2017
  ident: D1RA08014H/cit56/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5e1b
  contributor:
    fullname: Cheng
– volume: 7
  start-page: 48
  year: 2018
  ident: D1RA08014H/cit22/1
  publication-title: FlatChem
  doi: 10.1016/j.flatc.2017.08.008
  contributor:
    fullname: Gao
– volume: 8
  start-page: 2526
  year: 2016
  ident: D1RA08014H/cit47/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09949
  contributor:
    fullname: Wu
– volume: 113
  start-page: 083524
  year: 2013
  ident: D1RA08014H/cit81/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4793790
  contributor:
    fullname: Feng Huang
– volume: 12
  start-page: 2441
  year: 2012
  ident: D1RA08014H/cit13/1
  publication-title: Nano Lett.
  doi: 10.1021/nl3004754
  contributor:
    fullname: Penev
– volume: 350
  start-page: 1513
  year: 2015
  ident: D1RA08014H/cit17/1
  publication-title: Science
  doi: 10.1126/science.aad1080
  contributor:
    fullname: Mannix
– volume: 99
  start-page: 115501
  year: 2007
  ident: D1RA08014H/cit11/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.115501
  contributor:
    fullname: Tang
– volume: 29
  start-page: 465901
  year: 2017
  ident: D1RA08014H/cit69/1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Giannozzi
– volume: 6
  start-page: 12689
  year: 2018
  ident: D1RA08014H/cit83/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04165B
  contributor:
    fullname: Liu
– volume: 89
  start-page: 015003
  year: 2017
  ident: D1RA08014H/cit86/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.015003
  contributor:
    fullname: Giustino
– volume: 95
  start-page: 024505
  year: 2017
  ident: D1RA08014H/cit39/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.024505
  contributor:
    fullname: Gao
– volume: 6
  start-page: 94
  year: 2020
  ident: D1RA08014H/cit51/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00365-9
  contributor:
    fullname: Yan
– volume: 21
  start-page: 395502
  year: 2009
  ident: D1RA08014H/cit68/1
  publication-title: J. Phys.: Condens. Matter
  contributor:
    fullname: Giannozzi
– volume: 102
  start-page: 155406
  year: 2020
  ident: D1RA08014H/cit88/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.155406
  contributor:
    fullname: Liu
– volume: 83
  start-page: 24
  year: 2016
  ident: D1RA08014H/cit4/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.04.001
  contributor:
    fullname: Zhao
– volume: 7
  start-page: 45
  year: 2017
  ident: D1RA08014H/cit33/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00079-x
  contributor:
    fullname: Xiao
– volume: 113
  start-page: 083524
  year: 2013
  ident: D1RA08014H/cit85/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4793790
  contributor:
    fullname: Huang
– volume: 49
  start-page: 16223
  year: 1994
  ident: D1RA08014H/cit63/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.49.16223
  contributor:
    fullname: Blöchl
– volume: 306
  start-page: 666
  year: 2004
  ident: D1RA08014H/cit1/1
  publication-title: Science
  doi: 10.1126/science.1102896
  contributor:
    fullname: Novoselov
– volume: 11
  start-page: 47279
  year: 2019
  ident: D1RA08014H/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b17896
  contributor:
    fullname: Gao
– volume: 27
  start-page: 1605059
  year: 2017
  ident: D1RA08014H/cit38/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605059
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 9746
  year: 2015
  ident: D1RA08014H/cit76/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR00355E
  contributor:
    fullname: Wang
– volume: 36
  start-page: 1808
  year: 1997
  ident: D1RA08014H/cit77/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199718081
  contributor:
    fullname: Savin
– volume: 108
  start-page: 1175
  year: 1957
  ident: D1RA08014H/cit67/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.1175
  contributor:
    fullname: Bardeen
– volume: 29
  start-page: 305706
  year: 2018
  ident: D1RA08014H/cit58/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aac320
  contributor:
    fullname: Zhang
– volume: 50
  start-page: 17953
  year: 1994
  ident: D1RA08014H/cit62/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 52
  start-page: 3156
  year: 2013
  ident: D1RA08014H/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201207972
  contributor:
    fullname: Liu
– volume: 21
  start-page: 15327
  year: 2019
  ident: D1RA08014H/cit44/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02727K
  contributor:
    fullname: Yan
– year: 2021
  ident: D1RA08014H/cit23/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01084-2
  contributor:
    fullname: Liu
– volume: 98
  start-page: 054104
  year: 2018
  ident: D1RA08014H/cit57/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.054104
  contributor:
    fullname: Zhong
– volume: 108
  start-page: 242601
  year: 2016
  ident: D1RA08014H/cit41/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4953775
  contributor:
    fullname: Zhao
– volume: 59
  start-page: 1758
  year: 1999
  ident: D1RA08014H/cit61/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: Kresse
– volume: 6
  start-page: 2107
  year: 2018
  ident: D1RA08014H/cit28/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09244J
  contributor:
    fullname: Jiang
– volume: 63
  start-page: 282
  year: 2018
  ident: D1RA08014H/cit20/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.02.006
  contributor:
    fullname: Li
– volume: 6
  start-page: 7443
  year: 2012
  ident: D1RA08014H/cit12/1
  publication-title: ACS Nano
  doi: 10.1021/nn302696v
  contributor:
    fullname: Wu
– volume: 101
  start-page: 054518
  year: 2020
  ident: D1RA08014H/cit55/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.054518
  contributor:
    fullname: Chen
– volume: 121
  start-page: 10224
  year: 2017
  ident: D1RA08014H/cit72/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02582
  contributor:
    fullname: Wang
– volume: 3
  start-page: 1
  year: 2013
  ident: D1RA08014H/cit16/1
  publication-title: Sci. Rep.
  contributor:
    fullname: Liu
– volume: 13
  start-page: 3816
  year: 2019
  ident: D1RA08014H/cit21/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09339
  contributor:
    fullname: Kiraly
– volume: 8
  start-page: 22175
  year: 2016
  ident: D1RA08014H/cit29/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05747
  contributor:
    fullname: Zhang
– volume: 18
  start-page: 073016
  year: 2016
  ident: D1RA08014H/cit26/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/7/073016
  contributor:
    fullname: Wang
– volume-title: Dynamical theory of crystal lattices
  year: 1954
  ident: D1RA08014H/cit74/1
  contributor:
    fullname: Born
– volume: 116
  start-page: 20075
  year: 2012
  ident: D1RA08014H/cit14/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp305545z
  contributor:
    fullname: Yu
– volume: 11
  start-page: 1
  year: 2020
  ident: D1RA08014H/cit5/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
  contributor:
    fullname: Huang
– volume: 5
  start-page: 1
  year: 2014
  ident: D1RA08014H/cit6/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4113
  contributor:
    fullname: Piazza
– volume: 123
  start-page: 4977
  year: 2019
  ident: D1RA08014H/cit59/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b12385
  contributor:
    fullname: Xu
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1RA08014H/cit64/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 104
  start-page: 195123
  year: 2021
  ident: D1RA08014H/cit52/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.195123
  contributor:
    fullname: Wang
– volume: 81
  start-page: 511
  year: 1984
  ident: D1RA08014H/cit71/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
  contributor:
    fullname: Nosé
– volume: 30
  start-page: 1904349
  year: 2020
  ident: D1RA08014H/cit25/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904349
  contributor:
    fullname: Li
– volume: 2
  start-page: 827
  year: 2003
  ident: D1RA08014H/cit7/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1012
  contributor:
    fullname: Zhai
– volume: 22
  start-page: 16236
  year: 2020
  ident: D1RA08014H/cit53/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP01540G
  contributor:
    fullname: Yu
– start-page: 1
  year: 2021
  ident: D1RA08014H/cit24/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00813-z
  contributor:
    fullname: Chen
– volume: 102
  start-page: 155133
  year: 2020
  ident: D1RA08014H/cit70/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.155133
  contributor:
    fullname: Cui
– volume: 8
  start-page: 563
  year: 2016
  ident: D1RA08014H/cit18/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2491
  contributor:
    fullname: Feng
– volume: 5
  start-page: 399
  year: 2017
  ident: D1RA08014H/cit73/1
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2017.1298539
  contributor:
    fullname: Peng
– volume: 427
  start-page: 198
  year: 2018
  ident: D1RA08014H/cit30/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.08.178
  contributor:
    fullname: Chen
– volume: 8
  volume-title: The electron-phonon interaction in metals
  year: 1981
  ident: D1RA08014H/cit87/1
  contributor:
    fullname: Grimvall
– volume: 124
  start-page: 5870
  year: 2020
  ident: D1RA08014H/cit46/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b11426
  contributor:
    fullname: Chen
– volume: 267
  start-page: 108033
  year: 2021
  ident: D1RA08014H/cit65/1
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108033
  contributor:
    fullname: Wang
SSID ssj0000651261
Score 2.4501615
Snippet Borophenes and related two-dimensional materials have exhibited many exotic properties, especially for superconductivity, although the superconductivity of...
SourceID pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 422
SubjectTerms BCS theory
Bilayers
Borophene
Chemistry
Copper
Density functional theory
Monolayers
Phonons
Silver
Structural stability
Substrates
Superconductivity
Two dimensional materials
Title Prediction of superconductivity in bilayer borophenes
URI https://www.ncbi.nlm.nih.gov/pubmed/35494119
https://www.proquest.com/docview/2612412408/abstract/
https://www.proquest.com/docview/2658646363/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9044785
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6sB_Uivl2tsqLXtZvN5rFHqUoRFBEFb0s2DyzYbVnb_-8k7ValN88J2TAzJN-3M_kG4EqanHPDi8RZ45JcpiqRkiJVsQhuhabKhl8Dj0988JY_vLP3NWDtW5hQtK-r4XX9Obquhx-htnIy0r22Tqz3_Ngv0jwXkvU60BGU_qLo8-MX7zBOWilSWvQMaVTqVVI-tmCDIiHKiRfW-X0PrYDL1RrJTtO2BAlXz_0ObC8wY3wz39surNl6Dzb7bau2fWDPjc-3eBvHYxd_zSa2QZ7rpVxDb4h4WMfV8FMhvI7R515KAE-4A3i7v3vtD5JFP4RE456nSPVkobWVThJfvJKrlFXMUpc6kylhjFYOOabLNaI6TVnFpUmN4BXRrKAm0_QQ1utxbY8hlsIprYVzPg_HiFaIanhRKccd5SKTEVy21iknc9mLMqSraVHekpebYM5BBN3WcOUi9L9Kr0nmW1qnuMjFchgN4jMRqrbjmZ_DJPdSZTSCo7mdl59pHRSB-OOB5QQviP13BOMkCGMv4iKCQ_TVcv6P-0_-veQpbGW-mIVkCRFdWJ82M3uGaGRanQcWfx5i8Bu62OGC
link.rule.ids 230,315,733,786,790,870,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK9lGchUCAIrtmN4_iRY7VQLdCtKtSi3iLHD3XVNrtKdy_99Yyd9dLSE5xtOYm_sf1NZvwNwGdpSs4NrzJnjctKmatMSoquikVyKzRVNvwamBzz8Vn5_ZydbwCLd2FC0r5upoP26nrQTi9CbuX8Wg9jntjwZDKq8rIUkg034RGu10LccdL7DRhPMU6iGCmthoZ0Kvc6KRc78JiiS1QSL61z9yR6QC8fZkludrEoSDh8Dp_Ar_jafc7J5WC5aAb69i9Fx3_-rqewu6Kj6UHf_Aw2bPsctkexCtwLYCedD-V4-NKZS2-Wc9uhC-1VYkPZiXTaps30SiFzT9GcvEoBbp4v4ezw6-lonK1KLWQaJ2OBXqSstLbSSeLzYkqVs4ZZ6nJnCiWM0cqh--pKjYRRU9ZwaXIjeEM0q6gpNN2DrXbW2teQSuGU1sI5H-JjRCskTLxqlOOOclHIBD7Faa_nvaJGHSLhtKq_kJ8HAadxAvsRkXq1qm5qL3fmq2XnOMjHdTNOiA9yqNbOlr4Pk9yroNEEXvUArh8TkU9A3IN23cFrbd9vQaiC5vYKmgT20AjW_f_Y1Zv_HvIDbI9PJ0f10bfjH29hp_A5M6TIiNiHrUW3tO-Q9Cya98HEfwPqaAKZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VKlEuLX3QpoU2VXvNJo7jR45oYbV9gFZVkVAvkeOHWAHZVdi99Nd37GyWpdw4e-Qk_sb2N5nRNwBfpSk4N7xMnDUuKWSmEikphioWya3QVNnwa-D0jI_Pi-8X7GKj1Vco2tf1dNBc3wya6WWorZzf6LSvE0snp8MyKwohWTo3Lt2Cp7hn83IjUO8OYbzJOOkFSWmZGtKqzGulXO7CDsWwqCBeXmfzNnpAMR9WSm61fWOQcAGNXsCf_tW7upOrwXJRD_Tf_1QdH_Vte_B8RUvjo87kJTyxzSt4Nuy7wb0GNml9SsfDGM9cfLuc2xZDaa8WG9pPxNMmrqfXChl8jG7l1QrwEH0D56OT38Nxsmq5kGhckAVGk7LU2konia-PKVTGamapy5zJlTBGK4dhrCs0EkdNWc2lyYzgNdGspCbXdB-2m1lj30EshVNaC-d8qo8RrZA48bJWjjvKRS4j-NIvfTXvlDWqkBGnZXVMfh0FrMYRHPSoVKvddVt52TPfNTvDST6vh3FBfLJDNXa29DZMcq-GRiN424G4fkyPfgTiHrxrA6-5fX8E4Qra2yt4IthHR1jb3_nW-0dP-Ql2Jsej6ue3sx8fYDf3pTMkT4g4gO1Fu7SHyH0W9cfg5f8AB1UFGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+superconductivity+in+bilayer+borophenes&rft.jtitle=RSC+advances&rft.au=Yan%2C+Luo&rft.au=Ku%2C+Ruiqi&rft.au=Zou%2C+Jing&rft.au=Zhou%2C+Liujiang&rft.date=2021-12-17&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=11&rft.issue=63&rft.spage=40220&rft_id=info:doi/10.1039%2Fd1ra08014h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon