Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping
Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assist...
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 13; no. 1; p. 28 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
18.03.2016
BioMed Central |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object.
Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps.
Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control.
Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users.
NCT01364480 and NCT01894802 . |
---|---|
AbstractList | BACKGROUNDRecent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object.METHODSTwo human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps.RESULTSBoth subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control.CONCLUSIONSIntegration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users.TRIAL REGISTRATIONNCT01364480 and NCT01894802 . Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Methods Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Results Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Conclusions Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. NCT01364480 and NCT01894802 . |
ArticleNumber | 28 |
Audience | Academic |
Author | Muelling, Katharina Bagnell, J. Andrew Valois, Jean-Sebastien Schwartz, Andrew B. Hebert, Martial Downey, John E. Venkatraman, Arun Weiss, Jeffrey M. Collinger, Jennifer L. |
Author_xml | – sequence: 1 givenname: John E. surname: Downey fullname: Downey, John E. – sequence: 2 givenname: Jeffrey M. surname: Weiss fullname: Weiss, Jeffrey M. – sequence: 3 givenname: Katharina surname: Muelling fullname: Muelling, Katharina – sequence: 4 givenname: Arun surname: Venkatraman fullname: Venkatraman, Arun – sequence: 5 givenname: Jean-Sebastien surname: Valois fullname: Valois, Jean-Sebastien – sequence: 6 givenname: Martial surname: Hebert fullname: Hebert, Martial – sequence: 7 givenname: J. Andrew surname: Bagnell fullname: Bagnell, J. Andrew – sequence: 8 givenname: Andrew B. surname: Schwartz fullname: Schwartz, Andrew B. – sequence: 9 givenname: Jennifer L. orcidid: 0000-0002-4517-5395 surname: Collinger fullname: Collinger, Jennifer L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26987662$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1v1DAQjVAR_YAfwAVZ4sIlxY4dO74glYoWpEpc4GzZ8STrKrEXO1mJK7-cWW0LbQWybD953rzReN5pdRRThKp6zeg5Y518X1ijO1FTJnFzUetn1QlTgteUUn70AB9Xp6XcIhC0FS-q40bqTknZnFS_Pk4QfYgjSQNx2YZYz7bfhAgkxAXyYHsgNnqyCyWkWI9r8OCJXZcU05zWQnJyaQl9IWHe5rSDQiKsOSEuywYwQmyeyRalUp5tRDm_5n3BMduyRfCyej7YqcCru_us-n716dvl5_rm6_WXy4ubuhdaLLWgHKh3LQehPXPcc-eUg851QgnpOXcMrHWNox0CKb2UTGgpLPOOW9Hws-rDQXe7uhl8D3HJdjLbHGabf5pkg3kciWFjxrQzQmnFGEeBd3cCOf1YoSxmDqWHabIR8CcMU0q0jW6FQOrbJ9TbtOaI7SFLq05LxdRf1mgnMCEOCev2e1FzIVreqRYPZJ3_g4XLwxx6dMQQ8P1RwpuHjf7p8H7qSFAHQo9DKhkG04fFLjhfVA6TYdTs_WUO_jLoL7P3l9GYyZ5k3ov_P-c3zsTUxw |
CitedBy_id | crossref_primary_10_3389_fnbot_2021_605751 crossref_primary_10_1146_annurev_control_061720_012348 crossref_primary_10_3390_app9153106 crossref_primary_10_1088_1741_2552_acd3b1 crossref_primary_10_1142_S0129065718500181 crossref_primary_10_1186_s12938_019_0633_6 crossref_primary_10_1038_s41598_018_29091_5 crossref_primary_10_1038_s41551_020_0595_9 crossref_primary_10_1080_2326263X_2016_1275488 crossref_primary_10_1109_OJEMB_2021_3059161 crossref_primary_10_3390_mi12080972 crossref_primary_10_1631_FITEE_1700148 crossref_primary_10_1109_TNSRE_2019_2935765 crossref_primary_10_1088_1741_2552_aa69d3 crossref_primary_10_3389_fnins_2019_00393 crossref_primary_10_1109_MPRV_2018_022511241 crossref_primary_10_1109_TBME_2020_3045351 crossref_primary_10_1016_j_robot_2019_02_014 crossref_primary_10_1109_TBCAS_2024_3359994 crossref_primary_10_3389_fbioe_2018_00026 crossref_primary_10_1016_j_sse_2024_108915 crossref_primary_10_1088_1741_2552_abfaaa crossref_primary_10_1016_j_cobme_2019_09_002 crossref_primary_10_1109_TNSRE_2020_3038706 crossref_primary_10_1088_1741_2552_acb5c2 crossref_primary_10_1186_s12984_021_00839_x crossref_primary_10_3390_app12010135 crossref_primary_10_1080_17483107_2019_1615998 crossref_primary_10_3390_s21206863 crossref_primary_10_1038_s41598_017_17222_3 crossref_primary_10_1038_s42003_021_02891_8 crossref_primary_10_1016_j_neunet_2021_07_002 crossref_primary_10_3389_fnins_2018_00751 crossref_primary_10_1038_s44222_024_00239_5 crossref_primary_10_1109_TASE_2020_3034826 crossref_primary_10_3389_fnsys_2021_578875 crossref_primary_10_1111_ner_13069 crossref_primary_10_1126_science_aam7731 crossref_primary_10_1088_1741_2552_aab7a0 crossref_primary_10_1186_s12984_023_01272_y crossref_primary_10_1016_j_neuroimage_2024_120882 crossref_primary_10_1088_2057_1976_aada67 crossref_primary_10_1016_j_pmrj_2018_05_028 crossref_primary_10_1016_j_cell_2025_02_001 crossref_primary_10_1088_1741_2552_adb88e crossref_primary_10_3389_fnbot_2017_00059 crossref_primary_10_1109_TNSRE_2018_2875731 crossref_primary_10_1038_s41587_020_0662_5 crossref_primary_10_1007_s13534_023_00286_8 crossref_primary_10_1515_revneuro_2023_0077 crossref_primary_10_1002_adfm_201703905 crossref_primary_10_1088_2516_1091_ad0b19 crossref_primary_10_1073_pnas_1902276116 crossref_primary_10_3389_fnbot_2017_00060 crossref_primary_10_2139_ssrn_2798529 |
Cites_doi | 10.1088/1741-2560/12/1/016011 10.1109/IROS.2012.6385888 10.1097/00004356-198112000-00001 10.1109/TNSRE.2013.2294685 10.1109/CVPR.2009.5206803 10.1088/1741-2560/5/2/012 10.1038/nrn3724 10.1177/0278364914561535 10.1007/s00221-014-3904-2 10.1038/nature06996 10.1016/j.humov.2008.12.001 10.1088/1741-2560/8/4/045005 10.1682/JRRD.2011.11.0213 10.1016/S0140-6736(13)61154-X 10.1088/1741-2560/10/3/036004 10.1109/TSMCA.2011.2159589 10.1016/j.apmr.2014.05.028 10.1007/11550518_36 10.1038/nrn2621 10.1038/nature11076 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2016 BioMed Central Ltd. Copyright BioMed Central 2016 Downey et al. 2016 |
Copyright_xml | – notice: COPYRIGHT 2016 BioMed Central Ltd. – notice: Copyright BioMed Central 2016 – notice: Downey et al. 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1186/s12984-016-0134-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection ProQuest Biological Science Collection ProQuest Health & Medical Collection Healthcare Administration Database PML(ProQuest Medical Library) Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 28 |
ExternalDocumentID | PMC4797113 4094350301 A453875538 26987662 10_1186_s12984_016_0134_9 |
Genre | Clinical Trial Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: ID0EG3AG645 – fundername: ; grantid: ID0EY1AG644 |
GroupedDBID | --- 0R~ 29L 2QV 2WC 4.4 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c494t-403e0db53e49d1b3d3bb7be8b84746d33b1eaab2b081ea66d6614964a1db3a423 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Thu Aug 21 18:17:21 EDT 2025 Mon Jul 21 11:18:19 EDT 2025 Fri Jul 25 19:09:25 EDT 2025 Tue Jun 17 21:29:15 EDT 2025 Tue Jun 10 20:38:38 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Tue Jul 01 02:19:55 EDT 2025 Thu Apr 24 22:52:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Brain-computer interface Neuroprosthetic Shared mode control Assistive technology Brain-machine interface |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-403e0db53e49d1b3d3bb7be8b84746d33b1eaab2b081ea66d6614964a1db3a423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0002-4517-5395 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-016-0134-9 |
PMID | 26987662 |
PQID | 1797896717 |
PQPubID | 55356 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4797113 proquest_miscellaneous_1774529544 proquest_journals_1797896717 gale_infotracmisc_A453875538 gale_infotracacademiconefile_A453875538 pubmed_primary_26987662 crossref_citationtrail_10_1186_s12984_016_0134_9 crossref_primary_10_1186_s12984_016_0134_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-03-18 |
PublicationDateYYYYMMDD | 2016-03-18 |
PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2016 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | B Wodlinger (134_CR3) 2014; 12 JA Perge (134_CR6) 2013; 10 SJ Bensmaia (134_CR8) 2014; 15 134_CR12 134_CR11 RS Johansson (134_CR7) 2009; 10 DJ Kim (134_CR19) 2012; 42 134_CR10 JL Collinger (134_CR17) 2013; 50 HK Kim (134_CR4) 2009; 28 WF Cusack (134_CR9) 2014; 232 RC Lyle (134_CR22) 1981; 4 K Muelling (134_CR25) 2015 M Boninger (134_CR23) 2013; 381 LR Hochberg (134_CR1) 2012; 485 DP McMullen (134_CR14) 2014; 22 134_CR15 CJ Bell (134_CR13) 2008; 5 JL Collinger (134_CR2) 2012; 6736 JE Huggins (134_CR18) 2015; 96 134_CR21 KD Katyal (134_CR16) 2014 134_CR20 CA Chestek (134_CR5) 2011; 8 M Velliste (134_CR24) 2008; 453 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96 23725723 - Lancet. 2013 Jun 1;381(9881):1900-1 24739786 - Nat Rev Neurosci. 2014 May;15(5):313-25 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 24643547 - Exp Brain Res. 2014 Jul;232(7):2143-54 18483450 - J Neural Eng. 2008 Jun;5(2):214-20 25721546 - Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S38-45.e1-5 22596161 - Nature. 2012 May 17;485(7398):372-5 23760996 - J Rehabil Res Dev. 2013;50(2):145-60 19230997 - Hum Mov Sci. 2009 Apr;28(2):191-203 19352402 - Nat Rev Neurosci. 2009 May;10(5):345-59 23574741 - J Neural Eng. 2013 Jun;10(3):036004 7333761 - Int J Rehabil Res. 1981;4(4):483-92 25514320 - J Neural Eng. 2015 Feb;12(1):016011 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 21775782 - J Neural Eng. 2011 Aug;8(4):045005 |
References_xml | – volume: 12 start-page: 016011 year: 2014 ident: 134_CR3 publication-title: J Neural Eng doi: 10.1088/1741-2560/12/1/016011 – ident: 134_CR12 doi: 10.1109/IROS.2012.6385888 – volume: 6736 start-page: 1 year: 2012 ident: 134_CR2 publication-title: Lancet – volume: 4 start-page: 483 year: 1981 ident: 134_CR22 publication-title: Int J Rehabil Res doi: 10.1097/00004356-198112000-00001 – volume: 22 start-page: 784 year: 2014 ident: 134_CR14 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2013.2294685 – ident: 134_CR11 doi: 10.1109/CVPR.2009.5206803 – volume: 5 start-page: 214 year: 2008 ident: 134_CR13 publication-title: J Neural Eng doi: 10.1088/1741-2560/5/2/012 – volume: 15 start-page: 313 year: 2014 ident: 134_CR8 publication-title: Nat Rev Neurosci doi: 10.1038/nrn3724 – ident: 134_CR15 doi: 10.1177/0278364914561535 – ident: 134_CR20 – volume-title: Robotics: science and systems year: 2015 ident: 134_CR25 – volume: 232 start-page: 2143 year: 2014 ident: 134_CR9 publication-title: Exp Brain Res doi: 10.1007/s00221-014-3904-2 – volume: 453 start-page: 1098 year: 2008 ident: 134_CR24 publication-title: Nature doi: 10.1038/nature06996 – volume: 28 start-page: 191 year: 2009 ident: 134_CR4 publication-title: Hum Mov Sci doi: 10.1016/j.humov.2008.12.001 – volume: 8 start-page: 045005 year: 2011 ident: 134_CR5 publication-title: J Neural Eng doi: 10.1088/1741-2560/8/4/045005 – volume: 50 start-page: 145 year: 2013 ident: 134_CR17 publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2011.11.0213 – volume: 381 start-page: 1900 year: 2013 ident: 134_CR23 publication-title: Lancet doi: 10.1016/S0140-6736(13)61154-X – volume: 10 start-page: 036004 year: 2013 ident: 134_CR6 publication-title: J Neural Eng doi: 10.1088/1741-2560/10/3/036004 – volume: 42 start-page: 2 year: 2012 ident: 134_CR19 publication-title: IEEE Trans Syst Man, Cybern Syst doi: 10.1109/TSMCA.2011.2159589 – volume: 96 start-page: S38–S45.e5 year: 2015 ident: 134_CR18 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2014.05.028 – start-page: 1479 volume-title: IEEE International Conference on Systems, Man, and Cybernetics year: 2014 ident: 134_CR16 – ident: 134_CR10 doi: 10.1007/11550518_36 – volume: 10 start-page: 345 year: 2009 ident: 134_CR7 publication-title: Nat Rev Neurosci doi: 10.1038/nrn2621 – ident: 134_CR21 – volume: 485 start-page: 372 year: 2012 ident: 134_CR1 publication-title: Nature doi: 10.1038/nature11076 – reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101 – reference: 24739786 - Nat Rev Neurosci. 2014 May;15(5):313-25 – reference: 23725723 - Lancet. 2013 Jun 1;381(9881):1900-1 – reference: 25721546 - Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S38-45.e1-5 – reference: 7333761 - Int J Rehabil Res. 1981;4(4):483-92 – reference: 18483450 - J Neural Eng. 2008 Jun;5(2):214-20 – reference: 19230997 - Hum Mov Sci. 2009 Apr;28(2):191-203 – reference: 23574741 - J Neural Eng. 2013 Jun;10(3):036004 – reference: 21775782 - J Neural Eng. 2011 Aug;8(4):045005 – reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011 – reference: 23760996 - J Rehabil Res Dev. 2013;50(2):145-60 – reference: 22596161 - Nature. 2012 May 17;485(7398):372-5 – reference: 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96 – reference: 24643547 - Exp Brain Res. 2014 Jul;232(7):2143-54 – reference: 19352402 - Nat Rev Neurosci. 2009 May;10(5):345-59 – reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64 |
SSID | ssj0034054 |
Score | 2.398658 |
Snippet | Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a... Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is... BACKGROUNDRecent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 28 |
SubjectTerms | Adult Analysis Brain - physiopathology Brain-Computer Interfaces Care and treatment Female Hand - physiopathology Hand Strength Health aspects Humans Male Middle Aged Movement Neural prostheses Neurological Rehabilitation - instrumentation Quadriplegia Quadriplegia - physiopathology Robotics Robotics - methods Upper Extremity - physiopathology |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAceCwUAgUZiYeEZHUTO05yQgWxVEhFCLVSb5EdO-1KNFmS3T_AL2fGcbYbDr3kYmdj7Yznm7FnvgF463JTW5tkXGau5kR_wnVlDJ_XQtq8MGYopD35oY7P5Pfz9DwcuPUhrXK0id5Q27aiM_JDVJwsLxRGH59Wfzh1jaLb1dBC4zbciRFpKKUrX3wbLbFAZ0SGm8w4V4c9YltOORcUQwvJiwkW_W-RdyBpmi65gz-LR_AgOI7saJD0Y7jlmhnc36ETnMHdk3BRPoN3u-zB7HSgDmDv2a8JMfcMHv4MchrnPIG_nxGICNFYWzNDHST4lc-4dIy4JbpaV47pxrKhLJ1fbJbWWaY3a6qPaDc961rTEvszW_oTC9czz5q5ogKTSyqaZLq7YqvrkgU2FEuyi073VL_1FM4WX0-_HPPQqYFXKN41BqHCza1JhZOFjY2wwpjMoB4g9kllhTCx09okBh0Qp5Wy5BUUSurYGqHRo9uHvaZt3HNgIrXoVKFmmUJLjFcxwpqr2krpshTVSUcwH2VWVuHfom4av0sfzuSqHMRcUuoaibksIvi4fWU1cHjcNPkDKUJJ-xt_t9KhTAFXR0xZ5ZFEiMhSfERwMJmJ-7KaDo-qVAa70JfXWhzBm-0wvUm5bo1DIeGcTPrrVxnBs0HztstOVIHwpZIIsolObicQW_h0pFleetZwiZ-OY_Hi5mW9hHuJ3yCCx_kB7K27jXuFbtfavPZ76x8C4zC9 priority: 102 providerName: ProQuest |
Title | Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26987662 https://www.proquest.com/docview/1797896717 https://www.proquest.com/docview/1774529544 https://pubmed.ncbi.nlm.nih.gov/PMC4797113 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7ygNIe-nBfalOzhT6goNTyrnelQylOiRsMDiGNwTexq10lhkR2ZRvaa395Z_SqVULpRTrsriQ0M_pmtDPfALxxoUmt7StfKJf6RH_i68QYv5dyYcPImLKQdnIqT6ZiPBvMdqBub1W9wNWtoR31k5rm14c_vv_8jAb_qTD4UH5cIWaFlEtBsTEXfrQL-whMihoaTESzqcDRNxHVxuaty1rQ9PcHeguh2tmTW3A0egj3Kz-SDUvBP4Idl3Xg3ha7YAfuTKp98w683SYTZhclkwB7x85bPN0deHBWia2e8xh-HSEuEcCxRcoMNZTwb4oETMeIaiJPdeKYziwrq9T9y83cOsv0Zk3lEovNiuULsyAyaDYvfmC4FStINJdUb3JFNZRM5zds-aeCgZW1k-wy1ysq53oC09HxxZcTv2rc4Cco7TXGpNz1rBlwJyIbGG65McqgWiAUCmk5N4HT2vQN-iNOS2nJSYik0IE1XKOD9xT2skXmngPjA4s-FiqaibTA8BUDrp5MrRBODVC7tAe9WmZxUr0taq5xHRfRTSjjUswxZbKRmOPIgw_NkmVJ6fGvye9JEWJSQLxuoquqBXw6Is6KhwIRQw3w4MFBayaaadIerlUprrU8xq-hCiOJIbUHr5thWkmpb5lDIeEcJYrdWOHBs1LzmsfuywjRTPY9UC2dbCYQeXh7JJtfFSTiAm8dBPzFf9z3JdztF1bC_SA8gL11vnGv0BVbmy7sqpnCYzj62oX94XD8bYzno-PTs_Nu8XujW5jgby6LO4s |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJx4BFehgKLREGqtGrs3aztA0LlEVLaVAilUm9m17tuI1E7xIkQV34Qv5EZP9KYQ2-95LLrZJWZnW_HO983AK9cZDJrg5DL0GWc5E-4To3h_UxIG8XG1ETa8ZEaHcsvJ4OTDfjbcmGorLKNiVWgtkVK78h30XHCKFaYfbyb_eTUNYpuV9sWGrVbHLjfvzBlK9_uf0T7bgfB8NPkw4g3XQV4iktZYMIkXN-agXAytr4RVhgTGlwzxmmprBDGd1qbwCBYOq2UJQSLldS-NUJLEjrAkH9NCkRyYqYPP7eRX-DhRzY3p36kdkvE0ohqPChnF5LHHez7HwHWILBbnrmGd8O7cLs5qLK92rPuwYbLe3BrTb6wB9fHzcV8D7bX1YrZpJYqYK_Zt44QeA_ufG38op1zH_68R-AjBGVFxgx1rODnVYWnY6RlMc906pjOLatp8Px0ObXOMr1cEB-jWJZsXpiC1KbZtHpD4kpWqXTOiNByRiRNpufnbHZBkWA1OZOdznVJfLEHcHwlNnwIm3mRu8fAxMDiIQ492cRaYn6MGV1fZVZKFw7QfbUH_dZmSdr8W9S940dSpU-RSmozJ1QqR2ZOYg92Vo_Mas2Qyya_IUdIKJ7g96a6oUXg6kiZK9mTCEnhAD882OrMxDiQdodbV0qaOFQmF7vGg5erYXqSautyh0bCOaGsrnulB49qz1stO1AxwqUKPAg7PrmaQOrk3ZF8elaplEv8ad8XTy5f1gu4MZqMD5PD_aODp3AzqDaL4H60BZuL-dI9wyPfwjyv9hmD71e9sf8BqKZt8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blending+of+brain-machine+interface+and+vision-guided+autonomous+robotics+improves+neuroprosthetic+arm+performance+during+grasping&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Downey%2C+John+E&rft.au=Weiss%2C+Jeffrey+M&rft.au=Muelling%2C+Katharina&rft.au=Venkatraman%2C+Arun&rft.date=2016-03-18&rft.eissn=1743-0003&rft.volume=13&rft.spage=28&rft.epage=28&rft_id=info:doi/10.1186%2Fs12984-016-0134-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |