Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping

Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assist...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 13; no. 1; p. 28
Main Authors Downey, John E., Weiss, Jeffrey M., Muelling, Katharina, Venkatraman, Arun, Valois, Jean-Sebastien, Hebert, Martial, Bagnell, J. Andrew, Schwartz, Andrew B., Collinger, Jennifer L.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 18.03.2016
BioMed Central
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. NCT01364480 and NCT01894802 .
AbstractList BACKGROUNDRecent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object.METHODSTwo human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps.RESULTSBoth subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control.CONCLUSIONSIntegration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users.TRIAL REGISTRATIONNCT01364480 and NCT01894802 .
Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Methods Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Results Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Conclusions Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users.
Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using a BMI and receives assistance with positioning the hand when it approaches an object. Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and without shared control. The shared control system was designed to provide a balance between BMI-derived intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and defined stable grasp positions for these objects. The system identified when the user intended to interact with an object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled movements and autonomous grasping commands were blended to ensure secure grasps. Both subjects were more successful on object transfer tasks when using shared control compared to BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult. One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in 92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control. Integration of BMI control with vision-guided robotic assistance led to improved performance on object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive to potential users. NCT01364480 and NCT01894802 .
ArticleNumber 28
Audience Academic
Author Muelling, Katharina
Bagnell, J. Andrew
Valois, Jean-Sebastien
Schwartz, Andrew B.
Hebert, Martial
Downey, John E.
Venkatraman, Arun
Weiss, Jeffrey M.
Collinger, Jennifer L.
Author_xml – sequence: 1
  givenname: John E.
  surname: Downey
  fullname: Downey, John E.
– sequence: 2
  givenname: Jeffrey M.
  surname: Weiss
  fullname: Weiss, Jeffrey M.
– sequence: 3
  givenname: Katharina
  surname: Muelling
  fullname: Muelling, Katharina
– sequence: 4
  givenname: Arun
  surname: Venkatraman
  fullname: Venkatraman, Arun
– sequence: 5
  givenname: Jean-Sebastien
  surname: Valois
  fullname: Valois, Jean-Sebastien
– sequence: 6
  givenname: Martial
  surname: Hebert
  fullname: Hebert, Martial
– sequence: 7
  givenname: J. Andrew
  surname: Bagnell
  fullname: Bagnell, J. Andrew
– sequence: 8
  givenname: Andrew B.
  surname: Schwartz
  fullname: Schwartz, Andrew B.
– sequence: 9
  givenname: Jennifer L.
  orcidid: 0000-0002-4517-5395
  surname: Collinger
  fullname: Collinger, Jennifer L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26987662$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1v1DAQjVAR_YAfwAVZ4sIlxY4dO74glYoWpEpc4GzZ8STrKrEXO1mJK7-cWW0LbQWybD953rzReN5pdRRThKp6zeg5Y518X1ijO1FTJnFzUetn1QlTgteUUn70AB9Xp6XcIhC0FS-q40bqTknZnFS_Pk4QfYgjSQNx2YZYz7bfhAgkxAXyYHsgNnqyCyWkWI9r8OCJXZcU05zWQnJyaQl9IWHe5rSDQiKsOSEuywYwQmyeyRalUp5tRDm_5n3BMduyRfCyej7YqcCru_us-n716dvl5_rm6_WXy4ubuhdaLLWgHKh3LQehPXPcc-eUg851QgnpOXcMrHWNox0CKb2UTGgpLPOOW9Hws-rDQXe7uhl8D3HJdjLbHGabf5pkg3kciWFjxrQzQmnFGEeBd3cCOf1YoSxmDqWHabIR8CcMU0q0jW6FQOrbJ9TbtOaI7SFLq05LxdRf1mgnMCEOCev2e1FzIVreqRYPZJ3_g4XLwxx6dMQQ8P1RwpuHjf7p8H7qSFAHQo9DKhkG04fFLjhfVA6TYdTs_WUO_jLoL7P3l9GYyZ5k3ov_P-c3zsTUxw
CitedBy_id crossref_primary_10_3389_fnbot_2021_605751
crossref_primary_10_1146_annurev_control_061720_012348
crossref_primary_10_3390_app9153106
crossref_primary_10_1088_1741_2552_acd3b1
crossref_primary_10_1142_S0129065718500181
crossref_primary_10_1186_s12938_019_0633_6
crossref_primary_10_1038_s41598_018_29091_5
crossref_primary_10_1038_s41551_020_0595_9
crossref_primary_10_1080_2326263X_2016_1275488
crossref_primary_10_1109_OJEMB_2021_3059161
crossref_primary_10_3390_mi12080972
crossref_primary_10_1631_FITEE_1700148
crossref_primary_10_1109_TNSRE_2019_2935765
crossref_primary_10_1088_1741_2552_aa69d3
crossref_primary_10_3389_fnins_2019_00393
crossref_primary_10_1109_MPRV_2018_022511241
crossref_primary_10_1109_TBME_2020_3045351
crossref_primary_10_1016_j_robot_2019_02_014
crossref_primary_10_1109_TBCAS_2024_3359994
crossref_primary_10_3389_fbioe_2018_00026
crossref_primary_10_1016_j_sse_2024_108915
crossref_primary_10_1088_1741_2552_abfaaa
crossref_primary_10_1016_j_cobme_2019_09_002
crossref_primary_10_1109_TNSRE_2020_3038706
crossref_primary_10_1088_1741_2552_acb5c2
crossref_primary_10_1186_s12984_021_00839_x
crossref_primary_10_3390_app12010135
crossref_primary_10_1080_17483107_2019_1615998
crossref_primary_10_3390_s21206863
crossref_primary_10_1038_s41598_017_17222_3
crossref_primary_10_1038_s42003_021_02891_8
crossref_primary_10_1016_j_neunet_2021_07_002
crossref_primary_10_3389_fnins_2018_00751
crossref_primary_10_1038_s44222_024_00239_5
crossref_primary_10_1109_TASE_2020_3034826
crossref_primary_10_3389_fnsys_2021_578875
crossref_primary_10_1111_ner_13069
crossref_primary_10_1126_science_aam7731
crossref_primary_10_1088_1741_2552_aab7a0
crossref_primary_10_1186_s12984_023_01272_y
crossref_primary_10_1016_j_neuroimage_2024_120882
crossref_primary_10_1088_2057_1976_aada67
crossref_primary_10_1016_j_pmrj_2018_05_028
crossref_primary_10_1016_j_cell_2025_02_001
crossref_primary_10_1088_1741_2552_adb88e
crossref_primary_10_3389_fnbot_2017_00059
crossref_primary_10_1109_TNSRE_2018_2875731
crossref_primary_10_1038_s41587_020_0662_5
crossref_primary_10_1007_s13534_023_00286_8
crossref_primary_10_1515_revneuro_2023_0077
crossref_primary_10_1002_adfm_201703905
crossref_primary_10_1088_2516_1091_ad0b19
crossref_primary_10_1073_pnas_1902276116
crossref_primary_10_3389_fnbot_2017_00060
crossref_primary_10_2139_ssrn_2798529
Cites_doi 10.1088/1741-2560/12/1/016011
10.1109/IROS.2012.6385888
10.1097/00004356-198112000-00001
10.1109/TNSRE.2013.2294685
10.1109/CVPR.2009.5206803
10.1088/1741-2560/5/2/012
10.1038/nrn3724
10.1177/0278364914561535
10.1007/s00221-014-3904-2
10.1038/nature06996
10.1016/j.humov.2008.12.001
10.1088/1741-2560/8/4/045005
10.1682/JRRD.2011.11.0213
10.1016/S0140-6736(13)61154-X
10.1088/1741-2560/10/3/036004
10.1109/TSMCA.2011.2159589
10.1016/j.apmr.2014.05.028
10.1007/11550518_36
10.1038/nrn2621
10.1038/nature11076
ContentType Journal Article
Copyright COPYRIGHT 2016 BioMed Central Ltd.
Copyright BioMed Central 2016
Downey et al. 2016
Copyright_xml – notice: COPYRIGHT 2016 BioMed Central Ltd.
– notice: Copyright BioMed Central 2016
– notice: Downey et al. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1186/s12984-016-0134-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Healthcare Administration Database
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 28
ExternalDocumentID PMC4797113
4094350301
A453875538
26987662
10_1186_s12984_016_0134_9
Genre Clinical Trial
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ID0EG3AG645
– fundername: ;
  grantid: ID0EY1AG644
GroupedDBID ---
0R~
29L
2QV
2WC
4.4
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c494t-403e0db53e49d1b3d3bb7be8b84746d33b1eaab2b081ea66d6614964a1db3a423
IEDL.DBID M48
ISSN 1743-0003
IngestDate Thu Aug 21 18:17:21 EDT 2025
Mon Jul 21 11:18:19 EDT 2025
Fri Jul 25 19:09:25 EDT 2025
Tue Jun 17 21:29:15 EDT 2025
Tue Jun 10 20:38:38 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Tue Jul 01 02:19:55 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Brain-computer interface
Neuroprosthetic
Shared mode control
Assistive technology
Brain-machine interface
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-403e0db53e49d1b3d3bb7be8b84746d33b1eaab2b081ea66d6614964a1db3a423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0002-4517-5395
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-016-0134-9
PMID 26987662
PQID 1797896717
PQPubID 55356
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4797113
proquest_miscellaneous_1774529544
proquest_journals_1797896717
gale_infotracmisc_A453875538
gale_infotracacademiconefile_A453875538
pubmed_primary_26987662
crossref_citationtrail_10_1186_s12984_016_0134_9
crossref_primary_10_1186_s12984_016_0134_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-18
PublicationDateYYYYMMDD 2016-03-18
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2016
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References B Wodlinger (134_CR3) 2014; 12
JA Perge (134_CR6) 2013; 10
SJ Bensmaia (134_CR8) 2014; 15
134_CR12
134_CR11
RS Johansson (134_CR7) 2009; 10
DJ Kim (134_CR19) 2012; 42
134_CR10
JL Collinger (134_CR17) 2013; 50
HK Kim (134_CR4) 2009; 28
WF Cusack (134_CR9) 2014; 232
RC Lyle (134_CR22) 1981; 4
K Muelling (134_CR25) 2015
M Boninger (134_CR23) 2013; 381
LR Hochberg (134_CR1) 2012; 485
DP McMullen (134_CR14) 2014; 22
134_CR15
CJ Bell (134_CR13) 2008; 5
JL Collinger (134_CR2) 2012; 6736
JE Huggins (134_CR18) 2015; 96
134_CR21
KD Katyal (134_CR16) 2014
134_CR20
CA Chestek (134_CR5) 2011; 8
M Velliste (134_CR24) 2008; 453
24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96
23725723 - Lancet. 2013 Jun 1;381(9881):1900-1
24739786 - Nat Rev Neurosci. 2014 May;15(5):313-25
23253623 - Lancet. 2013 Feb 16;381(9866):557-64
24643547 - Exp Brain Res. 2014 Jul;232(7):2143-54
18483450 - J Neural Eng. 2008 Jun;5(2):214-20
25721546 - Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S38-45.e1-5
22596161 - Nature. 2012 May 17;485(7398):372-5
23760996 - J Rehabil Res Dev. 2013;50(2):145-60
19230997 - Hum Mov Sci. 2009 Apr;28(2):191-203
19352402 - Nat Rev Neurosci. 2009 May;10(5):345-59
23574741 - J Neural Eng. 2013 Jun;10(3):036004
7333761 - Int J Rehabil Res. 1981;4(4):483-92
25514320 - J Neural Eng. 2015 Feb;12(1):016011
18509337 - Nature. 2008 Jun 19;453(7198):1098-101
21775782 - J Neural Eng. 2011 Aug;8(4):045005
References_xml – volume: 12
  start-page: 016011
  year: 2014
  ident: 134_CR3
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/1/016011
– ident: 134_CR12
  doi: 10.1109/IROS.2012.6385888
– volume: 6736
  start-page: 1
  year: 2012
  ident: 134_CR2
  publication-title: Lancet
– volume: 4
  start-page: 483
  year: 1981
  ident: 134_CR22
  publication-title: Int J Rehabil Res
  doi: 10.1097/00004356-198112000-00001
– volume: 22
  start-page: 784
  year: 2014
  ident: 134_CR14
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2013.2294685
– ident: 134_CR11
  doi: 10.1109/CVPR.2009.5206803
– volume: 5
  start-page: 214
  year: 2008
  ident: 134_CR13
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/2/012
– volume: 15
  start-page: 313
  year: 2014
  ident: 134_CR8
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3724
– ident: 134_CR15
  doi: 10.1177/0278364914561535
– ident: 134_CR20
– volume-title: Robotics: science and systems
  year: 2015
  ident: 134_CR25
– volume: 232
  start-page: 2143
  year: 2014
  ident: 134_CR9
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-014-3904-2
– volume: 453
  start-page: 1098
  year: 2008
  ident: 134_CR24
  publication-title: Nature
  doi: 10.1038/nature06996
– volume: 28
  start-page: 191
  year: 2009
  ident: 134_CR4
  publication-title: Hum Mov Sci
  doi: 10.1016/j.humov.2008.12.001
– volume: 8
  start-page: 045005
  year: 2011
  ident: 134_CR5
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/8/4/045005
– volume: 50
  start-page: 145
  year: 2013
  ident: 134_CR17
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2011.11.0213
– volume: 381
  start-page: 1900
  year: 2013
  ident: 134_CR23
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61154-X
– volume: 10
  start-page: 036004
  year: 2013
  ident: 134_CR6
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/10/3/036004
– volume: 42
  start-page: 2
  year: 2012
  ident: 134_CR19
  publication-title: IEEE Trans Syst Man, Cybern Syst
  doi: 10.1109/TSMCA.2011.2159589
– volume: 96
  start-page: S38–S45.e5
  year: 2015
  ident: 134_CR18
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.05.028
– start-page: 1479
  volume-title: IEEE International Conference on Systems, Man, and Cybernetics
  year: 2014
  ident: 134_CR16
– ident: 134_CR10
  doi: 10.1007/11550518_36
– volume: 10
  start-page: 345
  year: 2009
  ident: 134_CR7
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2621
– ident: 134_CR21
– volume: 485
  start-page: 372
  year: 2012
  ident: 134_CR1
  publication-title: Nature
  doi: 10.1038/nature11076
– reference: 18509337 - Nature. 2008 Jun 19;453(7198):1098-101
– reference: 24739786 - Nat Rev Neurosci. 2014 May;15(5):313-25
– reference: 23725723 - Lancet. 2013 Jun 1;381(9881):1900-1
– reference: 25721546 - Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S38-45.e1-5
– reference: 7333761 - Int J Rehabil Res. 1981;4(4):483-92
– reference: 18483450 - J Neural Eng. 2008 Jun;5(2):214-20
– reference: 19230997 - Hum Mov Sci. 2009 Apr;28(2):191-203
– reference: 23574741 - J Neural Eng. 2013 Jun;10(3):036004
– reference: 21775782 - J Neural Eng. 2011 Aug;8(4):045005
– reference: 25514320 - J Neural Eng. 2015 Feb;12(1):016011
– reference: 23760996 - J Rehabil Res Dev. 2013;50(2):145-60
– reference: 22596161 - Nature. 2012 May 17;485(7398):372-5
– reference: 24760914 - IEEE Trans Neural Syst Rehabil Eng. 2014 Jul;22(4):784-96
– reference: 24643547 - Exp Brain Res. 2014 Jul;232(7):2143-54
– reference: 19352402 - Nat Rev Neurosci. 2009 May;10(5):345-59
– reference: 23253623 - Lancet. 2013 Feb 16;381(9866):557-64
SSID ssj0034054
Score 2.398658
Snippet Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is a...
Background Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is...
BACKGROUNDRecent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring upper limb function. However, grasping objects is...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 28
SubjectTerms Adult
Analysis
Brain - physiopathology
Brain-Computer Interfaces
Care and treatment
Female
Hand - physiopathology
Hand Strength
Health aspects
Humans
Male
Middle Aged
Movement
Neural prostheses
Neurological Rehabilitation - instrumentation
Quadriplegia
Quadriplegia - physiopathology
Robotics
Robotics - methods
Upper Extremity - physiopathology
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAceCwUAgUZiYeEZHUTO05yQgWxVEhFCLVSb5EdO-1KNFmS3T_AL2fGcbYbDr3kYmdj7Yznm7FnvgF463JTW5tkXGau5kR_wnVlDJ_XQtq8MGYopD35oY7P5Pfz9DwcuPUhrXK0id5Q27aiM_JDVJwsLxRGH59Wfzh1jaLb1dBC4zbciRFpKKUrX3wbLbFAZ0SGm8w4V4c9YltOORcUQwvJiwkW_W-RdyBpmi65gz-LR_AgOI7saJD0Y7jlmhnc36ETnMHdk3BRPoN3u-zB7HSgDmDv2a8JMfcMHv4MchrnPIG_nxGICNFYWzNDHST4lc-4dIy4JbpaV47pxrKhLJ1fbJbWWaY3a6qPaDc961rTEvszW_oTC9czz5q5ogKTSyqaZLq7YqvrkgU2FEuyi073VL_1FM4WX0-_HPPQqYFXKN41BqHCza1JhZOFjY2wwpjMoB4g9kllhTCx09okBh0Qp5Wy5BUUSurYGqHRo9uHvaZt3HNgIrXoVKFmmUJLjFcxwpqr2krpshTVSUcwH2VWVuHfom4av0sfzuSqHMRcUuoaibksIvi4fWU1cHjcNPkDKUJJ-xt_t9KhTAFXR0xZ5ZFEiMhSfERwMJmJ-7KaDo-qVAa70JfXWhzBm-0wvUm5bo1DIeGcTPrrVxnBs0HztstOVIHwpZIIsolObicQW_h0pFleetZwiZ-OY_Hi5mW9hHuJ3yCCx_kB7K27jXuFbtfavPZ76x8C4zC9
  priority: 102
  providerName: ProQuest
Title Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping
URI https://www.ncbi.nlm.nih.gov/pubmed/26987662
https://www.proquest.com/docview/1797896717
https://www.proquest.com/docview/1774529544
https://pubmed.ncbi.nlm.nih.gov/PMC4797113
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7ygNIe-nBfalOzhT6goNTyrnelQylOiRsMDiGNwTexq10lhkR2ZRvaa395Z_SqVULpRTrsriQ0M_pmtDPfALxxoUmt7StfKJf6RH_i68QYv5dyYcPImLKQdnIqT6ZiPBvMdqBub1W9wNWtoR31k5rm14c_vv_8jAb_qTD4UH5cIWaFlEtBsTEXfrQL-whMihoaTESzqcDRNxHVxuaty1rQ9PcHeguh2tmTW3A0egj3Kz-SDUvBP4Idl3Xg3ha7YAfuTKp98w683SYTZhclkwB7x85bPN0deHBWia2e8xh-HSEuEcCxRcoMNZTwb4oETMeIaiJPdeKYziwrq9T9y83cOsv0Zk3lEovNiuULsyAyaDYvfmC4FStINJdUb3JFNZRM5zds-aeCgZW1k-wy1ysq53oC09HxxZcTv2rc4Cco7TXGpNz1rBlwJyIbGG65McqgWiAUCmk5N4HT2vQN-iNOS2nJSYik0IE1XKOD9xT2skXmngPjA4s-FiqaibTA8BUDrp5MrRBODVC7tAe9WmZxUr0taq5xHRfRTSjjUswxZbKRmOPIgw_NkmVJ6fGvye9JEWJSQLxuoquqBXw6Is6KhwIRQw3w4MFBayaaadIerlUprrU8xq-hCiOJIbUHr5thWkmpb5lDIeEcJYrdWOHBs1LzmsfuywjRTPY9UC2dbCYQeXh7JJtfFSTiAm8dBPzFf9z3JdztF1bC_SA8gL11vnGv0BVbmy7sqpnCYzj62oX94XD8bYzno-PTs_Nu8XujW5jgby6LO4s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJx4BFehgKLREGqtGrs3aztA0LlEVLaVAilUm9m17tuI1E7xIkQV34Qv5EZP9KYQ2-95LLrZJWZnW_HO983AK9cZDJrg5DL0GWc5E-4To3h_UxIG8XG1ETa8ZEaHcsvJ4OTDfjbcmGorLKNiVWgtkVK78h30XHCKFaYfbyb_eTUNYpuV9sWGrVbHLjfvzBlK9_uf0T7bgfB8NPkw4g3XQV4iktZYMIkXN-agXAytr4RVhgTGlwzxmmprBDGd1qbwCBYOq2UJQSLldS-NUJLEjrAkH9NCkRyYqYPP7eRX-DhRzY3p36kdkvE0ohqPChnF5LHHez7HwHWILBbnrmGd8O7cLs5qLK92rPuwYbLe3BrTb6wB9fHzcV8D7bX1YrZpJYqYK_Zt44QeA_ufG38op1zH_68R-AjBGVFxgx1rODnVYWnY6RlMc906pjOLatp8Px0ObXOMr1cEB-jWJZsXpiC1KbZtHpD4kpWqXTOiNByRiRNpufnbHZBkWA1OZOdznVJfLEHcHwlNnwIm3mRu8fAxMDiIQ492cRaYn6MGV1fZVZKFw7QfbUH_dZmSdr8W9S940dSpU-RSmozJ1QqR2ZOYg92Vo_Mas2Qyya_IUdIKJ7g96a6oUXg6kiZK9mTCEnhAD882OrMxDiQdodbV0qaOFQmF7vGg5erYXqSautyh0bCOaGsrnulB49qz1stO1AxwqUKPAg7PrmaQOrk3ZF8elaplEv8ad8XTy5f1gu4MZqMD5PD_aODp3AzqDaL4H60BZuL-dI9wyPfwjyv9hmD71e9sf8BqKZt8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blending+of+brain-machine+interface+and+vision-guided+autonomous+robotics+improves+neuroprosthetic+arm+performance+during+grasping&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Downey%2C+John+E&rft.au=Weiss%2C+Jeffrey+M&rft.au=Muelling%2C+Katharina&rft.au=Venkatraman%2C+Arun&rft.date=2016-03-18&rft.eissn=1743-0003&rft.volume=13&rft.spage=28&rft.epage=28&rft_id=info:doi/10.1186%2Fs12984-016-0134-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon