Speech prediction of a listener via EEG-based classification through subject-independent phase dissimilarity model

This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with ac...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 26174 - 16
Main Authors Malekmohammadi, Alireza, Rauschecker, Josef P., Cheng, Gordon
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener’s speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
AbstractList Abstract This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener’s speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener’s speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener’s speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener's speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification. Repeated listening to audio induces consistent EEG phase alignments across trials for listeners. If the phase of EEG aligns more closely with acoustics, cross-subject EEG phase tracking should also exhibit significant similarity. To test this hypothesis, we propose a generalized subject-independent phase dissimilarity model, which eliminates the requirement for training on individuals. Our proposed model assesses the duration and number of cross-subject EEG-phase-alignments, influencing accuracy. EEG responses were recorded from seventeen participants who listened three times to 22 unfamiliar one-minute passages from audiobooks. Our findings demonstrate that the EEG phase is consistent within repeated cross-subject trials. Our model achieved an impressive EEG-based classification accuracy of 74.96%. Furthermore, an average of nine distinct phasic templates from different participants is sufficient to effectively train the model, regardless of the duration of EEG phase alignments. Additionally, the duration of EEG-phase-alignments positively correlates with classification accuracy. These results indicate that predicting a listener's speech is feasible by training the model with phasic templates from other listeners, owing to the consistent cross-subject EEG phase alignments with speech acoustics.
ArticleNumber 26174
Author Rauschecker, Josef P.
Cheng, Gordon
Malekmohammadi, Alireza
Author_xml – sequence: 1
  givenname: Alireza
  orcidid: 0000-0002-1735-1048
  surname: Malekmohammadi
  fullname: Malekmohammadi, Alireza
  email: alireza.malekmohammadi@tum.de
  organization: Institute for Cognitive Systems, Electrical Engineering, Technical University of Munich
– sequence: 2
  givenname: Josef P.
  surname: Rauschecker
  fullname: Rauschecker, Josef P.
  organization: Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center
– sequence: 3
  givenname: Gordon
  surname: Cheng
  fullname: Cheng, Gordon
  organization: Institute for Cognitive Systems, Electrical Engineering, Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40681689$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URMvSP8ABWeLCJeDPJD4hVC2lUiUO9G459mTjVdYOdlJp_z1mU0rLAUseW_Yz74w98xqdhRgAobeUfKSEt5-yoFK1FWGyooxyWR1foAtGhKwYZ-zsyf4cXea8J2VIpgRVr9C5IHVL61ZdoPRjArADnhI4b2cfA449Nnj0eYYACd97g7fb66ozGRy2o8nZ996aEzoPKS67Aeel24OdKx8cTFBMmPE0FA_sfOEPfjTJz0d8iA7GN-hlb8YMlw_rBt193d5dfatuv1_fXH25raxQYq64oarppWyU6mRjaCuF7CxVtu2LoT1hLVOSdoY61hkilGoEGGYbZXhnLN-gm1XWRbPXU_IHk446Gq9PBzHttEmztyNo1YOVqqlraEAUQcWZVMS5tuWuKzGL1udVa1q6Azhb3pfM-Ez0-U3wg97Fe00Za0RdCrZBHx4UUvy5QJ71wWcL42gCxCVrzjitheQtL-j7f9B9XFIoX3WiymxKhhv07mlKj7n8KW0B2ArYFHNO0D8ilOjfLaTXFtKlhfSphfSxOPHVKRc47CD9jf0fr19Idsp2
Cites_doi 10.1016/j.neuroimage.2020.116767
10.1016/j.tins.2017.02.004
10.4172/2161-0487.1000197
10.3389/fpsyg.2012.00320
10.1016/j.brainres.2022.148198
10.1038/nn.3063
10.1093/cercor/bhs031
10.1016/j.cub.2017.11.033
10.1016/j.cub.2015.08.030
10.1016/j.bandl.2023.105301
10.1523/JNEUROSCI.5297-12.2013
10.3389/fnhum.2014.00311
10.1093/med/9780197584521.003.0020
10.1007/978-1-4614-2314-0_9
10.1016/j.tics.2014.04.012
10.1523/JNEUROSCI.1828-18.2019
10.1093/cercor/bhac502
10.1016/j.cub.2018.01.080
10.1162/jocn_a_02016
10.1523/JNEUROSCI.0964-22.2023
10.1523/JNEUROSCI.3484-14.2015
10.1371/journal.pone.0078758
10.1088/1741-2560/12/3/031001
10.1177/155005940904000305
10.1073/pnas.1508431112
10.1016/j.cub.2017.11.071
10.1155/2011/156869
10.1002/hbm.26503
10.1152/jn.00269.2022
10.1152/jn.00251.2010
10.1109/EMBC.2015.7318757
10.1016/j.neuron.2007.06.004
10.1371/journal.pbio.1000445
10.1371/journal.pbio.2004473
10.1152/jn.00297.2011
10.1553/etna_vol52s270
10.3389/fnins.2021.646543
10.1097/AUD.0000000000000923
10.1016/S0079-6123(06)59007-7
10.1007/s10548-024-01081-z
10.1016/j.neuroimage.2020.116558
10.1111/j.1460-9568.2009.07055.x
10.1016/j.heares.2023.108785
10.1016/j.jneumeth.2007.03.024
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2013.06.035
10.1016/j.compbiomed.2007.12.001
10.1016/j.cub.2024.06.072
10.1111/j.1469-8986.2003.00141.x
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-12135-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_9fec59766e7e4ba1932590dd883dbbc1
PMC12274610
40681689
10_1038_s41598_025_12135_y
Genre Journal Article
GrantInformation_xml – fundername: Technische Universität München (1025)
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-3a197f55799b57a18545bc19c8f19c1f0282951ba1d2ba049974ea2c79a3bac3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:28 EDT 2025
Thu Aug 21 18:25:46 EDT 2025
Mon Jul 21 01:47:17 EDT 2025
Sat Aug 23 13:25:55 EDT 2025
Wed Jul 23 01:41:47 EDT 2025
Thu Jul 24 02:16:44 EDT 2025
Sat Jul 19 01:10:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Speech
Phase
EEG
Classification
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-3a197f55799b57a18545bc19c8f19c1f0282951ba1d2ba049974ea2c79a3bac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1735-1048
OpenAccessLink https://www.nature.com/articles/s41598-025-12135-y
PMID 40681689
PQID 3231323719
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9fec59766e7e4ba1932590dd883dbbc1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12274610
proquest_miscellaneous_3231645383
proquest_journals_3231323719
pubmed_primary_40681689
crossref_primary_10_1038_s41598_025_12135_y
springer_journals_10_1038_s41598_025_12135_y
PublicationCentury 2000
PublicationDate 2025-07-18
PublicationDateYYYYMMDD 2025-07-18
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KB Doelling (12135_CR7) 2014; 85
E Maris (12135_CR47) 2007; 164
S Romero (12135_CR45) 2008; 38
R Oostenveld (12135_CR46) 2011; 2011
12135_CR37
S Slaats (12135_CR11) 2023; 43
GM Di Liberto (12135_CR39) 2015; 25
A Malekmohammadi (12135_CR41) 2023; 129
12135_CR40
Á Ní Choisdealbha (12135_CR38) 2023; 243
CA Joyce (12135_CR44) 2004; 41
VBD Nederlanden (12135_CR18) 2020; 214
C Xu (12135_CR19) 2021; 15
MP Broderick (12135_CR26) 2018; 28
N Ding (12135_CR15) 2012; 107
MJ Henry (12135_CR22) 2013; 8
AL Giraud (12135_CR4) 2012; 15
T Van Hirtum (12135_CR32) 2023; 434
12135_CR36
12135_CR34
12135_CR1
MF Howard (12135_CR33) 2010; 104
12135_CR6
T Kirschstein (12135_CR3) 2009; 40
H Luo (12135_CR5) 2007; 54
JA Urigüen (12135_CR35) 2015; 12
N Ding (12135_CR31) 2013; 33
N Chalas (12135_CR13) 2023; 33
B Zoefel (12135_CR8) 2018; 28
12135_CR17
A Gil (12135_CR49) 2020; 52
KB Doelling (12135_CR16) 2015
12135_CR23
NJ Zuk (12135_CR14) 2020; 210
JF Cavanagh (12135_CR24) 2014; 18
JR McHaney (12135_CR29) 2021; 42
B Zoefel (12135_CR9) 2015; 35
G Mai (12135_CR12) 2023; 44
A Malekmohammadi (12135_CR48) 2025; 38
O Etard (12135_CR27) 2019; 39
A Delorme (12135_CR43) 2004; 134
BSW Ng (12135_CR21) 2013; 23
A Malekmohammadi (12135_CR42) 2023; 1800
L Riecke (12135_CR28) 2018; 28
EC Lalor (12135_CR25) 2010; 31
H Luo (12135_CR20) 2010; 8
MX Cohen (12135_CR2) 2017; 40
A Keitel (12135_CR30) 2018; 16
Y Mohammadi (12135_CR10) 2023; 35
References_xml – volume: 214
  start-page: 116767
  year: 2020
  ident: 12135_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116767
– volume: 40
  start-page: 208
  issue: 4
  year: 2017
  ident: 12135_CR2
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.02.004
– ident: 12135_CR36
  doi: 10.4172/2161-0487.1000197
– ident: 12135_CR6
  doi: 10.3389/fpsyg.2012.00320
– volume: 1800
  year: 2023
  ident: 12135_CR42
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2022.148198
– volume: 15
  start-page: 511
  issue: 4
  year: 2012
  ident: 12135_CR4
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3063
– volume: 23
  start-page: 389
  issue: 2
  year: 2013
  ident: 12135_CR21
  publication-title: Cereb. Cortex.
  doi: 10.1093/cercor/bhs031
– volume: 28
  start-page: 161
  issue: 2
  year: 2018
  ident: 12135_CR28
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.11.033
– volume: 25
  start-page: 2457
  issue: 19
  year: 2015
  ident: 12135_CR39
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.08.030
– volume: 243
  year: 2023
  ident: 12135_CR38
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2023.105301
– volume: 33
  start-page: 5728
  issue: 13
  year: 2013
  ident: 12135_CR31
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5297-12.2013
– ident: 12135_CR23
  doi: 10.3389/fnhum.2014.00311
– ident: 12135_CR1
  doi: 10.1093/med/9780197584521.003.0020
– ident: 12135_CR17
  doi: 10.1007/978-1-4614-2314-0_9
– volume: 18
  start-page: 414
  issue: 8
  year: 2014
  ident: 12135_CR24
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2014.04.012
– volume: 39
  start-page: 5750
  issue: 29
  year: 2019
  ident: 12135_CR27
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1828-18.2019
– volume: 33
  start-page: 6273
  issue: 10
  year: 2023
  ident: 12135_CR13
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac502
– volume: 28
  start-page: 803
  issue: 5
  year: 2018
  ident: 12135_CR26
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.080
– volume: 35
  start-page: 1301
  issue: 8
  year: 2023
  ident: 12135_CR10
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_02016
– volume: 43
  start-page: 4867
  issue: 26
  year: 2023
  ident: 12135_CR11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0964-22.2023
– volume: 35
  start-page: 1954
  issue: 5
  year: 2015
  ident: 12135_CR9
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3484-14.2015
– volume: 8
  issue: 10
  year: 2013
  ident: 12135_CR22
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078758
– volume: 12
  start-page: 031001
  issue: 3
  year: 2015
  ident: 12135_CR35
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– volume: 40
  start-page: 146
  issue: 3
  year: 2009
  ident: 12135_CR3
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/155005940904000305
– year: 2015
  ident: 12135_CR16
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1508431112
– volume: 28
  start-page: 401
  issue: 3
  year: 2018
  ident: 12135_CR8
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.11.071
– volume: 2011
  start-page: 1
  year: 2011
  ident: 12135_CR46
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 44
  start-page: 6149
  issue: 17
  year: 2023
  ident: 12135_CR12
  publication-title: Hum. Brain. Mapp.
  doi: 10.1002/hbm.26503
– volume: 129
  start-page: 1344
  issue: 6
  year: 2023
  ident: 12135_CR41
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00269.2022
– volume: 104
  start-page: 2500
  issue: 5
  year: 2010
  ident: 12135_CR33
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00251.2010
– ident: 12135_CR34
  doi: 10.1109/EMBC.2015.7318757
– volume: 54
  start-page: 1001
  issue: 6
  year: 2007
  ident: 12135_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.004
– volume: 8
  issue: 8
  year: 2010
  ident: 12135_CR20
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000445
– volume: 16
  issue: 3
  year: 2018
  ident: 12135_CR30
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2004473
– volume: 107
  start-page: 78
  issue: 1
  year: 2012
  ident: 12135_CR15
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00297.2011
– volume: 52
  start-page: 270
  year: 2020
  ident: 12135_CR49
  publication-title: Etna
  doi: 10.1553/etna_vol52s270
– volume: 15
  start-page: 646543
  year: 2021
  ident: 12135_CR19
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.646543
– volume: 42
  start-page: 343
  issue: 2
  year: 2021
  ident: 12135_CR29
  publication-title: Ear Hear.
  doi: 10.1097/AUD.0000000000000923
– ident: 12135_CR40
  doi: 10.1016/S0079-6123(06)59007-7
– volume: 38
  start-page: 2
  issue: 1
  year: 2025
  ident: 12135_CR48
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-024-01081-z
– volume: 210
  start-page: 116558
  year: 2020
  ident: 12135_CR14
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116558
– volume: 31
  start-page: 189
  issue: 1
  year: 2010
  ident: 12135_CR25
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2009.07055.x
– volume: 434
  year: 2023
  ident: 12135_CR32
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2023.108785
– volume: 164
  start-page: 177
  issue: 1
  year: 2007
  ident: 12135_CR47
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 12135_CR43
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 85
  start-page: 761
  year: 2014
  ident: 12135_CR7
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.035
– volume: 38
  start-page: 348
  issue: 3
  year: 2008
  ident: 12135_CR45
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.001
– ident: 12135_CR37
  doi: 10.1016/j.cub.2024.06.072
– volume: 41
  start-page: 313
  issue: 2
  year: 2004
  ident: 12135_CR44
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2003.00141.x
SSID ssj0000529419
Score 2.4522257
Snippet This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification....
This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech classification....
Abstract This study examines the consistency of cross-subject electroencephalography (EEG) phase tracking in response to auditory stimuli via speech...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26174
SubjectTerms 631/378/116
631/378/2619
631/378/3917
Accuracy
Acoustic Stimulation
Acoustics
Adult
Audiobooks
Auditory stimuli
Classification
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Female
Humanities and Social Sciences
Humans
Male
multidisciplinary
Phase
Science
Science (multidisciplinary)
Speech
Speech - physiology
Speech Perception - physiology
Standard scores
Training
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivm1dJYI3DTvpJNPJUWXWRdCLK-wtJOk006A9wzyE-fdWJT3jjg-8eOlDp5sO9VWor7qSrwBetjYIZMmKT4KXXKXW8JBS4N54GWLorMi_Lj5-ml58UR-u9NW1Vl-0J6zIAxfDndkuRSS902lqkgqe-Ia2k7Y1RrYhxJz4YMy7lkwVVe_aKmHHUzITac7WGKnoNFmtOamYab47ikRZsP9PLPP3zZK_VExzIDq_A7dHBsnelJnfhRtpuAc3S0_J3X1YfV6mFOdsuaISDJmdLTrm2VfCc0gr9r33bDZ7zyl-tSwSe6btQhkhNrbtYettoB80vD90yd2w5RzfYFTA77_1mBAjf2e5kc4DuDyfXb674GNjBR6VVRsu0YxNp3VjbdCNx5CtNJrSRtPhRXS5vKoFWrutg6ekqFHJ17GxCKCP8iGcDIshPQaG_CHiiJgkkRRmHyZ2Br8hmxiRWURVwau9jd2yyGe4XPaWxhVEHCLiMiJuV8FbguHwJElf5xvoEG50CPcvh6jgdA-iG9fj2smaJCplI2wFLw7DuJKoPOKHtNiWZ6YKA4Cs4FHB_DATpD3UoATfNkfecDTV45Ghn2e1blFj4o8ktYLXe8f5Oa-_2-LJ_7DFU7hVk8eTEKg5hZPNapueIYnahOd5vfwAuLcbJQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6xsQX47c9T4OJb0puKXSBJ6Nmz4uJvngm-0aAUrfJ2dbu7iX73ztDu72sXy99KJACP-j8ZgZmCHlVGs-BJUs2804wGUvNfIyeOe2ED74yPJkuPn-Zn3-Tn5bFcjS4rcdjlft_YvpRl21AG_mpyDHIoFDcvO1-Mswahd7VMYXGTXILQ5fhkS61VJONBb1YkpvxrsxM6NM1yCu8U5YXDGOZFWx3II9S2P6_cc0_j0z-5jdN4ujsHrk78kj6bgD-PrkRmwfk9pBZcveQ9F-7GMOKdj06YnDyaVtRRy8R1Sb29Kp2dLH4yFCKlTQgh8ZDQwknOibvoeutRzMNq6dcuRvaraAFRTd-_aMGtRhYPE3pdB6Ri7PFxYdzNqZXYEEauWHCcaOqolDG-EI5ENyy8IGboCt48Co5WQvuHS9z71A1UjK6PCgDMLogHpOjpm3iU0KBRQQo4bPIowQdRIdKwzeECgH4RZAZeb2fY9sNQTRscn4LbQdELCBiEyJ2l5H3CMNUEwNgpxdt_92O-8maKgbQhebzqKKELgINLcysLLUWpYdRZORkD6Idd-XaXq-hjLycimE_oZPENbHdDnXmEsSAyMiTAfOpJ0B-ME0JtNYHq-Ggq4clTb1KMbt5Duo_UNWMvNkvnOt-_Xsujv8_jGfkTo5rGQN96hNytOm38TmQpI1_kXbCL8c3Efw
  priority: 102
  providerName: ProQuest
Title Speech prediction of a listener via EEG-based classification through subject-independent phase dissimilarity model
URI https://link.springer.com/article/10.1038/s41598-025-12135-y
https://www.ncbi.nlm.nih.gov/pubmed/40681689
https://www.proquest.com/docview/3231323719
https://www.proquest.com/docview/3231645383
https://pubmed.ncbi.nlm.nih.gov/PMC12274610
https://doaj.org/article/9fec59766e7e4ba1932590dd883dbbc1
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8EX8dv1zhLBNw02m2w3eeyVnkfBQ7wT-rYk2awt6LZsW6H__c1kt5Xq-eBLC01CZzOTnd9kkt8AvCuNE4iSFe87K7kKpeYuBMetttJ5VxkRty4-Xw-uvqnJNJseQbq7CxMP7UdKy_ia3p0O-7hCR0OXwdKMEwlZxrfHcErU7WTVo8Fov69CmSslTHc_pi_1PUMPfFCk6r8PX_59TPKPXGl0QZeP4VGHHdmwlfYJHIX6KTxoq0lun0FzswzBz9iyoeQLTThbVMyyH6TJOjTs19yy8fgTJ89VMk-4mQ4KRd2wrmAPW20cbc3w-b4-7potZziCUep-_nOOoTAidxZL6DyH28vx7eiKdyUVuFdGrbm0wuRVluXGuCy36KxV5rwwXlf4IaqYWM2Es6JMnaVwKFfBpj43qDrr5Qs4qRd1eAUMkYPHFtEPIiiMO7SvNP6HzL1HTOFVAu93c1wsW-KMIia8pS5ajRSokSJqpNgmcEFq2Pck0uv4w6L5XnRGUJgqeIx_BoOQB4UiIvTMTL8stZalw6dI4HynxKJbiatCpkROKXNhEni7b8Y1RIkRW4fFpu0zUPjqlwm8bHW-lwQBD5UmwdH6wBoORD1sqeezyNMtUgz5EZ4m8GFnOL_l-vdcvP6_7mfwMCXbJrJPfQ4n62YT3iBQWrseHOfTvAenw-HkZoLfF-PrL197cb304ubDHWCxFVw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviM8RGGAkeAJrdew09gNCDDo6tlUIhrQ3y3YcWgnS0g9Q_yj-R-6cpFP5ettLH-IkvfjOvt_57PsR8qTQjgNKlqzrrGAyFIq5EByzygrnXal5XLo4GfYGn-S7s-xsi_xsz8Lgtsp2TowTdTHxuEa-J1IsMihyrl9OvzFkjcLsakuhUZvFUVj9gJBt_uLwDej3aZoe9E9fD1jDKsC81HLBhOU6L7Ms19pluQV_JTPnufaqhB9extxixp3lReosRgS5DDb1uQbprRfw2ktkWwqIZDpke78_fP9hvaiDaTPJdXM4pyvU3hwcJB5iSzOGxdMyttpwgJEn4G_g9s89mr8laqP_O7hOrjXAlb6qLe0G2QrVTXK5prJc3SKzj9MQ_IhOZ5j5QW3TSUkt_YJmVIUZ_T62tN9_y9BtFtQjaMddStEwaMMWROdLh-tCbLwm513Q6QieoLhvYPx1DHE4hA008vfcJqcX0fN3SKeaVOEuoQBbPLTwbuBBQtCjfKngP0TuPQAaLxPyrO1jM62rdpiYbRfK1BoxoBETNWJWCdlHNazvxIrb8cJk9tk0A9joMngIvnq9kAcJIgLuzXS3KJQShYOvSMhuq0TTTANzc260CXm8boYBjFkZW4XJsr6nJ8HviITs1DpfSwJoC3lR4Gm1YQ0bom62VONRLBLO0zTHWvoJed4azrlc_-6Le___jEfkyuD05NgcHw6P7pOrKdo1VhlVu6SzmC3DA0BoC_ewGReUmAseib8AdaNO6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRSAuiOcSWMBIcAKrdezU8QEhYFt2WVghsUi9Wbbj0EqQlD5A_Wn8O2acpKvyuu0lhzgP2zPj-cYzniHkcaEdB5QsWd9ZwWQocuZCcMzmVjjvSs3j1sX7k8HhJ_l2nI13yM_uLAyGVXZrYlyoi9rjHnlPpJhkUCiue2UbFvHhYPRi9o1hBSn0tHblNBoWOQ7rH2C-LZ4fHQCtn6TpaHj6-pC1FQaYl1oumbBcqzLLlNYuUxZ0l8yc59rnJVx4Gf2MGXeWF6mzaB0oGWzqlYaRWC_gsxfIRSUyjiKmxmqzvYMONMl1e0ynL_LeAlQlHmdLM4Zp1DK23lKFsWLA32Dun9Gav7lsoyYcXSNXWwhLXzY8d53shOoGudQUtVzfJPOPsxD8hM7m6ANCutO6pJZ-QYaqwpx-n1o6HL5hqEAL6hG-Y7xSZBHa1g2ii5XDHSI23ZTpXdLZBN6gGEEw_ToFixwMCBor-dwip-cx77fJblVX4Q6hAGA8tPB-4EGC-ZP7Mod_COU9QBsvE_K0m2Mza_J3mOh3F7lpKGKAIiZSxKwT8grJsHkSc2_HG_X8s2lF2egyeDDDBoOggoQuAgLOdL8o8lwUDkaRkP2OiKZdEBbmjH0T8mjTDKKM_hlbhXrVPDOQoIFEQvYamm96ArgLK6TA2_kWN2x1dbulmk5iunCepgqz6ifkWcc4Z_3691zc_f8wHpLLIH_m3dHJ8T1yJUW2xnSj-T7ZXc5X4T5AtaV7EIWCEnPOQvgLTdxRuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speech+prediction+of+a+listener+via+EEG-based+classification+through+subject-independent+phase+dissimilarity+model&rft.jtitle=Scientific+reports&rft.au=Malekmohammadi%2C+Alireza&rft.au=Rauschecker%2C+Josef+P&rft.au=Cheng%2C+Gordon&rft.date=2025-07-18&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=26174&rft_id=info:doi/10.1038%2Fs41598-025-12135-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon