Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures

Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces,...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 3344 - 14
Main Authors Zhang, Weili, Lu, Yang, Feng, Qingqing, Wang, Hao, Cheng, Guangyu, Liu, Hao, Cao, Qingbin, luo, Zhenjun, Zhou, Pan, Xia, Yingchun, Hou, Wenhui, Zhao, Kun, Du, Chunyi, Liu, Kai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO 3 ), which features both cationic (PQA + ) and anionic (NO 3 − ) components. PQA + reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li + transport through the SEI film. NO 3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li + -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm −2 ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg −1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg −1 . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg −1 , indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO 3 ) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C.
AbstractList Abstract Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3 −) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm−2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg−1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg−1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg−1, indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments.
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3-) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3- creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm-2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg-1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg-1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg-1, indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments.Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3-) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3- creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm-2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg-1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg-1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg-1, indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments.
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO ), which features both cationic (PQA ) and anionic (NO ) components. PQA reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li transport through the SEI film. NO creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg , indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments.
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO 3 ), which features both cationic (PQA + ) and anionic (NO 3 − ) components. PQA + reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li + transport through the SEI film. NO 3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li + -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm −2 ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg −1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg −1 . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg −1 , indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO 3 ) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C.
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO 3 ), which features both cationic (PQA + ) and anionic (NO 3 − ) components. PQA + reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li + transport through the SEI film. NO 3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li + -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm −2 ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg −1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg −1 . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg −1 , indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments.
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3−) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3− creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm−2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg−1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg−1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg−1, indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments.Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO3) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C.
ArticleNumber 3344
Author Zhang, Weili
Liu, Hao
Xia, Yingchun
Lu, Yang
Zhou, Pan
Liu, Kai
Feng, Qingqing
luo, Zhenjun
Cheng, Guangyu
Hou, Wenhui
Cao, Qingbin
Du, Chunyi
Wang, Hao
Zhao, Kun
Author_xml – sequence: 1
  givenname: Weili
  surname: Zhang
  fullname: Zhang, Weili
  email: zhangweili@tsinghua-hf.edu.cn
  organization: Department of Chemical Engineering, Tsinghua University, Tsinghua University Hefei Institute for Public Safety Research
– sequence: 2
  givenname: Yang
  orcidid: 0009-0008-0761-5565
  surname: Lu
  fullname: Lu, Yang
  organization: Department of Chemical Engineering, Tsinghua University
– sequence: 3
  givenname: Qingqing
  surname: Feng
  fullname: Feng, Qingqing
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 4
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 5
  givenname: Guangyu
  surname: Cheng
  fullname: Cheng, Guangyu
  organization: State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources
– sequence: 6
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 7
  givenname: Qingbin
  surname: Cao
  fullname: Cao, Qingbin
  organization: Xinyuan Qingcai Technology Co., Ltd
– sequence: 8
  givenname: Zhenjun
  surname: luo
  fullname: luo, Zhenjun
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 9
  givenname: Pan
  surname: Zhou
  fullname: Zhou, Pan
  organization: Department of Chemical Engineering, Tsinghua University
– sequence: 10
  givenname: Yingchun
  surname: Xia
  fullname: Xia, Yingchun
  organization: Department of Chemical Engineering, Tsinghua University
– sequence: 11
  givenname: Wenhui
  surname: Hou
  fullname: Hou, Wenhui
  organization: Department of Chemical Engineering, Tsinghua University
– sequence: 12
  givenname: Kun
  surname: Zhao
  fullname: Zhao, Kun
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 13
  givenname: Chunyi
  surname: Du
  fullname: Du, Chunyi
  organization: Tsinghua University Hefei Institute for Public Safety Research
– sequence: 14
  givenname: Kai
  orcidid: 0000-0003-3362-180X
  surname: Liu
  fullname: Liu, Kai
  email: liukai2019@tsinghua.edu.cn
  organization: Department of Chemical Engineering, Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40199940$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAltiwCfhxE9srhCqglYrYwNpykpsZj5x4sJ1W_ff1dIbSssAbW_Z3zr3WPafV0RxmrKo3jH5gVKiPCRi0sqa8qRvVclmLF9UJp8BqJrk4enI-rs5T2tCyhGYK4FV1DJRprYGeVPh98dmNy9xnF2brCXrscwz-LiOxw-Cyu0EyhkjWbrUm23CLkXiX126ZyIS5KDqbM0aHidhMilu0tQ-3JOO0xWjzEjG9rl6O1ic8P-xn1a-vX35eXNbXP75dXXy-rnvQkGuhR90KOTKgox1aGCRvZKcYl63oZdsxCZoJKjnD3raNgE6JdkCuGKW6QxBn1dXedwh2Y7bRTTbemWCdebgIcWVszK73aBTtpLTU2pYDCDV2QqqmE1Zig4qCLF6f9l7bpZtw6HEuP_PPTJ-_zG5tVuHGMKalkiCKw_uDQwy_F0zZTC716L2dMSzJCKYUVUI2O_TdP-gmLLHM40CBYNAU6u3Tlh57-TPOAvA90MeQUsTxEWHU7GJj9rExJTbmITZmV1vsRanA8wrj39r_Ud0DapfEgg
Cites_doi 10.1002/adma.202210115
10.1039/D4EE01298D
10.1038/s41467-022-29199-3
10.1039/D3CS00151B
10.1002/adma.202405184
10.1021/acsenergylett.2c01587
10.1107/S0021889808012016
10.1021/acsnano.3c06088
10.1038/s41467-022-33151-w
10.1002/adfm.202400337
10.1016/j.xcrp.2022.100919
10.1021/acsenergylett.1c00907
10.1021/jacs.3c08313
10.1038/s41560-021-00783-z
10.1021/acsnano.3c02948
10.1126/sciadv.adg0167
10.1103/PhysRevB.54.11169
10.1038/s41586-024-07045-4
10.1002/adma.202301817
10.1126/science.1212741
10.1016/j.softx.2015.06.001
10.1038/s41467-023-38724-x
10.1038/s41467-022-29761-z
10.1038/s41467-023-37999-4
10.1038/s41560-019-0428-9
10.1039/D1EE03422G
10.1021/acsami.1c22610
10.1021/acs.jpcc.7b02006
10.1038/s41560-021-00782-0
10.1002/anie.202306889
10.1007/s10008-017-3610-7
10.1002/ange.202214796
10.1103/PhysRevA.31.1695
10.1039/D4EE02074J
10.1038/35104644
10.1002/anie.202414636
10.1038/s41560-023-01275-y
10.1021/jp503029d
10.1002/anie.202316717
10.1038/s41467-023-36647-1
10.1002/anie.202219310
10.1016/j.ensm.2023.103098
10.1002/jcc.21759
10.1021/jacs.9b11056
10.1016/j.ensm.2023.103043
10.1002/ange.202300771
10.1126/science.abn1818
10.1103/PhysRevLett.77.3865
10.1002/aenm.202404120
10.31635/ccschem.023.202303188
10.1002/ange.202208345
10.1016/j.mattod.2018.02.005
10.1063/1.447334
10.1038/s41560-023-01282-z
10.1038/s41560-021-00962-y
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-58627-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_80b77a0aa624438fb3785b3a7e5e8047
PMC11978743
40199940
10_1038_s41467_025_58627_3
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Anhui Province (Anhui Provincial Natural Science Foundation)
  grantid: 240808QB043
  funderid: https://doi.org/10.13039/501100003995
– fundername: the Opening Project of State Key Laboratory of Space-Power Source, the National Key Research and Development Program (2023YFB2503700), the National Science Foundation of China (22071133, 22409117), Anhui Provincial Natural Science Foundation (240808QB043), the Tsinghua University-China Petrochemical Corporation Joint Institute for Green Chemical Engineering (224247), Beijing Science and Technology Plan Project (Z231100006123003), China Postdoctoral Science Foundation (2024M751747)
– fundername: China Postdoctoral Science Foundation
  grantid: 2024M751747
  funderid: https://doi.org/10.13039/501100002858
– fundername: Natural Science Foundation of Anhui Province (Anhui Provincial Natural Science Foundation)
  grantid: 240808QB043
– fundername: China Postdoctoral Science Foundation
  grantid: 2024M751747
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-39f9637f140fad64d7257b812763c76b1749130721eca6534b836de281009be43
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:53 EDT 2025
Thu Aug 21 18:36:39 EDT 2025
Fri Jul 11 18:45:05 EDT 2025
Sat Aug 23 12:31:01 EDT 2025
Mon Jul 21 05:56:49 EDT 2025
Tue Jul 01 05:10:56 EDT 2025
Mon Jul 21 06:06:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-39f9637f140fad64d7257b812763c76b1749130721eca6534b836de281009be43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3362-180X
0009-0008-0761-5565
OpenAccessLink https://www.proquest.com/docview/3188043145?pq-origsite=%requestingapplication%
PMID 40199940
PQID 3188043145
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_80b77a0aa624438fb3785b3a7e5e8047
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11978743
proquest_miscellaneous_3188083753
proquest_journals_3188043145
pubmed_primary_40199940
crossref_primary_10_1038_s41467_025_58627_3
springer_journals_10_1038_s41467_025_58627_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-08
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References W Zhang (58627_CR5) 2022; 13
Q Zhang (58627_CR10) 2023; 62
S Zhao (58627_CR18) 2024; 36
S Zhang (58627_CR35) 2022; 13
Y Li (58627_CR24) 2025; 64
J Tarascon (58627_CR1) 2001; 414
B Dunn (58627_CR3) 2011; 334
R Weber (58627_CR13) 2019; 4
S Nose (58627_CR57) 1984; 81
W Hou (58627_CR33) 2023; 17
P Xiao (58627_CR17) 2023; 52
58627_CR22
H Shen (58627_CR25) 2023; 6
D Lu (58627_CR9) 2024; 627
Y Zhao (58627_CR48) 2023; 145
S Chen (58627_CR37) 2023; 62
J Holoubek (58627_CR6) 2021; 6
W Zhang (58627_CR7) 2024; 17
58627_CR36
Y Xia (58627_CR4) 2023; 8
W Yu (58627_CR31) 2022; 7
Y Liu (58627_CR28) 2021; 6
Y Lu (58627_CR40) 2023; 17
JP Perdew (58627_CR54) 1996; 77
P Yu (58627_CR27) 2022; 14
Y Chen (58627_CR39) 2024; 17
N Chen (58627_CR44) 2024; 34
Y Lu (58627_CR21) 2025; 10
Y Zhao (58627_CR38) 2022; 13
M Wang (58627_CR41) 2023; 9
C Yang (58627_CR20) 2023; 35
J Holoubek (58627_CR46) 2022; 15
K Momma (58627_CR59) 2008; 41
T Placke (58627_CR12) 2017; 21
Z Hou (58627_CR16) 2022; 134
S Grimme (58627_CR55) 2011; 32
H Zhang (58627_CR15) 2023; 135
Y Liu (58627_CR2) 2022; 375
G Kresse (58627_CR53) 1996; 54
M Yoon (58627_CR32) 2021; 6
Q Zhang (58627_CR34) 2023; 8
J Alvarado (58627_CR42) 2018; 21
H Wang (58627_CR45) 2022; 3
P Zhou (58627_CR30) 2024; 63
Z Yu (58627_CR11) 2022; 7
WG Hoover (58627_CR58) 1985; 31
Y Xie (58627_CR26) 2023; 14
PE Blochl (58627_CR56) 1994; 50
Y Yang (58627_CR14) 2022; 134
58627_CR52
L Dong (58627_CR23) 2024; 63
J Zhang (58627_CR8) 2023; 14
MJ Abraham (58627_CR50) 2015; 1
CV Amanchukwu (58627_CR43) 2020; 142
Y Wang (58627_CR51) 2014; 118
J Wu (58627_CR19) 2023; 63
M Ong (58627_CR29) 2017; 121
L Chen (58627_CR49) 2024; 65
X Zheng (58627_CR47) 2023; 35
References_xml – volume: 35
  start-page: 2210115
  year: 2023
  ident: 58627_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210115
– volume: 17
  start-page: 4531
  year: 2024
  ident: 58627_CR7
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE01298D
– volume: 13
  year: 2022
  ident: 58627_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29199-3
– volume: 52
  start-page: 5255
  year: 2023
  ident: 58627_CR17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00151B
– volume: 36
  start-page: 2405184
  year: 2024
  ident: 58627_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202405184
– volume: 7
  start-page: 3270
  year: 2022
  ident: 58627_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c01587
– volume: 41
  start-page: 653
  year: 2008
  ident: 58627_CR59
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889808012016
– volume: 17
  start-page: 17527
  year: 2023
  ident: 58627_CR33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c06088
– volume: 13
  year: 2022
  ident: 58627_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33151-w
– volume: 34
  start-page: 2400337
  year: 2024
  ident: 58627_CR44
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202400337
– volume: 3
  year: 2022
  ident: 58627_CR45
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.100919
– volume: 6
  start-page: 2320
  year: 2021
  ident: 58627_CR28
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00907
– volume: 145
  start-page: 22184
  year: 2023
  ident: 58627_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08313
– volume: 6
  start-page: 303
  year: 2021
  ident: 58627_CR6
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00783-z
– volume: 17
  start-page: 9586
  year: 2023
  ident: 58627_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c02948
– volume: 9
  start-page: eadg0167
  year: 2023
  ident: 58627_CR41
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adg0167
– volume: 54
  start-page: 11169
  year: 1996
  ident: 58627_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 627
  start-page: 101
  year: 2024
  ident: 58627_CR9
  publication-title: Nature
  doi: 10.1038/s41586-024-07045-4
– volume: 10
  start-page: 191
  year: 2025
  ident: 58627_CR21
  publication-title: Nat. Energy
– volume: 35
  start-page: 2301817
  year: 2023
  ident: 58627_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301817
– volume: 334
  start-page: 928
  year: 2011
  ident: 58627_CR3
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 1
  start-page: 19
  year: 2015
  ident: 58627_CR50
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– ident: 58627_CR52
– volume: 14
  year: 2023
  ident: 58627_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38724-x
– volume: 13
  year: 2022
  ident: 58627_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29761-z
– volume: 14
  year: 2023
  ident: 58627_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37999-4
– volume: 4
  start-page: 683
  year: 2019
  ident: 58627_CR13
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0428-9
– volume: 15
  start-page: 1647
  year: 2022
  ident: 58627_CR46
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03422G
– volume: 14
  start-page: 7972
  year: 2022
  ident: 58627_CR27
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22610
– volume: 121
  start-page: 6589
  year: 2017
  ident: 58627_CR29
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b02006
– volume: 6
  start-page: 362
  year: 2021
  ident: 58627_CR32
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00782-0
– volume: 62
  year: 2023
  ident: 58627_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202306889
– volume: 21
  start-page: 1939
  year: 2017
  ident: 58627_CR12
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-017-3610-7
– volume: 134
  year: 2022
  ident: 58627_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202214796
– volume: 31
  start-page: 1695
  year: 1985
  ident: 58627_CR58
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 17
  start-page: 6113
  year: 2024
  ident: 58627_CR39
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE02074J
– volume: 414
  start-page: 359
  year: 2001
  ident: 58627_CR1
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 64
  year: 2025
  ident: 58627_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202414636
– volume: 8
  start-page: 725
  year: 2023
  ident: 58627_CR34
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01275-y
– volume: 118
  start-page: 8711
  year: 2014
  ident: 58627_CR51
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp503029d
– volume: 63
  year: 2024
  ident: 58627_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202316717
– volume: 50
  start-page: 17953
  year: 1994
  ident: 58627_CR56
  publication-title: Matter
– ident: 58627_CR36
  doi: 10.1038/s41467-023-36647-1
– volume: 62
  year: 2023
  ident: 58627_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202219310
– volume: 65
  start-page: 103098
  year: 2024
  ident: 58627_CR49
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.103098
– volume: 32
  start-page: 1456
  year: 2011
  ident: 58627_CR55
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 142
  start-page: 7393
  year: 2020
  ident: 58627_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11056
– volume: 63
  start-page: 103043
  year: 2023
  ident: 58627_CR19
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.103043
– volume: 135
  year: 2023
  ident: 58627_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202300771
– volume: 63
  year: 2024
  ident: 58627_CR23
  publication-title: Angew. Chem. Int. Ed.
– volume: 375
  start-page: 739
  year: 2022
  ident: 58627_CR2
  publication-title: Science
  doi: 10.1126/science.abn1818
– volume: 77
  start-page: 3865
  year: 1996
  ident: 58627_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– ident: 58627_CR22
  doi: 10.1002/aenm.202404120
– volume: 6
  start-page: 1300
  year: 2023
  ident: 58627_CR25
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.023.202303188
– volume: 134
  year: 2022
  ident: 58627_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202208345
– volume: 21
  start-page: 341
  year: 2018
  ident: 58627_CR42
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.02.005
– volume: 81
  start-page: 511
  year: 1984
  ident: 58627_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 8
  start-page: 934
  year: 2023
  ident: 58627_CR4
  publication-title: Nat. Energy
  doi: 10.1038/s41560-023-01282-z
– volume: 7
  start-page: 94
  year: 2022
  ident: 58627_CR11
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00962-y
SSID ssj0000391844
Score 2.5117505
Snippet Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation,...
Abstract Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3344
SubjectTerms 639/301/299/891
639/4077/4079/891
639/638/161/891
639/638/675
Ammonium
Ammonium nitrate
Batteries
Dendrites
Electrolytes
Electrolytic cells
Extreme cold
High voltage
Humanities and Social Sciences
Ion concentration
Ion currents
Ion transport
Lithium
Lithium batteries
Low temperature
Low temperature environments
Metals
multidisciplinary
Nitrates
Oxidation
Science
Science (multidisciplinary)
Solvation
Solvents
Specific energy
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KINBLaZs-3KZFhd5aE9d6-tiGhpBDTw3kJiRLIoHEG7JeQv59P8nebbYPeunVNmKYh-Yba_QN0fs2pdY0cF7Xyr4WQuvah2TqPqjQd4nn66C52-KbOj4VJ2fy7N6or9wTNtEDT4o7MI3X2jXOKSQibpLn2kjPnY4ymkaUe-TIefeKqbIH8w6li5hvyTTcHCxF2RPy9FYJFI_I2spEhbD_Tyjz92bJX05MSyI6ekyPZgTJPk-SP6EHcXhKu9NMybs9iuVKbU5X018-Ng-6ubwbI8vdQ3l_Y4CqLDMVs-s8JY0Bi59frK7YVQQWZ75wbqKEZm5kWO3G1ZeLW5ZZrGYK5uUzOj36-v3wuJ5nKdS96MRY8y4h1HRCPZVcUCJoxKpHdsf-0mvlUZh0SGeoB2PvlOTCG65CbM0ngDAfBX9OO8NiiC-JaRgzNTog8Uchg3ChFa5VqNsa1WG9ij6s9WqvJ8oMW466ubGTFSysYIsVLK_oS1b95stMd10ewAns7AT2X05Q0f7acHaOwaXlmWoO-EjIit5tXiN68pGIG-JiNX-DGl1CjheTnTeSoPIEehZNRWbLA7ZE3X4zXJwXhu58NmuAzSr6uHaWn3L9XRev_ocuXtPDNnt57i4y-7Qz3qziGwCn0b8tMfIDn7ITNg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcUMszfSAjcYOIEDu2c1wQVbUHLlCpN8uObVqpzVa7WaH-e2YcZ6uFcuCaONbIM-P5Jh5_A_CujrHWFRqvrZuuFEKp0vmoy85L37WR03VQqrb4Js_OxfyiudiBeroLk4r2E6Vl2qan6rCPK5FcmpqvNgjC0TEewR5RtaNt781m8-_zzZ8V4jzXQuQbMhXXD3y8FYUSWf9DCPPvQsk_TktTEDrdh6cZPbLZKO8B7IT-GTwe-0nePYeQrtNSqBr_8LHc5Ob6bgiMKodob2MIUxmxFLNb6pDGEIdfXq1v2E1AHM5c4tvE9JnZgeFsS1teL34xYrDK9MurF3B--vXHl7My91EoO9GKoeRtRDdTEXOpaL0UXqGfOozsuLd0SjpMSloMZZgLhs7KhgunufSh1p8QgLkg-EvY7Rd9eA1MoSJjpTwG_SAaL6yvha0l5myVbHG-At5P62puR7oMk465uTajFgxqwSQtGF7AZ1r6zUiiuk4PFsufJqve6MopZStrJSIRrqPjSjeOWxWaoCuhCjieFGey_60MJ5o5xEaiKeDt5jV6Dh2H2D4s1nkM5ucNyvFq1PNGEsw6ETmLqgC9ZQFbom6_6a8uEzs3ncuiYeKkHyZjuZfr32tx-H_Dj-BJTfZMNUT6GHaH5TqcIDwa3JvsD78BrHcKkQ
  priority: 102
  providerName: Springer Nature
Title Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures
URI https://link.springer.com/article/10.1038/s41467-025-58627-3
https://www.ncbi.nlm.nih.gov/pubmed/40199940
https://www.proquest.com/docview/3188043145
https://www.proquest.com/docview/3188083753
https://pubmed.ncbi.nlm.nih.gov/PMC11978743
https://doaj.org/article/80b77a0aa624438fb3785b3a7e5e8047
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY_d564IGe9tMPevqp5GGZiUPZWwr5E1IlrwWWjtLHEr_fc-RlZTs9pKAbYysc_uOjvQdQt6XTVPqApTXlqLOOVcqd77Ree2lr6uG4XFQ3G1xKk_O-Gwu5mnBbZW2VW58YnTUvqtxjfyQIXEYRDsuPi9-5dg1CqurqYXGfbKP1GWo1WqutmssyH6uOU9nZQqmD1c8egbs4SoAy4N97cSjSNv_N6z555bJ3-qmMRxNH5NHCUfS8SD4J-ReaJ-SB0NnyZtnJMSDtRi0hrU-mtrdXN70geIeIvRyFAArRb5iusBeaRQQ-fnF-opeBUDk1EXmTUikqe0pvG1p88vumiKXVSJiXj0nZ9PjH5OTPHVUyGte8T5nVQMGpxrIqhrrJfcKLNZBjAcvUyvpID2pIKhBVhhqKwXjTjPpQ6k_ARRzgbMXZK_t2vCKUAUibQrlIfwHLjy3vuS2lJC9FbKC92Xkw2ZezWIgzjCx4M20GaRgQAomSsGwjBzh1G-fRNLreKFb_jTJhowunFK2sFYCJmG6cUxp4ZhVQQTQDZWRg43gTLLElbnTm4y8294GG8LCiG1Dt07PQKYuYBwvBzlvRwL5J2BoXmRE72jAzlB377QX55GnGyu0GhBaRj5ulOVuXP-ei9f__4w35GGJ-ou7h_QB2euX6_AWgFHvRlH74VdPv4zI_ng8-z6D_6Pj06_f4OpETkZxyeEWibQRMg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXimcJLWAkOEHUEDuxc0CI17KlpadW6s3YsUMrtcmym1W1f4rfyIyTbLW8br0mkeV4vnl5XgDP06pKVYLgNWlWxkJIGVtXqbh0uSuLilM5KGVbHOTjI_HlODteg59DLQylVQ4yMQhq15R0R77DqXEYajuRvZ38iGlqFEVXhxEaHSz2_OICXbbZm92PSN8XaTr6dPhhHPdTBeJSFKKNeVEh6GSFnkVlXC6cRNRa1HPIaaXMLZroBQp29Ix8afKMC6t47nyqXqM5Yr3guO41uC44anKqTB99Xt7pULd1JURfm5NwtTMTQRLRzNgMfQfk5xX9F8YE_M22_TNF87c4bVB_o9uw0dut7F0HtDuw5uu7cKObZLm4Bz4U8pKS7O4WWT9e52zRekY5SyRVGRrIjPojswnNZmPoAZyczs_ZuUcPgNnQ6RMdd2ZahqtNTXzWXDDqndU3fp7dh6MrOesHsF43tX8ITCKEqkQ6NDe8yJwwLhUmzdFbTPIC14vg5XCuetI16tAhwM6V7qigkQo6UEHzCN7T0S-_pCbb4UEz_a57ntUqsVKaxJgcbSCuKsulyiw30mcesSgj2B4Ip3vOn-lLnEbwbPkaeZYCMab2zbz_RnH0FCPY7Oi83An6u2iziyQCtYKAla2uvqlPT0JfcIoIK7QII3g1gOVyX_8-i0f__42ncHN8-HVf7-8e7G3BrZSwTJlLahvW2-ncP0ajrLVPAicw-HbVrPcLFT1FdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2xE7sHBCitKuWolWFqNSbsWObVmqzy25W1f41fh0zeWy1vG69JpHleL4Zz-cZzwC8TENIVYLgNWlWxkJIGVsXVFy63JVF4HQdlLItxvnekfh0nB1vwM_-LgylVfY2sTHUblLSGfmQU-Ew3O1ENgxdWsThzuj99EdMHaQo0tq302ghcuCXF0jf5u_2d1DWr9J0tPv1417cdRiIS1GIOuZFQADKgCwjGJcLJxHBFvc81LpS5hbd9QKNPLIkX5o848IqnjufqrfomlgvOI57DTYlsaIBbG7vjg-_rE54qPa6EqK7qZNwNZyLxi5RB9kMmQRq99pu2DQN-Jun-2fC5m9R22YzHN2GW50Xyz60sLsDG766C9fbvpbLe-Cba720ZbYnjaxrtnO2rD2jDCaysQzdZUbVktmUOrUx5AMnp4tzdu6RDzDb1P1EGs9MzXC0mYnPJheMKml1ZaDn9-HoSlb7AQyqSeUfAZMIqJBIh86HF5kTxqXCpDlyxyQvcLwIXvfrqqdt2Q7dhNu50q0UNEpBN1LQPIJtWvrVl1Ryu3kwmX3XnQZrlVgpTWJMjh4RV8FyqTLLjfSZR2TKCLZ6wenODsz1JWojeLF6jRpMYRlT-cmi-0Zx5I0RPGzlvJoJsl_04EUSgVpDwNpU199UpydNlXCKDyv0DyN404Plcl7_XovH__-N53AD1U5_3h8fPIGbKUGZ0pjUFgzq2cI_RQ-tts86VWDw7aq17xfg5ksG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+electrolyte+additive+for+high+power+lithium+metal+batteries+at+ultra-low+temperatures&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Weili&rft.au=Lu%2C+Yang&rft.au=Feng%2C+Qingqing&rft.au=Wang%2C+Hao&rft.date=2025-04-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58627-3&rft.externalDocID=PMC11978743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon