Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures
Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces,...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 3344 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.04.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO
3
), which features both cationic (PQA
+
) and anionic (NO
3
−
) components. PQA
+
reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li
+
transport through the SEI film. NO
3
−
creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li
+
-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm
−2
) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg
−1
pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg
−1
. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg
−1
, indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments.
Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO
3
) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C. |
---|---|
AbstractList | Abstract Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3 −) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm−2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg−1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg−1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg−1, indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3-) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3- creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm-2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg-1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg-1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg-1, indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments.Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3-) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3- creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm-2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg-1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg-1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg-1, indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO ), which features both cationic (PQA ) and anionic (NO ) components. PQA reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li transport through the SEI film. NO creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg , indicating the electrolyte's suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO 3 ), which features both cationic (PQA + ) and anionic (NO 3 − ) components. PQA + reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li + transport through the SEI film. NO 3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li + -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm −2 ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg −1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg −1 . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg −1 , indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO 3 ) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C. Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO 3 ), which features both cationic (PQA + ) and anionic (NO 3 − ) components. PQA + reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li + transport through the SEI film. NO 3 − creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li + -solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm −2 ) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg −1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg −1 . Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg −1 , indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments. Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation, particularly at high power. An ideal electrolyte requires high carrier ion concentration, low viscosity, rapid de-solvation, and stable interfaces, but balancing these attributes remains a formidable task. Here, we design and synthesize a multifunctional additive, perfluoroalkylsulfonyl quaternary ammonium nitrate (PQA-NO3), which features both cationic (PQA+) and anionic (NO3−) components. PQA+ reacts in situ with lithium metal to form an inorganic-rich solid-electrolyte interphase (SEI) that enhances Li+ transport through the SEI film. NO3− creates an anion-rich, solvent-poor solvation structure, improving oxidation stability at the positive electrode/electrolyte interface and reducing Li+-solvent interactions. This allows ether-based electrolytes to achieve high voltage tolerance, increased ionic conductivity, and lower de-solvation energy barriers. The Li (40 µm)||NMC811 (3 mAh cm−2) coin cells with the developed electrolyte exhibited stable cycling at -60 °C and a 450 Wh kg−1 pouch cell retained 48.1% capacity at -85 °C, achieving a specific energy (except tabs and packing foil, same hereafter) of 171.8 Wh kg−1. Additionally, the pouch cell demonstrated a discharge rate of 3.0 C at -50 °C, reaching a specific power (except tabs and packing foil, same hereafter) of 938.5 W kg−1, indicating the electrolyte’s suitability for high-rate lithium metal batteries in extreme low-temperature environments.Ultra-low-temperature lithium metal batteries struggle with slow ion transport and dendrite growth. Here, authors develop a multifunctional electrolyte additive (PQA-NO3) that forms a protective SEI layer and modifies ion interactions, enabling stable operation at extreme cold condition of −85 °C. |
ArticleNumber | 3344 |
Author | Zhang, Weili Liu, Hao Xia, Yingchun Lu, Yang Zhou, Pan Liu, Kai Feng, Qingqing luo, Zhenjun Cheng, Guangyu Hou, Wenhui Cao, Qingbin Du, Chunyi Wang, Hao Zhao, Kun |
Author_xml | – sequence: 1 givenname: Weili surname: Zhang fullname: Zhang, Weili email: zhangweili@tsinghua-hf.edu.cn organization: Department of Chemical Engineering, Tsinghua University, Tsinghua University Hefei Institute for Public Safety Research – sequence: 2 givenname: Yang orcidid: 0009-0008-0761-5565 surname: Lu fullname: Lu, Yang organization: Department of Chemical Engineering, Tsinghua University – sequence: 3 givenname: Qingqing surname: Feng fullname: Feng, Qingqing organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 4 givenname: Hao surname: Wang fullname: Wang, Hao organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 5 givenname: Guangyu surname: Cheng fullname: Cheng, Guangyu organization: State Key Laboratory of Space Power-Sources, Shanghai Institute of Space Power-Sources – sequence: 6 givenname: Hao surname: Liu fullname: Liu, Hao organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 7 givenname: Qingbin surname: Cao fullname: Cao, Qingbin organization: Xinyuan Qingcai Technology Co., Ltd – sequence: 8 givenname: Zhenjun surname: luo fullname: luo, Zhenjun organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 9 givenname: Pan surname: Zhou fullname: Zhou, Pan organization: Department of Chemical Engineering, Tsinghua University – sequence: 10 givenname: Yingchun surname: Xia fullname: Xia, Yingchun organization: Department of Chemical Engineering, Tsinghua University – sequence: 11 givenname: Wenhui surname: Hou fullname: Hou, Wenhui organization: Department of Chemical Engineering, Tsinghua University – sequence: 12 givenname: Kun surname: Zhao fullname: Zhao, Kun organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 13 givenname: Chunyi surname: Du fullname: Du, Chunyi organization: Tsinghua University Hefei Institute for Public Safety Research – sequence: 14 givenname: Kai orcidid: 0000-0003-3362-180X surname: Liu fullname: Liu, Kai email: liukai2019@tsinghua.edu.cn organization: Department of Chemical Engineering, Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40199940$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_0D7BAltiwCfhxE9srhCqglYrYwNpykpsZj5x4sJ1W_ff1dIbSssAbW_Z3zr3WPafV0RxmrKo3jH5gVKiPCRi0sqa8qRvVclmLF9UJp8BqJrk4enI-rs5T2tCyhGYK4FV1DJRprYGeVPh98dmNy9xnF2brCXrscwz-LiOxw-Cyu0EyhkjWbrUm23CLkXiX126ZyIS5KDqbM0aHidhMilu0tQ-3JOO0xWjzEjG9rl6O1ic8P-xn1a-vX35eXNbXP75dXXy-rnvQkGuhR90KOTKgox1aGCRvZKcYl63oZdsxCZoJKjnD3raNgE6JdkCuGKW6QxBn1dXedwh2Y7bRTTbemWCdebgIcWVszK73aBTtpLTU2pYDCDV2QqqmE1Zig4qCLF6f9l7bpZtw6HEuP_PPTJ-_zG5tVuHGMKalkiCKw_uDQwy_F0zZTC716L2dMSzJCKYUVUI2O_TdP-gmLLHM40CBYNAU6u3Tlh57-TPOAvA90MeQUsTxEWHU7GJj9rExJTbmITZmV1vsRanA8wrj39r_Ud0DapfEgg |
Cites_doi | 10.1002/adma.202210115 10.1039/D4EE01298D 10.1038/s41467-022-29199-3 10.1039/D3CS00151B 10.1002/adma.202405184 10.1021/acsenergylett.2c01587 10.1107/S0021889808012016 10.1021/acsnano.3c06088 10.1038/s41467-022-33151-w 10.1002/adfm.202400337 10.1016/j.xcrp.2022.100919 10.1021/acsenergylett.1c00907 10.1021/jacs.3c08313 10.1038/s41560-021-00783-z 10.1021/acsnano.3c02948 10.1126/sciadv.adg0167 10.1103/PhysRevB.54.11169 10.1038/s41586-024-07045-4 10.1002/adma.202301817 10.1126/science.1212741 10.1016/j.softx.2015.06.001 10.1038/s41467-023-38724-x 10.1038/s41467-022-29761-z 10.1038/s41467-023-37999-4 10.1038/s41560-019-0428-9 10.1039/D1EE03422G 10.1021/acsami.1c22610 10.1021/acs.jpcc.7b02006 10.1038/s41560-021-00782-0 10.1002/anie.202306889 10.1007/s10008-017-3610-7 10.1002/ange.202214796 10.1103/PhysRevA.31.1695 10.1039/D4EE02074J 10.1038/35104644 10.1002/anie.202414636 10.1038/s41560-023-01275-y 10.1021/jp503029d 10.1002/anie.202316717 10.1038/s41467-023-36647-1 10.1002/anie.202219310 10.1016/j.ensm.2023.103098 10.1002/jcc.21759 10.1021/jacs.9b11056 10.1016/j.ensm.2023.103043 10.1002/ange.202300771 10.1126/science.abn1818 10.1103/PhysRevLett.77.3865 10.1002/aenm.202404120 10.31635/ccschem.023.202303188 10.1002/ange.202208345 10.1016/j.mattod.2018.02.005 10.1063/1.447334 10.1038/s41560-023-01282-z 10.1038/s41560-021-00962-y |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-58627-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_80b77a0aa624438fb3785b3a7e5e8047 PMC11978743 40199940 10_1038_s41467_025_58627_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Anhui Province (Anhui Provincial Natural Science Foundation) grantid: 240808QB043 funderid: https://doi.org/10.13039/501100003995 – fundername: the Opening Project of State Key Laboratory of Space-Power Source, the National Key Research and Development Program (2023YFB2503700), the National Science Foundation of China (22071133, 22409117), Anhui Provincial Natural Science Foundation (240808QB043), the Tsinghua University-China Petrochemical Corporation Joint Institute for Green Chemical Engineering (224247), Beijing Science and Technology Plan Project (Z231100006123003), China Postdoctoral Science Foundation (2024M751747) – fundername: China Postdoctoral Science Foundation grantid: 2024M751747 funderid: https://doi.org/10.13039/501100002858 – fundername: Natural Science Foundation of Anhui Province (Anhui Provincial Natural Science Foundation) grantid: 240808QB043 – fundername: China Postdoctoral Science Foundation grantid: 2024M751747 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-39f9637f140fad64d7257b812763c76b1749130721eca6534b836de281009be43 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:21:53 EDT 2025 Thu Aug 21 18:36:39 EDT 2025 Fri Jul 11 18:45:05 EDT 2025 Sat Aug 23 12:31:01 EDT 2025 Mon Jul 21 05:56:49 EDT 2025 Tue Jul 01 05:10:56 EDT 2025 Mon Jul 21 06:06:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-39f9637f140fad64d7257b812763c76b1749130721eca6534b836de281009be43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3362-180X 0009-0008-0761-5565 |
OpenAccessLink | https://www.proquest.com/docview/3188043145?pq-origsite=%requestingapplication% |
PMID | 40199940 |
PQID | 3188043145 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80b77a0aa624438fb3785b3a7e5e8047 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11978743 proquest_miscellaneous_3188083753 proquest_journals_3188043145 pubmed_primary_40199940 crossref_primary_10_1038_s41467_025_58627_3 springer_journals_10_1038_s41467_025_58627_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-08 |
PublicationDateYYYYMMDD | 2025-04-08 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | W Zhang (58627_CR5) 2022; 13 Q Zhang (58627_CR10) 2023; 62 S Zhao (58627_CR18) 2024; 36 S Zhang (58627_CR35) 2022; 13 Y Li (58627_CR24) 2025; 64 J Tarascon (58627_CR1) 2001; 414 B Dunn (58627_CR3) 2011; 334 R Weber (58627_CR13) 2019; 4 S Nose (58627_CR57) 1984; 81 W Hou (58627_CR33) 2023; 17 P Xiao (58627_CR17) 2023; 52 58627_CR22 H Shen (58627_CR25) 2023; 6 D Lu (58627_CR9) 2024; 627 Y Zhao (58627_CR48) 2023; 145 S Chen (58627_CR37) 2023; 62 J Holoubek (58627_CR6) 2021; 6 W Zhang (58627_CR7) 2024; 17 58627_CR36 Y Xia (58627_CR4) 2023; 8 W Yu (58627_CR31) 2022; 7 Y Liu (58627_CR28) 2021; 6 Y Lu (58627_CR40) 2023; 17 JP Perdew (58627_CR54) 1996; 77 P Yu (58627_CR27) 2022; 14 Y Chen (58627_CR39) 2024; 17 N Chen (58627_CR44) 2024; 34 Y Lu (58627_CR21) 2025; 10 Y Zhao (58627_CR38) 2022; 13 M Wang (58627_CR41) 2023; 9 C Yang (58627_CR20) 2023; 35 J Holoubek (58627_CR46) 2022; 15 K Momma (58627_CR59) 2008; 41 T Placke (58627_CR12) 2017; 21 Z Hou (58627_CR16) 2022; 134 S Grimme (58627_CR55) 2011; 32 H Zhang (58627_CR15) 2023; 135 Y Liu (58627_CR2) 2022; 375 G Kresse (58627_CR53) 1996; 54 M Yoon (58627_CR32) 2021; 6 Q Zhang (58627_CR34) 2023; 8 J Alvarado (58627_CR42) 2018; 21 H Wang (58627_CR45) 2022; 3 P Zhou (58627_CR30) 2024; 63 Z Yu (58627_CR11) 2022; 7 WG Hoover (58627_CR58) 1985; 31 Y Xie (58627_CR26) 2023; 14 PE Blochl (58627_CR56) 1994; 50 Y Yang (58627_CR14) 2022; 134 58627_CR52 L Dong (58627_CR23) 2024; 63 J Zhang (58627_CR8) 2023; 14 MJ Abraham (58627_CR50) 2015; 1 CV Amanchukwu (58627_CR43) 2020; 142 Y Wang (58627_CR51) 2014; 118 J Wu (58627_CR19) 2023; 63 M Ong (58627_CR29) 2017; 121 L Chen (58627_CR49) 2024; 65 X Zheng (58627_CR47) 2023; 35 |
References_xml | – volume: 35 start-page: 2210115 year: 2023 ident: 58627_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.202210115 – volume: 17 start-page: 4531 year: 2024 ident: 58627_CR7 publication-title: Energy Environ. Sci. doi: 10.1039/D4EE01298D – volume: 13 year: 2022 ident: 58627_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29199-3 – volume: 52 start-page: 5255 year: 2023 ident: 58627_CR17 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00151B – volume: 36 start-page: 2405184 year: 2024 ident: 58627_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202405184 – volume: 7 start-page: 3270 year: 2022 ident: 58627_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c01587 – volume: 41 start-page: 653 year: 2008 ident: 58627_CR59 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889808012016 – volume: 17 start-page: 17527 year: 2023 ident: 58627_CR33 publication-title: ACS Nano doi: 10.1021/acsnano.3c06088 – volume: 13 year: 2022 ident: 58627_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33151-w – volume: 34 start-page: 2400337 year: 2024 ident: 58627_CR44 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202400337 – volume: 3 year: 2022 ident: 58627_CR45 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.100919 – volume: 6 start-page: 2320 year: 2021 ident: 58627_CR28 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00907 – volume: 145 start-page: 22184 year: 2023 ident: 58627_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08313 – volume: 6 start-page: 303 year: 2021 ident: 58627_CR6 publication-title: Nat. Energy doi: 10.1038/s41560-021-00783-z – volume: 17 start-page: 9586 year: 2023 ident: 58627_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.3c02948 – volume: 9 start-page: eadg0167 year: 2023 ident: 58627_CR41 publication-title: Sci. Adv. doi: 10.1126/sciadv.adg0167 – volume: 54 start-page: 11169 year: 1996 ident: 58627_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 627 start-page: 101 year: 2024 ident: 58627_CR9 publication-title: Nature doi: 10.1038/s41586-024-07045-4 – volume: 10 start-page: 191 year: 2025 ident: 58627_CR21 publication-title: Nat. Energy – volume: 35 start-page: 2301817 year: 2023 ident: 58627_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.202301817 – volume: 334 start-page: 928 year: 2011 ident: 58627_CR3 publication-title: Science doi: 10.1126/science.1212741 – volume: 1 start-page: 19 year: 2015 ident: 58627_CR50 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – ident: 58627_CR52 – volume: 14 year: 2023 ident: 58627_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38724-x – volume: 13 year: 2022 ident: 58627_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29761-z – volume: 14 year: 2023 ident: 58627_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37999-4 – volume: 4 start-page: 683 year: 2019 ident: 58627_CR13 publication-title: Nat. Energy doi: 10.1038/s41560-019-0428-9 – volume: 15 start-page: 1647 year: 2022 ident: 58627_CR46 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03422G – volume: 14 start-page: 7972 year: 2022 ident: 58627_CR27 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22610 – volume: 121 start-page: 6589 year: 2017 ident: 58627_CR29 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b02006 – volume: 6 start-page: 362 year: 2021 ident: 58627_CR32 publication-title: Nat. Energy doi: 10.1038/s41560-021-00782-0 – volume: 62 year: 2023 ident: 58627_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202306889 – volume: 21 start-page: 1939 year: 2017 ident: 58627_CR12 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-017-3610-7 – volume: 134 year: 2022 ident: 58627_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202214796 – volume: 31 start-page: 1695 year: 1985 ident: 58627_CR58 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 17 start-page: 6113 year: 2024 ident: 58627_CR39 publication-title: Energy Environ. Sci. doi: 10.1039/D4EE02074J – volume: 414 start-page: 359 year: 2001 ident: 58627_CR1 publication-title: Nature doi: 10.1038/35104644 – volume: 64 year: 2025 ident: 58627_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202414636 – volume: 8 start-page: 725 year: 2023 ident: 58627_CR34 publication-title: Nat. Energy doi: 10.1038/s41560-023-01275-y – volume: 118 start-page: 8711 year: 2014 ident: 58627_CR51 publication-title: J. Phys. Chem. B doi: 10.1021/jp503029d – volume: 63 year: 2024 ident: 58627_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202316717 – volume: 50 start-page: 17953 year: 1994 ident: 58627_CR56 publication-title: Matter – ident: 58627_CR36 doi: 10.1038/s41467-023-36647-1 – volume: 62 year: 2023 ident: 58627_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202219310 – volume: 65 start-page: 103098 year: 2024 ident: 58627_CR49 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.103098 – volume: 32 start-page: 1456 year: 2011 ident: 58627_CR55 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 142 start-page: 7393 year: 2020 ident: 58627_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11056 – volume: 63 start-page: 103043 year: 2023 ident: 58627_CR19 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.103043 – volume: 135 year: 2023 ident: 58627_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202300771 – volume: 63 year: 2024 ident: 58627_CR23 publication-title: Angew. Chem. Int. Ed. – volume: 375 start-page: 739 year: 2022 ident: 58627_CR2 publication-title: Science doi: 10.1126/science.abn1818 – volume: 77 start-page: 3865 year: 1996 ident: 58627_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – ident: 58627_CR22 doi: 10.1002/aenm.202404120 – volume: 6 start-page: 1300 year: 2023 ident: 58627_CR25 publication-title: CCS Chem. doi: 10.31635/ccschem.023.202303188 – volume: 134 year: 2022 ident: 58627_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202208345 – volume: 21 start-page: 341 year: 2018 ident: 58627_CR42 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.02.005 – volume: 81 start-page: 511 year: 1984 ident: 58627_CR57 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 8 start-page: 934 year: 2023 ident: 58627_CR4 publication-title: Nat. Energy doi: 10.1038/s41560-023-01282-z – volume: 7 start-page: 94 year: 2022 ident: 58627_CR11 publication-title: Nat. Energy doi: 10.1038/s41560-021-00962-y |
SSID | ssj0000391844 |
Score | 2.5117505 |
Snippet | Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite formation,... Abstract Ultra-low-temperature lithium metal batteries face significant challenges, including sluggish ion transport and uncontrolled lithium dendrite... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3344 |
SubjectTerms | 639/301/299/891 639/4077/4079/891 639/638/161/891 639/638/675 Ammonium Ammonium nitrate Batteries Dendrites Electrolytes Electrolytic cells Extreme cold High voltage Humanities and Social Sciences Ion concentration Ion currents Ion transport Lithium Lithium batteries Low temperature Low temperature environments Metals multidisciplinary Nitrates Oxidation Science Science (multidisciplinary) Solvation Solvents Specific energy Temperature |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KINBLaZs-3KZFhd5aE9d6-tiGhpBDTw3kJiRLIoHEG7JeQv59P8nebbYPeunVNmKYh-Yba_QN0fs2pdY0cF7Xyr4WQuvah2TqPqjQd4nn66C52-KbOj4VJ2fy7N6or9wTNtEDT4o7MI3X2jXOKSQibpLn2kjPnY4ymkaUe-TIefeKqbIH8w6li5hvyTTcHCxF2RPy9FYJFI_I2spEhbD_Tyjz92bJX05MSyI6ekyPZgTJPk-SP6EHcXhKu9NMybs9iuVKbU5X018-Ng-6ubwbI8vdQ3l_Y4CqLDMVs-s8JY0Bi59frK7YVQQWZ75wbqKEZm5kWO3G1ZeLW5ZZrGYK5uUzOj36-v3wuJ5nKdS96MRY8y4h1HRCPZVcUCJoxKpHdsf-0mvlUZh0SGeoB2PvlOTCG65CbM0ngDAfBX9OO8NiiC-JaRgzNTog8Uchg3ChFa5VqNsa1WG9ij6s9WqvJ8oMW466ubGTFSysYIsVLK_oS1b95stMd10ewAns7AT2X05Q0f7acHaOwaXlmWoO-EjIit5tXiN68pGIG-JiNX-DGl1CjheTnTeSoPIEehZNRWbLA7ZE3X4zXJwXhu58NmuAzSr6uHaWn3L9XRev_ocuXtPDNnt57i4y-7Qz3qziGwCn0b8tMfIDn7ITNg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcUMszfSAjcYOIEDu2c1wQVbUHLlCpN8uObVqpzVa7WaH-e2YcZ6uFcuCaONbIM-P5Jh5_A_CujrHWFRqvrZuuFEKp0vmoy85L37WR03VQqrb4Js_OxfyiudiBeroLk4r2E6Vl2qan6rCPK5FcmpqvNgjC0TEewR5RtaNt781m8-_zzZ8V4jzXQuQbMhXXD3y8FYUSWf9DCPPvQsk_TktTEDrdh6cZPbLZKO8B7IT-GTwe-0nePYeQrtNSqBr_8LHc5Ob6bgiMKodob2MIUxmxFLNb6pDGEIdfXq1v2E1AHM5c4tvE9JnZgeFsS1teL34xYrDK9MurF3B--vXHl7My91EoO9GKoeRtRDdTEXOpaL0UXqGfOozsuLd0SjpMSloMZZgLhs7KhgunufSh1p8QgLkg-EvY7Rd9eA1MoSJjpTwG_SAaL6yvha0l5myVbHG-At5P62puR7oMk465uTajFgxqwSQtGF7AZ1r6zUiiuk4PFsufJqve6MopZStrJSIRrqPjSjeOWxWaoCuhCjieFGey_60MJ5o5xEaiKeDt5jV6Dh2H2D4s1nkM5ucNyvFq1PNGEsw6ETmLqgC9ZQFbom6_6a8uEzs3ncuiYeKkHyZjuZfr32tx-H_Dj-BJTfZMNUT6GHaH5TqcIDwa3JvsD78BrHcKkQ priority: 102 providerName: Springer Nature |
Title | Multifunctional electrolyte additive for high power lithium metal batteries at ultra-low temperatures |
URI | https://link.springer.com/article/10.1038/s41467-025-58627-3 https://www.ncbi.nlm.nih.gov/pubmed/40199940 https://www.proquest.com/docview/3188043145 https://www.proquest.com/docview/3188083753 https://pubmed.ncbi.nlm.nih.gov/PMC11978743 https://doaj.org/article/80b77a0aa624438fb3785b3a7e5e8047 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFBZby2AvY_d564IGe9tMPevqp5GGZiUPZWwr5E1IlrwWWjtLHEr_fc-RlZTs9pKAbYysc_uOjvQdQt6XTVPqApTXlqLOOVcqd77Ree2lr6uG4XFQ3G1xKk_O-Gwu5mnBbZW2VW58YnTUvqtxjfyQIXEYRDsuPi9-5dg1CqurqYXGfbKP1GWo1WqutmssyH6uOU9nZQqmD1c8egbs4SoAy4N97cSjSNv_N6z555bJ3-qmMRxNH5NHCUfS8SD4J-ReaJ-SB0NnyZtnJMSDtRi0hrU-mtrdXN70geIeIvRyFAArRb5iusBeaRQQ-fnF-opeBUDk1EXmTUikqe0pvG1p88vumiKXVSJiXj0nZ9PjH5OTPHVUyGte8T5nVQMGpxrIqhrrJfcKLNZBjAcvUyvpID2pIKhBVhhqKwXjTjPpQ6k_ARRzgbMXZK_t2vCKUAUibQrlIfwHLjy3vuS2lJC9FbKC92Xkw2ZezWIgzjCx4M20GaRgQAomSsGwjBzh1G-fRNLreKFb_jTJhowunFK2sFYCJmG6cUxp4ZhVQQTQDZWRg43gTLLElbnTm4y8294GG8LCiG1Dt07PQKYuYBwvBzlvRwL5J2BoXmRE72jAzlB377QX55GnGyu0GhBaRj5ulOVuXP-ei9f__4w35GGJ-ou7h_QB2euX6_AWgFHvRlH74VdPv4zI_ng8-z6D_6Pj06_f4OpETkZxyeEWibQRMg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgSXimcJLWAkOEHUEDuxc0CI17KlpadW6s3YsUMrtcmym1W1f4rfyIyTbLW8br0mkeV4vnl5XgDP06pKVYLgNWlWxkJIGVtXqbh0uSuLilM5KGVbHOTjI_HlODteg59DLQylVQ4yMQhq15R0R77DqXEYajuRvZ38iGlqFEVXhxEaHSz2_OICXbbZm92PSN8XaTr6dPhhHPdTBeJSFKKNeVEh6GSFnkVlXC6cRNRa1HPIaaXMLZroBQp29Ix8afKMC6t47nyqXqM5Yr3guO41uC44anKqTB99Xt7pULd1JURfm5NwtTMTQRLRzNgMfQfk5xX9F8YE_M22_TNF87c4bVB_o9uw0dut7F0HtDuw5uu7cKObZLm4Bz4U8pKS7O4WWT9e52zRekY5SyRVGRrIjPojswnNZmPoAZyczs_ZuUcPgNnQ6RMdd2ZahqtNTXzWXDDqndU3fp7dh6MrOesHsF43tX8ITCKEqkQ6NDe8yJwwLhUmzdFbTPIC14vg5XCuetI16tAhwM6V7qigkQo6UEHzCN7T0S-_pCbb4UEz_a57ntUqsVKaxJgcbSCuKsulyiw30mcesSgj2B4Ip3vOn-lLnEbwbPkaeZYCMab2zbz_RnH0FCPY7Oi83An6u2iziyQCtYKAla2uvqlPT0JfcIoIK7QII3g1gOVyX_8-i0f__42ncHN8-HVf7-8e7G3BrZSwTJlLahvW2-ncP0ajrLVPAicw-HbVrPcLFT1FdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2xE7sHBCitKuWolWFqNSbsWObVmqzy25W1f41fh0zeWy1vG69JpHleL4Zz-cZzwC8TENIVYLgNWlWxkJIGVsXVFy63JVF4HQdlLItxvnekfh0nB1vwM_-LgylVfY2sTHUblLSGfmQU-Ew3O1ENgxdWsThzuj99EdMHaQo0tq302ghcuCXF0jf5u_2d1DWr9J0tPv1417cdRiIS1GIOuZFQADKgCwjGJcLJxHBFvc81LpS5hbd9QKNPLIkX5o848IqnjufqrfomlgvOI57DTYlsaIBbG7vjg-_rE54qPa6EqK7qZNwNZyLxi5RB9kMmQRq99pu2DQN-Jun-2fC5m9R22YzHN2GW50Xyz60sLsDG766C9fbvpbLe-Cba720ZbYnjaxrtnO2rD2jDCaysQzdZUbVktmUOrUx5AMnp4tzdu6RDzDb1P1EGs9MzXC0mYnPJheMKml1ZaDn9-HoSlb7AQyqSeUfAZMIqJBIh86HF5kTxqXCpDlyxyQvcLwIXvfrqqdt2Q7dhNu50q0UNEpBN1LQPIJtWvrVl1Ryu3kwmX3XnQZrlVgpTWJMjh4RV8FyqTLLjfSZR2TKCLZ6wenODsz1JWojeLF6jRpMYRlT-cmi-0Zx5I0RPGzlvJoJsl_04EUSgVpDwNpU199UpydNlXCKDyv0DyN404Plcl7_XovH__-N53AD1U5_3h8fPIGbKUGZ0pjUFgzq2cI_RQ-tts86VWDw7aq17xfg5ksG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+electrolyte+additive+for+high+power+lithium+metal+batteries+at+ultra-low+temperatures&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Weili&rft.au=Lu%2C+Yang&rft.au=Feng%2C+Qingqing&rft.au=Wang%2C+Hao&rft.date=2025-04-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft_id=info:doi/10.1038%2Fs41467-025-58627-3&rft.externalDocID=PMC11978743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |