Universal van der Waals physics for three cold atoms near Feshbach resonances
Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Colli...
Saved in:
Published in | Nature physics Vol. 10; no. 10; pp. 768 - 773 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena.
A class of van der Waals universality is introduced in the collision dynamics of three identical ultracold atoms at all scattering lengths. It is insensitive to short-range chemical details and can be computed using two-body parameters only. |
---|---|
AbstractList | Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena.
A class of van der Waals universality is introduced in the collision dynamics of three identical ultracold atoms at all scattering lengths. It is insensitive to short-range chemical details and can be computed using two-body parameters only. Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrodinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena. Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena. |
Author | Julienne, Paul S. Wang, Yujun |
Author_xml | – sequence: 1 givenname: Yujun surname: Wang fullname: Wang, Yujun organization: Joint Quantum Institute, University of Maryland and NIST, College Park, Present address: Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA – sequence: 2 givenname: Paul S. surname: Julienne fullname: Julienne, Paul S. email: psj@umd.edu organization: Joint Quantum Institute, University of Maryland and NIST, College Park |
BookMark | eNpt0MFKAzEQBuAgCrbVg28Q8KLC2sxuNps9SrEqVLxYPC5pmrhbtknNbAt9e1MqRaqnmcP3_wzTJ6fOO0PIFbB7YJkculW9xYwVcEJ6UPA8SbmE08NeZOekj7hgjKcCsh55nbpmYwKqlm6Uo3MT6IdSLdJdT6ORWh9oVwdjqPbtnKrOL5E6owIdG6xnStc0GPROOW3wgpzZGDaXP3NApuPH99FzMnl7ehk9TBLNS94lmdRyxqXmioNkUmdlmgO3SoJgDOwMtE3zaHgJIhW5nsuyUNxybplghbHZgNzse1fBf60NdtWyQW3aVjnj11iBEKUsUwAR6fURXfh1cPG6qHIogecyjWq4Vzp4xGBspZtOdY13XVBNWwGrdu-tDu-NidujxCo0SxW2_9q7vcVo3KcJv274g78BxsuLHg |
CitedBy_id | crossref_primary_10_1103_PhysRevA_90_052514 crossref_primary_10_1103_PhysRevLett_118_163401 crossref_primary_10_21468_SciPostPhysProc_3_049 crossref_primary_10_1103_PhysRevA_108_063311 crossref_primary_10_1103_PhysRevA_93_022707 crossref_primary_10_1103_PhysRevLett_117_163201 crossref_primary_10_1103_PhysRevA_92_022709 crossref_primary_10_1103_PhysRevA_99_022708 crossref_primary_10_1103_PhysRevA_107_023301 crossref_primary_10_1103_PhysRevA_107_053319 crossref_primary_10_1103_PhysRevX_8_011024 crossref_primary_10_1007_s00601_024_01943_z crossref_primary_10_1126_science_aan8721 crossref_primary_10_1103_PhysRevA_90_043636 crossref_primary_10_1088_1361_6455_aaa116 crossref_primary_10_1103_PhysRevA_94_032705 crossref_primary_10_3390_atoms9040110 crossref_primary_10_1088_1361_6455_ab66d4 crossref_primary_10_1103_PhysRevA_95_032707 crossref_primary_10_1038_s41467_024_46353_1 crossref_primary_10_1007_s00601_015_1021_9 crossref_primary_10_1103_PhysRevA_93_043616 crossref_primary_10_5802_crphys_181 crossref_primary_10_1039_D0CP00960A crossref_primary_10_1088_1367_2630_17_5_055009 crossref_primary_10_1103_PhysRevLett_120_023401 crossref_primary_10_1103_PhysRevA_98_052706 crossref_primary_10_1007_s00601_024_01954_w crossref_primary_10_1103_PhysRevLett_117_153201 crossref_primary_10_1103_PhysRevLett_123_233402 crossref_primary_10_1103_PhysRevA_108_062805 crossref_primary_10_1103_PhysRevA_92_020702 crossref_primary_10_1103_PhysRevA_97_033623 crossref_primary_10_1103_PhysRevLett_128_153401 crossref_primary_10_1103_PhysRevA_111_033302 crossref_primary_10_1103_PhysRevLett_115_043201 crossref_primary_10_1038_s41598_022_13630_2 crossref_primary_10_1103_PhysRevLett_116_215301 crossref_primary_10_1038_s41598_019_42312_9 crossref_primary_10_1103_PhysRevA_91_063622 crossref_primary_10_1103_PhysRevResearch_2_043050 crossref_primary_10_1103_PhysRevResearch_4_023103 crossref_primary_10_1093_nsr_nww018 crossref_primary_10_1007_s00601_015_0996_6 crossref_primary_10_1103_PhysRevA_103_063303 crossref_primary_10_1103_PhysRevA_107_063304 crossref_primary_10_1088_1361_6633_aa50e8 crossref_primary_10_7566_JPSJ_87_043002 crossref_primary_10_1103_PhysRevA_103_052805 crossref_primary_10_1103_RevModPhys_89_035006 crossref_primary_10_1038_nphys3352 crossref_primary_10_1103_PhysRevA_95_062708 crossref_primary_10_1103_PhysRevA_90_063614 crossref_primary_10_1103_PhysRevA_107_053303 crossref_primary_10_1103_PhysRevA_95_062705 crossref_primary_10_1088_1361_6455_aba9e2 crossref_primary_10_1063_1_4968030 crossref_primary_10_1088_1361_6455_acf820 crossref_primary_10_1007_s13538_020_00810_6 crossref_primary_10_1103_PhysRevA_103_022825 |
Cites_doi | 10.1103/PhysRevA.61.022721 10.1016/j.physleta.2006.11.040 10.1016/S0370-1573(02)00143-6 10.1103/PhysRevLett.108.263001 10.1016/B978-0-12-408090-4.00001-3 10.1103/PhysRevA.90.022704 10.1103/PhysRevA.86.062511 10.1103/RevModPhys.82.1225 10.1103/PhysRevLett.112.190401 10.1103/PhysRevA.48.546 10.1103/PhysRevLett.93.143201 10.1007/s00601-011-0260-7 10.1017/CBO9780511614125 10.1126/science.1182840 10.1007/s00601-012-0453-8 10.1088/0953-4075/42/4/044016 10.1103/PhysRevA.88.052701 10.1103/PhysRevA.78.043605 10.1038/nature04626 10.1103/PhysRevLett.103.163202 10.1103/PhysRevA.83.042710 10.1016/0370-2693(70)90349-7 10.1103/PhysRevLett.109.243201 10.1103/PhysRevLett.111.053202 10.1016/j.physrep.2006.03.001 10.1103/PhysRevLett.105.103203 10.1016/0029-5582(58)90372-9 10.1103/PhysRevA.68.012703 10.1038/nphys1203 10.1103/PhysRevLett.107.233201 10.1103/PhysRevA.78.030701 10.1103/PhysRevA.87.032517 10.1088/0953-4075/29/11/001 10.1103/PhysRevLett.112.105301 10.1103/PhysRevA.73.042705 10.1103/PhysRevA.82.043633 10.1016/0375-9474(73)90510-1 10.1103/PhysRevLett.100.140404 10.1103/PhysRevA.76.012720 10.1103/PhysRevLett.108.145305 10.1103/PhysRevLett.104.023201 10.1088/0953-4075/46/7/075301 10.1103/PhysRevLett.107.120401 10.1103/PhysRev.47.903 10.1103/PhysRevA.58.1728 10.1103/PhysRevA.86.052516 10.1140/epjb/e2012-30841-3 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 Copyright Nature Publishing Group Oct 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: Copyright Nature Publishing Group Oct 2014 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/nphys3071 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest Science Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 773 |
ExternalDocumentID | 3581755711 10_1038_nphys3071 |
Genre | Feature |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c494t-38c8b48c4a41808c392514fa816001fb1cf258c84916265cd897a4f44f0607ef3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Thu Jul 10 20:54:34 EDT 2025 Sat Aug 23 13:14:17 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Tue Jul 01 00:25:36 EDT 2025 Fri Feb 21 02:38:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-38c8b48c4a41808c392514fa816001fb1cf258c84916265cd897a4f44f0607ef3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1651914582 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1669892116 proquest_journals_1651914582 crossref_citationtrail_10_1038_nphys3071 crossref_primary_10_1038_nphys3071 springer_journals_10_1038_nphys3071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-10-01 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: 2014-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | WangYD’IncaoJ PGreeneC HUniversal three-body physics for fermionic dipolesPhys. Rev. Lett.20111072332012011PhRvL.107w3201W10.1103/PhysRevLett.107.233201 KraemerTEvidence for Efimov quantum states in an ultracold gas of caesium atomsNature20064403153182006Natur.440..315K10.1038/nature04626 Zenesini, A. et al. Resonant atom-dimer collisions in cesium: Testing universality at positive scattering lengths. Preprint at http://arxiv.org/abs/1406.3443 (2014). GogolinA OMoraCEggerRAnalytical solution of the bosonic three-body problemPhys. Rev. Lett.20081001404042008PhRvL.100n0404G241082410.1103/PhysRevLett.100.140404 GribakinG FFlambaumV VCalculation of the scattering length in atomic collisions using the semiclassical approximationPhys. Rev. A1993485465531993PhRvA..48..546G10.1103/PhysRevA.48.546 MassignanPStoofH TEfimov states near a Feshbach resonancePhys. Rev. A2008780307012008PhRvA..78c0701M10.1103/PhysRevA.78.030701 WangYDIncaoJ PEsryB DUltracold few-body systemsAdv. At. Mol. Opt. Phys.20136211152013AAMOP..62....1W10.1016/B978-0-12-408090-4.00001-3 LeeM DKöhlerTJulienneP SExcited Thomas–Efimov levels in ultracold gasesPhys. Rev. A2007760127202007PhRvA..76a2720L10.1103/PhysRevA.76.012720 Wang, Y. Universal Efimov Physics in Three- and Four-Body Collisions PhD thesis, Kansas State Univ. (2010). PollackS EDriesDHuletR GUniversality in three- and four-body bound states of ultracold atomsScience2009326168316862009Sci...326.1683P10.1126/science.1182840 HuangBSidorenkovL AGrimmRHutsonJ MObservation of the second triatomic resonance in Efimov’s scenarioPhys. Rev. Lett.20141121904012014PhRvL.112s0401H10.1103/PhysRevLett.112.190401 BraatenEHammerH-WKangDPlatterLThree-body recombination of identical bosons with a large positive scattering length at nonzero temperaturePhys. Rev. A2008780436052008PhRvA..78d3605B10.1103/PhysRevA.78.043605 WangJD’IncaoJ PWangYGreeneC HUniversal three-body recombination via resonant d-wave interactionsPhys. Rev. A2012860625112012PhRvA..86f2511W10.1103/PhysRevA.86.062511 WangYWangJD’IncaoJ PGreeneC HUniversal three-body parameter in heteronuclear atomic systemsPhys. Rev. Lett.20121092432012012PhRvL.109x3201W10.1103/PhysRevLett.109.243201 EfimovVEnergy levels of three resonantly interacting particlesNucl. Phys. A19732101571881973NuPhA.210..157E10.1016/0375-9474(73)90510-1 BerningerMUniversality of the three-body parameter for Efimov states in ultracold cesiumPhys. Rev. Lett.20111071204012011PhRvL.107l0401B10.1103/PhysRevLett.107.120401 NygaardNSchneiderBIJuliennePSTwo-channel R-matrix analysis of magnetic-field-induced Feshbach resonancesPhys. Rev. A2006730427052006PhRvA..73d2705N10.1103/PhysRevA.73.042705 D’IncaoJ PGreeneC HEsryB DThe short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gasesJ. Phys. B2009420440162009JPhB...42d4016D10.1088/0953-4075/42/4/044016 MiesFHTiesingaEJuliennePSManipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fieldsPhys. Rev. A2000610227212000PhRvA..61b2721M10.1103/PhysRevA.61.022721 BerningerMFeshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fieldsPhys. Rev. A2013870325172013PhRvA..87c2517B10.1103/PhysRevA.87.032517 PetrovD SThree-boson problem near a narrow Feshbach resonancePhys. Rev. Lett.2004931432012004PhRvL..93n3201P10.1103/PhysRevLett.93.143201 KnoopSObservation of an Efimov-like trimer resonance in ultracold atom-dimer scatteringNature Phys.200952272302009NatPh...5..227K10.1038/nphys1203 TolstikhinO IWatanabeSMatsuzawaM‘Slow’ variable discretization: A novel approach for Hamiltonians allowing adiabatic separation of variablesJ. Phys. B199629L389L3951996JPhB...29L.389T10.1088/0953-4075/29/11/001 BraatenEHammerH WUniversality in few-body systems with large scattering lengthPhys. Rep.20064282593902006PhR...428..259B222143210.1016/j.physrep.2006.03.001 JachymskiKJulienneP SAnalytical model of overlapping Feshbach resonancesPhys. Rev. A2013880527012013PhRvA..88e2701J10.1103/PhysRevA.88.052701 FerlainoFEfimov resonances in ultracold quantum gasesFew-Body Syst.2011511131332011FBS....51..113F10.1007/s00601-011-0260-7 WildR JMakotynPPinoJ MCornellE AJinD SMeasurements of Tan’s contact in an atomic Bose–Einstein condensatePhys. Rev. Lett.20121081453052012PhRvL.108n5305W10.1103/PhysRevLett.108.145305 SantraRCederbaumL SNon-Hermitian electronic theory and applications to clustersPhys. Rep.200236811172002PhR...368....1S10.1016/S0370-1573(02)00143-6 GrossNShotanZKokkelmansSKhaykovichLNuclear-spinindependent short-range three-body physics in ultracold atomsPhys. Rev. Lett.20101051032032010PhRvL.105j3203G10.1103/PhysRevLett.105.103203 Jona-LasinioMPricoupenkoLThree resonant ultracold bosons: Off-resonance effectsPhys. Rev. Lett.20101040232012010PhRvL.104b3201J10.1103/PhysRevLett.104.023201 WangJD’IncaoJ PEsryB DGreeneC HOrigin of the three-body parameter universality in Efimov physicsPhys. Rev. Lett.20121082630012012PhRvL.108z3001W10.1103/PhysRevLett.108.263001 KokooulineVGreeneC HUnified theoretical treatment of dissociative recombination of D3h triatomic ions: Application to H3+ and D3+Phys. Rev. A2003680127032003PhRvA..68a2703K10.1103/PhysRevA.68.012703 PricoupenkoLCrossover in the Efimov spectrumPhys. Rev. A2010820436332010PhRvA..82d3633P10.1103/PhysRevA.82.043633 DelvesLTertiary and general-order collisionsNucl. Phys.1959939139910.1016/0029-5582(58)90372-9 EfimovVEnergy levels arising from resonant two-body forces in a three-body systemPhys. Lett. B1970335635641970PhLB...33..563E10.1016/0370-2693(70)90349-7 YamashitaMFredericoTTomioLThree-boson recombination at ultralow temperaturesPhys. Lett. A20073634684722007PhLA..363..468Y10.1016/j.physleta.2006.11.040 GaoBSolutions of the Schrödinger equation for an attractive 1/r6 potentialPhys. Rev. A199858172817341998PhRvA..58.1728G10.1103/PhysRevA.58.1728 SchmidtRRathSZwergerWEfimov physics beyond universalityEuro. Phys. J. B2012851610.1140/epjb/e2012-30841-3 ThomasL HThe interaction between a neutron and a proton and the structure of H3Phys. Rev.1935479039091935PhRv...47..903T10.1103/PhysRev.47.903 LevineR DMolecular Reaction Dynamics200510.1017/CBO9780511614125 Chin, C. Universal scaling of Efimov resonance positions in cold atom systems. Preprint at http://arxiv.org/abs/1111.1484 (2011). NaidonPEndoSUedaMMicroscopic origin and universality classes of the Efimov three-body parameterPhys. Rev. Lett.20141121053012014PhRvL.112j5301N10.1103/PhysRevLett.112.105301 ZinnerNEfimov trimers near the zero-crossing of a Feshbach resonanceFew-Body Syst.2013545976032013FBS....54..597Z10.1007/s00601-012-0453-8 Naidon, P., Endo, S. & Ueda, M. Physical origin of the universal three-body parameter in atomic Efimov physics. Preprint at http://arxiv.org/abs/1208.3912 (2012). GrossNShotanZKokkelmansSKhaykovichLObservation of universality in ultracold 7Li three-body recombinationPhys. Rev. Lett.20091031632022009PhRvL.103p3202G10.1103/PhysRevLett.103.163202 SørensenPFedorovDJensenAZinnerN TEfimov physics and the three-body parameter within a two-channel frameworkPhys. Rev. A2012860525162012PhRvA..86e2516S10.1103/PhysRevA.86.052516 SørensenP KFedorovDJensenAZinnerN TFinite-range effects in energies and recombination rates of three identical bosonsJ. Phys. B2013460753012013JPhB...46g5301S10.1088/0953-4075/46/7/075301 RoySTest of the universality of the three-body Efimov parameter at narrow Feshbach resonancesPhys. Rev. Lett.20131110532022013PhRvL.111e3202R10.1103/PhysRevLett.111.053202 WangYD’IncaoJ PEsryB DUltracold three-body collisions near narrow Feshbach resonancesPhys. Rev. A2011830427102011PhRvA..83d2710W10.1103/PhysRevA.83.042710 ChinCGrimmRJuliennePTiesingaEFeshbach resonances in ultracold gasesRev. Mod. Phys.201082122512862010RvMP...82.1225C10.1103/RevModPhys.82.1225 M Jona-Lasinio (BFnphys3071_CR18) 2010; 104 FH Mies (BFnphys3071_CR28) 2000; 61 S Knoop (BFnphys3071_CR15) 2009; 5 L Delves (BFnphys3071_CR12) 1959; 9 Y Wang (BFnphys3071_CR46) 2011; 107 V Kokoouline (BFnphys3071_CR49) 2003; 68 Y Wang (BFnphys3071_CR10) 2013; 62 L H Thomas (BFnphys3071_CR14) 1935; 47 D S Petrov (BFnphys3071_CR42) 2004; 93 P Sørensen (BFnphys3071_CR20) 2012; 86 N Zinner (BFnphys3071_CR22) 2013; 54 O I Tolstikhin (BFnphys3071_CR48) 1996; 29 S Roy (BFnphys3071_CR16) 2013; 111 R J Wild (BFnphys3071_CR8) 2012; 108 J P D’Incao (BFnphys3071_CR38) 2009; 42 N Gross (BFnphys3071_CR7) 2010; 105 V Efimov (BFnphys3071_CR11) 1973; 210 E Braaten (BFnphys3071_CR36) 2008; 78 A O Gogolin (BFnphys3071_CR43) 2008; 100 J Wang (BFnphys3071_CR39) 2012; 86 L Pricoupenko (BFnphys3071_CR19) 2010; 82 M D Lee (BFnphys3071_CR37) 2007; 76 P Naidon (BFnphys3071_CR27) 2014; 112 J Wang (BFnphys3071_CR25) 2012; 108 P Massignan (BFnphys3071_CR17) 2008; 78 R Santra (BFnphys3071_CR50) 2002; 368 BFnphys3071_CR23 BFnphys3071_CR26 Y Wang (BFnphys3071_CR44) 2011; 83 N Nygaard (BFnphys3071_CR29) 2006; 73 V Efimov (BFnphys3071_CR13) 1970; 33 M Berninger (BFnphys3071_CR34) 2013; 87 M Yamashita (BFnphys3071_CR35) 2007; 363 S E Pollack (BFnphys3071_CR5) 2009; 326 P K Sørensen (BFnphys3071_CR21) 2013; 46 BFnphys3071_CR31 M Berninger (BFnphys3071_CR4) 2011; 107 G F Gribakin (BFnphys3071_CR32) 1993; 48 C Chin (BFnphys3071_CR2) 2010; 82 N Gross (BFnphys3071_CR6) 2009; 103 E Braaten (BFnphys3071_CR9) 2006; 428 Y Wang (BFnphys3071_CR47) 2012; 109 R Schmidt (BFnphys3071_CR24) 2012; 85 R D Levine (BFnphys3071_CR1) 2005 B Huang (BFnphys3071_CR40) 2014; 112 F Ferlaino (BFnphys3071_CR45) 2011; 51 BFnphys3071_CR41 T Kraemer (BFnphys3071_CR3) 2006; 440 B Gao (BFnphys3071_CR33) 1998; 58 K Jachymski (BFnphys3071_CR30) 2013; 88 |
References_xml | – reference: ChinCGrimmRJuliennePTiesingaEFeshbach resonances in ultracold gasesRev. Mod. Phys.201082122512862010RvMP...82.1225C10.1103/RevModPhys.82.1225 – reference: PollackS EDriesDHuletR GUniversality in three- and four-body bound states of ultracold atomsScience2009326168316862009Sci...326.1683P10.1126/science.1182840 – reference: Chin, C. Universal scaling of Efimov resonance positions in cold atom systems. Preprint at http://arxiv.org/abs/1111.1484 (2011). – reference: LeeM DKöhlerTJulienneP SExcited Thomas–Efimov levels in ultracold gasesPhys. Rev. A2007760127202007PhRvA..76a2720L10.1103/PhysRevA.76.012720 – reference: BraatenEHammerH WUniversality in few-body systems with large scattering lengthPhys. Rep.20064282593902006PhR...428..259B222143210.1016/j.physrep.2006.03.001 – reference: WildR JMakotynPPinoJ MCornellE AJinD SMeasurements of Tan’s contact in an atomic Bose–Einstein condensatePhys. Rev. Lett.20121081453052012PhRvL.108n5305W10.1103/PhysRevLett.108.145305 – reference: EfimovVEnergy levels of three resonantly interacting particlesNucl. Phys. A19732101571881973NuPhA.210..157E10.1016/0375-9474(73)90510-1 – reference: WangJD’IncaoJ PEsryB DGreeneC HOrigin of the three-body parameter universality in Efimov physicsPhys. Rev. Lett.20121082630012012PhRvL.108z3001W10.1103/PhysRevLett.108.263001 – reference: YamashitaMFredericoTTomioLThree-boson recombination at ultralow temperaturesPhys. Lett. A20073634684722007PhLA..363..468Y10.1016/j.physleta.2006.11.040 – reference: Jona-LasinioMPricoupenkoLThree resonant ultracold bosons: Off-resonance effectsPhys. Rev. Lett.20101040232012010PhRvL.104b3201J10.1103/PhysRevLett.104.023201 – reference: ZinnerNEfimov trimers near the zero-crossing of a Feshbach resonanceFew-Body Syst.2013545976032013FBS....54..597Z10.1007/s00601-012-0453-8 – reference: KnoopSObservation of an Efimov-like trimer resonance in ultracold atom-dimer scatteringNature Phys.200952272302009NatPh...5..227K10.1038/nphys1203 – reference: GrossNShotanZKokkelmansSKhaykovichLNuclear-spinindependent short-range three-body physics in ultracold atomsPhys. Rev. Lett.20101051032032010PhRvL.105j3203G10.1103/PhysRevLett.105.103203 – reference: DelvesLTertiary and general-order collisionsNucl. Phys.1959939139910.1016/0029-5582(58)90372-9 – reference: MiesFHTiesingaEJuliennePSManipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fieldsPhys. Rev. A2000610227212000PhRvA..61b2721M10.1103/PhysRevA.61.022721 – reference: Wang, Y. Universal Efimov Physics in Three- and Four-Body Collisions PhD thesis, Kansas State Univ. (2010). – reference: WangYDIncaoJ PEsryB DUltracold few-body systemsAdv. At. Mol. Opt. Phys.20136211152013AAMOP..62....1W10.1016/B978-0-12-408090-4.00001-3 – reference: RoySTest of the universality of the three-body Efimov parameter at narrow Feshbach resonancesPhys. Rev. Lett.20131110532022013PhRvL.111e3202R10.1103/PhysRevLett.111.053202 – reference: NygaardNSchneiderBIJuliennePSTwo-channel R-matrix analysis of magnetic-field-induced Feshbach resonancesPhys. Rev. A2006730427052006PhRvA..73d2705N10.1103/PhysRevA.73.042705 – reference: PetrovD SThree-boson problem near a narrow Feshbach resonancePhys. Rev. Lett.2004931432012004PhRvL..93n3201P10.1103/PhysRevLett.93.143201 – reference: WangJD’IncaoJ PWangYGreeneC HUniversal three-body recombination via resonant d-wave interactionsPhys. Rev. A2012860625112012PhRvA..86f2511W10.1103/PhysRevA.86.062511 – reference: SørensenP KFedorovDJensenAZinnerN TFinite-range effects in energies and recombination rates of three identical bosonsJ. Phys. B2013460753012013JPhB...46g5301S10.1088/0953-4075/46/7/075301 – reference: ThomasL HThe interaction between a neutron and a proton and the structure of H3Phys. Rev.1935479039091935PhRv...47..903T10.1103/PhysRev.47.903 – reference: PricoupenkoLCrossover in the Efimov spectrumPhys. Rev. A2010820436332010PhRvA..82d3633P10.1103/PhysRevA.82.043633 – reference: MassignanPStoofH TEfimov states near a Feshbach resonancePhys. Rev. A2008780307012008PhRvA..78c0701M10.1103/PhysRevA.78.030701 – reference: NaidonPEndoSUedaMMicroscopic origin and universality classes of the Efimov three-body parameterPhys. Rev. Lett.20141121053012014PhRvL.112j5301N10.1103/PhysRevLett.112.105301 – reference: TolstikhinO IWatanabeSMatsuzawaM‘Slow’ variable discretization: A novel approach for Hamiltonians allowing adiabatic separation of variablesJ. Phys. B199629L389L3951996JPhB...29L.389T10.1088/0953-4075/29/11/001 – reference: EfimovVEnergy levels arising from resonant two-body forces in a three-body systemPhys. Lett. B1970335635641970PhLB...33..563E10.1016/0370-2693(70)90349-7 – reference: SantraRCederbaumL SNon-Hermitian electronic theory and applications to clustersPhys. Rep.200236811172002PhR...368....1S10.1016/S0370-1573(02)00143-6 – reference: BerningerMFeshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fieldsPhys. Rev. A2013870325172013PhRvA..87c2517B10.1103/PhysRevA.87.032517 – reference: FerlainoFEfimov resonances in ultracold quantum gasesFew-Body Syst.2011511131332011FBS....51..113F10.1007/s00601-011-0260-7 – reference: BraatenEHammerH-WKangDPlatterLThree-body recombination of identical bosons with a large positive scattering length at nonzero temperaturePhys. Rev. A2008780436052008PhRvA..78d3605B10.1103/PhysRevA.78.043605 – reference: BerningerMUniversality of the three-body parameter for Efimov states in ultracold cesiumPhys. Rev. Lett.20111071204012011PhRvL.107l0401B10.1103/PhysRevLett.107.120401 – reference: KraemerTEvidence for Efimov quantum states in an ultracold gas of caesium atomsNature20064403153182006Natur.440..315K10.1038/nature04626 – reference: SørensenPFedorovDJensenAZinnerN TEfimov physics and the three-body parameter within a two-channel frameworkPhys. Rev. A2012860525162012PhRvA..86e2516S10.1103/PhysRevA.86.052516 – reference: GribakinG FFlambaumV VCalculation of the scattering length in atomic collisions using the semiclassical approximationPhys. Rev. A1993485465531993PhRvA..48..546G10.1103/PhysRevA.48.546 – reference: WangYWangJD’IncaoJ PGreeneC HUniversal three-body parameter in heteronuclear atomic systemsPhys. Rev. Lett.20121092432012012PhRvL.109x3201W10.1103/PhysRevLett.109.243201 – reference: GogolinA OMoraCEggerRAnalytical solution of the bosonic three-body problemPhys. Rev. Lett.20081001404042008PhRvL.100n0404G241082410.1103/PhysRevLett.100.140404 – reference: SchmidtRRathSZwergerWEfimov physics beyond universalityEuro. Phys. J. B2012851610.1140/epjb/e2012-30841-3 – reference: GrossNShotanZKokkelmansSKhaykovichLObservation of universality in ultracold 7Li three-body recombinationPhys. Rev. Lett.20091031632022009PhRvL.103p3202G10.1103/PhysRevLett.103.163202 – reference: LevineR DMolecular Reaction Dynamics200510.1017/CBO9780511614125 – reference: GaoBSolutions of the Schrödinger equation for an attractive 1/r6 potentialPhys. Rev. A199858172817341998PhRvA..58.1728G10.1103/PhysRevA.58.1728 – reference: KokooulineVGreeneC HUnified theoretical treatment of dissociative recombination of D3h triatomic ions: Application to H3+ and D3+Phys. Rev. A2003680127032003PhRvA..68a2703K10.1103/PhysRevA.68.012703 – reference: Zenesini, A. et al. Resonant atom-dimer collisions in cesium: Testing universality at positive scattering lengths. Preprint at http://arxiv.org/abs/1406.3443 (2014). – reference: HuangBSidorenkovL AGrimmRHutsonJ MObservation of the second triatomic resonance in Efimov’s scenarioPhys. Rev. Lett.20141121904012014PhRvL.112s0401H10.1103/PhysRevLett.112.190401 – reference: D’IncaoJ PGreeneC HEsryB DThe short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gasesJ. Phys. B2009420440162009JPhB...42d4016D10.1088/0953-4075/42/4/044016 – reference: Naidon, P., Endo, S. & Ueda, M. Physical origin of the universal three-body parameter in atomic Efimov physics. Preprint at http://arxiv.org/abs/1208.3912 (2012). – reference: JachymskiKJulienneP SAnalytical model of overlapping Feshbach resonancesPhys. Rev. A2013880527012013PhRvA..88e2701J10.1103/PhysRevA.88.052701 – reference: WangYD’IncaoJ PEsryB DUltracold three-body collisions near narrow Feshbach resonancesPhys. Rev. A2011830427102011PhRvA..83d2710W10.1103/PhysRevA.83.042710 – reference: WangYD’IncaoJ PGreeneC HUniversal three-body physics for fermionic dipolesPhys. Rev. Lett.20111072332012011PhRvL.107w3201W10.1103/PhysRevLett.107.233201 – volume: 61 start-page: 022721 year: 2000 ident: BFnphys3071_CR28 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.61.022721 – volume: 363 start-page: 468 year: 2007 ident: BFnphys3071_CR35 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2006.11.040 – volume: 368 start-page: 1 year: 2002 ident: BFnphys3071_CR50 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(02)00143-6 – volume: 108 start-page: 263001 year: 2012 ident: BFnphys3071_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.263001 – volume: 62 start-page: 1 year: 2013 ident: BFnphys3071_CR10 publication-title: Adv. At. Mol. Opt. Phys. doi: 10.1016/B978-0-12-408090-4.00001-3 – ident: BFnphys3071_CR41 doi: 10.1103/PhysRevA.90.022704 – volume: 86 start-page: 062511 year: 2012 ident: BFnphys3071_CR39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.062511 – volume: 82 start-page: 1225 year: 2010 ident: BFnphys3071_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1225 – ident: BFnphys3071_CR31 – volume: 112 start-page: 190401 year: 2014 ident: BFnphys3071_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.190401 – volume: 48 start-page: 546 year: 1993 ident: BFnphys3071_CR32 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.48.546 – volume: 93 start-page: 143201 year: 2004 ident: BFnphys3071_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.143201 – volume: 51 start-page: 113 year: 2011 ident: BFnphys3071_CR45 publication-title: Few-Body Syst. doi: 10.1007/s00601-011-0260-7 – volume-title: Molecular Reaction Dynamics year: 2005 ident: BFnphys3071_CR1 doi: 10.1017/CBO9780511614125 – volume: 326 start-page: 1683 year: 2009 ident: BFnphys3071_CR5 publication-title: Science doi: 10.1126/science.1182840 – volume: 54 start-page: 597 year: 2013 ident: BFnphys3071_CR22 publication-title: Few-Body Syst. doi: 10.1007/s00601-012-0453-8 – volume: 42 start-page: 044016 year: 2009 ident: BFnphys3071_CR38 publication-title: J. Phys. B doi: 10.1088/0953-4075/42/4/044016 – volume: 88 start-page: 052701 year: 2013 ident: BFnphys3071_CR30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.052701 – volume: 78 start-page: 043605 year: 2008 ident: BFnphys3071_CR36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.043605 – volume: 440 start-page: 315 year: 2006 ident: BFnphys3071_CR3 publication-title: Nature doi: 10.1038/nature04626 – volume: 103 start-page: 163202 year: 2009 ident: BFnphys3071_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.163202 – volume: 83 start-page: 042710 year: 2011 ident: BFnphys3071_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.042710 – volume: 33 start-page: 563 year: 1970 ident: BFnphys3071_CR13 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(70)90349-7 – volume: 109 start-page: 243201 year: 2012 ident: BFnphys3071_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.243201 – volume: 111 start-page: 053202 year: 2013 ident: BFnphys3071_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.053202 – volume: 428 start-page: 259 year: 2006 ident: BFnphys3071_CR9 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.03.001 – ident: BFnphys3071_CR26 – volume: 105 start-page: 103203 year: 2010 ident: BFnphys3071_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.103203 – volume: 9 start-page: 391 year: 1959 ident: BFnphys3071_CR12 publication-title: Nucl. Phys. doi: 10.1016/0029-5582(58)90372-9 – volume: 68 start-page: 012703 year: 2003 ident: BFnphys3071_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.68.012703 – ident: BFnphys3071_CR23 – volume: 5 start-page: 227 year: 2009 ident: BFnphys3071_CR15 publication-title: Nature Phys. doi: 10.1038/nphys1203 – volume: 107 start-page: 233201 year: 2011 ident: BFnphys3071_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.233201 – volume: 78 start-page: 030701 year: 2008 ident: BFnphys3071_CR17 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.030701 – volume: 87 start-page: 032517 year: 2013 ident: BFnphys3071_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.032517 – volume: 29 start-page: L389 year: 1996 ident: BFnphys3071_CR48 publication-title: J. Phys. B doi: 10.1088/0953-4075/29/11/001 – volume: 112 start-page: 105301 year: 2014 ident: BFnphys3071_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.105301 – volume: 73 start-page: 042705 year: 2006 ident: BFnphys3071_CR29 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.73.042705 – volume: 82 start-page: 043633 year: 2010 ident: BFnphys3071_CR19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.043633 – volume: 210 start-page: 157 year: 1973 ident: BFnphys3071_CR11 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(73)90510-1 – volume: 100 start-page: 140404 year: 2008 ident: BFnphys3071_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.140404 – volume: 76 start-page: 012720 year: 2007 ident: BFnphys3071_CR37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.012720 – volume: 108 start-page: 145305 year: 2012 ident: BFnphys3071_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.145305 – volume: 104 start-page: 023201 year: 2010 ident: BFnphys3071_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.023201 – volume: 46 start-page: 075301 year: 2013 ident: BFnphys3071_CR21 publication-title: J. Phys. B doi: 10.1088/0953-4075/46/7/075301 – volume: 107 start-page: 120401 year: 2011 ident: BFnphys3071_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.120401 – volume: 47 start-page: 903 year: 1935 ident: BFnphys3071_CR14 publication-title: Phys. Rev. doi: 10.1103/PhysRev.47.903 – volume: 58 start-page: 1728 year: 1998 ident: BFnphys3071_CR33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.58.1728 – volume: 86 start-page: 052516 year: 2012 ident: BFnphys3071_CR20 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.86.052516 – volume: 85 start-page: 1 year: 2012 ident: BFnphys3071_CR24 publication-title: Euro. Phys. J. B doi: 10.1140/epjb/e2012-30841-3 |
SSID | ssj0042613 |
Score | 2.444659 |
Snippet | Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 768 |
SubjectTerms | 119/118 639/766/36/1125 Adjustable Atomic Atomic interactions Atoms & subatomic particles Classical and Continuum Physics Cold atoms Collisions Complex Systems Condensed Matter Physics Construction Experiments Mathematical and Computational Physics Mathematical models Molecular Optical and Plasma Physics Particle physics Physics Resonance Scattering Schrodinger equation Schroedinger equation Strength Theoretical |
Title | Universal van der Waals physics for three cold atoms near Feshbach resonances |
URI | https://link.springer.com/article/10.1038/nphys3071 https://www.proquest.com/docview/1651914582 https://www.proquest.com/docview/1669892116 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPnF1lfg4eAm2TZqmJ1HZVQRFRNFbSdIED9pVu_5_J226PhDPHRqYmcx888gMwAETZRyVTFGV5RHluXRUy4xT5pQUWjj0WU2X77W4uOeXj-ljSLjVoa2ys4mNoS7HxufIj2KR-lFkqUyOX9-o3xrlq6thhcYszKEJlrIHc6fD65vbzhb7-IC1TyJTmvCMdbOFmDyqfOoANTz-6ZG-YOavymjjcEZLsBiQIjlpRbsMM7ZagfmmY9PUq3AVWiqQBMEwKe07eVCoS6TNVdQE0SiZoKQsQVmXBIPrl5pUqNhkZOsnrcwTwVB77Adu2HoN7kfDu7MLGnYjUMNzPqFMGqm5NFzxWEbSIMxB6IMMjj2CcTo2LkmRhiP8S4SfAJBnijvOXSSizDq2Dr1qXNkNIJHyqVCdapYLHpd4JV1shTbCpUwnSvbhsONPYcLgcL-_4rloCthMFlNW9mFvSvraTsv4i2jQMbkIF6YuvsTbh93pZ1R1X79QlR1_eBq_7RIjVtGH_U44337x-6DN_w_aggVEP7ztzBtAb_L-YbcRYUz0DszK0flOUKZPfjjRWg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4tVAguCAqI5VHc0kq9WCSx4zgHVFUty1J2OYHgFmzHFgfIAlmE-FP8RsZ57FJU9cY5Izsaj2e-Gc8D4CsTeRjkTFGVpAHlqXRUy4RT5pQUWji0WVWW74non_E_F_FFB57bWhifVtnqxEpR5yPjY-R7oYh9K7JYRj9u76ifGuVfV9sRGrVYHNunR3TZyv2j33i-36Kod3D6q0-bqQLU8JSPKZNGai4NVzyUgTQIEBA04K-F3vY7HRoXxUjDEThFwtfOp4nijnMXiCCxjuG6M_CBM7TkvjK9d9hqfu-NsLoAM6YRT1jbyYjJvcIHKvA-hX_bvymoffMOW5m33hIsNriU_KwFaRk6tvgIc1V-qClXYNgkcCAJQm-S23tyrlBySR0ZKQliXzJGubAEJSsn6MrflKRAfpGeLa-0MlcEHfuRb-9hy1U4exeercFsMSrsOpBA-cCrjjVLBQ9zVAAutEIb4WKmIyW78L3lT2aaNuV-WsZ1Vj2XM5lNWNmFLxPS27o3x7-ItlomZ831LLOpMHXh8-QzXiz_WqIKO3rwNH62JvrHogu77eG8WuLtRhv_32gH5vunw0E2ODo53oQFxF28zgncgtnx_YPdRmwz1p8qgSJw-d4S_AJDwAoJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRVS8VBytupTDHJV4sTaJHcd5qKpyrDhXCIHKW2o7tniALCWLKv4av67jHMshxBvPGdnR-LPnm_F4BmCDiTwMcqaoStKA8lQ6qmXCKXNKCi0c2qwqy3cg9s75wUV8MQEP7VsYn1bZnonVQZ0PjY-R90IR-1JksYx6rkmLONnp_7z5S30HKX_T2rbTqCFyaO__oftW_tjfwbX-HkX93bPtPdp0GKCGp3xEmTRSc2m44qEMpEGygAQCfzP0PMDp0LgoRhmOJCoS_h19mijuOHeBCBLrGI77ASYT7xV1YHJrd3By2toB75uw-jlmTCOesLauEZO9woctcHeFz63hI8V9cStbGbv-DHxqWCr5VcNqFiZsMQdTVbaoKefhuEnnQBEk4iS3t-S3QhyTOk5SEmTCZIQosQRxlhN07K9LUqDGSN-Wl1qZS4Ju_tAX-7DlZzh_F619gU4xLOxXIIHyYVgda5YKHuZ4HLjQCm2Ei5mOlOzCZqufzDRFy33vjKusujxnMhursgtrY9GbulLHa0KLrZKzZrOW2SO0urA6_ozbzN-dqMIO77yM77SJ3rLownq7OE-GeDnRwtsTrcBHRG92tD84_AbTSMJ4nSC4CJ3R7Z1dQqIz0ssNogj8eW8Q_wcH4w-b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+van+der+Waals+physics+for+three+cold+atoms+near+Feshbach+resonances&rft.jtitle=Nature+physics&rft.au=Wang%2C+Yujun&rft.au=Julienne%2C+Paul+S&rft.date=2014-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=10&rft.issue=10&rft.spage=768&rft_id=info:doi/10.1038%2Fnphys3071&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3581755711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |