Universal van der Waals physics for three cold atoms near Feshbach resonances

Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Colli...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 10; no. 10; pp. 768 - 773
Main Authors Wang, Yujun, Julienne, Paul S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena. A class of van der Waals universality is introduced in the collision dynamics of three identical ultracold atoms at all scattering lengths. It is insensitive to short-range chemical details and can be computed using two-body parameters only.
AbstractList Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena. A class of van der Waals universality is introduced in the collision dynamics of three identical ultracold atoms at all scattering lengths. It is insensitive to short-range chemical details and can be computed using two-body parameters only.
Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrodinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena.
Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because atomic interactions can be precisely varied in strength using magnetically tunable scattering resonances known as Feshbach resonances. Collisions near the unitarity limit, where scattering is maximum, are known to have universal aspects that are independent of short-range chemical details. Away from this limit, many quantum states are expected to be active during a three-body collision, making the collisional observables practically unpredictable. Here we predict three-body ultracold scattering rates by properly building in the pairwise van der Waals interactions plus the multi-spin properties of a tunable Feshbach resonance state characterized by known dimensionless two-body parameters. Numerically solving the Schrödinger equation then quantitatively determines three-atom collisional properties at all interaction strengths without needing adjustable parameters to fit data. Consequently, we can define a new class of van der Waals universality for cold atom three-body phenomena.
Author Julienne, Paul S.
Wang, Yujun
Author_xml – sequence: 1
  givenname: Yujun
  surname: Wang
  fullname: Wang, Yujun
  organization: Joint Quantum Institute, University of Maryland and NIST, College Park, Present address: Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
– sequence: 2
  givenname: Paul S.
  surname: Julienne
  fullname: Julienne, Paul S.
  email: psj@umd.edu
  organization: Joint Quantum Institute, University of Maryland and NIST, College Park
BookMark eNpt0MFKAzEQBuAgCrbVg28Q8KLC2sxuNps9SrEqVLxYPC5pmrhbtknNbAt9e1MqRaqnmcP3_wzTJ6fOO0PIFbB7YJkculW9xYwVcEJ6UPA8SbmE08NeZOekj7hgjKcCsh55nbpmYwKqlm6Uo3MT6IdSLdJdT6ORWh9oVwdjqPbtnKrOL5E6owIdG6xnStc0GPROOW3wgpzZGDaXP3NApuPH99FzMnl7ehk9TBLNS94lmdRyxqXmioNkUmdlmgO3SoJgDOwMtE3zaHgJIhW5nsuyUNxybplghbHZgNzse1fBf60NdtWyQW3aVjnj11iBEKUsUwAR6fURXfh1cPG6qHIogecyjWq4Vzp4xGBspZtOdY13XVBNWwGrdu-tDu-NidujxCo0SxW2_9q7vcVo3KcJv274g78BxsuLHg
CitedBy_id crossref_primary_10_1103_PhysRevA_90_052514
crossref_primary_10_1103_PhysRevLett_118_163401
crossref_primary_10_21468_SciPostPhysProc_3_049
crossref_primary_10_1103_PhysRevA_108_063311
crossref_primary_10_1103_PhysRevA_93_022707
crossref_primary_10_1103_PhysRevLett_117_163201
crossref_primary_10_1103_PhysRevA_92_022709
crossref_primary_10_1103_PhysRevA_99_022708
crossref_primary_10_1103_PhysRevA_107_023301
crossref_primary_10_1103_PhysRevA_107_053319
crossref_primary_10_1103_PhysRevX_8_011024
crossref_primary_10_1007_s00601_024_01943_z
crossref_primary_10_1126_science_aan8721
crossref_primary_10_1103_PhysRevA_90_043636
crossref_primary_10_1088_1361_6455_aaa116
crossref_primary_10_1103_PhysRevA_94_032705
crossref_primary_10_3390_atoms9040110
crossref_primary_10_1088_1361_6455_ab66d4
crossref_primary_10_1103_PhysRevA_95_032707
crossref_primary_10_1038_s41467_024_46353_1
crossref_primary_10_1007_s00601_015_1021_9
crossref_primary_10_1103_PhysRevA_93_043616
crossref_primary_10_5802_crphys_181
crossref_primary_10_1039_D0CP00960A
crossref_primary_10_1088_1367_2630_17_5_055009
crossref_primary_10_1103_PhysRevLett_120_023401
crossref_primary_10_1103_PhysRevA_98_052706
crossref_primary_10_1007_s00601_024_01954_w
crossref_primary_10_1103_PhysRevLett_117_153201
crossref_primary_10_1103_PhysRevLett_123_233402
crossref_primary_10_1103_PhysRevA_108_062805
crossref_primary_10_1103_PhysRevA_92_020702
crossref_primary_10_1103_PhysRevA_97_033623
crossref_primary_10_1103_PhysRevLett_128_153401
crossref_primary_10_1103_PhysRevA_111_033302
crossref_primary_10_1103_PhysRevLett_115_043201
crossref_primary_10_1038_s41598_022_13630_2
crossref_primary_10_1103_PhysRevLett_116_215301
crossref_primary_10_1038_s41598_019_42312_9
crossref_primary_10_1103_PhysRevA_91_063622
crossref_primary_10_1103_PhysRevResearch_2_043050
crossref_primary_10_1103_PhysRevResearch_4_023103
crossref_primary_10_1093_nsr_nww018
crossref_primary_10_1007_s00601_015_0996_6
crossref_primary_10_1103_PhysRevA_103_063303
crossref_primary_10_1103_PhysRevA_107_063304
crossref_primary_10_1088_1361_6633_aa50e8
crossref_primary_10_7566_JPSJ_87_043002
crossref_primary_10_1103_PhysRevA_103_052805
crossref_primary_10_1103_RevModPhys_89_035006
crossref_primary_10_1038_nphys3352
crossref_primary_10_1103_PhysRevA_95_062708
crossref_primary_10_1103_PhysRevA_90_063614
crossref_primary_10_1103_PhysRevA_107_053303
crossref_primary_10_1103_PhysRevA_95_062705
crossref_primary_10_1088_1361_6455_aba9e2
crossref_primary_10_1063_1_4968030
crossref_primary_10_1088_1361_6455_acf820
crossref_primary_10_1007_s13538_020_00810_6
crossref_primary_10_1103_PhysRevA_103_022825
Cites_doi 10.1103/PhysRevA.61.022721
10.1016/j.physleta.2006.11.040
10.1016/S0370-1573(02)00143-6
10.1103/PhysRevLett.108.263001
10.1016/B978-0-12-408090-4.00001-3
10.1103/PhysRevA.90.022704
10.1103/PhysRevA.86.062511
10.1103/RevModPhys.82.1225
10.1103/PhysRevLett.112.190401
10.1103/PhysRevA.48.546
10.1103/PhysRevLett.93.143201
10.1007/s00601-011-0260-7
10.1017/CBO9780511614125
10.1126/science.1182840
10.1007/s00601-012-0453-8
10.1088/0953-4075/42/4/044016
10.1103/PhysRevA.88.052701
10.1103/PhysRevA.78.043605
10.1038/nature04626
10.1103/PhysRevLett.103.163202
10.1103/PhysRevA.83.042710
10.1016/0370-2693(70)90349-7
10.1103/PhysRevLett.109.243201
10.1103/PhysRevLett.111.053202
10.1016/j.physrep.2006.03.001
10.1103/PhysRevLett.105.103203
10.1016/0029-5582(58)90372-9
10.1103/PhysRevA.68.012703
10.1038/nphys1203
10.1103/PhysRevLett.107.233201
10.1103/PhysRevA.78.030701
10.1103/PhysRevA.87.032517
10.1088/0953-4075/29/11/001
10.1103/PhysRevLett.112.105301
10.1103/PhysRevA.73.042705
10.1103/PhysRevA.82.043633
10.1016/0375-9474(73)90510-1
10.1103/PhysRevLett.100.140404
10.1103/PhysRevA.76.012720
10.1103/PhysRevLett.108.145305
10.1103/PhysRevLett.104.023201
10.1088/0953-4075/46/7/075301
10.1103/PhysRevLett.107.120401
10.1103/PhysRev.47.903
10.1103/PhysRevA.58.1728
10.1103/PhysRevA.86.052516
10.1140/epjb/e2012-30841-3
ContentType Journal Article
Copyright Springer Nature Limited 2014
Copyright Nature Publishing Group Oct 2014
Copyright_xml – notice: Springer Nature Limited 2014
– notice: Copyright Nature Publishing Group Oct 2014
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/nphys3071
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest Science Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Technology Research Database
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 773
ExternalDocumentID 3581755711
10_1038_nphys3071
Genre Feature
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c494t-38c8b48c4a41808c392514fa816001fb1cf258c84916265cd897a4f44f0607ef3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Thu Jul 10 20:54:34 EDT 2025
Sat Aug 23 13:14:17 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Tue Jul 01 00:25:36 EDT 2025
Fri Feb 21 02:38:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-38c8b48c4a41808c392514fa816001fb1cf258c84916265cd897a4f44f0607ef3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1651914582
PQPubID 27545
PageCount 6
ParticipantIDs proquest_miscellaneous_1669892116
proquest_journals_1651914582
crossref_citationtrail_10_1038_nphys3071
crossref_primary_10_1038_nphys3071
springer_journals_10_1038_nphys3071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References WangYD’IncaoJ PGreeneC HUniversal three-body physics for fermionic dipolesPhys. Rev. Lett.20111072332012011PhRvL.107w3201W10.1103/PhysRevLett.107.233201
KraemerTEvidence for Efimov quantum states in an ultracold gas of caesium atomsNature20064403153182006Natur.440..315K10.1038/nature04626
Zenesini, A. et al. Resonant atom-dimer collisions in cesium: Testing universality at positive scattering lengths. Preprint at http://arxiv.org/abs/1406.3443 (2014).
GogolinA OMoraCEggerRAnalytical solution of the bosonic three-body problemPhys. Rev. Lett.20081001404042008PhRvL.100n0404G241082410.1103/PhysRevLett.100.140404
GribakinG FFlambaumV VCalculation of the scattering length in atomic collisions using the semiclassical approximationPhys. Rev. A1993485465531993PhRvA..48..546G10.1103/PhysRevA.48.546
MassignanPStoofH TEfimov states near a Feshbach resonancePhys. Rev. A2008780307012008PhRvA..78c0701M10.1103/PhysRevA.78.030701
WangYDIncaoJ PEsryB DUltracold few-body systemsAdv. At. Mol. Opt. Phys.20136211152013AAMOP..62....1W10.1016/B978-0-12-408090-4.00001-3
LeeM DKöhlerTJulienneP SExcited Thomas–Efimov levels in ultracold gasesPhys. Rev. A2007760127202007PhRvA..76a2720L10.1103/PhysRevA.76.012720
Wang, Y. Universal Efimov Physics in Three- and Four-Body Collisions PhD thesis, Kansas State Univ. (2010).
PollackS EDriesDHuletR GUniversality in three- and four-body bound states of ultracold atomsScience2009326168316862009Sci...326.1683P10.1126/science.1182840
HuangBSidorenkovL AGrimmRHutsonJ MObservation of the second triatomic resonance in Efimov’s scenarioPhys. Rev. Lett.20141121904012014PhRvL.112s0401H10.1103/PhysRevLett.112.190401
BraatenEHammerH-WKangDPlatterLThree-body recombination of identical bosons with a large positive scattering length at nonzero temperaturePhys. Rev. A2008780436052008PhRvA..78d3605B10.1103/PhysRevA.78.043605
WangJD’IncaoJ PWangYGreeneC HUniversal three-body recombination via resonant d-wave interactionsPhys. Rev. A2012860625112012PhRvA..86f2511W10.1103/PhysRevA.86.062511
WangYWangJD’IncaoJ PGreeneC HUniversal three-body parameter in heteronuclear atomic systemsPhys. Rev. Lett.20121092432012012PhRvL.109x3201W10.1103/PhysRevLett.109.243201
EfimovVEnergy levels of three resonantly interacting particlesNucl. Phys. A19732101571881973NuPhA.210..157E10.1016/0375-9474(73)90510-1
BerningerMUniversality of the three-body parameter for Efimov states in ultracold cesiumPhys. Rev. Lett.20111071204012011PhRvL.107l0401B10.1103/PhysRevLett.107.120401
NygaardNSchneiderBIJuliennePSTwo-channel R-matrix analysis of magnetic-field-induced Feshbach resonancesPhys. Rev. A2006730427052006PhRvA..73d2705N10.1103/PhysRevA.73.042705
D’IncaoJ PGreeneC HEsryB DThe short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gasesJ. Phys. B2009420440162009JPhB...42d4016D10.1088/0953-4075/42/4/044016
MiesFHTiesingaEJuliennePSManipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fieldsPhys. Rev. A2000610227212000PhRvA..61b2721M10.1103/PhysRevA.61.022721
BerningerMFeshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fieldsPhys. Rev. A2013870325172013PhRvA..87c2517B10.1103/PhysRevA.87.032517
PetrovD SThree-boson problem near a narrow Feshbach resonancePhys. Rev. Lett.2004931432012004PhRvL..93n3201P10.1103/PhysRevLett.93.143201
KnoopSObservation of an Efimov-like trimer resonance in ultracold atom-dimer scatteringNature Phys.200952272302009NatPh...5..227K10.1038/nphys1203
TolstikhinO IWatanabeSMatsuzawaM‘Slow’ variable discretization: A novel approach for Hamiltonians allowing adiabatic separation of variablesJ. Phys. B199629L389L3951996JPhB...29L.389T10.1088/0953-4075/29/11/001
BraatenEHammerH WUniversality in few-body systems with large scattering lengthPhys. Rep.20064282593902006PhR...428..259B222143210.1016/j.physrep.2006.03.001
JachymskiKJulienneP SAnalytical model of overlapping Feshbach resonancesPhys. Rev. A2013880527012013PhRvA..88e2701J10.1103/PhysRevA.88.052701
FerlainoFEfimov resonances in ultracold quantum gasesFew-Body Syst.2011511131332011FBS....51..113F10.1007/s00601-011-0260-7
WildR JMakotynPPinoJ MCornellE AJinD SMeasurements of Tan’s contact in an atomic Bose–Einstein condensatePhys. Rev. Lett.20121081453052012PhRvL.108n5305W10.1103/PhysRevLett.108.145305
SantraRCederbaumL SNon-Hermitian electronic theory and applications to clustersPhys. Rep.200236811172002PhR...368....1S10.1016/S0370-1573(02)00143-6
GrossNShotanZKokkelmansSKhaykovichLNuclear-spinindependent short-range three-body physics in ultracold atomsPhys. Rev. Lett.20101051032032010PhRvL.105j3203G10.1103/PhysRevLett.105.103203
Jona-LasinioMPricoupenkoLThree resonant ultracold bosons: Off-resonance effectsPhys. Rev. Lett.20101040232012010PhRvL.104b3201J10.1103/PhysRevLett.104.023201
WangJD’IncaoJ PEsryB DGreeneC HOrigin of the three-body parameter universality in Efimov physicsPhys. Rev. Lett.20121082630012012PhRvL.108z3001W10.1103/PhysRevLett.108.263001
KokooulineVGreeneC HUnified theoretical treatment of dissociative recombination of D3h triatomic ions: Application to H3+ and D3+Phys. Rev. A2003680127032003PhRvA..68a2703K10.1103/PhysRevA.68.012703
PricoupenkoLCrossover in the Efimov spectrumPhys. Rev. A2010820436332010PhRvA..82d3633P10.1103/PhysRevA.82.043633
DelvesLTertiary and general-order collisionsNucl. Phys.1959939139910.1016/0029-5582(58)90372-9
EfimovVEnergy levels arising from resonant two-body forces in a three-body systemPhys. Lett. B1970335635641970PhLB...33..563E10.1016/0370-2693(70)90349-7
YamashitaMFredericoTTomioLThree-boson recombination at ultralow temperaturesPhys. Lett. A20073634684722007PhLA..363..468Y10.1016/j.physleta.2006.11.040
GaoBSolutions of the Schrödinger equation for an attractive 1/r6 potentialPhys. Rev. A199858172817341998PhRvA..58.1728G10.1103/PhysRevA.58.1728
SchmidtRRathSZwergerWEfimov physics beyond universalityEuro. Phys. J. B2012851610.1140/epjb/e2012-30841-3
ThomasL HThe interaction between a neutron and a proton and the structure of H3Phys. Rev.1935479039091935PhRv...47..903T10.1103/PhysRev.47.903
LevineR DMolecular Reaction Dynamics200510.1017/CBO9780511614125
Chin, C. Universal scaling of Efimov resonance positions in cold atom systems. Preprint at http://arxiv.org/abs/1111.1484 (2011).
NaidonPEndoSUedaMMicroscopic origin and universality classes of the Efimov three-body parameterPhys. Rev. Lett.20141121053012014PhRvL.112j5301N10.1103/PhysRevLett.112.105301
ZinnerNEfimov trimers near the zero-crossing of a Feshbach resonanceFew-Body Syst.2013545976032013FBS....54..597Z10.1007/s00601-012-0453-8
Naidon, P., Endo, S. & Ueda, M. Physical origin of the universal three-body parameter in atomic Efimov physics. Preprint at http://arxiv.org/abs/1208.3912 (2012).
GrossNShotanZKokkelmansSKhaykovichLObservation of universality in ultracold 7Li three-body recombinationPhys. Rev. Lett.20091031632022009PhRvL.103p3202G10.1103/PhysRevLett.103.163202
SørensenPFedorovDJensenAZinnerN TEfimov physics and the three-body parameter within a two-channel frameworkPhys. Rev. A2012860525162012PhRvA..86e2516S10.1103/PhysRevA.86.052516
SørensenP KFedorovDJensenAZinnerN TFinite-range effects in energies and recombination rates of three identical bosonsJ. Phys. B2013460753012013JPhB...46g5301S10.1088/0953-4075/46/7/075301
RoySTest of the universality of the three-body Efimov parameter at narrow Feshbach resonancesPhys. Rev. Lett.20131110532022013PhRvL.111e3202R10.1103/PhysRevLett.111.053202
WangYD’IncaoJ PEsryB DUltracold three-body collisions near narrow Feshbach resonancesPhys. Rev. A2011830427102011PhRvA..83d2710W10.1103/PhysRevA.83.042710
ChinCGrimmRJuliennePTiesingaEFeshbach resonances in ultracold gasesRev. Mod. Phys.201082122512862010RvMP...82.1225C10.1103/RevModPhys.82.1225
M Jona-Lasinio (BFnphys3071_CR18) 2010; 104
FH Mies (BFnphys3071_CR28) 2000; 61
S Knoop (BFnphys3071_CR15) 2009; 5
L Delves (BFnphys3071_CR12) 1959; 9
Y Wang (BFnphys3071_CR46) 2011; 107
V Kokoouline (BFnphys3071_CR49) 2003; 68
Y Wang (BFnphys3071_CR10) 2013; 62
L H Thomas (BFnphys3071_CR14) 1935; 47
D S Petrov (BFnphys3071_CR42) 2004; 93
P Sørensen (BFnphys3071_CR20) 2012; 86
N Zinner (BFnphys3071_CR22) 2013; 54
O I Tolstikhin (BFnphys3071_CR48) 1996; 29
S Roy (BFnphys3071_CR16) 2013; 111
R J Wild (BFnphys3071_CR8) 2012; 108
J P D’Incao (BFnphys3071_CR38) 2009; 42
N Gross (BFnphys3071_CR7) 2010; 105
V Efimov (BFnphys3071_CR11) 1973; 210
E Braaten (BFnphys3071_CR36) 2008; 78
A O Gogolin (BFnphys3071_CR43) 2008; 100
J Wang (BFnphys3071_CR39) 2012; 86
L Pricoupenko (BFnphys3071_CR19) 2010; 82
M D Lee (BFnphys3071_CR37) 2007; 76
P Naidon (BFnphys3071_CR27) 2014; 112
J Wang (BFnphys3071_CR25) 2012; 108
P Massignan (BFnphys3071_CR17) 2008; 78
R Santra (BFnphys3071_CR50) 2002; 368
BFnphys3071_CR23
BFnphys3071_CR26
Y Wang (BFnphys3071_CR44) 2011; 83
N Nygaard (BFnphys3071_CR29) 2006; 73
V Efimov (BFnphys3071_CR13) 1970; 33
M Berninger (BFnphys3071_CR34) 2013; 87
M Yamashita (BFnphys3071_CR35) 2007; 363
S E Pollack (BFnphys3071_CR5) 2009; 326
P K Sørensen (BFnphys3071_CR21) 2013; 46
BFnphys3071_CR31
M Berninger (BFnphys3071_CR4) 2011; 107
G F Gribakin (BFnphys3071_CR32) 1993; 48
C Chin (BFnphys3071_CR2) 2010; 82
N Gross (BFnphys3071_CR6) 2009; 103
E Braaten (BFnphys3071_CR9) 2006; 428
Y Wang (BFnphys3071_CR47) 2012; 109
R Schmidt (BFnphys3071_CR24) 2012; 85
R D Levine (BFnphys3071_CR1) 2005
B Huang (BFnphys3071_CR40) 2014; 112
F Ferlaino (BFnphys3071_CR45) 2011; 51
BFnphys3071_CR41
T Kraemer (BFnphys3071_CR3) 2006; 440
B Gao (BFnphys3071_CR33) 1998; 58
K Jachymski (BFnphys3071_CR30) 2013; 88
References_xml – reference: ChinCGrimmRJuliennePTiesingaEFeshbach resonances in ultracold gasesRev. Mod. Phys.201082122512862010RvMP...82.1225C10.1103/RevModPhys.82.1225
– reference: PollackS EDriesDHuletR GUniversality in three- and four-body bound states of ultracold atomsScience2009326168316862009Sci...326.1683P10.1126/science.1182840
– reference: Chin, C. Universal scaling of Efimov resonance positions in cold atom systems. Preprint at http://arxiv.org/abs/1111.1484 (2011).
– reference: LeeM DKöhlerTJulienneP SExcited Thomas–Efimov levels in ultracold gasesPhys. Rev. A2007760127202007PhRvA..76a2720L10.1103/PhysRevA.76.012720
– reference: BraatenEHammerH WUniversality in few-body systems with large scattering lengthPhys. Rep.20064282593902006PhR...428..259B222143210.1016/j.physrep.2006.03.001
– reference: WildR JMakotynPPinoJ MCornellE AJinD SMeasurements of Tan’s contact in an atomic Bose–Einstein condensatePhys. Rev. Lett.20121081453052012PhRvL.108n5305W10.1103/PhysRevLett.108.145305
– reference: EfimovVEnergy levels of three resonantly interacting particlesNucl. Phys. A19732101571881973NuPhA.210..157E10.1016/0375-9474(73)90510-1
– reference: WangJD’IncaoJ PEsryB DGreeneC HOrigin of the three-body parameter universality in Efimov physicsPhys. Rev. Lett.20121082630012012PhRvL.108z3001W10.1103/PhysRevLett.108.263001
– reference: YamashitaMFredericoTTomioLThree-boson recombination at ultralow temperaturesPhys. Lett. A20073634684722007PhLA..363..468Y10.1016/j.physleta.2006.11.040
– reference: Jona-LasinioMPricoupenkoLThree resonant ultracold bosons: Off-resonance effectsPhys. Rev. Lett.20101040232012010PhRvL.104b3201J10.1103/PhysRevLett.104.023201
– reference: ZinnerNEfimov trimers near the zero-crossing of a Feshbach resonanceFew-Body Syst.2013545976032013FBS....54..597Z10.1007/s00601-012-0453-8
– reference: KnoopSObservation of an Efimov-like trimer resonance in ultracold atom-dimer scatteringNature Phys.200952272302009NatPh...5..227K10.1038/nphys1203
– reference: GrossNShotanZKokkelmansSKhaykovichLNuclear-spinindependent short-range three-body physics in ultracold atomsPhys. Rev. Lett.20101051032032010PhRvL.105j3203G10.1103/PhysRevLett.105.103203
– reference: DelvesLTertiary and general-order collisionsNucl. Phys.1959939139910.1016/0029-5582(58)90372-9
– reference: MiesFHTiesingaEJuliennePSManipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fieldsPhys. Rev. A2000610227212000PhRvA..61b2721M10.1103/PhysRevA.61.022721
– reference: Wang, Y. Universal Efimov Physics in Three- and Four-Body Collisions PhD thesis, Kansas State Univ. (2010).
– reference: WangYDIncaoJ PEsryB DUltracold few-body systemsAdv. At. Mol. Opt. Phys.20136211152013AAMOP..62....1W10.1016/B978-0-12-408090-4.00001-3
– reference: RoySTest of the universality of the three-body Efimov parameter at narrow Feshbach resonancesPhys. Rev. Lett.20131110532022013PhRvL.111e3202R10.1103/PhysRevLett.111.053202
– reference: NygaardNSchneiderBIJuliennePSTwo-channel R-matrix analysis of magnetic-field-induced Feshbach resonancesPhys. Rev. A2006730427052006PhRvA..73d2705N10.1103/PhysRevA.73.042705
– reference: PetrovD SThree-boson problem near a narrow Feshbach resonancePhys. Rev. Lett.2004931432012004PhRvL..93n3201P10.1103/PhysRevLett.93.143201
– reference: WangJD’IncaoJ PWangYGreeneC HUniversal three-body recombination via resonant d-wave interactionsPhys. Rev. A2012860625112012PhRvA..86f2511W10.1103/PhysRevA.86.062511
– reference: SørensenP KFedorovDJensenAZinnerN TFinite-range effects in energies and recombination rates of three identical bosonsJ. Phys. B2013460753012013JPhB...46g5301S10.1088/0953-4075/46/7/075301
– reference: ThomasL HThe interaction between a neutron and a proton and the structure of H3Phys. Rev.1935479039091935PhRv...47..903T10.1103/PhysRev.47.903
– reference: PricoupenkoLCrossover in the Efimov spectrumPhys. Rev. A2010820436332010PhRvA..82d3633P10.1103/PhysRevA.82.043633
– reference: MassignanPStoofH TEfimov states near a Feshbach resonancePhys. Rev. A2008780307012008PhRvA..78c0701M10.1103/PhysRevA.78.030701
– reference: NaidonPEndoSUedaMMicroscopic origin and universality classes of the Efimov three-body parameterPhys. Rev. Lett.20141121053012014PhRvL.112j5301N10.1103/PhysRevLett.112.105301
– reference: TolstikhinO IWatanabeSMatsuzawaM‘Slow’ variable discretization: A novel approach for Hamiltonians allowing adiabatic separation of variablesJ. Phys. B199629L389L3951996JPhB...29L.389T10.1088/0953-4075/29/11/001
– reference: EfimovVEnergy levels arising from resonant two-body forces in a three-body systemPhys. Lett. B1970335635641970PhLB...33..563E10.1016/0370-2693(70)90349-7
– reference: SantraRCederbaumL SNon-Hermitian electronic theory and applications to clustersPhys. Rep.200236811172002PhR...368....1S10.1016/S0370-1573(02)00143-6
– reference: BerningerMFeshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fieldsPhys. Rev. A2013870325172013PhRvA..87c2517B10.1103/PhysRevA.87.032517
– reference: FerlainoFEfimov resonances in ultracold quantum gasesFew-Body Syst.2011511131332011FBS....51..113F10.1007/s00601-011-0260-7
– reference: BraatenEHammerH-WKangDPlatterLThree-body recombination of identical bosons with a large positive scattering length at nonzero temperaturePhys. Rev. A2008780436052008PhRvA..78d3605B10.1103/PhysRevA.78.043605
– reference: BerningerMUniversality of the three-body parameter for Efimov states in ultracold cesiumPhys. Rev. Lett.20111071204012011PhRvL.107l0401B10.1103/PhysRevLett.107.120401
– reference: KraemerTEvidence for Efimov quantum states in an ultracold gas of caesium atomsNature20064403153182006Natur.440..315K10.1038/nature04626
– reference: SørensenPFedorovDJensenAZinnerN TEfimov physics and the three-body parameter within a two-channel frameworkPhys. Rev. A2012860525162012PhRvA..86e2516S10.1103/PhysRevA.86.052516
– reference: GribakinG FFlambaumV VCalculation of the scattering length in atomic collisions using the semiclassical approximationPhys. Rev. A1993485465531993PhRvA..48..546G10.1103/PhysRevA.48.546
– reference: WangYWangJD’IncaoJ PGreeneC HUniversal three-body parameter in heteronuclear atomic systemsPhys. Rev. Lett.20121092432012012PhRvL.109x3201W10.1103/PhysRevLett.109.243201
– reference: GogolinA OMoraCEggerRAnalytical solution of the bosonic three-body problemPhys. Rev. Lett.20081001404042008PhRvL.100n0404G241082410.1103/PhysRevLett.100.140404
– reference: SchmidtRRathSZwergerWEfimov physics beyond universalityEuro. Phys. J. B2012851610.1140/epjb/e2012-30841-3
– reference: GrossNShotanZKokkelmansSKhaykovichLObservation of universality in ultracold 7Li three-body recombinationPhys. Rev. Lett.20091031632022009PhRvL.103p3202G10.1103/PhysRevLett.103.163202
– reference: LevineR DMolecular Reaction Dynamics200510.1017/CBO9780511614125
– reference: GaoBSolutions of the Schrödinger equation for an attractive 1/r6 potentialPhys. Rev. A199858172817341998PhRvA..58.1728G10.1103/PhysRevA.58.1728
– reference: KokooulineVGreeneC HUnified theoretical treatment of dissociative recombination of D3h triatomic ions: Application to H3+ and D3+Phys. Rev. A2003680127032003PhRvA..68a2703K10.1103/PhysRevA.68.012703
– reference: Zenesini, A. et al. Resonant atom-dimer collisions in cesium: Testing universality at positive scattering lengths. Preprint at http://arxiv.org/abs/1406.3443 (2014).
– reference: HuangBSidorenkovL AGrimmRHutsonJ MObservation of the second triatomic resonance in Efimov’s scenarioPhys. Rev. Lett.20141121904012014PhRvL.112s0401H10.1103/PhysRevLett.112.190401
– reference: D’IncaoJ PGreeneC HEsryB DThe short-range three-body phase and other issues impacting the observation of Efimov physics in ultracold quantum gasesJ. Phys. B2009420440162009JPhB...42d4016D10.1088/0953-4075/42/4/044016
– reference: Naidon, P., Endo, S. & Ueda, M. Physical origin of the universal three-body parameter in atomic Efimov physics. Preprint at http://arxiv.org/abs/1208.3912 (2012).
– reference: JachymskiKJulienneP SAnalytical model of overlapping Feshbach resonancesPhys. Rev. A2013880527012013PhRvA..88e2701J10.1103/PhysRevA.88.052701
– reference: WangYD’IncaoJ PEsryB DUltracold three-body collisions near narrow Feshbach resonancesPhys. Rev. A2011830427102011PhRvA..83d2710W10.1103/PhysRevA.83.042710
– reference: WangYD’IncaoJ PGreeneC HUniversal three-body physics for fermionic dipolesPhys. Rev. Lett.20111072332012011PhRvL.107w3201W10.1103/PhysRevLett.107.233201
– volume: 61
  start-page: 022721
  year: 2000
  ident: BFnphys3071_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.022721
– volume: 363
  start-page: 468
  year: 2007
  ident: BFnphys3071_CR35
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2006.11.040
– volume: 368
  start-page: 1
  year: 2002
  ident: BFnphys3071_CR50
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(02)00143-6
– volume: 108
  start-page: 263001
  year: 2012
  ident: BFnphys3071_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.263001
– volume: 62
  start-page: 1
  year: 2013
  ident: BFnphys3071_CR10
  publication-title: Adv. At. Mol. Opt. Phys.
  doi: 10.1016/B978-0-12-408090-4.00001-3
– ident: BFnphys3071_CR41
  doi: 10.1103/PhysRevA.90.022704
– volume: 86
  start-page: 062511
  year: 2012
  ident: BFnphys3071_CR39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.062511
– volume: 82
  start-page: 1225
  year: 2010
  ident: BFnphys3071_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1225
– ident: BFnphys3071_CR31
– volume: 112
  start-page: 190401
  year: 2014
  ident: BFnphys3071_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.190401
– volume: 48
  start-page: 546
  year: 1993
  ident: BFnphys3071_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.48.546
– volume: 93
  start-page: 143201
  year: 2004
  ident: BFnphys3071_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.143201
– volume: 51
  start-page: 113
  year: 2011
  ident: BFnphys3071_CR45
  publication-title: Few-Body Syst.
  doi: 10.1007/s00601-011-0260-7
– volume-title: Molecular Reaction Dynamics
  year: 2005
  ident: BFnphys3071_CR1
  doi: 10.1017/CBO9780511614125
– volume: 326
  start-page: 1683
  year: 2009
  ident: BFnphys3071_CR5
  publication-title: Science
  doi: 10.1126/science.1182840
– volume: 54
  start-page: 597
  year: 2013
  ident: BFnphys3071_CR22
  publication-title: Few-Body Syst.
  doi: 10.1007/s00601-012-0453-8
– volume: 42
  start-page: 044016
  year: 2009
  ident: BFnphys3071_CR38
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/42/4/044016
– volume: 88
  start-page: 052701
  year: 2013
  ident: BFnphys3071_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.052701
– volume: 78
  start-page: 043605
  year: 2008
  ident: BFnphys3071_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.043605
– volume: 440
  start-page: 315
  year: 2006
  ident: BFnphys3071_CR3
  publication-title: Nature
  doi: 10.1038/nature04626
– volume: 103
  start-page: 163202
  year: 2009
  ident: BFnphys3071_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.163202
– volume: 83
  start-page: 042710
  year: 2011
  ident: BFnphys3071_CR44
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.042710
– volume: 33
  start-page: 563
  year: 1970
  ident: BFnphys3071_CR13
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(70)90349-7
– volume: 109
  start-page: 243201
  year: 2012
  ident: BFnphys3071_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.243201
– volume: 111
  start-page: 053202
  year: 2013
  ident: BFnphys3071_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.053202
– volume: 428
  start-page: 259
  year: 2006
  ident: BFnphys3071_CR9
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.03.001
– ident: BFnphys3071_CR26
– volume: 105
  start-page: 103203
  year: 2010
  ident: BFnphys3071_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.103203
– volume: 9
  start-page: 391
  year: 1959
  ident: BFnphys3071_CR12
  publication-title: Nucl. Phys.
  doi: 10.1016/0029-5582(58)90372-9
– volume: 68
  start-page: 012703
  year: 2003
  ident: BFnphys3071_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.012703
– ident: BFnphys3071_CR23
– volume: 5
  start-page: 227
  year: 2009
  ident: BFnphys3071_CR15
  publication-title: Nature Phys.
  doi: 10.1038/nphys1203
– volume: 107
  start-page: 233201
  year: 2011
  ident: BFnphys3071_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.233201
– volume: 78
  start-page: 030701
  year: 2008
  ident: BFnphys3071_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.030701
– volume: 87
  start-page: 032517
  year: 2013
  ident: BFnphys3071_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.032517
– volume: 29
  start-page: L389
  year: 1996
  ident: BFnphys3071_CR48
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/29/11/001
– volume: 112
  start-page: 105301
  year: 2014
  ident: BFnphys3071_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.105301
– volume: 73
  start-page: 042705
  year: 2006
  ident: BFnphys3071_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.042705
– volume: 82
  start-page: 043633
  year: 2010
  ident: BFnphys3071_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.043633
– volume: 210
  start-page: 157
  year: 1973
  ident: BFnphys3071_CR11
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(73)90510-1
– volume: 100
  start-page: 140404
  year: 2008
  ident: BFnphys3071_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.140404
– volume: 76
  start-page: 012720
  year: 2007
  ident: BFnphys3071_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.012720
– volume: 108
  start-page: 145305
  year: 2012
  ident: BFnphys3071_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.145305
– volume: 104
  start-page: 023201
  year: 2010
  ident: BFnphys3071_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.023201
– volume: 46
  start-page: 075301
  year: 2013
  ident: BFnphys3071_CR21
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/46/7/075301
– volume: 107
  start-page: 120401
  year: 2011
  ident: BFnphys3071_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.120401
– volume: 47
  start-page: 903
  year: 1935
  ident: BFnphys3071_CR14
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.47.903
– volume: 58
  start-page: 1728
  year: 1998
  ident: BFnphys3071_CR33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.58.1728
– volume: 86
  start-page: 052516
  year: 2012
  ident: BFnphys3071_CR20
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.86.052516
– volume: 85
  start-page: 1
  year: 2012
  ident: BFnphys3071_CR24
  publication-title: Euro. Phys. J. B
  doi: 10.1140/epjb/e2012-30841-3
SSID ssj0042613
Score 2.444659
Snippet Experimental studies with cold atoms have advanced our understanding of three-body physics, historically a fundamental yet challenging problem. This is because...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 768
SubjectTerms 119/118
639/766/36/1125
Adjustable
Atomic
Atomic interactions
Atoms & subatomic particles
Classical and Continuum Physics
Cold atoms
Collisions
Complex Systems
Condensed Matter Physics
Construction
Experiments
Mathematical and Computational Physics
Mathematical models
Molecular
Optical and Plasma Physics
Particle physics
Physics
Resonance
Scattering
Schrodinger equation
Schroedinger equation
Strength
Theoretical
Title Universal van der Waals physics for three cold atoms near Feshbach resonances
URI https://link.springer.com/article/10.1038/nphys3071
https://www.proquest.com/docview/1651914582
https://www.proquest.com/docview/1669892116
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAiPnF1lfg4eAm2TZqmJ1HZVQRFRNFbSdIED9pVu_5_J226PhDPHRqYmcx888gMwAETZRyVTFGV5RHluXRUy4xT5pQUWjj0WU2X77W4uOeXj-ljSLjVoa2ys4mNoS7HxufIj2KR-lFkqUyOX9-o3xrlq6thhcYszKEJlrIHc6fD65vbzhb7-IC1TyJTmvCMdbOFmDyqfOoANTz-6ZG-YOavymjjcEZLsBiQIjlpRbsMM7ZagfmmY9PUq3AVWiqQBMEwKe07eVCoS6TNVdQE0SiZoKQsQVmXBIPrl5pUqNhkZOsnrcwTwVB77Adu2HoN7kfDu7MLGnYjUMNzPqFMGqm5NFzxWEbSIMxB6IMMjj2CcTo2LkmRhiP8S4SfAJBnijvOXSSizDq2Dr1qXNkNIJHyqVCdapYLHpd4JV1shTbCpUwnSvbhsONPYcLgcL-_4rloCthMFlNW9mFvSvraTsv4i2jQMbkIF6YuvsTbh93pZ1R1X79QlR1_eBq_7RIjVtGH_U44337x-6DN_w_aggVEP7ztzBtAb_L-YbcRYUz0DszK0flOUKZPfjjRWg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4tVAguCAqI5VHc0kq9WCSx4zgHVFUty1J2OYHgFmzHFgfIAlmE-FP8RsZ57FJU9cY5Izsaj2e-Gc8D4CsTeRjkTFGVpAHlqXRUy4RT5pQUWji0WVWW74non_E_F_FFB57bWhifVtnqxEpR5yPjY-R7oYh9K7JYRj9u76ifGuVfV9sRGrVYHNunR3TZyv2j33i-36Kod3D6q0-bqQLU8JSPKZNGai4NVzyUgTQIEBA04K-F3vY7HRoXxUjDEThFwtfOp4nijnMXiCCxjuG6M_CBM7TkvjK9d9hqfu-NsLoAM6YRT1jbyYjJvcIHKvA-hX_bvymoffMOW5m33hIsNriU_KwFaRk6tvgIc1V-qClXYNgkcCAJQm-S23tyrlBySR0ZKQliXzJGubAEJSsn6MrflKRAfpGeLa-0MlcEHfuRb-9hy1U4exeercFsMSrsOpBA-cCrjjVLBQ9zVAAutEIb4WKmIyW78L3lT2aaNuV-WsZ1Vj2XM5lNWNmFLxPS27o3x7-ItlomZ831LLOpMHXh8-QzXiz_WqIKO3rwNH62JvrHogu77eG8WuLtRhv_32gH5vunw0E2ODo53oQFxF28zgncgtnx_YPdRmwz1p8qgSJw-d4S_AJDwAoJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRVS8VBytupTDHJV4sTaJHcd5qKpyrDhXCIHKW2o7tniALCWLKv4av67jHMshxBvPGdnR-LPnm_F4BmCDiTwMcqaoStKA8lQ6qmXCKXNKCi0c2qwqy3cg9s75wUV8MQEP7VsYn1bZnonVQZ0PjY-R90IR-1JksYx6rkmLONnp_7z5S30HKX_T2rbTqCFyaO__oftW_tjfwbX-HkX93bPtPdp0GKCGp3xEmTRSc2m44qEMpEGygAQCfzP0PMDp0LgoRhmOJCoS_h19mijuOHeBCBLrGI77ASYT7xV1YHJrd3By2toB75uw-jlmTCOesLauEZO9woctcHeFz63hI8V9cStbGbv-DHxqWCr5VcNqFiZsMQdTVbaoKefhuEnnQBEk4iS3t-S3QhyTOk5SEmTCZIQosQRxlhN07K9LUqDGSN-Wl1qZS4Ju_tAX-7DlZzh_F619gU4xLOxXIIHyYVgda5YKHuZ4HLjQCm2Ei5mOlOzCZqufzDRFy33vjKusujxnMhursgtrY9GbulLHa0KLrZKzZrOW2SO0urA6_ozbzN-dqMIO77yM77SJ3rLownq7OE-GeDnRwtsTrcBHRG92tD84_AbTSMJ4nSC4CJ3R7Z1dQqIz0ssNogj8eW8Q_wcH4w-b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+van+der+Waals+physics+for+three+cold+atoms+near+Feshbach+resonances&rft.jtitle=Nature+physics&rft.au=Wang%2C+Yujun&rft.au=Julienne%2C+Paul+S&rft.date=2014-10-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=10&rft.issue=10&rft.spage=768&rft_id=info:doi/10.1038%2Fnphys3071&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3581755711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon