Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs

Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström t...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 16; no. 1; pp. 36 - 49
Main Authors Saccone, Scott F., Hinrichs, Anthony L., Saccone, Nancy L., Chase, Gary A., Konvicka, Karel, Madden, Pamela A.F., Breslau, Naomi, Johnson, Eric O., Hatsukami, Dorothy, Pomerleau, Ovide, Swan, Gary E., Goate, Alison M., Rutter, Joni, Bertelsen, Sarah, Fox, Louis, Fugman, Douglas, Martin, Nicholas G., Montgomery, Grant W., Wang, Jen C., Ballinger, Dennis G., Rice, John P., Bierut, Laura Jean
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.01.2007
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
AbstractList Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10-5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10-4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the beta3 nicotinic receptor subunit gene (P = 9.4 x 10(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3 , the β 3 nicotinic receptor subunit gene ( P = 9.4 × 10 −5 ). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α 5 nicotinic receptor subunit gene CHRNA5 ( P = 6.4 × 10 −4 ). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4 . This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the beta3 nicotinic receptor subunit gene (P = 9.4 x 10(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the beta3 nicotinic receptor subunit gene (P = 9.4 x 10(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerstroem test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the {szligbeta}3 nicotinic receptor subunit gene (P = 9.4 x 10 super(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha 5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10 super(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
Author Fugman, Douglas
Goate, Alison M.
Saccone, Scott F.
Saccone, Nancy L.
Madden, Pamela A.F.
Fox, Louis
Hatsukami, Dorothy
Rutter, Joni
Bertelsen, Sarah
Hinrichs, Anthony L.
Rice, John P.
Konvicka, Karel
Wang, Jen C.
Swan, Gary E.
Breslau, Naomi
Johnson, Eric O.
Montgomery, Grant W.
Chase, Gary A.
Pomerleau, Ovide
Ballinger, Dennis G.
Martin, Nicholas G.
Bierut, Laura Jean
AuthorAffiliation 2 Department of Genetics, Box 8134, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
3 Department of Health Evaluation Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
4 Perlegen Sciences, Mountain View, CA 94043, USA
7 Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
12 Queensland Institute of Medical Research, Queensland 4029, Australia
9 Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
10 National Institute on Drug Abuse, Bethesda, MD 20892, USA
6 Research Triangle Institute International, Research Triangle Park, NC 27709, USA
11 Rutgers University Cell and DNA Repository, Rutgers University, Piscataway, NJ 08854, USA
1 Department of Psychiatry, Box 8134, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
5 Department of Epidemiology, Michigan State University, East Lansing, MI 48824, USA
8 Department of Psychiatry, University of Michigan, Ann A
AuthorAffiliation_xml – name: 5 Department of Epidemiology, Michigan State University, East Lansing, MI 48824, USA
– name: 4 Perlegen Sciences, Mountain View, CA 94043, USA
– name: 10 National Institute on Drug Abuse, Bethesda, MD 20892, USA
– name: 7 Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
– name: 1 Department of Psychiatry, Box 8134, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
– name: 6 Research Triangle Institute International, Research Triangle Park, NC 27709, USA
– name: 2 Department of Genetics, Box 8134, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
– name: 3 Department of Health Evaluation Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
– name: 9 Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
– name: 12 Queensland Institute of Medical Research, Queensland 4029, Australia
– name: 8 Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
– name: 11 Rutgers University Cell and DNA Repository, Rutgers University, Piscataway, NJ 08854, USA
Author_xml – sequence: 1
  givenname: Scott F.
  surname: Saccone
  fullname: Saccone, Scott F.
  email: saccones@msnotes.wustl.edu
  organization: 1 Department of Psychiatry and
– sequence: 2
  givenname: Anthony L.
  surname: Hinrichs
  fullname: Hinrichs, Anthony L.
  organization: 1 Department of Psychiatry and
– sequence: 3
  givenname: Nancy L.
  surname: Saccone
  fullname: Saccone, Nancy L.
  email: saccones@msnotes.wustl.edu
  organization: 1 Department of Psychiatry and
– sequence: 4
  givenname: Gary A.
  surname: Chase
  fullname: Chase, Gary A.
  organization: 3 Department of Health Evaluation Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
– sequence: 5
  givenname: Karel
  surname: Konvicka
  fullname: Konvicka, Karel
  organization: 4 Perlegen Sciences, Mountain View, CA 94043, USA
– sequence: 6
  givenname: Pamela A.F.
  surname: Madden
  fullname: Madden, Pamela A.F.
  organization: 1 Department of Psychiatry and
– sequence: 7
  givenname: Naomi
  surname: Breslau
  fullname: Breslau, Naomi
  organization: 5 Department of Epidemiology, Michigan State University, East Lansing, MI 48824, USA
– sequence: 8
  givenname: Eric O.
  surname: Johnson
  fullname: Johnson, Eric O.
  organization: 6 Research Triangle Institute International, Research Triangle Park, NC 27709, USA
– sequence: 9
  givenname: Dorothy
  surname: Hatsukami
  fullname: Hatsukami, Dorothy
  organization: 7 Department of Psychiatry, University of Minnesota, Minneapolis, MN 55454, USA
– sequence: 10
  givenname: Ovide
  surname: Pomerleau
  fullname: Pomerleau, Ovide
  organization: 8 Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
– sequence: 11
  givenname: Gary E.
  surname: Swan
  fullname: Swan, Gary E.
  organization: 9 Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
– sequence: 12
  givenname: Alison M.
  surname: Goate
  fullname: Goate, Alison M.
  organization: 1 Department of Psychiatry and
– sequence: 13
  givenname: Joni
  surname: Rutter
  fullname: Rutter, Joni
  organization: 10 National Institute on Drug Abuse, Bethesda, MD 20892, USA
– sequence: 14
  givenname: Sarah
  surname: Bertelsen
  fullname: Bertelsen, Sarah
  organization: 1 Department of Psychiatry and
– sequence: 15
  givenname: Louis
  surname: Fox
  fullname: Fox, Louis
  organization: 1 Department of Psychiatry and
– sequence: 16
  givenname: Douglas
  surname: Fugman
  fullname: Fugman, Douglas
  organization: 11 Rutgers University Cell and DNA Repository, Rutgers University, Piscataway, NJ 08854, USA and
– sequence: 17
  givenname: Nicholas G.
  surname: Martin
  fullname: Martin, Nicholas G.
  organization: 12 Queensland Institute of Medical Research, Queensland 4029, Australia
– sequence: 18
  givenname: Grant W.
  surname: Montgomery
  fullname: Montgomery, Grant W.
  organization: 12 Queensland Institute of Medical Research, Queensland 4029, Australia
– sequence: 19
  givenname: Jen C.
  surname: Wang
  fullname: Wang, Jen C.
  organization: 1 Department of Psychiatry and
– sequence: 20
  givenname: Dennis G.
  surname: Ballinger
  fullname: Ballinger, Dennis G.
  organization: 4 Perlegen Sciences, Mountain View, CA 94043, USA
– sequence: 21
  givenname: John P.
  surname: Rice
  fullname: Rice, John P.
  organization: 1 Department of Psychiatry and
– sequence: 22
  givenname: Laura Jean
  surname: Bierut
  fullname: Bierut, Laura Jean
  organization: 1 Department of Psychiatry and
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18501652$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17135278$$D View this record in MEDLINE/PubMed
BookMark eNqFktFqFDEUhoNU7LZ64wNIEPRCWJtMzswkN4IsWoWignodYnJ2NmU2GZOM0ifwtU2726pF9Ca5yHf-_Of854gchBiQkIecPedMiZPNdjhxbgQh75AFh44tGybFAVkw1cGyU6w7JEc5nzPGOxD9PXLIey7appcL8mO1iaMPmAZvafA2Fl9PmtDiVGKiAwbM1G-n0VtT0FEfqLkGkTqcMDgMFqnJOVpvio-B5jK7C1pMGrBiAxUgqTXBeVc19prffdlQUY3Qj-8-5Pvk7tqMGR_s72Py-fWrT6s3y7P3p29XL8-WFhSUpWiwA-U6BKuUbBXvJePCgbMcWwld40AK03C0AtfGtMwBMFjLXnJgyJU4Ji92utP8ZYvOYijJjHpKfmvShY7G6z9fgt_oIX7TTdOzOrwq8HQvkOLXGXPRW58tjqMJGOesOwlctQD_BSslOsGaCj6-BZ7HOYU6Bd1wLgCUlBV69LvvG8PXSVbgyR4w2ZpxnUywPv_iZFvTby9_YzvOpphzwrW2vlylVtv1o-ZMXy6Vrkuld0tVS57dKrlR_Ru89xHn6V_cTznA200
CODEN HNGEE5
CitedBy_id crossref_primary_10_1016_j_neuropharm_2015_08_035
crossref_primary_10_1002_ajmg_b_30924
crossref_primary_10_1371_journal_pgen_1001058
crossref_primary_10_1038_mp_2010_109
crossref_primary_10_1371_journal_pgen_1001053
crossref_primary_10_1111_acer_12736
crossref_primary_10_1126_sciadv_aaw3538
crossref_primary_10_1371_journal_pone_0016002
crossref_primary_10_1016_j_addbeh_2013_08_033
crossref_primary_10_1038_s41401_019_0299_4
crossref_primary_10_1080_19485565_2013_774615
crossref_primary_10_1111_adb_12898
crossref_primary_10_3390_ijerph7041694
crossref_primary_10_1186_1471_2156_9_58
crossref_primary_10_4103_ijc_IJC_325_18
crossref_primary_10_1097_FPC_0b013e32832fabf3
crossref_primary_10_1016_j_tins_2011_05_001
crossref_primary_10_1038_mp_2012_190
crossref_primary_10_1007_s10519_010_9366_9
crossref_primary_10_1186_s40478_014_0147_1
crossref_primary_10_1093_ntr_ntx096
crossref_primary_10_1038_mp_2016_67
crossref_primary_10_1038_s41380_024_02599_1
crossref_primary_10_1097_MOP_0b013e328339553d
crossref_primary_10_1158_1055_9965_EPI_16_0728
crossref_primary_10_1038_s41576_021_00377_1
crossref_primary_10_1098_rsos_181133
crossref_primary_10_1021_jm1014555
crossref_primary_10_1375_twin_10_5_695
crossref_primary_10_1038_s41598_017_01098_4
crossref_primary_10_1146_annurev_pharmtox_010909_105826
crossref_primary_10_1371_journal_pone_0063699
crossref_primary_10_3346_jkms_2012_27_12_1536
crossref_primary_10_1371_journal_pgen_1005765
crossref_primary_10_1038_srep42185
crossref_primary_10_1124_pharmrev_122_000743
crossref_primary_10_1002_ajmg_b_30919
crossref_primary_10_1111_j_1360_0443_2009_02750_x
crossref_primary_10_1038_s41386_019_0462_0
crossref_primary_10_1111_j_1601_183X_2011_00689_x
crossref_primary_10_1016_j_pbb_2014_01_009
crossref_primary_10_1093_ije_dyp288
crossref_primary_10_1016_j_psychres_2012_07_054
crossref_primary_10_1038_nature06846
crossref_primary_10_1183_13993003_02791_2020
crossref_primary_10_1093_aje_kwr084
crossref_primary_10_1186_s12889_015_1455_5
crossref_primary_10_1208_s12248_009_9090_7
crossref_primary_10_1093_ntr_ntn034
crossref_primary_10_1158_0008_5472_CAN_09_1833
crossref_primary_10_1093_hmg_ddp216
crossref_primary_10_3390_ijms15045446
crossref_primary_10_1016_j_jecm_2011_10_007
crossref_primary_10_1111_j_1601_183X_2012_00803_x
crossref_primary_10_2217_pgs_10_75
crossref_primary_10_1016_j_biopsych_2011_07_018
crossref_primary_10_1093_nar_gkq513
crossref_primary_10_1016_j_cca_2012_11_011
crossref_primary_10_1038_tp_2012_54
crossref_primary_10_1371_journal_pone_0028790
crossref_primary_10_1017_S146239941000147X
crossref_primary_10_1159_000444755
crossref_primary_10_1016_j_neuropharm_2022_109218
crossref_primary_10_2217_pgs_09_87
crossref_primary_10_1038_srep34341
crossref_primary_10_1146_annurev_neuro_061010_113734
crossref_primary_10_1089_adt_2015_688
crossref_primary_10_1016_j_drugalcdep_2009_06_003
crossref_primary_10_1096_fj_201600932R
crossref_primary_10_1007_s00439_012_1143_9
crossref_primary_10_1016_j_ccm_2011_08_003
crossref_primary_10_1111_j_1360_0443_2008_02392_x
crossref_primary_10_1093_ntr_ntw197
crossref_primary_10_1111_j_1530_0277_2009_00904_x
crossref_primary_10_1523_JNEUROSCI_2282_18_2018
crossref_primary_10_1093_ijnp_pyae035
crossref_primary_10_1124_jpet_110_177485
crossref_primary_10_1007_s11920_007_0045_3
crossref_primary_10_3390_genes7110095
crossref_primary_10_1097_EDE_0000000000000121
crossref_primary_10_1007_s00213_013_3235_1
crossref_primary_10_1038_ng_109
crossref_primary_10_1164_rccm_200909_1364OC
crossref_primary_10_1007_s12630_016_0771_2
crossref_primary_10_1186_s12881_018_0571_3
crossref_primary_10_1093_ntr_ntw081
crossref_primary_10_1038_ng_229
crossref_primary_10_3109_15412555_2015_1049260
crossref_primary_10_1017_S0954579417000633
crossref_primary_10_1186_s12864_018_5219_3
crossref_primary_10_1038_ng_573
crossref_primary_10_1080_16066359_2023_2238603
crossref_primary_10_1371_journal_pone_0053219
crossref_primary_10_1371_journal_pone_0031687
crossref_primary_10_1093_jnci_djq178
crossref_primary_10_1038_ng_216
crossref_primary_10_1093_carcin_bgn257
crossref_primary_10_18632_oncotarget_746
crossref_primary_10_1016_j_ejphar_2013_01_005
crossref_primary_10_1097_FPC_0b013e32835cdabd
crossref_primary_10_1016_j_neuron_2019_10_029
crossref_primary_10_1111_gbb_12152
crossref_primary_10_1007_s40473_013_0004_8
crossref_primary_10_1158_1078_0432_CCR_08_2107
crossref_primary_10_1007_s00439_013_1398_9
crossref_primary_10_1038_nature06885
crossref_primary_10_2105_AJPH_2013_301355
crossref_primary_10_1016_j_jss_2009_01_008
crossref_primary_10_1016_j_lfs_2023_122100
crossref_primary_10_1002_ajmg_b_30828
crossref_primary_10_1007_s10519_011_9511_0
crossref_primary_10_1523_JNEUROSCI_0476_14_2014
crossref_primary_10_1016_j_drugalcdep_2007_10_001
crossref_primary_10_1097_YPG_0000000000000227
crossref_primary_10_1093_bioinformatics_btn315
crossref_primary_10_1183_09031936_00056908
crossref_primary_10_1158_0008_5472_CAN_09_0786
crossref_primary_10_1016_j_heliyon_2022_e09947
crossref_primary_10_1016_j_phrs_2023_106734
crossref_primary_10_1093_ntr_ntv095
crossref_primary_10_1038_srep25671
crossref_primary_10_1038_tp_2013_81
crossref_primary_10_1371_journal_pone_0012183
crossref_primary_10_1038_ejhg_2012_33
crossref_primary_10_1016_j_hoc_2010_06_009
crossref_primary_10_1016_j_biopsych_2009_08_028
crossref_primary_10_1007_s43440_021_00243_1
crossref_primary_10_1016_j_neuropharm_2008_08_009
crossref_primary_10_1038_mp_2008_42
crossref_primary_10_1038_jhg_2012_104
crossref_primary_10_1007_s11920_018_0873_3
crossref_primary_10_1096_fj_15_274548
crossref_primary_10_1038_ejhg_2010_120
crossref_primary_10_1111_acel_13228
crossref_primary_10_1038_npp_2013_131
crossref_primary_10_1038_s42003_022_03738_6
crossref_primary_10_1093_ije_dyp385
crossref_primary_10_1038_ejhg_2010_240
crossref_primary_10_2174_1574892814666190102122848
crossref_primary_10_1371_journal_pgen_1007607
crossref_primary_10_3238_arztebl_2009_0451
crossref_primary_10_1038_npp_2010_7
crossref_primary_10_1007_s00439_011_1108_4
crossref_primary_10_1111_gbb_12251
crossref_primary_10_3389_fpsyt_2019_00100
crossref_primary_10_1016_j_brs_2024_02_020
crossref_primary_10_1093_ntr_ntw153
crossref_primary_10_1097_MD_0000000000024355
crossref_primary_10_1371_journal_pgen_1000125
crossref_primary_10_1371_journal_pone_0004653
crossref_primary_10_1002_ajmg_b_31177
crossref_primary_10_1097_YPG_0b013e32832cec32
crossref_primary_10_3389_fgene_2019_00448
crossref_primary_10_1016_S0140_6736_08_60871_5
crossref_primary_10_1097_FPC_0b013e32832e2ced
crossref_primary_10_1038_tpj_2009_6
crossref_primary_10_1074_jbc_M112_379339
crossref_primary_10_1093_carcin_bgt062
crossref_primary_10_1016_j_gene_2019_01_036
crossref_primary_10_2753_IMH0020_7411400102
crossref_primary_10_1038_tpj_2011_30
crossref_primary_10_1124_pharmrev_121_000299
crossref_primary_10_1093_ntr_ntw161
crossref_primary_10_1016_j_neuropharm_2013_09_009
crossref_primary_10_1038_s41598_017_04681_x
crossref_primary_10_1016_j_neuropharm_2013_09_008
crossref_primary_10_1038_onc_2010_256
crossref_primary_10_1038_ejhg_2013_26
crossref_primary_10_1093_ibd_izx094
crossref_primary_10_1038_mp_2015_102
crossref_primary_10_1590_1414_462x202331010250
crossref_primary_10_1073_pnas_0810970105
crossref_primary_10_1016_j_bcp_2007_08_018
crossref_primary_10_1002_ajmg_b_32019
crossref_primary_10_1371_journal_pone_0128109
crossref_primary_10_1124_jpet_110_165738
crossref_primary_10_1016_j_drugalcdep_2015_02_029
crossref_primary_10_1051_medsci_20153104018
crossref_primary_10_1038_mp_2015_105
crossref_primary_10_1196_annals_1441_018
crossref_primary_10_1097_JTO_0b013e31824c7d7c
crossref_primary_10_1038_mp_2009_25
crossref_primary_10_1002_hup_1149
crossref_primary_10_3389_fonc_2022_1001864
crossref_primary_10_1007_s00439_009_0664_3
crossref_primary_10_1038_mp_2008_71
crossref_primary_10_1093_ntr_ntv048
crossref_primary_10_1375_twin_10_5_718
crossref_primary_10_1164_rccm_200806_908OC
crossref_primary_10_2478_bjmg_2019_0018
crossref_primary_10_1002_ajmg_b_31155
crossref_primary_10_1093_database_bax097
crossref_primary_10_1093_ntr_ntx107
crossref_primary_10_1111_adb_12477
crossref_primary_10_1016_j_bcp_2011_06_026
crossref_primary_10_1186_s13073_018_0522_9
crossref_primary_10_2217_14622416_8_8_881
crossref_primary_10_3280_RIP2020_003004
crossref_primary_10_3390_molecules25184223
crossref_primary_10_1158_0008_5472_CAN_08_2271
crossref_primary_10_1002_ajmg_b_31043
crossref_primary_10_1002_dvdy_24665
crossref_primary_10_1016_j_pharmthera_2013_10_013
crossref_primary_10_1176_appi_ajp_2008_08050780
crossref_primary_10_1007_s12094_013_1080_7
crossref_primary_10_1159_000516169
crossref_primary_10_2217_pgs_2018_0023
crossref_primary_10_1002_ajmg_b_32476
crossref_primary_10_1002_ajmg_b_31027
crossref_primary_10_1007_s10519_011_9476_z
crossref_primary_10_1038_s41598_017_09492_8
crossref_primary_10_1016_j_biopsych_2008_09_010
crossref_primary_10_1016_j_neuropharm_2012_07_022
crossref_primary_10_1186_s12888_024_05898_7
crossref_primary_10_1158_0008_5472_CAN_10_2852
crossref_primary_10_1186_s41021_015_0020_x
crossref_primary_10_1371_journal_pone_0080204
crossref_primary_10_1007_s12035_014_8874_7
crossref_primary_10_1038_mp_2009_63
crossref_primary_10_1016_j_ebiom_2019_03_051
crossref_primary_10_1093_ntr_ntw117
crossref_primary_10_1080_10705511_2014_979932
crossref_primary_10_1371_journal_pone_0023373
crossref_primary_10_1073_pnas_1404082111
crossref_primary_10_2119_molmed_2008_00096
crossref_primary_10_1038_mp_2009_59
crossref_primary_10_1038_ng_500
crossref_primary_10_1111_adb_12691
crossref_primary_10_1158_1055_9965_EPI_08_0585
crossref_primary_10_1093_hmg_ddr086
crossref_primary_10_12659_MSM_895907
crossref_primary_10_1038_tp_2016_36
crossref_primary_10_1038_tpj_2012_50
crossref_primary_10_1016_j_parkreldis_2012_07_007
crossref_primary_10_1111_adb_12204
crossref_primary_10_1016_j_molmed_2016_07_001
crossref_primary_10_1093_jnci_djs191
crossref_primary_10_2217_pgs_2016_0020
crossref_primary_10_1093_carcin_bgv019
crossref_primary_10_1371_journal_pone_0098199
crossref_primary_10_1093_ntr_ntu155
crossref_primary_10_1007_s40429_015_0042_2
crossref_primary_10_1016_j_psc_2009_10_003
crossref_primary_10_1016_j_psychres_2020_113278
crossref_primary_10_1002_ajmg_b_32047
crossref_primary_10_1016_S0761_8425_08_71607_3
crossref_primary_10_1158_1055_9965_EPI_14_1270
crossref_primary_10_1146_annurev_med_60_041707_160511
crossref_primary_10_3389_fgene_2016_00149
crossref_primary_10_1038_bjc_2016_426
crossref_primary_10_1096_fj_201600733R
crossref_primary_10_1176_appi_ajp_2008_07111711
crossref_primary_10_1523_JNEUROSCI_2645_08_2008
crossref_primary_10_3892_mmr_2012_1101
crossref_primary_10_15171_jcs_2019_032
crossref_primary_10_1155_2011_693424
crossref_primary_10_1016_j_brainresbull_2022_06_007
crossref_primary_10_1093_ntr_ntw200
crossref_primary_10_1111_crj_13165
crossref_primary_10_1523_ENEURO_0219_17_2017
crossref_primary_10_1016_j_lungcan_2011_04_020
crossref_primary_10_1007_s00439_010_0876_6
crossref_primary_10_3389_fgene_2022_812715
crossref_primary_10_1371_journal_pone_0066157
crossref_primary_10_1001_archgenpsychiatry_2009_2
crossref_primary_10_1007_s11825_010_0207_2
crossref_primary_10_1186_s12919_016_0014_0
crossref_primary_10_2217_pgs_10_144
crossref_primary_10_1038_nrg2536
crossref_primary_10_1093_hmg_ddl441
crossref_primary_10_1016_j_parkreldis_2019_01_031
crossref_primary_10_1371_journal_pone_0019085
crossref_primary_10_1158_0008_5472_CAN_09_0081
crossref_primary_10_2478_pjph_2022_0004
crossref_primary_10_1007_s00439_011_1123_5
crossref_primary_10_1002_gepi_20594
crossref_primary_10_1016_j_biopsych_2010_09_055
crossref_primary_10_1016_j_drugalcdep_2014_05_013
crossref_primary_10_1007_s11906_011_0242_7
crossref_primary_10_1038_npp_2010_130
crossref_primary_10_3390_jpm12040565
crossref_primary_10_1038_npp_2009_52
crossref_primary_10_1523_JNEUROSCI_2736_13_2014
crossref_primary_10_1111_j_1369_1600_2010_00220_x
crossref_primary_10_1586_14779072_6_6_883
crossref_primary_10_1186_1465_9921_13_16
crossref_primary_10_2105_AJPH_2008_154559
crossref_primary_10_1098_rstb_2017_0162
crossref_primary_10_1038_s41386_018_0008_x
crossref_primary_10_1016_j_cub_2018_09_003
crossref_primary_10_1111_j_1360_0443_2012_03922_x
crossref_primary_10_1002_cncr_26017
crossref_primary_10_1097_EDE_0b013e318281a64e
crossref_primary_10_1371_journal_pone_0287446
crossref_primary_10_1371_journal_pone_0033386
crossref_primary_10_1016_j_explore_2010_03_007
crossref_primary_10_1080_13102818_2019_1637782
crossref_primary_10_1093_ntr_nts082
crossref_primary_10_1097_FPC_0b013e328346886f
crossref_primary_10_1016_j_pbb_2013_11_001
crossref_primary_10_1093_hmg_ddt463
crossref_primary_10_1093_ntr_ntae075
crossref_primary_10_1146_annurev_pharmtox_48_113006_094742
crossref_primary_10_1016_S8756_3452_08_79218_1
crossref_primary_10_1038_npp_2010_120
crossref_primary_10_1093_jnci_djn268
crossref_primary_10_1016_j_phrs_2018_02_013
crossref_primary_10_1038_npp_2010_247
crossref_primary_10_1080_17476348_2017_1361823
crossref_primary_10_1086_522235
crossref_primary_10_1016_j_ebiom_2020_102840
crossref_primary_10_1038_npp_2011_25
crossref_primary_10_1093_jnci_djn380
crossref_primary_10_1111_j_1476_5381_2011_01222_x
crossref_primary_10_1158_0008_5472_CAN_09_3583
crossref_primary_10_1080_02713683_2016_1196708
crossref_primary_10_1016_j_joep_2023_102636
crossref_primary_10_1002_da_22150
crossref_primary_10_1111_gbb_12844
crossref_primary_10_1038_nature09797
crossref_primary_10_4161_epi_22520
crossref_primary_10_1007_s00228_019_02731_z
crossref_primary_10_1016_j_neuropharm_2014_10_021
crossref_primary_10_1016_j_jaci_2016_06_062
crossref_primary_10_1016_j_pneurobio_2010_05_003
crossref_primary_10_1007_s12035_014_8997_x
crossref_primary_10_1096_fj_14_268102
crossref_primary_10_1158_1055_9965_EPI_09_0611
crossref_primary_10_1111_j_1541_0420_2009_01235_x
crossref_primary_10_1093_tbm_ibx060
crossref_primary_10_1016_j_tips_2009_10_004
crossref_primary_10_1007_s11121_016_0730_8
crossref_primary_10_1093_hmg_ddv303
crossref_primary_10_1097_JTO_0b013e3182475028
crossref_primary_10_1007_s13277_015_3149_0
crossref_primary_10_1200_JCO_2010_32_9870
crossref_primary_10_18632_oncotarget_20441
crossref_primary_10_1007_s10519_016_9792_4
crossref_primary_10_1053_j_ro_2014_10_010
crossref_primary_10_1100_2012_939584
crossref_primary_10_1111_j_1440_1843_2012_02165_x
crossref_primary_10_1093_ntr_nts167
crossref_primary_10_1111_j_1360_0443_2008_02213_x
crossref_primary_10_1016_j_schres_2018_10_011
crossref_primary_10_1111_j_1601_183X_2010_00650_x
crossref_primary_10_1038_clpt_2008_3
crossref_primary_10_1073_pnas_0911109107
crossref_primary_10_1111_ejn_15421
crossref_primary_10_1111_joim_13496
crossref_primary_10_1038_nn_3018
crossref_primary_10_1016_j_molmed_2017_12_001
crossref_primary_10_1158_1055_9965_EPI_09_0960
crossref_primary_10_1016_j_bbr_2008_05_021
crossref_primary_10_1016_j_neulet_2013_02_018
crossref_primary_10_3390_receptors4010001
crossref_primary_10_1111_j_1360_0443_2008_02236_x
crossref_primary_10_1007_s00439_010_0911_7
crossref_primary_10_1093_hmg_ddt432
crossref_primary_10_1080_01677060802572911
crossref_primary_10_1158_1055_9965_EPI_11_0749
crossref_primary_10_1093_hmg_ddr498
crossref_primary_10_1158_1055_9965_EPI_23_0571
crossref_primary_10_1002_ajmg_b_31011
crossref_primary_10_1093_ntr_ntt125
crossref_primary_10_18632_oncotarget_8510
crossref_primary_10_7314_APJCP_2015_16_15_6685
crossref_primary_10_1016_j_neuropharm_2020_108256
crossref_primary_10_1371_journal_pone_0102324
crossref_primary_10_1371_journal_pone_0134393
crossref_primary_10_3390_ijms22136657
crossref_primary_10_1016_j_brainres_2013_07_017
crossref_primary_10_1080_25765299_2020_1849491
crossref_primary_10_1146_annurev_clinpsy_121208_131441
crossref_primary_10_1007_s00213_014_3748_2
crossref_primary_10_1080_01677060802572903
crossref_primary_10_1111_jnc_14129
crossref_primary_10_1111_j_1369_1600_2011_00413_x
crossref_primary_10_1002_mgg3_93
crossref_primary_10_1016_j_alcohol_2012_03_001
crossref_primary_10_2217_pme_15_16
crossref_primary_10_1152_ajpcell_00102_2022
crossref_primary_10_1517_14728220902841045
crossref_primary_10_1164_rccm_201002_0151OC
crossref_primary_10_4306_pi_2012_9_3_245
crossref_primary_10_1038_tp_2016_103
crossref_primary_10_1097_CCO_0b013e3283412ea1
crossref_primary_10_1007_s11920_014_0477_5
crossref_primary_10_1158_1541_7786_MCR_09_0185
crossref_primary_10_1136_jmedgenet_2020_107399
crossref_primary_10_1183_09031936_00176811
crossref_primary_10_1002_ajmg_b_31126
crossref_primary_10_1016_j_tins_2016_10_005
crossref_primary_10_1016_j_bbr_2008_05_006
crossref_primary_10_3389_fnmol_2024_1429316
crossref_primary_10_1371_journal_pone_0096753
crossref_primary_10_1038_npp_2010_95
crossref_primary_10_1111_j_1360_0443_2008_02279_x
crossref_primary_10_1016_j_jfda_2013_09_048
crossref_primary_10_1016_j_biopsych_2007_10_024
crossref_primary_10_1016_j_drugalcdep_2011_06_009
crossref_primary_10_1111_adb_12286
crossref_primary_10_1111_j_1601_183X_2010_00608_x
crossref_primary_10_1002_ijc_27816
crossref_primary_10_1016_j_drugalcdep_2012_02_003
crossref_primary_10_1002_ajmg_b_32328
crossref_primary_10_1007_s00213_016_4362_2
crossref_primary_10_1093_ntr_ntr283
crossref_primary_10_3389_fnmol_2021_772584
crossref_primary_10_1371_journal_pgen_1000421
crossref_primary_10_1212_CPJ_0b013e31825a7812
crossref_primary_10_2217_fon_13_32
crossref_primary_10_1111_j_1360_0443_2010_03074_x
crossref_primary_10_1093_imaiai_iax013
crossref_primary_10_1016_j_neuropharm_2020_108234
crossref_primary_10_1126_science_1142447
crossref_primary_10_7759_cureus_47519
crossref_primary_10_1155_2013_748979
crossref_primary_10_1016_j_psyneuen_2021_105321
crossref_primary_10_1111_adb_12035
crossref_primary_10_1016_j_drugalcdep_2009_03_012
crossref_primary_10_1186_gm358
crossref_primary_10_1038_npp_2010_64
crossref_primary_10_1152_physiol_00002_2012
crossref_primary_10_1177_02698811241269691
crossref_primary_10_1016_j_pharmthera_2013_07_006
crossref_primary_10_3109_14767058_2014_932768
crossref_primary_10_1080_01677060802572929
crossref_primary_10_1371_journal_pgen_1000429
crossref_primary_10_1111_jnc_15356
crossref_primary_10_1371_journal_pone_0095997
crossref_primary_10_31887_DCNS_2017_19_3_dziedonis
crossref_primary_10_3389_fphar_2018_01398
crossref_primary_10_1017_S0954579411000824
crossref_primary_10_1093_hmg_dds114
crossref_primary_10_1038_s41467_024_49371_1
crossref_primary_10_1111_add_12478
crossref_primary_10_1155_2015_350348
crossref_primary_10_1124_mol_118_114769
crossref_primary_10_1371_journal_pone_0038666
crossref_primary_10_1590_1414_431X20122451
crossref_primary_10_1016_j_ajhg_2012_05_029
crossref_primary_10_1097_FBP_0b013e32830c360e
crossref_primary_10_1093_jnci_djn363
crossref_primary_10_1016_j_bcp_2011_05_020
crossref_primary_10_1093_ntr_ntr140
crossref_primary_10_1016_j_cub_2018_08_044
crossref_primary_10_1111_j_1360_0443_2010_03133_x
crossref_primary_10_2217_14622416_9_9_1307
crossref_primary_10_2217_pgs_12_76
crossref_primary_10_1186_gm258
crossref_primary_10_1111_j_1530_0277_2008_00768_x
crossref_primary_10_1016_j_psc_2012_03_010
crossref_primary_10_1016_j_pbb_2019_05_003
crossref_primary_10_1038_srep09521
crossref_primary_10_1214_09_STS289
crossref_primary_10_1101_cshperspect_a039610
crossref_primary_10_1111_gbb_12113
crossref_primary_10_1186_1471_2350_11_14
crossref_primary_10_1016_j_conb_2013_02_013
crossref_primary_10_1016_j_ajhg_2012_02_025
crossref_primary_10_1093_ntr_ntr012
crossref_primary_10_1186_1471_2156_8_10
crossref_primary_10_1111_j_1360_0443_2007_02071_x
crossref_primary_10_1007_s11825_011_0291_y
crossref_primary_10_1093_ntr_nts106
crossref_primary_10_1093_ntr_ntr019
crossref_primary_10_1158_1055_9965_EPI_09_0663
crossref_primary_10_1002_gepi_21709
crossref_primary_10_1254_jphs_14189FP
crossref_primary_10_1093_aje_kwr467
crossref_primary_10_1097_YPG_0b013e32833d17c3
crossref_primary_10_1158_1055_9965_EPI_22_0868
crossref_primary_10_1371_journal_pgen_1007306
crossref_primary_10_1038_452537a
crossref_primary_10_1371_journal_pone_0115716
crossref_primary_10_1016_j_ijpsycho_2016_12_007
crossref_primary_10_1016_j_cll_2010_07_005
crossref_primary_10_1038_mp_2016_13
crossref_primary_10_1002_humu_23135
crossref_primary_10_1111_gbb_12447
crossref_primary_10_1371_journal_pone_0050576
crossref_primary_10_1093_alcalc_agae039
crossref_primary_10_1007_s00394_021_02650_9
crossref_primary_10_1371_journal_pone_0104960
crossref_primary_10_4306_pi_2014_11_3_307
crossref_primary_10_1080_00952990_2016_1198799
crossref_primary_10_1371_journal_pone_0031816
crossref_primary_10_1007_s00439_008_0501_0
crossref_primary_10_1007_s40263_015_0243_1
crossref_primary_10_1016_j_neuropharm_2021_108480
crossref_primary_10_1111_ejn_14160
crossref_primary_10_1111_resp_12539
crossref_primary_10_1093_ntr_ntz099
crossref_primary_10_1111_jnc_14989
crossref_primary_10_1007_s11596_013_1218_4
crossref_primary_10_1007_s10519_011_9514_x
crossref_primary_10_1002_ajmg_b_30978
crossref_primary_10_1002_brb3_651
crossref_primary_10_1093_ntr_ntr231
crossref_primary_10_1111_gbb_12214
crossref_primary_10_1111_j_1369_1600_2010_00213_x
crossref_primary_10_3389_fpsyt_2021_773400
crossref_primary_10_1093_ntr_nts201
crossref_primary_10_1016_j_neubiorev_2021_08_016
crossref_primary_10_1093_ntr_ntr118
crossref_primary_10_1161_ATVBAHA_112_300157
crossref_primary_10_1016_j_gene_2014_04_070
crossref_primary_10_1093_jnci_djs211
crossref_primary_10_1016_j_cct_2017_05_008
crossref_primary_10_1056_NEJMra0809890
crossref_primary_10_1371_journal_pone_0081052
crossref_primary_10_1300_J374v03n03_05
crossref_primary_10_1093_ntr_ntp064
crossref_primary_10_1016_j_drugalcdep_2008_02_004
crossref_primary_10_1016_j_addicn_2023_100103
crossref_primary_10_1093_ntr_ntab072
crossref_primary_10_1038_npp_2009_178
crossref_primary_10_1002_gepi_21760
crossref_primary_10_1016_j_biopsych_2011_09_011
crossref_primary_10_1093_ntr_ntae284
crossref_primary_10_1016_j_neuropharm_2018_05_025
crossref_primary_10_1093_hmg_ddp231
crossref_primary_10_1016_j_bmcl_2013_11_049
crossref_primary_10_1016_j_biopsych_2008_04_018
crossref_primary_10_1093_ntr_ntr106
crossref_primary_10_1371_journal_pone_0049368
crossref_primary_10_1038_npp_2008_122
crossref_primary_10_1111_j_1360_0443_2007_02061_x
crossref_primary_10_2217_pgs_13_246
crossref_primary_10_3390_ijerph191710478
crossref_primary_10_1007_s11920_011_0176_4
crossref_primary_10_1097_MPA_0b013e318219dafe
crossref_primary_10_1016_j_jbi_2008_02_006
crossref_primary_10_1038_mp_2011_124
crossref_primary_10_1101_cshperspect_a039776
crossref_primary_10_1093_carcin_bgp282
crossref_primary_10_1038_mp_2011_122
crossref_primary_10_1038_srep04497
crossref_primary_10_1111_j_1360_0443_2008_02445_x
crossref_primary_10_18632_oncotarget_23459
crossref_primary_10_1016_j_neurobiolaging_2014_03_014
crossref_primary_10_1002_ajmg_b_32734
crossref_primary_10_1111_j_1601_183X_2009_00495_x
crossref_primary_10_1080_1047840X_2015_1039930
crossref_primary_10_1111_jnc_14893
crossref_primary_10_1161_CIRCGENETICS_112_963967
crossref_primary_10_1093_aje_kwq179
crossref_primary_10_1186_s12931_015_0209_3
crossref_primary_10_1111_acer_12364
crossref_primary_10_1111_j_1471_4159_2010_06967_x
crossref_primary_10_1161_CIRCGENETICS_111_962415
crossref_primary_10_1038_tp_2015_149
crossref_primary_10_1080_07853890_2016_1177196
crossref_primary_10_1016_j_neuron_2010_10_007
crossref_primary_10_1016_j_biopsych_2008_10_004
crossref_primary_10_1016_j_ajhg_2013_04_004
crossref_primary_10_1016_j_neubiorev_2023_105487
crossref_primary_10_1371_journal_pone_0137601
crossref_primary_10_1002_ajmg_b_30669
crossref_primary_10_1124_mol_111_073841
crossref_primary_10_1186_s12864_016_2495_7
crossref_primary_10_1002_gepi_21627
crossref_primary_10_1073_pnas_1004745107
crossref_primary_10_1038_npp_2015_131
crossref_primary_10_1007_s00429_016_1194_0
crossref_primary_10_1016_j_drugalcdep_2012_01_014
crossref_primary_10_1593_tlo_12304
crossref_primary_10_1016_j_addbeh_2009_05_010
crossref_primary_10_1186_s12889_016_3202_y
crossref_primary_10_3389_fgene_2021_767358
crossref_primary_10_1375_twin_13_4_359
crossref_primary_10_1111_acer_12032
crossref_primary_10_1038_s41398_018_0130_x
crossref_primary_10_1093_carcin_bgq252
crossref_primary_10_1002_emmm_201100627
crossref_primary_10_1093_hmg_ddn181
crossref_primary_10_1038_sj_mp_4002038
crossref_primary_10_1183_09031936_00093908
crossref_primary_10_1038_sj_mp_4002154
crossref_primary_10_1093_ntr_ntz036
crossref_primary_10_1111_j_1360_0443_2009_02697_x
crossref_primary_10_1093_arclin_acy101
crossref_primary_10_3945_ajcn_111_015545
crossref_primary_10_3390_ijerph18063206
crossref_primary_10_2217_pgs_11_74
crossref_primary_10_1016_j_pbb_2015_09_018
crossref_primary_10_1093_jnci_djq232
crossref_primary_10_1177_0269881111405352
crossref_primary_10_1016_j_drugalcdep_2015_06_022
crossref_primary_10_1007_s00228_015_1896_x
crossref_primary_10_1080_17425255_2021_1863948
crossref_primary_10_1093_ntr_ntz044
crossref_primary_10_4161_15592294_2014_969637
crossref_primary_10_1016_j_bcp_2008_07_012
crossref_primary_10_1074_jbc_M111_263673
crossref_primary_10_1007_s00432_019_02875_6
Cites_doi 10.1093/bioinformatics/bth457
10.1038/nrn1298
10.1038/16012
10.1002/gepi.20159
10.1037/0278-6133.18.1.14
10.1038/sj.mp.4000672
10.1038/sj.mp.4000690
10.1093/hmg/ddl441
10.1016/0006-8993(94)90401-4
10.1124/mol.65.6.1526
10.1097/00008571-200106000-00008
10.1002/sim.4780090710
10.1038/sj.mp.4001774
10.1097/00008571-199710000-00012
10.1124/mol.62.2.334
10.1093/jnci/90.5.358
10.1097/00008571-199602000-00006
10.1086/422194
10.1126/science.1105436
10.1111/j.1360-0443.1991.tb01879.x
10.1097/01.ALC.0000067973.41153.BC
10.1017/S0033291703001582
10.1073/pnas.1530509100
10.1086/429839
10.1093/genetics/155.2.945
10.1093/protein/10.6.673
10.1007/s11920-006-0016-0
10.1196/annals.1254.007
10.1086/381000
10.1002/ajmg.b.30231
10.1111/1467-9868.00346
10.1093/hmg/ddi132
10.1037/0735-7044.119.1.26
10.1097/00008571-199606000-00010
10.1016/S0140-6736(06)68192-0
10.1101/gr.403602
10.1093/hmg/ddi177
10.1111/j.2517-6161.1995.tb02031.x
10.1038/31623
10.1086/500026
ContentType Journal Article
Copyright The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
2007 INIST-CNRS
Copyright Oxford University Press(England) Jan 1, 2007
Copyright_xml – notice: The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2007
– notice: 2007 INIST-CNRS
– notice: Copyright Oxford University Press(England) Jan 1, 2007
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1093/hmg/ddl438
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE

MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 49
ExternalDocumentID PMC2270437
1196507661
17135278
18501652
10_1093_hmg_ddl438
10.1093/hmg/ddl438
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: DA12854
– fundername: NIDA NIH HHS
  grantid: R01 DA012854
– fundername: NCI NIH HHS
  grantid: CA89392
– fundername: NIDA NIH HHS
  grantid: R56 DA012854
– fundername: NIDA NIH HHS
  grantid: DA015129
– fundername: NCI NIH HHS
  grantid: P01 CA089392
– fundername: NIDA NIH HHS
  grantid: N01DA-0-7079
– fundername: NIDA NIH HHS
  grantid: K01 DA015129
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
AAYOK
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ASPBG
ATGXG
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NEJ
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABNGD
ABPQP
ABVGC
ABXZS
ACUKT
ACUTJ
ADNBA
AFYAG
AGORE
AGQPQ
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
.55
.GJ
AAPGJ
AAWDT
ABEFU
ABIME
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFQV
AFSHK
AGKRT
AGMDO
AHGBF
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ATDFG
ATTQO
AVNTJ
BZKNY
CXTWN
DFGAJ
EIHJH
ELUNK
IQODW
MBLQV
MBTAY
OBFPC
O~Y
QBD
RNI
RZF
TCN
X7M
ZCG
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c494t-32e649d6e4c99859178013d4dc1e58462d483a21ec3efaa50d4404f878140e193
ISSN 0964-6906
IngestDate Thu Aug 21 14:12:25 EDT 2025
Thu Aug 07 14:36:04 EDT 2025
Fri Jul 11 02:51:11 EDT 2025
Fri Jul 25 19:38:59 EDT 2025
Fri May 30 11:00:58 EDT 2025
Mon Jul 21 09:12:53 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 00:23:57 EDT 2025
Wed Sep 11 04:51:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cholinergic receptor
Association
Targeting
Dependence
Genetics
Candidate gene
Single nucleotide polymorphism
Nicotinic receptor
Nicotine
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c494t-32e649d6e4c99859178013d4dc1e58462d483a21ec3efaa50d4404f878140e193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.
OpenAccessLink https://academic.oup.com/hmg/article-pdf/16/1/36/17243519/ddl438.pdf
PMID 17135278
PQID 211344988
PQPubID 32497
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2270437
proquest_miscellaneous_68419544
proquest_miscellaneous_19536302
proquest_journals_211344988
pubmed_primary_17135278
pascalfrancis_primary_18501652
crossref_citationtrail_10_1093_hmg_ddl438
crossref_primary_10_1093_hmg_ddl438
oup_primary_10_1093_hmg_ddl438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-01-01
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – month: 01
  year: 2007
  text: 2007-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2007
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Comings ( key 20171011140121_DDL438C14) 1996; 6
Stein ( key 20171011140121_DDL438C46) 2002; 12
Roeder ( key 20171011140121_DDL438C43) 2006; 78
CDC ( key 20171011140121_DDL438C26) 2005; 54
Spitz ( key 20171011140121_DDL438C17) 1998; 90
Greenbaum ( key 20171011140121_DDL438C10) 2006; 11
Beuten ( key 20171011140121_DDL438C18) 2005; 76
Heatherton ( key 20171011140121_DDL438C36) 1991; 86
Feng ( key 20171011140121_DDL438C8) 2004; 75
Storey ( key 20171011140121_DDL438C25) 2002; 64
Hochberg ( key 20171011140121_DDL438C24) 1990; 9
key 20171011140121_DDL438C1
Warren ( key 20171011140121_DDL438C2) 2006; 367
Carlson ( key 20171011140121_DDL438C42) 2004; 74
Benjamini ( key 20171011140121_DDL438C44) 1995; 57
Tapper ( key 20171011140121_DDL438C3) 2006
Dobelis ( key 20171011140121_DDL438C31) 2002; 62
Beuten ( key 20171011140121_DDL438C21) 2005; 139B
Lindstrom ( key 20171011140121_DDL438C27) 2003; 998
key 20171011140121_DDL438C6
Barrett ( key 20171011140121_DDL438C41) 2005; 15
SAS Institute Inc ( key 20171011140121_DDL438C40)
Ma ( key 20171011140121_DDL438C35) 2005; 14
Boustead ( key 20171011140121_DDL438C11) 1997; 7
Saccone ( key 20171011140121_DDL438C37) 2006; 30
Hinds ( key 20171011140121_DDL438C38) 2005; 18
Corrigall ( key 20171011140121_DDL438C5) 1994; 653
Stitzel ( key 20171011140121_DDL438C30) 2001; 4
Lerman ( key 20171011140121_DDL438C20) 2000; 5
Hu ( key 20171011140121_DDL438C19) 2000; 5
Lessov ( key 20171011140121_DDL438C7) 2004; 34
Bierut ( key 20171011140121_DDL438C23) 2006; 16
Butt ( key 20171011140121_DDL438C32) 2003; 27
Pianezza ( key 20171011140121_DDL438C12) 1998; 393
Lerman ( key 20171011140121_DDL438C16) 1999; 18
Li ( key 20171011140121_DDL438C9) 2005; 14
Cholerton ( key 20171011140121_DDL438C13) 1996; 6
Laviolette ( key 20171011140121_DDL438C4) 2004; 5
Storey ( key 20171011140121_DDL438C45) 2003; 100
Cserzo ( key 20171011140121_DDL438C29) 1997; 10
Lewohl ( key 20171011140121_DDL438C34) 1999; 12
Butt ( key 20171011140121_DDL438C33) 2005; 119
Salminen ( key 20171011140121_DDL438C28) 2004; 65
Li ( key 20171011140121_DDL438C22) 2006; 8
Pritchard ( key 20171011140121_DDL438C39) 2000; 155
Shields ( key 20171011140121_DDL438C15) 1998; 7
References_xml – volume: 15
  start-page: 263
  year: 2005
  ident: key 20171011140121_DDL438C41
  article-title: Haploview: analysis and visualization of LD and haplotype maps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth457
– volume: 5
  start-page: 55
  year: 2004
  ident: key 20171011140121_DDL438C4
  article-title: The neurobiology of nicotine addiction: bridging the gap from molecules to behavior
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1298
– volume: 12
  start-page: 1084
  year: 1999
  ident: key 20171011140121_DDL438C34
  article-title: G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action
  publication-title: Nat. Neurosci.
  doi: 10.1038/16012
– volume: 30
  start-page: 459
  year: 2006
  ident: key 20171011140121_DDL438C37
  article-title: Power-based, phase-informed selection of single nucleotide polymorphisms for disease association screens
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20159
– volume: 18
  start-page: 14
  year: 1999
  ident: key 20171011140121_DDL438C16
  article-title: Evidence suggesting the role of specific genetic factors in cigarette smoking
  publication-title: Health Psychol.
  doi: 10.1037/0278-6133.18.1.14
– volume: 5
  start-page: 189
  year: 2000
  ident: key 20171011140121_DDL438C20
  article-title: Interacting effects of the serotonin transporter gene and neuroticism in smoking practices and nicotine dependence
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4000672
– volume: 5
  start-page: 181
  year: 2000
  ident: key 20171011140121_DDL438C19
  article-title: Interaction between the serotonin transporter gene and neuroticism in cigarette smoking behavior
  publication-title: Mol. Psychiatry
  doi: 10.1038/sj.mp.4000690
– volume-title: Cell Biology of Addiction
  year: 2006
  ident: key 20171011140121_DDL438C3
  article-title: Neuronal nicotinic acetylcholine receptors and nicotine dependence
– volume: 16
  start-page: 24
  year: 2006
  ident: key 20171011140121_DDL438C23
  article-title: Novel genes identified in a high-density genome wide association study for nicotine dependence
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddl441
– volume: 653
  start-page: 278
  year: 1994
  ident: key 20171011140121_DDL438C5
  article-title: Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(94)90401-4
– volume: 65
  start-page: 1526
  year: 2004
  ident: key 20171011140121_DDL438C28
  article-title: Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.65.6.1526
– volume: 4
  start-page: 331
  year: 2001
  ident: key 20171011140121_DDL438C30
  article-title: Long sleep and short sleep mice differ in nicotine-stimulated 86Rb+ efflux and alpha4 nicotinic receptor subunit cDNA sequence
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200106000-00008
– volume: 9
  start-page: 811
  year: 1990
  ident: key 20171011140121_DDL438C24
  article-title: More powerful procedures for multiple significance testing
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780090710
– ident: key 20171011140121_DDL438C1
– volume: 11
  start-page: 312
  year: 2006
  ident: key 20171011140121_DDL438C10
  article-title: Why do young women smoke? I. Direct and interactive effects of environment, psychological characteristics and nicotinic cholinergic receptor genes
  publication-title: Mol. Psychiatr.
  doi: 10.1038/sj.mp.4001774
– volume: 7
  start-page: 411
  year: 1997
  ident: key 20171011140121_DDL438C11
  article-title: CYP2D6 genotype and smoking behaviour in cigarette smokers
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199710000-00012
– volume: 62
  start-page: 334
  year: 2002
  ident: key 20171011140121_DDL438C31
  article-title: A polymorphism in the mouse neuronal alpha4 nicotinic receptor subunit results in an alteration in receptor function
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.62.2.334
– volume: 90
  start-page: 358
  year: 1998
  ident: key 20171011140121_DDL438C17
  article-title: Case–control study of the D2 dopamine receptor gene and smoking status in lung cancer patients
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/90.5.358
– volume: 6
  start-page: 73
  year: 1996
  ident: key 20171011140121_DDL438C14
  article-title: The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199602000-00006
– volume: 75
  start-page: 112
  year: 2004
  ident: key 20171011140121_DDL438C8
  article-title: A common haplotype of the nicotine acetylcholine receptor alpha 4 subunit gene is associated with vulnerability to nicotine addiction in men
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/422194
– ident: key 20171011140121_DDL438C40
– volume: 18
  start-page: 1072
  year: 2005
  ident: key 20171011140121_DDL438C38
  article-title: Whole-genome patterns of common DNA variation in three human populations
  publication-title: Science
  doi: 10.1126/science.1105436
– volume: 86
  start-page: 1119
  year: 1991
  ident: key 20171011140121_DDL438C36
  article-title: The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire
  publication-title: Br. J. Addict.
  doi: 10.1111/j.1360-0443.1991.tb01879.x
– volume: 27
  start-page: 733
  year: 2003
  ident: key 20171011140121_DDL438C32
  article-title: A polymorphism in the alpha4 nicotinic receptor gene (Chrna4) modulates enhancement of nicotinic receptor function by ethanol
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1097/01.ALC.0000067973.41153.BC
– volume: 34
  start-page: 865
  year: 2004
  ident: key 20171011140121_DDL438C7
  article-title: Defining nicotine dependence for genetic research: evidence from Australian twins
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291703001582
– volume: 100
  start-page: 9440
  year: 2003
  ident: key 20171011140121_DDL438C45
  article-title: Statistical significance for genomewide studies
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1530509100
– volume: 76
  start-page: 859
  year: 2005
  ident: key 20171011140121_DDL438C18
  article-title: Single- and multilocus allelic variants within the GABA(B) receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/429839
– volume: 155
  start-page: 945
  year: 2000
  ident: key 20171011140121_DDL438C39
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– volume: 10
  start-page: 673
  year: 1997
  ident: key 20171011140121_DDL438C29
  article-title: Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method
  publication-title: Protein Eng.
  doi: 10.1093/protein/10.6.673
– volume: 8
  start-page: 158
  year: 2006
  ident: key 20171011140121_DDL438C22
  article-title: The genetics of nicotine dependence
  publication-title: Curr. Psychiatry Rep.
  doi: 10.1007/s11920-006-0016-0
– volume: 998
  start-page: 41
  year: 2003
  ident: key 20171011140121_DDL438C27
  article-title: Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology
  publication-title: Ann. N.Y. Acad. Sci.
  doi: 10.1196/annals.1254.007
– volume: 7
  start-page: 453
  year: 1998
  ident: key 20171011140121_DDL438C15
  article-title: Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians
  publication-title: Cancer Epidemiol. Biomarkers Prev.
– volume: 74
  start-page: 106
  year: 2004
  ident: key 20171011140121_DDL438C42
  article-title: Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/381000
– volume: 139B
  start-page: 73
  year: 2005
  ident: key 20171011140121_DDL438C21
  article-title: Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers
  publication-title: Am. J. Med. Genet. B Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.30231
– volume: 54
  start-page: 625
  year: 2005
  ident: key 20171011140121_DDL438C26
  article-title: Annual smoking-attributable mortality, years of potential life lost, and productivity losses-United States
  publication-title: Morb Mortal Wkly Rep
– volume: 64
  start-page: 479
  year: 2002
  ident: key 20171011140121_DDL438C25
  article-title: A direct approach to false discovery rates
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00346
– volume: 14
  start-page: 1211
  year: 2005
  ident: key 20171011140121_DDL438C9
  article-title: Ethnic- and gender-specific association of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) with nicotine dependence
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi132
– volume: 119
  start-page: 26
  year: 2005
  ident: key 20171011140121_DDL438C33
  article-title: Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism
  publication-title: Behav. Neurosci.
  doi: 10.1037/0735-7044.119.1.26
– volume: 6
  start-page: 261
  year: 1996
  ident: key 20171011140121_DDL438C13
  article-title: CYP2D6 genotypes in cigarette smokers and non-tobacco users
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-199606000-00010
– volume: 367
  start-page: 749
  year: 2006
  ident: key 20171011140121_DDL438C2
  article-title: Global Tobacco Surveillance System (GTSS) collaborative group. Patterns of global tobacco use in young people and implications for future chronic disease burden in adults
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68192-0
– ident: key 20171011140121_DDL438C6
– volume: 12
  start-page: 1599
  year: 2002
  ident: key 20171011140121_DDL438C46
  article-title: The generic genome browser: a building block for a model organism system database
  publication-title: Genome Res.
  doi: 10.1101/gr.403602
– volume: 14
  start-page: 1691
  year: 2005
  ident: key 20171011140121_DDL438C35
  article-title: Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddi177
– volume: 57
  start-page: 289
  year: 1995
  ident: key 20171011140121_DDL438C44
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 393
  start-page: 750
  year: 1998
  ident: key 20171011140121_DDL438C12
  article-title: Nicotine metabolism defect reduces smoking
  publication-title: Nature
  doi: 10.1038/31623
– volume: 78
  start-page: 243
  year: 2006
  ident: key 20171011140121_DDL438C43
  article-title: Using linkage genome scans to improve power of association genome scans
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/500026
SSID ssj0016437
Score 2.4562652
Snippet Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we...
Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Adult
Aged
Aged, 80 and over
Biological and medical sciences
Case-Control Studies
Chromosomes, Human, Pair 8
Cluster Analysis
Female
Fundamental and applied biological sciences. Psychology
Genetic Markers - genetics
Genetic Variation
Genetics of eukaryotes. Biological and molecular evolution
Genotype
Humans
Male
Middle Aged
Molecular and cellular biology
Polymorphism, Single Nucleotide
Receptors, Nicotinic - genetics
Tobacco Use Disorder - genetics
Title Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs
URI https://www.ncbi.nlm.nih.gov/pubmed/17135278
https://www.proquest.com/docview/211344988
https://www.proquest.com/docview/19536302
https://www.proquest.com/docview/68419544
https://pubmed.ncbi.nlm.nih.gov/PMC2270437
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELeqIRASQjBglMGwBC8oCmtt599jVba1oHaIdmJvkZs4aqUtq9b0Ab4AX4gPyF2cOEnX8e8lqpKr0-p-9p3Pd78j5K0vHD7rONJOWOzYYG8jmHMCHLkgAmuSRAGTGBoYjd3Bmfh47py3Wj9rWUvrbPY--r61ruR_tAr3QK9YJfsPmjWDwg34DPqFK2gYrn-l4_4cW-6oa1i9rBRUmmGVowVrmFrCVhq7I2O6VZEzrpBlyZKlINZL6f63WDJQKUkTzlo6QxzjCFz4mBoWLzA2UIyZR2857Dytyfjzqu7g6kOBy7Lpbi6f1TLqJ71-_3Scp2BOcloIk1k8GI6_DPuDSY3SwDKR6cnXXp6PcIJJfqZ44uS0Nz3SZTp5J8VRI4bhbcQwbqmNrAcrXWEjpXJj3XZv4FMvwtytmXNNiHrDUGgSrfklrKfHcXwhNMVMk497w06a7EVwcbAIDAz_HQabE-yb8WH4yZxd4VFozvBY_OaSFDfgh_C-Q_22hhukSysfLOUK5mWiG6ps2_FsJu7WPKHpI_Kw2MLQnsbjY9JS6S65q5uaftsl90ZFusYT8qMGUGoASkuA0hxMtAIoXaRUloKKVgClNYDSHKDUAJQCQKkBaDEmApQiQCkC9Ck5Oz6a9gd20fnDjkQgMpsz5YogdpWIggAZFj1wpHgs4qir0GNmsfC5ZF0VcZVI6XRipLlM_Jy_TcGe5BnZSa9S9ZxQT0QOi1weeyAUKAnelyP9xJNON3I9qdrkXamIMCpo8bE7y0Wo0zN4CEoLtdLa5I2RXWoymK1SB6DP3ws0VF2JFsBqk_1S92Gx3KxC1u1yIQIfvv7aPAVbgAd8MlVX61WIR-Iu77DbJVxfIMWjaJM9jaTq3dirk3kwutfAmBFAHvrmk3Qxz_noGfOQIe3Fn_7WPrlfTf6XZCe7XqtX4NJns4N8Bv0CTJP9Lw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholinergic+nicotinic+receptor+genes+implicated+in+a+nicotine+dependence+association+study+targeting+348+candidate+genes+with+3713+SNPs&rft.jtitle=Human+molecular+genetics&rft.au=SACCONE%2C+Scott+F&rft.au=HINRICHS%2C+Anthony+L&rft.au=SWAN%2C+Gary+E&rft.au=GOATE%2C+Alison+M&rft.date=2007-01-01&rft.pub=Oxford+University+Press&rft.issn=0964-6906&rft.volume=16&rft.issue=1&rft.spage=36&rft.epage=49&rft_id=info:doi/10.1093%2Fhmg%2Fddl438&rft.externalDBID=n%2Fa&rft.externalDocID=18501652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon