Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface

Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmho...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 5715 - 12
Main Authors Liao, Wanru, Wang, Jun, Tan, Yao, Zi, Xin, Liu, Changxu, Wang, Qiyou, Zhu, Li, Kao, Cheng-Wei, Chan, Ting-Shan, Li, Hongmei, Zhang, Yali, Liu, Kang, Cai, Chao, Fu, Junwei, Xi, Beidou, Cortés, Emiliano, Chai, Liyuan, Liu, Min
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO 3 ‒ concentration decreases, impeding practical applications in the conversion of NO 3 ‒ -to-NH 3 . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO 3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS 2 (Ag-MoS 2 ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO 3 ‒ . Thus, Ag-MoS 2 exhibits a ~ 28.6-fold NO 3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH 3 Faradaic efficiency with an NH 3 yield rate of ~20 mg h ‒1 cm ‒2 under ultralow NO 3 ‒ concentrations. Electroreduction of low-concentration NO 3 − to NH 3 is limited by NO 3 − mass transfer. Here, the authors propose a strategy for NO 3 − enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO 3 − to NH 3 .
AbstractList Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO 3 ‒ concentration decreases, impeding practical applications in the conversion of NO 3 ‒ -to-NH 3 . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO 3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS 2 (Ag-MoS 2 ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO 3 ‒ . Thus, Ag-MoS 2 exhibits a ~ 28.6-fold NO 3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH 3 Faradaic efficiency with an NH 3 yield rate of ~20 mg h ‒1 cm ‒2 under ultralow NO 3 ‒ concentrations. Electroreduction of low-concentration NO 3 − to NH 3 is limited by NO 3 − mass transfer. Here, the authors propose a strategy for NO 3 − enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO 3 − to NH 3 .
Abstract Electroreduction of nitrate (NO3 ‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3 ‒ concentration decreases, impeding practical applications in the conversion of NO3 ‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3 ‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3 ‒ concentrations.
Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.
Electroreduction of nitrate (NO ) to ammonia (NH ) is a promising approach for addressing energy challenges. However, the activity is limited by NO mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO concentration decreases, impeding practical applications in the conversion of NO -to-NH . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS (Ag-MoS ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO . Thus, Ag-MoS exhibits a ~ 28.6-fold NO concentration in the IHP than the counterpart without junction, and achieves near-100% NH Faradaic efficiency with an NH yield rate of ~20 mg h cm under ultralow NO concentrations.
Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.Electroreduction of low-concentration NO3− to NH3 is limited by NO3− mass transfer. Here, the authors propose a strategy for NO3− enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO3− to NH3.
Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO 3 ‒ concentration decreases, impeding practical applications in the conversion of NO 3 ‒ -to-NH 3 . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO 3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS 2 (Ag-MoS 2 ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO 3 ‒ . Thus, Ag-MoS 2 exhibits a ~ 28.6-fold NO 3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH 3 Faradaic efficiency with an NH 3 yield rate of ~20 mg h ‒1 cm ‒2 under ultralow NO 3 ‒ concentrations.
ArticleNumber 5715
Author Liu, Changxu
Tan, Yao
Xi, Beidou
Zi, Xin
Chan, Ting-Shan
Cortés, Emiliano
Kao, Cheng-Wei
Wang, Jun
Liu, Min
Liao, Wanru
Wang, Qiyou
Cai, Chao
Zhang, Yali
Zhu, Li
Li, Hongmei
Liu, Kang
Fu, Junwei
Chai, Liyuan
Author_xml – sequence: 1
  givenname: Wanru
  surname: Liao
  fullname: Liao, Wanru
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology
– sequence: 2
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology
– sequence: 3
  givenname: Yao
  surname: Tan
  fullname: Tan, Yao
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 4
  givenname: Xin
  surname: Zi
  fullname: Zi, Xin
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 5
  givenname: Changxu
  orcidid: 0000-0003-1196-7447
  surname: Liu
  fullname: Liu, Changxu
  organization: Centre for Metamaterial Research & Innovation, Department of Engineering, University of Exeter
– sequence: 6
  givenname: Qiyou
  surname: Wang
  fullname: Wang, Qiyou
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 7
  givenname: Li
  surname: Zhu
  fullname: Zhu, Li
  organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München
– sequence: 8
  givenname: Cheng-Wei
  surname: Kao
  fullname: Kao, Cheng-Wei
  organization: National Synchrotron Radiation Research Center
– sequence: 9
  givenname: Ting-Shan
  orcidid: 0000-0001-5220-1611
  surname: Chan
  fullname: Chan, Ting-Shan
  organization: National Synchrotron Radiation Research Center
– sequence: 10
  givenname: Hongmei
  surname: Li
  fullname: Li, Hongmei
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 11
  givenname: Yali
  surname: Zhang
  fullname: Zhang, Yali
  organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 12
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 13
  givenname: Chao
  orcidid: 0000-0002-3695-3247
  surname: Cai
  fullname: Cai, Chao
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 14
  givenname: Junwei
  orcidid: 0000-0003-0190-1663
  surname: Fu
  fullname: Fu, Junwei
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University
– sequence: 15
  givenname: Beidou
  orcidid: 0009-0001-6997-4001
  surname: Xi
  fullname: Xi, Beidou
  email: xibd@craes.org.cn
  organization: State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences
– sequence: 16
  givenname: Emiliano
  orcidid: 0000-0001-8248-4165
  surname: Cortés
  fullname: Cortés, Emiliano
  email: Emiliano.Cortes@lmu.de
  organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München
– sequence: 17
  givenname: Liyuan
  surname: Chai
  fullname: Chai, Liyuan
  organization: School of Metallurgy and Environment, Central South University
– sequence: 18
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
  email: minliu@csu.edu.cn
  organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Metallurgy and Environment, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40593597$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpC7BAkdiwCfgWX1aoqrhUqsqGbrEc53jGo8Rubc9I8_a4k1JaFnjjc-zv_D62_9fNUYgBmuYtRh8xovJTZphx0SHSdxxxgbv9i-aEIIY7LAg9ehIfN2c5b1AdVGHJ2KvmmKFe0V6Jk-bXNZjU3QRf9u21L8kUaEtsz-c5Bm9aG8MOUvYxtLuaJjC2mFBaCMnb9Qw1NKUta2hznPzYTf5u68fWhwLJGQtvmpfOTBnOHubT5ubrl58X37urH98uL86vOssUKx0ZMXJj34-SEmQYEwNxo2WU80HyQWBnwQhphaBUcQ4CyGDJQDl1zClpHT1tLhfdMZqNvk1-Nmmvo_H6sBDTSptUvJ1Au3F0xEqO2SCYskg5xfpBSUkRBWf7qvV50brdDjOMtl4ymemZ6POd4Nd6FXcaE4IVobQqfHhQSPFuC7no2WcL02QCxG3WlBBOeywlq-j7f9BN3KZQ3-pAEYmUuqfePW3psZc__1gBsgA2xZwTuEcEI33vF734RVe_6INf9L4W0aUoVzisIP09-z9VvwEp6MNh
Cites_doi 10.1038/s41586-019-1260-x
10.1063/1.3382344
10.1021/jacs.3c03432
10.1016/j.envres.2020.109313
10.1002/ange.202302302
10.1016/j.chempr.2017.10.004
10.1002/anie.202202556
10.1002/adma.202202952
10.1016/j.watres.2017.04.069
10.1126/science.aar6611
10.1021/acscatal.1c01413
10.1007/s10800-004-8349-z
10.1038/s41929-024-01200-w
10.1016/j.cej.2019.122065
10.1016/j.cej.2020.126269
10.1039/an9840900549
10.1021/es100546y
10.1038/s41893-024-01406-7
10.1016/j.joule.2020.12.025
10.1021/acsnano.3c03220
10.1002/adfm.202006516
10.1002/anie.202300873
10.1039/D1EE01395E
10.1002/anie.202202604
10.1002/anie.202109785
10.1139/v69-173
10.1038/s41565-020-00809-9
10.1016/j.apcatb.2023.123426
10.1021/acs.chemmater.8b03796
10.1002/advs.202103583
10.1016/j.jechem.2021.03.043
10.1038/s44221-023-00169-3
10.1021/acs.nanolett.3c01700
10.1002/adfm.202009151
10.1021/acscatal.6b03107
10.1016/j.joule.2019.10.006
10.1016/0927-0256(96)00008-0
10.1021/acsenergylett.1c02189
10.1007/s10533-009-9387-8
10.1039/b905441n
10.1038/s41467-024-45534-2
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1002/ange.202308775
10.1021/jacs.9b05029
10.1016/j.agee.2020.106859
10.1039/D1EE00594D
10.1016/j.cej.2020.125672
10.1063/1.1696721
10.1016/j.elecom.2021.107094
10.1002/anie.202215938
10.1038/s41467-022-35533-6
10.1021/acsnano.2c08853
10.1016/j.psep.2016.06.021
10.1021/acscatal.2c04088
10.1103/PhysRevB.64.235305
10.1016/j.seppur.2021.118751
10.1126/science.adf4403
10.1021/jacs.2c00089
10.1002/adma.202005721
10.1126/science.abg2371
10.1038/s41929-023-01060-w
10.1038/s41560-020-0654-1
10.1002/adma.202304695
10.1016/0960-8524(95)00105-0
10.1021/es102692b
10.1038/ncomms5673
10.1002/adma.202204306
10.1021/acsnano.2c06747
10.1002/adma.202306633
10.1039/D2TC01045C
10.1038/s41467-023-43179-1
10.1103/PhysRevB.54.11169
10.1021/cr00011a004
10.1002/anie.202302302
10.1021/la053145y
10.1073/pnas.2115504119
10.1038/nchem.1476
10.1038/s41586-022-05108-y
10.1016/j.apcatb.2021.120993
10.1016/j.apsusc.2014.07.156
10.1038/s41563-019-0356-x
10.1038/s41565-022-01121-4
10.1039/D1EE02986J
10.1038/s41467-022-35664-w
10.1126/science.345.6197.610
10.1038/s41929-023-00951-2
10.1016/j.apcatb.2020.118777
10.1038/s41586-021-04068-z
10.1103/PhysRevB.59.1758
10.1126/science.abl4300
10.1051/analusis:1998183
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-60671-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_fddf2c8614b749c09f945b988303efc5
PMC12219233
40593597
10_1038_s41467_025_60671_y
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22376222
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22376222
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
PJZUB
PPXIY
PQGLB
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c494t-2d10fd55d8320a447b2fdc4366b86b71fcea78c7733966e7e2bc2b363f4f98cf3
IEDL.DBID AAJSJ
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:31 EDT 2025
Thu Aug 21 18:33:09 EDT 2025
Tue Aug 26 08:59:16 EDT 2025
Fri Jul 25 09:08:35 EDT 2025
Mon Jul 21 06:03:37 EDT 2025
Thu Jul 03 08:43:35 EDT 2025
Wed Jul 02 02:44:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-2d10fd55d8320a447b2fdc4366b86b71fcea78c7733966e7e2bc2b363f4f98cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1196-7447
0009-0001-6997-4001
0000-0002-9007-4817
0000-0003-0190-1663
0000-0001-5220-1611
0000-0001-8248-4165
0000-0002-3695-3247
OpenAccessLink https://www.nature.com/articles/s41467-025-60671-y
PMID 40593597
PQID 3226280994
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_fddf2c8614b749c09f945b988303efc5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12219233
proquest_miscellaneous_3226351884
proquest_journals_3226280994
pubmed_primary_40593597
crossref_primary_10_1038_s41467_025_60671_y
springer_journals_10_1038_s41467_025_60671_y
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References H Niu (60671_CR45) 2020; 399
H Luo (60671_CR42) 2023; 35
Y Wang (60671_CR71) 2022; 61
M-H Yuan (60671_CR74) 2016; 102
K Li (60671_CR18) 2021; 374
JP Perdew (60671_CR90) 1996; 77
CA Koval (60671_CR54) 1992; 92
L Bu (60671_CR69) 2021; 269
FY Chen (60671_CR12) 2022; 17
G Kresse (60671_CR89) 1996; 54
JW Lim (60671_CR48) 2022; 12
H Liu (60671_CR29) 2022; 61
M Xie (60671_CR31) 2023; 145
C Polatides (60671_CR87) 2005; 35
J Guo (60671_CR3) 2017; 3
S Chatterjee (60671_CR4) 2021; 6
TN Xu (60671_CR47) 2014; 316
S Mao (60671_CR55) 2023; 23
T Böker (60671_CR82) 2001; 64
R Daiyan (60671_CR23) 2021; 14
W Chen (60671_CR68) 2021; 14
C-Y Li (60671_CR62) 2019; 18
I Paredes (60671_CR39) 2020; 294
F-Y Chen (60671_CR10) 2024; 7
L Wang (60671_CR56) 2023; 17
PE Blöchl (60671_CR92) 1994; 50
A Kumar (60671_CR66) 2022; 16
R Liu (60671_CR46) 2021; 9
R Wirz (60671_CR77) 2006; 22
G Kresse (60671_CR91) 1999; 59
JG Chen (60671_CR1) 2018; 360
AJP Smolders (60671_CR26) 2009; 98
N Xuan (60671_CR49) 2019; 31
Z Gong (60671_CR80) 2023; 135
G-F Han (60671_CR6) 2021; 16
C-M Lee (60671_CR40) 2020; 184
DM Wiles (60671_CR78) 1969; 47
S Grimme (60671_CR93) 2010; 132
W Liao (60671_CR15) 2021; 62
W Liao (60671_CR20) 2024; 15
S Zhang (60671_CR33) 2022; 119
Y Hou (60671_CR43) 2020; 269
G Zhang (60671_CR75) 2024; 7
W Liao (60671_CR14) 2021; 31
G-F Chen (60671_CR34) 2020; 5
Y Huang (60671_CR36) 2023; 14
KR Burow (60671_CR25) 2010; 44
PL Searle (60671_CR85) 1984; 109
Y Ren (60671_CR27) 2022; 144
MH Du (60671_CR50) 2020; 31
BL Evans (60671_CR84) 1997; 284
H-L Du (60671_CR17) 2022; 609
W Gao (60671_CR30) 2023; 35
C Yang (60671_CR67) 2022; 304
G Kresse (60671_CR88) 1996; 6
C Yan (60671_CR57) 2019; 141
R Zhao (60671_CR65) 2023; 35
G Herzog (60671_CR59) 2009; 134
J Sun (60671_CR28) 2024; 342
M Kitano (60671_CR5) 2012; 4
DE Milligan (60671_CR79) 1965; 43
SZ Andersen (60671_CR70) 2019; 570
L Chen (60671_CR81) 2010; 44
PH Liao (60671_CR73) 1995; 54
M Li (60671_CR51) 2022; 10
K Fan (60671_CR76) 2022; 13
J Luo (60671_CR58) 2023; 135
J Lim (60671_CR72) 2021; 11
K Wang (60671_CR22) 2023; 1
J-Y Fang (60671_CR11) 2022; 13
C Ding (60671_CR44) 2016; 7
C Cai (60671_CR63) 2023; 62
PH Van Langevelde (60671_CR35) 2021; 5
L Su (60671_CR37) 2017; 120
J John (60671_CR9) 2023; 6
Z-Z Luo (60671_CR61) 2022; 15
AP Carvalho (60671_CR86) 1998; 26
RF Service (60671_CR7) 2014; 345
BHR Suryanto (60671_CR16) 2021; 372
X Yang (60671_CR24) 2023; 62
S Han (60671_CR21) 2023; 6
J Luo (60671_CR60) 2023; 62
YH Wang (60671_CR64) 2021; 600
N Alidoust (60671_CR83) 2014; 5
F Chang (60671_CR2) 2021; 33
V Kyriakou (60671_CR8) 2020; 4
WJ Sun (60671_CR41) 2021; 60
W Liao (60671_CR13) 2023; 17
Z Song (60671_CR32) 2022; 34
X Lu (60671_CR52) 2021; 129
X Fu (60671_CR19) 2023; 379
R Chauhan (60671_CR38) 2020; 386
X Zhang (60671_CR53) 2021; 403
References_xml – volume: 570
  start-page: 504
  year: 2019
  ident: 60671_CR70
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 132
  start-page: 154104
  year: 2010
  ident: 60671_CR93
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 145
  start-page: 13957
  year: 2023
  ident: 60671_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c03432
– volume: 184
  start-page: 109313
  year: 2020
  ident: 60671_CR40
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109313
– volume: 135
  start-page: e202302302
  year: 2023
  ident: 60671_CR58
  publication-title: batteries. Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202302302
– volume: 3
  start-page: 709
  year: 2017
  ident: 60671_CR3
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.004
– volume: 61
  year: 2022
  ident: 60671_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202556
– volume: 35
  start-page: 2202952
  year: 2023
  ident: 60671_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202952
– volume: 120
  start-page: 1
  year: 2017
  ident: 60671_CR37
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.069
– volume: 360
  year: 2018
  ident: 60671_CR1
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 11
  start-page: 7568
  year: 2021
  ident: 60671_CR72
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01413
– volume: 35
  start-page: 421
  year: 2005
  ident: 60671_CR87
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-004-8349-z
– volume: 7
  start-page: 1032
  year: 2024
  ident: 60671_CR10
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-024-01200-w
– volume: 386
  start-page: 122065
  year: 2020
  ident: 60671_CR38
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122065
– volume: 403
  start-page: 126269
  year: 2021
  ident: 60671_CR53
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126269
– volume: 109
  start-page: 549
  year: 1984
  ident: 60671_CR85
  publication-title: Analyst
  doi: 10.1039/an9840900549
– volume: 44
  start-page: 4988
  year: 2010
  ident: 60671_CR25
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100546y
– volume: 7
  start-page: 1251
  year: 2024
  ident: 60671_CR75
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-024-01406-7
– volume: 5
  start-page: 290
  year: 2021
  ident: 60671_CR35
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 17
  start-page: 24619
  year: 2023
  ident: 60671_CR56
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c03220
– volume: 31
  start-page: 2006516
  year: 2020
  ident: 60671_CR50
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006516
– volume: 62
  year: 2023
  ident: 60671_CR63
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202300873
– volume: 14
  start-page: 6428
  year: 2021
  ident: 60671_CR68
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D1EE01395E
– volume: 61
  year: 2022
  ident: 60671_CR71
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202604
– volume: 60
  start-page: 22933
  year: 2021
  ident: 60671_CR41
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109785
– volume: 47
  start-page: 1087
  year: 1969
  ident: 60671_CR78
  publication-title: Can. J. Chem.
  doi: 10.1139/v69-173
– volume: 16
  start-page: 325
  year: 2021
  ident: 60671_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00809-9
– volume: 342
  start-page: 123426
  year: 2024
  ident: 60671_CR28
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2023.123426
– volume: 31
  start-page: 429
  year: 2019
  ident: 60671_CR49
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03796
– volume: 9
  start-page: 2103583
  year: 2021
  ident: 60671_CR46
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103583
– volume: 62
  start-page: 359
  year: 2021
  ident: 60671_CR15
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.03.043
– volume: 1
  start-page: 1068
  year: 2023
  ident: 60671_CR22
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00169-3
– volume: 23
  start-page: 7014
  year: 2023
  ident: 60671_CR55
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01700
– volume: 31
  start-page: 2009151
  year: 2021
  ident: 60671_CR14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009151
– volume: 284
  start-page: 402
  year: 1997
  ident: 60671_CR84
  publication-title: Proc. R. Soc. Lond. Ser. A
– volume: 7
  start-page: 675
  year: 2016
  ident: 60671_CR44
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03107
– volume: 4
  start-page: 142
  year: 2020
  ident: 60671_CR8
  publication-title: Joule
  doi: 10.1016/j.joule.2019.10.006
– volume: 6
  start-page: 15
  year: 1996
  ident: 60671_CR88
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 6
  start-page: 4390
  year: 2021
  ident: 60671_CR4
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c02189
– volume: 98
  start-page: 1
  year: 2009
  ident: 60671_CR26
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9387-8
– volume: 134
  start-page: 1608
  year: 2009
  ident: 60671_CR59
  publication-title: Analyst
  doi: 10.1039/b905441n
– volume: 15
  year: 2024
  ident: 60671_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45534-2
– volume: 50
  start-page: 17953
  year: 1994
  ident: 60671_CR92
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 77
  start-page: 3865
  year: 1996
  ident: 60671_CR90
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 135
  start-page: e202308775
  year: 2023
  ident: 60671_CR80
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202308775
– volume: 141
  start-page: 9422
  year: 2019
  ident: 60671_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05029
– volume: 294
  start-page: 106859
  year: 2020
  ident: 60671_CR39
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2020.106859
– volume: 14
  start-page: 3588
  year: 2021
  ident: 60671_CR23
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D1EE00594D
– volume: 399
  start-page: 125672
  year: 2020
  ident: 60671_CR45
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125672
– volume: 43
  start-page: 4487
  year: 1965
  ident: 60671_CR79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696721
– volume: 129
  start-page: 107094
  year: 2021
  ident: 60671_CR52
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.107094
– volume: 62
  year: 2023
  ident: 60671_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202215938
– volume: 13
  year: 2022
  ident: 60671_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35533-6
– volume: 17
  start-page: 411
  year: 2023
  ident: 60671_CR13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08853
– volume: 102
  start-page: 777
  year: 2016
  ident: 60671_CR74
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2016.06.021
– volume: 12
  start-page: 13174
  year: 2022
  ident: 60671_CR48
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04088
– volume: 64
  start-page: 235305
  year: 2001
  ident: 60671_CR82
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.235305
– volume: 269
  start-page: 118751
  year: 2021
  ident: 60671_CR69
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118751
– volume: 379
  start-page: 707
  year: 2023
  ident: 60671_CR19
  publication-title: Science
  doi: 10.1126/science.adf4403
– volume: 144
  start-page: 10193
  year: 2022
  ident: 60671_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00089
– volume: 33
  year: 2021
  ident: 60671_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005721
– volume: 372
  start-page: 1187
  year: 2021
  ident: 60671_CR16
  publication-title: Science
  doi: 10.1126/science.abg2371
– volume: 6
  start-page: 1125
  year: 2023
  ident: 60671_CR9
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01060-w
– volume: 5
  start-page: 605
  year: 2020
  ident: 60671_CR34
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 35
  start-page: 2304695
  year: 2023
  ident: 60671_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304695
– volume: 54
  start-page: 17
  year: 1995
  ident: 60671_CR73
  publication-title: Bioresour. Technol.
  doi: 10.1016/0960-8524(95)00105-0
– volume: 44
  start-page: 9590
  year: 2010
  ident: 60671_CR81
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102692b
– volume: 5
  year: 2014
  ident: 60671_CR83
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5673
– volume: 34
  year: 2022
  ident: 60671_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204306
– volume: 16
  start-page: 15297
  year: 2022
  ident: 60671_CR66
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06747
– volume: 35
  start-page: 2306633
  year: 2023
  ident: 60671_CR65
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306633
– volume: 10
  start-page: 7662
  year: 2022
  ident: 60671_CR51
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D2TC01045C
– volume: 14
  year: 2023
  ident: 60671_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43179-1
– volume: 54
  start-page: 11169
  year: 1996
  ident: 60671_CR89
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 92
  start-page: 411
  year: 1992
  ident: 60671_CR54
  publication-title: Chem. Rev.
  doi: 10.1021/cr00011a004
– volume: 62
  start-page: e202302302
  year: 2023
  ident: 60671_CR60
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202302302
– volume: 22
  start-page: 3698
  year: 2006
  ident: 60671_CR77
  publication-title: Langmuir
  doi: 10.1021/la053145y
– volume: 119
  year: 2022
  ident: 60671_CR33
  publication-title: PNAS
  doi: 10.1073/pnas.2115504119
– volume: 4
  start-page: 934
  year: 2012
  ident: 60671_CR5
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 609
  start-page: 722
  year: 2022
  ident: 60671_CR17
  publication-title: Nature
  doi: 10.1038/s41586-022-05108-y
– volume: 304
  start-page: 120993
  year: 2022
  ident: 60671_CR67
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120993
– volume: 316
  start-page: 62
  year: 2014
  ident: 60671_CR47
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.07.156
– volume: 18
  start-page: 697
  year: 2019
  ident: 60671_CR62
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0356-x
– volume: 17
  start-page: 759
  year: 2022
  ident: 60671_CR12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01121-4
– volume: 15
  start-page: 368
  year: 2022
  ident: 60671_CR61
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D1EE02986J
– volume: 13
  year: 2022
  ident: 60671_CR76
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35664-w
– volume: 345
  start-page: 610
  year: 2014
  ident: 60671_CR7
  publication-title: Science
  doi: 10.1126/science.345.6197.610
– volume: 6
  start-page: 402
  year: 2023
  ident: 60671_CR21
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00951-2
– volume: 269
  start-page: 118777
  year: 2020
  ident: 60671_CR43
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.118777
– volume: 600
  start-page: 81
  year: 2021
  ident: 60671_CR64
  publication-title: Nature
  doi: 10.1038/s41586-021-04068-z
– volume: 59
  start-page: 1758
  year: 1999
  ident: 60671_CR91
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 374
  start-page: 1593
  year: 2021
  ident: 60671_CR18
  publication-title: Science
  doi: 10.1126/science.abl4300
– volume: 26
  start-page: 347
  year: 1998
  ident: 60671_CR86
  publication-title: Analusis
  doi: 10.1051/analusis:1998183
SSID ssj0000391844
Score 2.4738638
Snippet Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒...
Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒...
Electroreduction of nitrate (NO ) to ammonia (NH ) is a promising approach for addressing energy challenges. However, the activity is limited by NO mass...
Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass...
Abstract Electroreduction of nitrate (NO3 ‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5715
SubjectTerms 119/118
147/135
147/143
639/301/299/886
639/638/169/896
639/638/675
639/638/77/887
Agricultural production
Ammonia
Carbon
Efficiency
Electrolytes
Electrowinning
Energy
Enrichment
Groundwater
Humanities and Social Sciences
Liquid-solid interfaces
Mass transfer
Molybdenum disulfide
Morphology
multidisciplinary
Nitrates
Scanning electron microscopy
Science
Science (multidisciplinary)
Silver
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIWh-jVVJwp6EzeUwyyyqWInhXLXRlyOvQAZlr27nC_feeZOZee33gpsuZZBG-c07ynTy-Q8jbmJJIGAkMML1gEmrFHG8FUw7JRFJIuMtzsS-L9vRcfr5QF7dKfeU7YZM88ATcEcQIPBhcRbyWXag76KTynTE49yYIRb0U17xbyVSZg0WHqYucX8nUwhzdyDIn5OqtyNl1w9Y7K1ER7P8by_zzsuRvJ6ZlITp5RB7ODJIeTyN_TO6l4Qm5P9WUXO-Trwv0XZap5Jou-qI9S8clPc7-1jtabpmXLTL6Az-RMoZcR5iiG_XhMm8VUjdSZIUUnbKP7Ft_teojzaoS1-BCekrOTz6dfTxlcxEFFmQnR8ZjU0NUKmLo1k5K7TnEIEXbetN63UBITpugtRCY-SSduA_ci1aAhM4EEM_I3rAc0gtCAbIeVz5JDF42GpwOKvAIiGvTeaMq8m4DqP0-aWXYcsYtjJ3gtwi_LfDbdUU-ZMy3PbPOdfmB1rez9e3_rF-Rg43F7Bx8NxbnqJYbpL6yIofbZgybfBbihrRcTX1EFqPDPs8nA29HInOZQ0y0KmJ2TL8z1N2Wob8s0twN55kyi4q833jJr3H9G4uXd4HFK_KAZ_cud4kPyN54vUqvkTGN_k0Jjp9ovhKB
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkvTpPIoKvbUitiRb8imkpSEUuqcG9lRhvRpDsJNdb2H_fWdk74bt62hbYHn0jfRpRv6GkHc-BBHAE1iE7QWTMS9ZwyvBygbIRCiBcKffxb7Oqssr-WVezqeA23I6VrmZE9NE7XuHMfJTAF7FNfAZeXZ7x7BqFGZXpxIaD8kjlC5DVKu52sZYUP1cSzn9K5MLfbqUaWbAGq7A3FXB1jvrUZLt_xvX_PPI5G9507QcXeyTpxOPpOfjwB-QB6F7Rh6PlSXXz8n3GSCYIaFc01mbFGjp0NNz_Iy2oemseQqU0Z9wCcTRYTVhCmBq3TUGDGkzUOCGFKDZenbT3q1aT1FbYhEbF16Qq4vP3z5dsqmUAnOylgPjvsijL0sPDpw3UirLo3dSVJXVlVVFdKFR2iklBOx_ggrcOm5FJaKMtXZRvCR7Xd-F14TGiKpcmE90VhYqNsqVjvsIdi1qq8uMvN8Y1NyOihkmZbqFNqP5DZjfJPObdUY-os23LVHtOt3oFz_M5Dwmeh-508AkrJK1y-tYy9LWWsP6G6KDVx5vRsxMLrg094DJyNvtY3AezIg0XehXYxuBknTQ5tU4wNueSCx2CNutjOidod_p6u6Trr1OAt0F50icRUY-bFBy369_2-Lw_59xRJ5wBG46K3xM9obFKpwAIxrsmwT7XwTRCcM
  priority: 102
  providerName: ProQuest
Title Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface
URI https://link.springer.com/article/10.1038/s41467-025-60671-y
https://www.ncbi.nlm.nih.gov/pubmed/40593597
https://www.proquest.com/docview/3226280994
https://www.proquest.com/docview/3226351884
https://pubmed.ncbi.nlm.nih.gov/PMC12219233
https://doaj.org/article/fddf2c8614b749c09f945b988303efc5
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsu-564IKe9vEbEm25Mc0NC2BhrGtkKcJ66s1DGdLnUH--51kOyNb-7AXG0syFqc766fT6XcIvbPOMQeWQDwsLwj3aU4qWjCSVwAmXA6AOx4Xu5oXl9d8tsgXe4gOZ2Fi0H6ktIy_6SE67OMdjyYdkq8C5BYZ2eyjw0DVDrp9OB7Pvsy2npXAeS4570_IpEze8_LOLBTJ-u9DmP8GSv61WxonoekTdNSjRzzu-vsU7bnmGXrU5ZPcPEff5qC3JMDIDZ7XkXcWt0s8DrpWVzhGmEf3GP4FjwAXTcghjEGFanMb3IS4ajEgQgwKWVvyvf65ri0OjBIrXxn3Al1Pz79OLkmfQIEYXvKWUJul3ua5BbNNK86Fpt4azopCy0KLzBtXCWmEYAxWPU44qg3VrGCe-1Iaz16ig2bZuNcIex-4uMIuotE8E74SJjfUepBrVmqZJ-j9IFD1o-PJUHF_m0nViV-B-FUUv9ok6CzIfNsycFzHguXqRvVjrry1nhoJ-EELXpq09CXPdSklzLrOG_jkyTBiqje8OwX_p4JKgL08QafbajCZsA9SNW657tqwQEQHbV51A7ztCQ8pDmGRlSC5M_Q7Xd2taerbSMudURrgMkvQh0FL_vTrYVkc_1_zN-gxDYocI4ZP0EG7Wru3gItaPUL7YiHgKqcXo94o4H52Pv_0GUonxWQUPQ6_AURyDqU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s1CASPBCawmtpM4B4TKY9nSdk-t1BNu_KKR0KbdB2j_FL-RGSfZanndesza2jifZ-xvZuwZQl4474UHTWABzAsmQ5KxiueCZRWQCZ8B4Y7XxQ7G-ehIfj7OjjfIz_4uDB6r7NfEuFC7xqKPfBsEL-cK-Ix8e3bOsGoURlf7EhqtWOz55Q8w2WZvdj_A_L7kfPjx8P2IdVUFmJWlnDPu0iS4LHMgy0klZWF4cFaKPDcqN0UarK8KZYtCCDAFfOG5sdyIXAQZSmWDgP-9Qq5KaEZjTw0_rXw6mG1dSdndzUmE2p7JuBJhzViwFIqULdf2v1gm4G_c9s8jmr_FaeP2N7xFbna8le60gnabbPjJHXKtrWS5vEu-jAEahgR2Scd1zHhL5w3dQdjqisaz7dExR7_DIxBVi9WLKQhvbU_RQUmrOQUuSkEVase-1eeL2lHMZTENlfX3yNGlgHyfbE6aiX9IaAiYBQzjl9bItAhVYTPLXQBc09KobEBe9YDqszZDh46RdaF0C78G-HWEXy8H5B1ivuqJ2bXjD830q-6UVQfnArcKmIspZGmTMpQyM6VSsN_7YOGVW_2M6U7lZ_pCQAfk-aoZlBUjMNXEN4u2j8AUeNDnQTvBq5FILK4I5t2AqLWpXxvqesukPo0JwVPOkaiLAXndS8nFuP6NxaP_f8Yzcn10eLCv93fHe4_JDY5CHM8pb5HN-XThnwAbm5unUQUoOblsnfsFWH9G9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8WChgJTmBtYjuxc0CopV21FFYVolJPmMQPGgnttvsA7V_j1zF2kq2W163HJFbifJ6xv_GMZwCeW-e4Q02gHs0LKnyS0ZLlnGYlkgmXIeGOx8U-jPL9Y_HuJDvZgJ_dWZgQVtnNiXGithMT9sgHKHg5U8hnxMC3YRFHu8M3Z-c0VJAKntaunEYjIodu-QPNt9nrg10c6xeMDfc-vd2nbYUBakQh5pTZNPE2yyzKdVIKISvmrRE8zyuVVzL1xpVSGSk5R7PASccqwyqecy98oYzn-N4rsCmDVdSDzZ290dHH1Q5PyL2uhGhP6iRcDWYizkuhgizaDTKly7XVMBYN-BvT_TNg8zevbVwMhzfhRstiyXYjdrdgw41vw9WmruXyDnweITg00NklGdUx_y2ZT8h2AK4uSYx0j9t05DteIm01oZYxQVGuzWnYriTlnCAzJagYtaXf6vNFbUnIbDH1pXF34fhSYL4HvfFk7B4A8T7kBAveTFOJVPpSmsww6xHXtKhU1oeXHaD6rMnXoaOfnSvdwK8Rfh3h18s-7ATMVy1Dru14YzL9qlvV1d5az4xCHlNJUZik8IXIqkIpXP2dN_jJrW7EdDsBzPSFuPbh2eoxqm7wx5RjN1k0bXhIiIdt7jcDvOqJCKUW0djrg1ob-rWurj8Z16cxPXjKWKDtvA-vOim56Ne_sXj4_994CtdQ3_T7g9HhI7jOggzHoOUt6M2nC_cYqdm8etLqAIEvl612vwD56UyJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Unity+Nitrate+to+Ammonia+conversion+via+reactant+enrichment+at+the+solid-liquid+interface&rft.jtitle=Nature+communications&rft.au=Liao%2C+Wanru&rft.au=Wang%2C+Jun&rft.au=Tan%2C+Yao&rft.au=Zi%2C+Xin&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-60671-y&rft.externalDocID=10_1038_s41467_025_60671_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon