Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface
Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmho...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 5715 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroreduction of nitrate (NO
3
‒
) to ammonia (NH
3
) is a promising approach for addressing energy challenges. However, the activity is limited by NO
3
‒
mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO
3
‒
from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO
3
‒
concentration decreases, impeding practical applications in the conversion of NO
3
‒
-to-NH
3
. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO
3
‒
reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS
2
(Ag-MoS
2
) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO
3
‒
. Thus, Ag-MoS
2
exhibits a ~ 28.6-fold NO
3
‒
concentration in the IHP than the counterpart without junction, and achieves near-100% NH
3
Faradaic efficiency with an NH
3
yield rate of ~20 mg h
‒1
cm
‒2
under ultralow NO
3
‒
concentrations.
Electroreduction of low-concentration NO
3
−
to NH
3
is limited by NO
3
−
mass transfer. Here, the authors propose a strategy for NO
3
−
enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO
3
−
to NH
3
. |
---|---|
AbstractList | Electroreduction of nitrate (NO
3
‒
) to ammonia (NH
3
) is a promising approach for addressing energy challenges. However, the activity is limited by NO
3
‒
mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO
3
‒
from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO
3
‒
concentration decreases, impeding practical applications in the conversion of NO
3
‒
-to-NH
3
. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO
3
‒
reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS
2
(Ag-MoS
2
) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO
3
‒
. Thus, Ag-MoS
2
exhibits a ~ 28.6-fold NO
3
‒
concentration in the IHP than the counterpart without junction, and achieves near-100% NH
3
Faradaic efficiency with an NH
3
yield rate of ~20 mg h
‒1
cm
‒2
under ultralow NO
3
‒
concentrations.
Electroreduction of low-concentration NO
3
−
to NH
3
is limited by NO
3
−
mass transfer. Here, the authors propose a strategy for NO
3
−
enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO
3
−
to NH
3
. Abstract Electroreduction of nitrate (NO3 ‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3 ‒ concentration decreases, impeding practical applications in the conversion of NO3 ‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3 ‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3 ‒ concentrations. Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations. Electroreduction of nitrate (NO ) to ammonia (NH ) is a promising approach for addressing energy challenges. However, the activity is limited by NO mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO concentration decreases, impeding practical applications in the conversion of NO -to-NH . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS (Ag-MoS ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO . Thus, Ag-MoS exhibits a ~ 28.6-fold NO concentration in the IHP than the counterpart without junction, and achieves near-100% NH Faradaic efficiency with an NH yield rate of ~20 mg h cm under ultralow NO concentrations. Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO3‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO3‒ concentration decreases, impeding practical applications in the conversion of NO3‒-to-NH3. Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO3‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS2 (Ag-MoS2) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO3‒. Thus, Ag-MoS2 exhibits a ~ 28.6-fold NO3‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH3 Faradaic efficiency with an NH3 yield rate of ~20 mg h‒1 cm‒2 under ultralow NO3‒ concentrations.Electroreduction of low-concentration NO3− to NH3 is limited by NO3− mass transfer. Here, the authors propose a strategy for NO3− enrichment through charge rearrangement within the inner Helmholtz plane, achieving near-unity conversion of NO3− to NH3. Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒ mass transfer, particularly at reduction potential, where an abundance of electrons on the cathode surface repels NO 3 ‒ from the inner Helmholtz plane (IHP). This constraint becomes pronounced as NO 3 ‒ concentration decreases, impeding practical applications in the conversion of NO 3 ‒ -to-NH 3 . Herein, we propose a generic strategy of catalyst bandstructure engineering for the enrichment of negatively charged ions through solid-liquid (S-L) junction-mediated charge rearrangement within IHP. Specifically, during NO 3 ‒ reduction, the formation of S-L junction induces hole transfer from Ag-doped MoS 2 (Ag-MoS 2 ) to electrode/electrolyte interface, triggering abundant positive charges on the IHP to attract NO 3 ‒ . Thus, Ag-MoS 2 exhibits a ~ 28.6-fold NO 3 ‒ concentration in the IHP than the counterpart without junction, and achieves near-100% NH 3 Faradaic efficiency with an NH 3 yield rate of ~20 mg h ‒1 cm ‒2 under ultralow NO 3 ‒ concentrations. |
ArticleNumber | 5715 |
Author | Liu, Changxu Tan, Yao Xi, Beidou Zi, Xin Chan, Ting-Shan Cortés, Emiliano Kao, Cheng-Wei Wang, Jun Liu, Min Liao, Wanru Wang, Qiyou Cai, Chao Zhang, Yali Zhu, Li Li, Hongmei Liu, Kang Fu, Junwei Chai, Liyuan |
Author_xml | – sequence: 1 givenname: Wanru surname: Liao fullname: Liao, Wanru organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology – sequence: 2 givenname: Jun surname: Wang fullname: Wang, Jun organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology – sequence: 3 givenname: Yao surname: Tan fullname: Tan, Yao organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 4 givenname: Xin surname: Zi fullname: Zi, Xin organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 5 givenname: Changxu orcidid: 0000-0003-1196-7447 surname: Liu fullname: Liu, Changxu organization: Centre for Metamaterial Research & Innovation, Department of Engineering, University of Exeter – sequence: 6 givenname: Qiyou surname: Wang fullname: Wang, Qiyou organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 7 givenname: Li surname: Zhu fullname: Zhu, Li organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München – sequence: 8 givenname: Cheng-Wei surname: Kao fullname: Kao, Cheng-Wei organization: National Synchrotron Radiation Research Center – sequence: 9 givenname: Ting-Shan orcidid: 0000-0001-5220-1611 surname: Chan fullname: Chan, Ting-Shan organization: National Synchrotron Radiation Research Center – sequence: 10 givenname: Hongmei surname: Li fullname: Li, Hongmei organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 11 givenname: Yali surname: Zhang fullname: Zhang, Yali organization: Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 12 givenname: Kang surname: Liu fullname: Liu, Kang organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 13 givenname: Chao orcidid: 0000-0002-3695-3247 surname: Cai fullname: Cai, Chao organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 14 givenname: Junwei orcidid: 0000-0003-0190-1663 surname: Fu fullname: Fu, Junwei organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University – sequence: 15 givenname: Beidou orcidid: 0009-0001-6997-4001 surname: Xi fullname: Xi, Beidou email: xibd@craes.org.cn organization: State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences – sequence: 16 givenname: Emiliano orcidid: 0000-0001-8248-4165 surname: Cortés fullname: Cortés, Emiliano email: Emiliano.Cortes@lmu.de organization: Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München – sequence: 17 givenname: Liyuan surname: Chai fullname: Chai, Liyuan organization: School of Metallurgy and Environment, Central South University – sequence: 18 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min email: minliu@csu.edu.cn organization: Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, School of Metallurgy and Environment, Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40593597$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNUREvpC7BAkdiwCfgWX1aoqrhUqsqGbrEc53jGo8Rubc9I8_a4k1JaFnjjc-zv_D62_9fNUYgBmuYtRh8xovJTZphx0SHSdxxxgbv9i-aEIIY7LAg9ehIfN2c5b1AdVGHJ2KvmmKFe0V6Jk-bXNZjU3QRf9u21L8kUaEtsz-c5Bm9aG8MOUvYxtLuaJjC2mFBaCMnb9Qw1NKUta2hznPzYTf5u68fWhwLJGQtvmpfOTBnOHubT5ubrl58X37urH98uL86vOssUKx0ZMXJj34-SEmQYEwNxo2WU80HyQWBnwQhphaBUcQ4CyGDJQDl1zClpHT1tLhfdMZqNvk1-Nmmvo_H6sBDTSptUvJ1Au3F0xEqO2SCYskg5xfpBSUkRBWf7qvV50brdDjOMtl4ymemZ6POd4Nd6FXcaE4IVobQqfHhQSPFuC7no2WcL02QCxG3WlBBOeywlq-j7f9BN3KZQ3-pAEYmUuqfePW3psZc__1gBsgA2xZwTuEcEI33vF734RVe_6INf9L4W0aUoVzisIP09-z9VvwEp6MNh |
Cites_doi | 10.1038/s41586-019-1260-x 10.1063/1.3382344 10.1021/jacs.3c03432 10.1016/j.envres.2020.109313 10.1002/ange.202302302 10.1016/j.chempr.2017.10.004 10.1002/anie.202202556 10.1002/adma.202202952 10.1016/j.watres.2017.04.069 10.1126/science.aar6611 10.1021/acscatal.1c01413 10.1007/s10800-004-8349-z 10.1038/s41929-024-01200-w 10.1016/j.cej.2019.122065 10.1016/j.cej.2020.126269 10.1039/an9840900549 10.1021/es100546y 10.1038/s41893-024-01406-7 10.1016/j.joule.2020.12.025 10.1021/acsnano.3c03220 10.1002/adfm.202006516 10.1002/anie.202300873 10.1039/D1EE01395E 10.1002/anie.202202604 10.1002/anie.202109785 10.1139/v69-173 10.1038/s41565-020-00809-9 10.1016/j.apcatb.2023.123426 10.1021/acs.chemmater.8b03796 10.1002/advs.202103583 10.1016/j.jechem.2021.03.043 10.1038/s44221-023-00169-3 10.1021/acs.nanolett.3c01700 10.1002/adfm.202009151 10.1021/acscatal.6b03107 10.1016/j.joule.2019.10.006 10.1016/0927-0256(96)00008-0 10.1021/acsenergylett.1c02189 10.1007/s10533-009-9387-8 10.1039/b905441n 10.1038/s41467-024-45534-2 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1002/ange.202308775 10.1021/jacs.9b05029 10.1016/j.agee.2020.106859 10.1039/D1EE00594D 10.1016/j.cej.2020.125672 10.1063/1.1696721 10.1016/j.elecom.2021.107094 10.1002/anie.202215938 10.1038/s41467-022-35533-6 10.1021/acsnano.2c08853 10.1016/j.psep.2016.06.021 10.1021/acscatal.2c04088 10.1103/PhysRevB.64.235305 10.1016/j.seppur.2021.118751 10.1126/science.adf4403 10.1021/jacs.2c00089 10.1002/adma.202005721 10.1126/science.abg2371 10.1038/s41929-023-01060-w 10.1038/s41560-020-0654-1 10.1002/adma.202304695 10.1016/0960-8524(95)00105-0 10.1021/es102692b 10.1038/ncomms5673 10.1002/adma.202204306 10.1021/acsnano.2c06747 10.1002/adma.202306633 10.1039/D2TC01045C 10.1038/s41467-023-43179-1 10.1103/PhysRevB.54.11169 10.1021/cr00011a004 10.1002/anie.202302302 10.1021/la053145y 10.1073/pnas.2115504119 10.1038/nchem.1476 10.1038/s41586-022-05108-y 10.1016/j.apcatb.2021.120993 10.1016/j.apsusc.2014.07.156 10.1038/s41563-019-0356-x 10.1038/s41565-022-01121-4 10.1039/D1EE02986J 10.1038/s41467-022-35664-w 10.1126/science.345.6197.610 10.1038/s41929-023-00951-2 10.1016/j.apcatb.2020.118777 10.1038/s41586-021-04068-z 10.1103/PhysRevB.59.1758 10.1126/science.abl4300 10.1051/analusis:1998183 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-60671-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_fddf2c8614b749c09f945b988303efc5 PMC12219233 40593597 10_1038_s41467_025_60671_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22376222 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22376222 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM PJZUB PPXIY PQGLB 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c494t-2d10fd55d8320a447b2fdc4366b86b71fcea78c7733966e7e2bc2b363f4f98cf3 |
IEDL.DBID | AAJSJ |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:31 EDT 2025 Thu Aug 21 18:33:09 EDT 2025 Tue Aug 26 08:59:16 EDT 2025 Fri Jul 25 09:08:35 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Thu Jul 03 08:43:35 EDT 2025 Wed Jul 02 02:44:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-2d10fd55d8320a447b2fdc4366b86b71fcea78c7733966e7e2bc2b363f4f98cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1196-7447 0009-0001-6997-4001 0000-0002-9007-4817 0000-0003-0190-1663 0000-0001-5220-1611 0000-0001-8248-4165 0000-0002-3695-3247 |
OpenAccessLink | https://www.nature.com/articles/s41467-025-60671-y |
PMID | 40593597 |
PQID | 3226280994 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fddf2c8614b749c09f945b988303efc5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12219233 proquest_miscellaneous_3226351884 proquest_journals_3226280994 pubmed_primary_40593597 crossref_primary_10_1038_s41467_025_60671_y springer_journals_10_1038_s41467_025_60671_y |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | H Niu (60671_CR45) 2020; 399 H Luo (60671_CR42) 2023; 35 Y Wang (60671_CR71) 2022; 61 M-H Yuan (60671_CR74) 2016; 102 K Li (60671_CR18) 2021; 374 JP Perdew (60671_CR90) 1996; 77 CA Koval (60671_CR54) 1992; 92 L Bu (60671_CR69) 2021; 269 FY Chen (60671_CR12) 2022; 17 G Kresse (60671_CR89) 1996; 54 JW Lim (60671_CR48) 2022; 12 H Liu (60671_CR29) 2022; 61 M Xie (60671_CR31) 2023; 145 C Polatides (60671_CR87) 2005; 35 J Guo (60671_CR3) 2017; 3 S Chatterjee (60671_CR4) 2021; 6 TN Xu (60671_CR47) 2014; 316 S Mao (60671_CR55) 2023; 23 T Böker (60671_CR82) 2001; 64 R Daiyan (60671_CR23) 2021; 14 W Chen (60671_CR68) 2021; 14 C-Y Li (60671_CR62) 2019; 18 I Paredes (60671_CR39) 2020; 294 F-Y Chen (60671_CR10) 2024; 7 L Wang (60671_CR56) 2023; 17 PE Blöchl (60671_CR92) 1994; 50 A Kumar (60671_CR66) 2022; 16 R Liu (60671_CR46) 2021; 9 R Wirz (60671_CR77) 2006; 22 G Kresse (60671_CR91) 1999; 59 JG Chen (60671_CR1) 2018; 360 AJP Smolders (60671_CR26) 2009; 98 N Xuan (60671_CR49) 2019; 31 Z Gong (60671_CR80) 2023; 135 G-F Han (60671_CR6) 2021; 16 C-M Lee (60671_CR40) 2020; 184 DM Wiles (60671_CR78) 1969; 47 S Grimme (60671_CR93) 2010; 132 W Liao (60671_CR15) 2021; 62 W Liao (60671_CR20) 2024; 15 S Zhang (60671_CR33) 2022; 119 Y Hou (60671_CR43) 2020; 269 G Zhang (60671_CR75) 2024; 7 W Liao (60671_CR14) 2021; 31 G-F Chen (60671_CR34) 2020; 5 Y Huang (60671_CR36) 2023; 14 KR Burow (60671_CR25) 2010; 44 PL Searle (60671_CR85) 1984; 109 Y Ren (60671_CR27) 2022; 144 MH Du (60671_CR50) 2020; 31 BL Evans (60671_CR84) 1997; 284 H-L Du (60671_CR17) 2022; 609 W Gao (60671_CR30) 2023; 35 C Yang (60671_CR67) 2022; 304 G Kresse (60671_CR88) 1996; 6 C Yan (60671_CR57) 2019; 141 R Zhao (60671_CR65) 2023; 35 G Herzog (60671_CR59) 2009; 134 J Sun (60671_CR28) 2024; 342 M Kitano (60671_CR5) 2012; 4 DE Milligan (60671_CR79) 1965; 43 SZ Andersen (60671_CR70) 2019; 570 L Chen (60671_CR81) 2010; 44 PH Liao (60671_CR73) 1995; 54 M Li (60671_CR51) 2022; 10 K Fan (60671_CR76) 2022; 13 J Luo (60671_CR58) 2023; 135 J Lim (60671_CR72) 2021; 11 K Wang (60671_CR22) 2023; 1 J-Y Fang (60671_CR11) 2022; 13 C Ding (60671_CR44) 2016; 7 C Cai (60671_CR63) 2023; 62 PH Van Langevelde (60671_CR35) 2021; 5 L Su (60671_CR37) 2017; 120 J John (60671_CR9) 2023; 6 Z-Z Luo (60671_CR61) 2022; 15 AP Carvalho (60671_CR86) 1998; 26 RF Service (60671_CR7) 2014; 345 BHR Suryanto (60671_CR16) 2021; 372 X Yang (60671_CR24) 2023; 62 S Han (60671_CR21) 2023; 6 J Luo (60671_CR60) 2023; 62 YH Wang (60671_CR64) 2021; 600 N Alidoust (60671_CR83) 2014; 5 F Chang (60671_CR2) 2021; 33 V Kyriakou (60671_CR8) 2020; 4 WJ Sun (60671_CR41) 2021; 60 W Liao (60671_CR13) 2023; 17 Z Song (60671_CR32) 2022; 34 X Lu (60671_CR52) 2021; 129 X Fu (60671_CR19) 2023; 379 R Chauhan (60671_CR38) 2020; 386 X Zhang (60671_CR53) 2021; 403 |
References_xml | – volume: 570 start-page: 504 year: 2019 ident: 60671_CR70 publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 132 start-page: 154104 year: 2010 ident: 60671_CR93 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 145 start-page: 13957 year: 2023 ident: 60671_CR31 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c03432 – volume: 184 start-page: 109313 year: 2020 ident: 60671_CR40 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109313 – volume: 135 start-page: e202302302 year: 2023 ident: 60671_CR58 publication-title: batteries. Angew. Chem. Int. Ed. doi: 10.1002/ange.202302302 – volume: 3 start-page: 709 year: 2017 ident: 60671_CR3 publication-title: Chem doi: 10.1016/j.chempr.2017.10.004 – volume: 61 year: 2022 ident: 60671_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202556 – volume: 35 start-page: 2202952 year: 2023 ident: 60671_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.202202952 – volume: 120 start-page: 1 year: 2017 ident: 60671_CR37 publication-title: Water Res. doi: 10.1016/j.watres.2017.04.069 – volume: 360 year: 2018 ident: 60671_CR1 publication-title: Science doi: 10.1126/science.aar6611 – volume: 11 start-page: 7568 year: 2021 ident: 60671_CR72 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01413 – volume: 35 start-page: 421 year: 2005 ident: 60671_CR87 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-004-8349-z – volume: 7 start-page: 1032 year: 2024 ident: 60671_CR10 publication-title: Nat. Catal. doi: 10.1038/s41929-024-01200-w – volume: 386 start-page: 122065 year: 2020 ident: 60671_CR38 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122065 – volume: 403 start-page: 126269 year: 2021 ident: 60671_CR53 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126269 – volume: 109 start-page: 549 year: 1984 ident: 60671_CR85 publication-title: Analyst doi: 10.1039/an9840900549 – volume: 44 start-page: 4988 year: 2010 ident: 60671_CR25 publication-title: Environ. Sci. Technol. doi: 10.1021/es100546y – volume: 7 start-page: 1251 year: 2024 ident: 60671_CR75 publication-title: Nat. Sustain. doi: 10.1038/s41893-024-01406-7 – volume: 5 start-page: 290 year: 2021 ident: 60671_CR35 publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 17 start-page: 24619 year: 2023 ident: 60671_CR56 publication-title: ACS Nano doi: 10.1021/acsnano.3c03220 – volume: 31 start-page: 2006516 year: 2020 ident: 60671_CR50 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006516 – volume: 62 year: 2023 ident: 60671_CR63 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202300873 – volume: 14 start-page: 6428 year: 2021 ident: 60671_CR68 publication-title: Energ. Environ. Sci. doi: 10.1039/D1EE01395E – volume: 61 year: 2022 ident: 60671_CR71 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202604 – volume: 60 start-page: 22933 year: 2021 ident: 60671_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109785 – volume: 47 start-page: 1087 year: 1969 ident: 60671_CR78 publication-title: Can. J. Chem. doi: 10.1139/v69-173 – volume: 16 start-page: 325 year: 2021 ident: 60671_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00809-9 – volume: 342 start-page: 123426 year: 2024 ident: 60671_CR28 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2023.123426 – volume: 31 start-page: 429 year: 2019 ident: 60671_CR49 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03796 – volume: 9 start-page: 2103583 year: 2021 ident: 60671_CR46 publication-title: Adv. Sci. doi: 10.1002/advs.202103583 – volume: 62 start-page: 359 year: 2021 ident: 60671_CR15 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.03.043 – volume: 1 start-page: 1068 year: 2023 ident: 60671_CR22 publication-title: Nat. Water doi: 10.1038/s44221-023-00169-3 – volume: 23 start-page: 7014 year: 2023 ident: 60671_CR55 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01700 – volume: 31 start-page: 2009151 year: 2021 ident: 60671_CR14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009151 – volume: 284 start-page: 402 year: 1997 ident: 60671_CR84 publication-title: Proc. R. Soc. Lond. Ser. A – volume: 7 start-page: 675 year: 2016 ident: 60671_CR44 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03107 – volume: 4 start-page: 142 year: 2020 ident: 60671_CR8 publication-title: Joule doi: 10.1016/j.joule.2019.10.006 – volume: 6 start-page: 15 year: 1996 ident: 60671_CR88 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 6 start-page: 4390 year: 2021 ident: 60671_CR4 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c02189 – volume: 98 start-page: 1 year: 2009 ident: 60671_CR26 publication-title: Biogeochemistry doi: 10.1007/s10533-009-9387-8 – volume: 134 start-page: 1608 year: 2009 ident: 60671_CR59 publication-title: Analyst doi: 10.1039/b905441n – volume: 15 year: 2024 ident: 60671_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45534-2 – volume: 50 start-page: 17953 year: 1994 ident: 60671_CR92 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 77 start-page: 3865 year: 1996 ident: 60671_CR90 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 135 start-page: e202308775 year: 2023 ident: 60671_CR80 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202308775 – volume: 141 start-page: 9422 year: 2019 ident: 60671_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05029 – volume: 294 start-page: 106859 year: 2020 ident: 60671_CR39 publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2020.106859 – volume: 14 start-page: 3588 year: 2021 ident: 60671_CR23 publication-title: Energ. Environ. Sci. doi: 10.1039/D1EE00594D – volume: 399 start-page: 125672 year: 2020 ident: 60671_CR45 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125672 – volume: 43 start-page: 4487 year: 1965 ident: 60671_CR79 publication-title: J. Chem. Phys. doi: 10.1063/1.1696721 – volume: 129 start-page: 107094 year: 2021 ident: 60671_CR52 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.107094 – volume: 62 year: 2023 ident: 60671_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202215938 – volume: 13 year: 2022 ident: 60671_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35533-6 – volume: 17 start-page: 411 year: 2023 ident: 60671_CR13 publication-title: ACS Nano doi: 10.1021/acsnano.2c08853 – volume: 102 start-page: 777 year: 2016 ident: 60671_CR74 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.06.021 – volume: 12 start-page: 13174 year: 2022 ident: 60671_CR48 publication-title: ACS Catal. doi: 10.1021/acscatal.2c04088 – volume: 64 start-page: 235305 year: 2001 ident: 60671_CR82 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.235305 – volume: 269 start-page: 118751 year: 2021 ident: 60671_CR69 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118751 – volume: 379 start-page: 707 year: 2023 ident: 60671_CR19 publication-title: Science doi: 10.1126/science.adf4403 – volume: 144 start-page: 10193 year: 2022 ident: 60671_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00089 – volume: 33 year: 2021 ident: 60671_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.202005721 – volume: 372 start-page: 1187 year: 2021 ident: 60671_CR16 publication-title: Science doi: 10.1126/science.abg2371 – volume: 6 start-page: 1125 year: 2023 ident: 60671_CR9 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01060-w – volume: 5 start-page: 605 year: 2020 ident: 60671_CR34 publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 35 start-page: 2304695 year: 2023 ident: 60671_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.202304695 – volume: 54 start-page: 17 year: 1995 ident: 60671_CR73 publication-title: Bioresour. Technol. doi: 10.1016/0960-8524(95)00105-0 – volume: 44 start-page: 9590 year: 2010 ident: 60671_CR81 publication-title: Environ. Sci. Technol. doi: 10.1021/es102692b – volume: 5 year: 2014 ident: 60671_CR83 publication-title: Nat. Commun. doi: 10.1038/ncomms5673 – volume: 34 year: 2022 ident: 60671_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.202204306 – volume: 16 start-page: 15297 year: 2022 ident: 60671_CR66 publication-title: ACS Nano doi: 10.1021/acsnano.2c06747 – volume: 35 start-page: 2306633 year: 2023 ident: 60671_CR65 publication-title: Adv. Mater. doi: 10.1002/adma.202306633 – volume: 10 start-page: 7662 year: 2022 ident: 60671_CR51 publication-title: J. Mater. Chem. C. doi: 10.1039/D2TC01045C – volume: 14 year: 2023 ident: 60671_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43179-1 – volume: 54 start-page: 11169 year: 1996 ident: 60671_CR89 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 92 start-page: 411 year: 1992 ident: 60671_CR54 publication-title: Chem. Rev. doi: 10.1021/cr00011a004 – volume: 62 start-page: e202302302 year: 2023 ident: 60671_CR60 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202302302 – volume: 22 start-page: 3698 year: 2006 ident: 60671_CR77 publication-title: Langmuir doi: 10.1021/la053145y – volume: 119 year: 2022 ident: 60671_CR33 publication-title: PNAS doi: 10.1073/pnas.2115504119 – volume: 4 start-page: 934 year: 2012 ident: 60671_CR5 publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 609 start-page: 722 year: 2022 ident: 60671_CR17 publication-title: Nature doi: 10.1038/s41586-022-05108-y – volume: 304 start-page: 120993 year: 2022 ident: 60671_CR67 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120993 – volume: 316 start-page: 62 year: 2014 ident: 60671_CR47 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.07.156 – volume: 18 start-page: 697 year: 2019 ident: 60671_CR62 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0356-x – volume: 17 start-page: 759 year: 2022 ident: 60671_CR12 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01121-4 – volume: 15 start-page: 368 year: 2022 ident: 60671_CR61 publication-title: Energ. Environ. Sci. doi: 10.1039/D1EE02986J – volume: 13 year: 2022 ident: 60671_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-022-35664-w – volume: 345 start-page: 610 year: 2014 ident: 60671_CR7 publication-title: Science doi: 10.1126/science.345.6197.610 – volume: 6 start-page: 402 year: 2023 ident: 60671_CR21 publication-title: Nat. Catal. doi: 10.1038/s41929-023-00951-2 – volume: 269 start-page: 118777 year: 2020 ident: 60671_CR43 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.118777 – volume: 600 start-page: 81 year: 2021 ident: 60671_CR64 publication-title: Nature doi: 10.1038/s41586-021-04068-z – volume: 59 start-page: 1758 year: 1999 ident: 60671_CR91 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 374 start-page: 1593 year: 2021 ident: 60671_CR18 publication-title: Science doi: 10.1126/science.abl4300 – volume: 26 start-page: 347 year: 1998 ident: 60671_CR86 publication-title: Analusis doi: 10.1051/analusis:1998183 |
SSID | ssj0000391844 |
Score | 2.4738638 |
Snippet | Electroreduction of nitrate (NO
3
‒
) to ammonia (NH
3
) is a promising approach for addressing energy challenges. However, the activity is limited by NO
3
‒... Electroreduction of nitrate (NO 3 ‒ ) to ammonia (NH 3 ) is a promising approach for addressing energy challenges. However, the activity is limited by NO 3 ‒... Electroreduction of nitrate (NO ) to ammonia (NH ) is a promising approach for addressing energy challenges. However, the activity is limited by NO mass... Electroreduction of nitrate (NO3‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3‒ mass... Abstract Electroreduction of nitrate (NO3 ‒) to ammonia (NH3) is a promising approach for addressing energy challenges. However, the activity is limited by NO3... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5715 |
SubjectTerms | 119/118 147/135 147/143 639/301/299/886 639/638/169/896 639/638/675 639/638/77/887 Agricultural production Ammonia Carbon Efficiency Electrolytes Electrowinning Energy Enrichment Groundwater Humanities and Social Sciences Liquid-solid interfaces Mass transfer Molybdenum disulfide Morphology multidisciplinary Nitrates Scanning electron microscopy Science Science (multidisciplinary) Silver |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SENyIWh-jVVJwp6EzeUwyyyqWInhXLXRlyOvQAZlr27nC_feeZOZee33gpsuZZBG-c07ynTy-Q8jbmJJIGAkMML1gEmrFHG8FUw7JRFJIuMtzsS-L9vRcfr5QF7dKfeU7YZM88ATcEcQIPBhcRbyWXag76KTynTE49yYIRb0U17xbyVSZg0WHqYucX8nUwhzdyDIn5OqtyNl1w9Y7K1ER7P8by_zzsuRvJ6ZlITp5RB7ODJIeTyN_TO6l4Qm5P9WUXO-Trwv0XZap5Jou-qI9S8clPc7-1jtabpmXLTL6Az-RMoZcR5iiG_XhMm8VUjdSZIUUnbKP7Ft_teojzaoS1-BCekrOTz6dfTxlcxEFFmQnR8ZjU0NUKmLo1k5K7TnEIEXbetN63UBITpugtRCY-SSduA_ci1aAhM4EEM_I3rAc0gtCAbIeVz5JDF42GpwOKvAIiGvTeaMq8m4DqP0-aWXYcsYtjJ3gtwi_LfDbdUU-ZMy3PbPOdfmB1rez9e3_rF-Rg43F7Bx8NxbnqJYbpL6yIofbZgybfBbihrRcTX1EFqPDPs8nA29HInOZQ0y0KmJ2TL8z1N2Wob8s0twN55kyi4q833jJr3H9G4uXd4HFK_KAZ_cud4kPyN54vUqvkTGN_k0Jjp9ovhKB priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkvTpPIoKvbUitiRb8imkpSEUuqcG9lRhvRpDsJNdb2H_fWdk74bt62hbYHn0jfRpRv6GkHc-BBHAE1iE7QWTMS9ZwyvBygbIRCiBcKffxb7Oqssr-WVezqeA23I6VrmZE9NE7XuHMfJTAF7FNfAZeXZ7x7BqFGZXpxIaD8kjlC5DVKu52sZYUP1cSzn9K5MLfbqUaWbAGq7A3FXB1jvrUZLt_xvX_PPI5G9507QcXeyTpxOPpOfjwB-QB6F7Rh6PlSXXz8n3GSCYIaFc01mbFGjp0NNz_Iy2oemseQqU0Z9wCcTRYTVhCmBq3TUGDGkzUOCGFKDZenbT3q1aT1FbYhEbF16Qq4vP3z5dsqmUAnOylgPjvsijL0sPDpw3UirLo3dSVJXVlVVFdKFR2iklBOx_ggrcOm5FJaKMtXZRvCR7Xd-F14TGiKpcmE90VhYqNsqVjvsIdi1qq8uMvN8Y1NyOihkmZbqFNqP5DZjfJPObdUY-os23LVHtOt3oFz_M5Dwmeh-508AkrJK1y-tYy9LWWsP6G6KDVx5vRsxMLrg094DJyNvtY3AezIg0XehXYxuBknTQ5tU4wNueSCx2CNutjOidod_p6u6Trr1OAt0F50icRUY-bFBy369_2-Lw_59xRJ5wBG46K3xM9obFKpwAIxrsmwT7XwTRCcM priority: 102 providerName: ProQuest |
Title | Near-Unity Nitrate to Ammonia conversion via reactant enrichment at the solid-liquid interface |
URI | https://link.springer.com/article/10.1038/s41467-025-60671-y https://www.ncbi.nlm.nih.gov/pubmed/40593597 https://www.proquest.com/docview/3226280994 https://www.proquest.com/docview/3226351884 https://pubmed.ncbi.nlm.nih.gov/PMC12219233 https://doaj.org/article/fddf2c8614b749c09f945b988303efc5 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBf9YLCXsu-564IKe9vEbEm25Mc0NC2BhrGtkKcJ66s1DGdLnUH--51kOyNb-7AXG0syFqc766fT6XcIvbPOMQeWQDwsLwj3aU4qWjCSVwAmXA6AOx4Xu5oXl9d8tsgXe4gOZ2Fi0H6ktIy_6SE67OMdjyYdkq8C5BYZ2eyjw0DVDrp9OB7Pvsy2npXAeS4570_IpEze8_LOLBTJ-u9DmP8GSv61WxonoekTdNSjRzzu-vsU7bnmGXrU5ZPcPEff5qC3JMDIDZ7XkXcWt0s8DrpWVzhGmEf3GP4FjwAXTcghjEGFanMb3IS4ajEgQgwKWVvyvf65ri0OjBIrXxn3Al1Pz79OLkmfQIEYXvKWUJul3ua5BbNNK86Fpt4azopCy0KLzBtXCWmEYAxWPU44qg3VrGCe-1Iaz16ig2bZuNcIex-4uMIuotE8E74SJjfUepBrVmqZJ-j9IFD1o-PJUHF_m0nViV-B-FUUv9ok6CzIfNsycFzHguXqRvVjrry1nhoJ-EELXpq09CXPdSklzLrOG_jkyTBiqje8OwX_p4JKgL08QafbajCZsA9SNW657tqwQEQHbV51A7ztCQ8pDmGRlSC5M_Q7Xd2taerbSMudURrgMkvQh0FL_vTrYVkc_1_zN-gxDYocI4ZP0EG7Wru3gItaPUL7YiHgKqcXo94o4H52Pv_0GUonxWQUPQ6_AURyDqU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s1CASPBCawmtpM4B4TKY9nSdk-t1BNu_KKR0KbdB2j_FL-RGSfZanndesza2jifZ-xvZuwZQl4474UHTWABzAsmQ5KxiueCZRWQCZ8B4Y7XxQ7G-ehIfj7OjjfIz_4uDB6r7NfEuFC7xqKPfBsEL-cK-Ix8e3bOsGoURlf7EhqtWOz55Q8w2WZvdj_A_L7kfPjx8P2IdVUFmJWlnDPu0iS4LHMgy0klZWF4cFaKPDcqN0UarK8KZYtCCDAFfOG5sdyIXAQZSmWDgP-9Qq5KaEZjTw0_rXw6mG1dSdndzUmE2p7JuBJhzViwFIqULdf2v1gm4G_c9s8jmr_FaeP2N7xFbna8le60gnabbPjJHXKtrWS5vEu-jAEahgR2Scd1zHhL5w3dQdjqisaz7dExR7_DIxBVi9WLKQhvbU_RQUmrOQUuSkEVase-1eeL2lHMZTENlfX3yNGlgHyfbE6aiX9IaAiYBQzjl9bItAhVYTPLXQBc09KobEBe9YDqszZDh46RdaF0C78G-HWEXy8H5B1ivuqJ2bXjD830q-6UVQfnArcKmIspZGmTMpQyM6VSsN_7YOGVW_2M6U7lZ_pCQAfk-aoZlBUjMNXEN4u2j8AUeNDnQTvBq5FILK4I5t2AqLWpXxvqesukPo0JwVPOkaiLAXndS8nFuP6NxaP_f8Yzcn10eLCv93fHe4_JDY5CHM8pb5HN-XThnwAbm5unUQUoOblsnfsFWH9G9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8WChgJTmBtYjuxc0CopV21FFYVolJPmMQPGgnttvsA7V_j1zF2kq2W163HJFbifJ6xv_GMZwCeW-e4Q02gHs0LKnyS0ZLlnGYlkgmXIeGOx8U-jPL9Y_HuJDvZgJ_dWZgQVtnNiXGithMT9sgHKHg5U8hnxMC3YRFHu8M3Z-c0VJAKntaunEYjIodu-QPNt9nrg10c6xeMDfc-vd2nbYUBakQh5pTZNPE2yyzKdVIKISvmrRE8zyuVVzL1xpVSGSk5R7PASccqwyqecy98oYzn-N4rsCmDVdSDzZ290dHH1Q5PyL2uhGhP6iRcDWYizkuhgizaDTKly7XVMBYN-BvT_TNg8zevbVwMhzfhRstiyXYjdrdgw41vw9WmruXyDnweITg00NklGdUx_y2ZT8h2AK4uSYx0j9t05DteIm01oZYxQVGuzWnYriTlnCAzJagYtaXf6vNFbUnIbDH1pXF34fhSYL4HvfFk7B4A8T7kBAveTFOJVPpSmsww6xHXtKhU1oeXHaD6rMnXoaOfnSvdwK8Rfh3h18s-7ATMVy1Dru14YzL9qlvV1d5az4xCHlNJUZik8IXIqkIpXP2dN_jJrW7EdDsBzPSFuPbh2eoxqm7wx5RjN1k0bXhIiIdt7jcDvOqJCKUW0djrg1ob-rWurj8Z16cxPXjKWKDtvA-vOim56Ne_sXj4_994CtdQ3_T7g9HhI7jOggzHoOUt6M2nC_cYqdm8etLqAIEvl612vwD56UyJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-Unity+Nitrate+to+Ammonia+conversion+via+reactant+enrichment+at+the+solid-liquid+interface&rft.jtitle=Nature+communications&rft.au=Liao%2C+Wanru&rft.au=Wang%2C+Jun&rft.au=Tan%2C+Yao&rft.au=Zi%2C+Xin&rft.date=2025-07-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-025-60671-y&rft.externalDocID=10_1038_s41467_025_60671_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |