Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution

Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 12; no. 17; p. 2970
Main Authors Anuratha, Krishnan, Rinawati, Mia, Wu, Tzu-Ho, Yeh, Min-Hsin, Lin, Jeng-Yu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the “hydrogen energy economy” involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
AbstractList Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the “hydrogen energy economy” involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.
Audience Academic
Author Yeh, Min-Hsin
Rinawati, Mia
Wu, Tzu-Ho
Lin, Jeng-Yu
Anuratha, Krishnan
AuthorAffiliation 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
3 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
1 Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan
AuthorAffiliation_xml – name: 1 Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan
– name: 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– name: 3 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
Author_xml – sequence: 1
  givenname: Krishnan
  surname: Anuratha
  fullname: Anuratha, Krishnan
– sequence: 2
  givenname: Mia
  orcidid: 0000-0003-1419-6190
  surname: Rinawati
  fullname: Rinawati, Mia
– sequence: 3
  givenname: Tzu-Ho
  orcidid: 0000-0002-5192-8912
  surname: Wu
  fullname: Wu, Tzu-Ho
– sequence: 4
  givenname: Min-Hsin
  orcidid: 0000-0002-6150-4750
  surname: Yeh
  fullname: Yeh, Min-Hsin
– sequence: 5
  givenname: Jeng-Yu
  orcidid: 0000-0002-7859-246X
  surname: Lin
  fullname: Lin, Jeng-Yu
BookMark eNptUlFvFCEQ3pgaW2vf_AGb-OKDW2Fgl-XF5KytNmk00foq4djh5MrCFfaa9N-X9dqkbYQHhpnv-8h8zOtqL8SAVfWWkmPGJPkYdIgUqAApyIvqAIiQDZeS7j2K96ujnNekLElZ37JX1T7rSF_u4qD68xMNhqn-gjfo42ac42jr785coW8-64xDferRTCkaPWl_m6dc25jq3wn1Q6VkXa5dqBf-SnsXsP4V_XZyMbypXlrtMx7dn4fV5dnp5cm35uLH1_OTxUVjuORTAz1awI6RzrKetT0AaJBGSguUG6oFYy0Hobuey-UwtKbnLVBrDNDl0lB2WJ3vZIeo12qT3KjTrYraqX-JmFZKp8kZj4qBQF76B-gHzoscdlaCNoQNxPKWFa1PO63NdjniMLuTtH8i-rQS3F-1ijdK8lbIThSB9_cCKV5vMU9qdNmg9zpg3GYFgkLPewmkQN89g67jNoXi1IyirBXFiYI63qFWujTggo3lXVP2gKMzZSCsK_mF4B2VklBeCLAjmBRzTmiVcZOe_6MQnVeUqHl61OPpKaQPz0gPLf8Xfgc-4cXC
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_158831
crossref_primary_10_3390_nano13020309
crossref_primary_10_1002_anie_202219188
crossref_primary_10_1007_s00339_023_07077_z
crossref_primary_10_1016_j_electacta_2023_143427
crossref_primary_10_1016_j_ijhydene_2023_02_069
crossref_primary_10_1016_j_ijhydene_2024_02_006
crossref_primary_10_1021_acs_energyfuels_4c02989
crossref_primary_10_1002_cphc_202300924
crossref_primary_10_1021_acsami_4c11951
crossref_primary_10_1002_aic_18113
crossref_primary_10_1002_smll_202304782
crossref_primary_10_3390_catal13091287
crossref_primary_10_1007_s11431_024_2687_0
crossref_primary_10_1002_cplu_202300739
crossref_primary_10_1002_ange_202219188
crossref_primary_10_1016_j_ijhydene_2023_03_295
crossref_primary_10_32434_0321_4095_2024_154_3_145_154
crossref_primary_10_1007_s40843_024_3207_1
crossref_primary_10_1002_aenm_202406047
crossref_primary_10_1016_j_jscs_2024_101913
crossref_primary_10_1007_s10934_023_01479_3
crossref_primary_10_1016_j_coelec_2024_101591
crossref_primary_10_1016_j_ijhydene_2024_08_245
crossref_primary_10_1016_j_colsurfa_2024_134415
crossref_primary_10_1016_j_jcis_2024_11_025
crossref_primary_10_1002_aic_18547
crossref_primary_10_1016_j_jcis_2023_09_153
Cites_doi 10.1039/C4EE02940B
10.1016/j.apcatb.2020.119436
10.1016/j.ijhydene.2021.05.158
10.1039/C7TA10584C
10.1557/s43581-022-00032-0
10.1002/ange.201909832
10.1007/s41061-018-0219-y
10.1039/C6NJ04060H
10.1016/j.cattod.2019.05.032
10.1016/j.ijhydene.2019.05.016
10.1016/j.electacta.2013.06.137
10.1039/D0NR02058C
10.1021/acssuschemeng.8b04953
10.1021/cr100246c
10.1016/j.ijhydene.2019.11.007
10.1021/ja030145g
10.1002/aenm.202002260
10.1016/j.cej.2021.134274
10.1016/j.jpowsour.2014.09.009
10.1016/j.electacta.2011.11.044
10.1039/D0TA04944A
10.1039/D0TA05160H
10.1021/acsami.0c19117
10.1039/C8CC01404C
10.3390/nano9111583
10.1039/C9NR05204F
10.1021/acsami.7b18650
10.1039/D1CY00435B
10.1002/adfm.201903747
10.1038/ncomms15341
10.1149/2.0031409eel
10.1002/celc.202000404
10.1016/j.cattod.2018.02.049
10.1039/c2ee21310a
10.1016/j.electacta.2022.140022
10.1016/j.jpowsour.2009.03.039
10.1002/cctc.201700451
10.1021/acsami.1c01188
10.1038/srep05863
10.1021/acssuschemeng.0c07614
10.1016/j.nanoen.2020.105605
10.1021/acssuschemeng.8b04027
10.1038/nchem.2194
10.1016/j.electacta.2017.06.159
10.1038/nchem.1412
10.1016/j.jcis.2021.02.038
10.1039/C8EE00521D
10.1002/smll.201906133
10.1038/s41598-021-01383-3
10.1039/C5TA02974K
10.1021/acsnano.7b08724
10.1002/adfm.201805298
10.1021/acsenergylett.8b00515
10.1039/C7TA10218F
10.1038/ncomms15131
10.1021/acscatal.8b04565
10.1007/s12274-017-1711-3
10.1016/j.nanoen.2018.09.003
10.1016/j.jcis.2022.01.197
10.1021/acsami.0c09319
10.1021/acsaem.0c01405
10.1016/j.apcatb.2019.118020
10.1016/j.ijhydene.2021.09.050
10.1039/C9CC08771K
10.1039/c2ee22554a
10.1002/ente.202100017
10.1002/anie.201606313
10.1016/j.catcom.2017.03.027
10.1021/acscatal.7b01800
10.1016/j.jechem.2021.08.042
10.1039/b905974a
10.1016/j.electacta.2018.12.043
10.1016/j.elecom.2011.07.016
10.1039/C8NR08104B
10.1021/acscatal.6b00487
10.1038/s41467-021-24828-9
10.1039/C9SE00221A
10.1002/celc.201600862
10.1021/acssuschemeng.9b01260
10.1039/D1CC07242K
10.1039/C8TA05054F
10.1016/j.apcatb.2021.120638
10.1016/j.electacta.2020.135883
10.1016/j.ijhydene.2020.03.192
10.1002/celc.201900507
10.1039/C9CY02618E
10.1016/j.apsusc.2017.11.076
10.1016/j.electacta.2012.07.007
10.1039/C9CC02507C
10.1039/C8TA05064C
10.1016/S0022-0728(98)00062-X
10.1038/s41598-021-00776-8
10.1039/C7TA00980A
10.1016/j.rser.2021.111470
10.1039/C6TA07883D
10.1021/acscatal.6b03192
10.1016/j.electacta.2022.140511
10.1016/j.electacta.2016.05.149
10.1021/acssuschemeng.0c01814
10.1039/D0TA09473K
10.1002/aesr.202000015
10.1016/j.jcis.2019.01.096
10.1021/acssuschemeng.0c01450
10.1039/C6NJ01648K
10.1039/D0NR08395J
10.1016/j.apsusc.2019.01.003
10.1021/ja403440e
10.1021/acsami.9b14350
10.1016/j.electacta.2021.138931
10.1039/C5TA04001A
10.1039/C9TA00481E
10.3390/catal10111280
10.3390/catal12030337
10.1021/jp105159t
10.1016/j.apsusc.2021.151708
10.1039/D0DT00605J
10.1021/acsami.1c04325
10.1038/s41467-019-13415-8
10.1021/acs.chemmater.6b02586
10.1038/s41560-021-00899-2
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/nano12172970
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database (Proquest)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_327e4360228d4449be6f92ac03d0f453
PMC9457967
A746199014
10_3390_nano12172970
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-28ef2e6306f38358222a29c99f214c1a7335427a6849bdd5c84521fcc21bbc13
IEDL.DBID BENPR
ISSN 2079-4991
IngestDate Wed Aug 27 01:31:52 EDT 2025
Thu Aug 21 18:03:54 EDT 2025
Fri Jul 11 15:42:30 EDT 2025
Fri Jul 25 11:59:07 EDT 2025
Tue Jun 10 20:55:55 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 00:51:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-28ef2e6306f38358222a29c99f214c1a7335427a6849bdd5c84521fcc21bbc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1419-6190
0000-0002-5192-8912
0000-0002-6150-4750
0000-0002-7859-246X
OpenAccessLink https://www.proquest.com/docview/2711357222?pq-origsite=%requestingapplication%
PMID 36080007
PQID 2711357222
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_327e4360228d4449be6f92ac03d0f453
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9457967
proquest_miscellaneous_2712848920
proquest_journals_2711357222
gale_infotracacademiconefile_A746199014
crossref_citationtrail_10_3390_nano12172970
crossref_primary_10_3390_nano12172970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220827
PublicationDateYYYYMMDD 2022-08-27
PublicationDate_xml – month: 8
  year: 2022
  text: 20220827
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Suryanto (ref_69) 2019; 10
Yang (ref_120) 2019; 44
Ye (ref_24) 2018; 376
Liu (ref_43) 2021; 13
Ding (ref_28) 2019; 11
Forslund (ref_121) 2016; 6
Tang (ref_8) 2017; 248
Xu (ref_55) 2017; 41
Xiong (ref_62) 2019; 297
Zhu (ref_59) 2018; 6
Wen (ref_91) 2020; 45
Xie (ref_52) 2018; 6
Babar (ref_92) 2019; 7
Jin (ref_9) 2019; 6
Yang (ref_71) 2020; 10
Wang (ref_100) 2021; 46
ref_23
Li (ref_113) 2021; 9
Liu (ref_96) 2020; 355
Wang (ref_98) 2018; 11
Sun (ref_3) 2020; 10
Vedharathinam (ref_15) 2013; 108
Li (ref_44) 2018; 54
Wang (ref_27) 2011; 13
Lai (ref_82) 2021; 46
Vedharathinam (ref_13) 2012; 81
Zhong (ref_61) 2022; 575
Sha (ref_103) 2019; 7
Lhermitte (ref_5) 2019; 9
Peng (ref_34) 2022; 410
Guo (ref_20) 2016; 210
Xiao (ref_40) 2017; 5
Ni (ref_63) 2021; 299
Zeng (ref_85) 2015; 3
Xu (ref_102) 2020; 8
Merz (ref_11) 2003; 125
An (ref_39) 2019; 29
Popczun (ref_72) 2013; 135
Hao (ref_94) 2020; 338
Yan (ref_106) 2018; 6
Sha (ref_42) 2020; 8
Chen (ref_101) 2021; 81
Zhu (ref_25) 2020; 16
Wang (ref_89) 2021; 391
Farithkhan (ref_7) 2020; 1
Cao (ref_31) 2018; 6
Xia (ref_76) 2019; 3
Fang (ref_117) 2022; 421
Singh (ref_19) 2017; 4
Singh (ref_50) 2017; 9
Maleki (ref_99) 2022; 58
Park (ref_84) 2012; 5
Wu (ref_68) 2019; 55
Barakat (ref_51) 2017; 97
Ye (ref_29) 2016; 40
Jiang (ref_86) 2020; 12
Nairan (ref_66) 2019; 29
Cao (ref_75) 2017; 8
Liu (ref_119) 2019; 11
Singh (ref_18) 2021; 9
Li (ref_22) 2022; 1
He (ref_48) 2018; 3
Duan (ref_79) 2017; 8
Xu (ref_54) 2014; 4
Yan (ref_49) 2012; 61
Yu (ref_88) 2018; 11
Wang (ref_16) 2014; 3
Zhang (ref_64) 2021; 280
Qian (ref_41) 2020; 12
Kim (ref_33) 2009; 192
Campbell (ref_80) 2012; 4
Wang (ref_109) 2018; 10
Zeng (ref_46) 2019; 7
Lu (ref_32) 2021; 9
Xu (ref_90) 2022; 615
Hu (ref_114) 2020; 8
Climent (ref_10) 1999; 461
ref_60
Kim (ref_1) 2012; 5
Yun (ref_104) 2021; 11
Yan (ref_105) 2019; 541
Zhang (ref_115) 2021; 13
Cha (ref_6) 2015; 7
Wang (ref_78) 2015; 3
Xu (ref_110) 2020; 49
Vij (ref_65) 2017; 7
Zhai (ref_70) 2021; 12
Lin (ref_37) 2018; 6
Gao (ref_67) 2016; 4
Lv (ref_87) 2021; 592
Song (ref_93) 2021; 13
Cook (ref_2) 2010; 110
ref_118
Zhan (ref_36) 2019; 327
Daramola (ref_14) 2010; 114
Wu (ref_35) 2014; 272
Mohamed (ref_53) 2018; 435
Zhao (ref_112) 2020; 45
ref_111
Yang (ref_38) 2017; 7
Yang (ref_30) 2019; 259
Boggs (ref_12) 2009; 32
Laursen (ref_74) 2015; 8
Wang (ref_95) 2022; 66
He (ref_97) 2019; 12
Wu (ref_47) 2021; 11
Wang (ref_108) 2021; 11
Xu (ref_45) 2021; 13
Sayed (ref_26) 2021; 150
Wang (ref_81) 2018; 53
Zhang (ref_4) 2019; 131
Geng (ref_17) 2021; 6
Mohamed (ref_56) 2019; 475
Leite (ref_73) 2020; 3
Zhou (ref_83) 2018; 12
Ji (ref_57) 2020; 8
Xu (ref_77) 2016; 28
Zhang (ref_107) 2020; 56
Zhu (ref_58) 2016; 55
Li (ref_116) 2022; 432
Hu (ref_21) 2020; 7
References_xml – volume: 8
  start-page: 1027
  year: 2015
  ident: ref_74
  article-title: Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02940B
– volume: 280
  start-page: 119436
  year: 2021
  ident: ref_64
  article-title: Nitrogen Dopants in Nickel Nanoparticles Embedded Carbon Nanotubes Promote Overall Urea Oxidation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119436
– volume: 46
  start-page: 26861
  year: 2021
  ident: ref_82
  article-title: In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.05.158
– volume: 6
  start-page: 4346
  year: 2018
  ident: ref_59
  article-title: Wet-Chemistry Topotactic Synthesis of Bimetallic Iron-Nickel Sulfide Nanoarrays: An Advanced and Versatile Catalyst for Energy Efficient Overall Water and Urea Electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10584C
– ident: ref_118
  doi: 10.1557/s43581-022-00032-0
– volume: 131
  start-page: 16976
  year: 2019
  ident: ref_4
  article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201909832
– volume: 376
  start-page: 42
  year: 2018
  ident: ref_24
  article-title: Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis
  publication-title: Top. Curr. Chem.
  doi: 10.1007/s41061-018-0219-y
– volume: 41
  start-page: 4190
  year: 2017
  ident: ref_55
  article-title: Highly active Ni–Fe double hydroxides as anode catalysts for electrooxidation of urea
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ04060H
– volume: 355
  start-page: 596
  year: 2020
  ident: ref_96
  article-title: Ni3S2 nanowires supported on Ni foam as efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2019.05.032
– volume: 44
  start-page: 16305
  year: 2019
  ident: ref_120
  article-title: Nickel Phosphate Materials Regulated by Doping Cobalt for Urea and Methanol Electro-Oxidation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.016
– volume: 108
  start-page: 660
  year: 2013
  ident: ref_15
  article-title: Direct Evidence of the Mechanism for the Electro-Oxidation of Urea on Ni(OH)2 Catalyst in Alkaline Medium
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.06.137
– volume: 12
  start-page: 11573
  year: 2020
  ident: ref_86
  article-title: Ti-Mesh supported porous CoS2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis
  publication-title: Nanoscale
  doi: 10.1039/D0NR02058C
– volume: 7
  start-page: 4777
  year: 2019
  ident: ref_46
  article-title: Interlayer Effect in NiCo Layered Double Hydroxide for Promoted Electrocatalytic Urea Oxidation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04953
– volume: 110
  start-page: 6474
  year: 2010
  ident: ref_2
  article-title: Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 45
  start-page: 14199
  year: 2020
  ident: ref_112
  article-title: Porous flower-like nickel nitride as highly efficient bifunctional electrocatalysts for less energy-intensive hydrogen evolution and urea oxidation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.007
– volume: 125
  start-page: 15324
  year: 2003
  ident: ref_11
  article-title: Ureases: Quantum chemical calculations on cluster models
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030145g
– volume: 10
  start-page: 2002260
  year: 2020
  ident: ref_71
  article-title: Ni-Activated Transition Metal Carbides for Efficient Hydrogen Evolution in Acidic and Alkaline Solutions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002260
– volume: 432
  start-page: 134274
  year: 2022
  ident: ref_116
  article-title: W-Doping Induced Abundant Active Sites in a 3D NiS2/MoO2 Heterostructure as an Efficient Electrocatalyst for Urea Oxidation and Hydrogen Evolution Reaction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134274
– volume: 1
  start-page: 100030
  year: 2022
  ident: ref_22
  article-title: A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction
  publication-title: Adv. Powder Technol.
– volume: 272
  start-page: 711
  year: 2014
  ident: ref_35
  article-title: Hydrothermal Growth of Vertically-Aligned Ordered Mesoporous Nickel Oxide Nanosheets on Three-Dimensional Nickel Framework for Electrocatalytic Oxidation of Urea in Alkaline Medium
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2014.09.009
– volume: 61
  start-page: 25
  year: 2012
  ident: ref_49
  article-title: Nickel and Cobalt Bimetallic Hydroxide Catalysts for Urea Electro-Oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.11.044
– volume: 8
  start-page: 18055
  year: 2020
  ident: ref_42
  article-title: A Heterogeneous Interface on NiS@Ni3S2/NiMoO4 Heterostructures for Efficient Urea Electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04944A
– volume: 8
  start-page: 14680
  year: 2020
  ident: ref_57
  article-title: Accurate Synergy Effect of Ni–Sn Dual Active Sites Enhances Electrocatalytic Oxidation of Urea for Hydrogen Evolution in Alkaline Medium
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05160H
– volume: 13
  start-page: 3937
  year: 2021
  ident: ref_115
  article-title: Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H2 Production via Urea Electrolysis
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.0c19117
– volume: 54
  start-page: 5181
  year: 2018
  ident: ref_44
  article-title: Heteroporous MoS2/Ni3S2 Towards Superior Electrocatalytic Overall Urea Splitting
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01404C
– ident: ref_111
  doi: 10.3390/nano9111583
– volume: 11
  start-page: 16017
  year: 2019
  ident: ref_119
  article-title: Bonding State Synergy of the NiF2/Ni2P Hybrid with the Co-Existence of Covalent and Ionic Bonds and the Application of This Hybrid as a Robust Catalyst for the Energy-Relevant Electrooxidation of Water and Urea
  publication-title: Nanoscale
  doi: 10.1039/C9NR05204F
– volume: 10
  start-page: 4750
  year: 2018
  ident: ref_109
  article-title: Multivariate MOF-templated pomegranate-like Ni/C as efficient bifunctional electrocatalyst for hydrogen evolution and urea oxidation
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.7b18650
– volume: 11
  start-page: 4294
  year: 2021
  ident: ref_47
  article-title: Superior Catalytic Activity of α-Ni(OH)2 for Urea Electrolysis
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY00435B
– volume: 29
  start-page: 1903747
  year: 2019
  ident: ref_66
  article-title: NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903747
– volume: 8
  start-page: 15341
  year: 2017
  ident: ref_79
  article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 3
  start-page: H29
  year: 2014
  ident: ref_16
  article-title: In Situ X-Ray diffraction study of urea electrolysis on nickel catalysts
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.0031409eel
– volume: 7
  start-page: 3211
  year: 2020
  ident: ref_21
  article-title: Urea Electrooxidation: Current Development and Understanding of Ni-Based Catalysts
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000404
– volume: 327
  start-page: 398
  year: 2019
  ident: ref_36
  article-title: 3D NiO Nanowalls Grown on Ni Foam for Highly Efficient Electro-Oxidation of Urea
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.02.049
– volume: 5
  start-page: 7647
  year: 2012
  ident: ref_1
  article-title: Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21310a
– volume: 410
  start-page: 140022
  year: 2022
  ident: ref_34
  article-title: Flower-Like Manganese Oxide with Intercalated Nickel Ions (Ni3+) as a Catalytic Electrode Material for Urea Oxidation
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140022
– volume: 192
  start-page: 674
  year: 2009
  ident: ref_33
  article-title: Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2009.03.039
– volume: 9
  start-page: 3374
  year: 2017
  ident: ref_50
  article-title: Electroactivity of NiCr Catalysts for Urea Oxidation in Alkaline Electrolyte
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700451
– volume: 13
  start-page: 16355
  year: 2021
  ident: ref_45
  article-title: Coupling Interface Constructions of FeNi3-MoO2 Heterostructures for Efficient Urea Oxidation and Hydrogen Evolution Reaction
  publication-title: ACS. Appl. Mater. Interface
  doi: 10.1021/acsami.1c01188
– volume: 4
  start-page: 5863
  year: 2014
  ident: ref_54
  article-title: Nickel-Cobalt Bimetallic Anode Catalysts for Direct Urea Fuel Cell
  publication-title: Sci. Rep.
  doi: 10.1038/srep05863
– volume: 9
  start-page: 1703
  year: 2021
  ident: ref_32
  article-title: Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c07614
– volume: 81
  start-page: 105605
  year: 2021
  ident: ref_101
  article-title: Amorphous Nickel Sulfoselenide for Efficient Electrochemical Urea-Assisted Hydrogen Production in Alkaline Media
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105605
– volume: 6
  start-page: 15570
  year: 2018
  ident: ref_31
  article-title: Hierarchical Ni(OH)2/Polypyrrole/Graphene Oxide Nanosheets as Excellent Electrocatalysts for the Oxidation of Urea
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04027
– volume: 7
  start-page: 328
  year: 2015
  ident: ref_6
  article-title: Combined biomass valorization and hydrogen production in a photoelectrochemical cell
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2194
– volume: 248
  start-page: 243
  year: 2017
  ident: ref_8
  article-title: Se-Ni(OH)2-shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.159
– volume: 4
  start-page: 597
  year: 2012
  ident: ref_80
  article-title: Electronic perturbations
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1412
– volume: 592
  start-page: 13
  year: 2021
  ident: ref_87
  article-title: Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.02.038
– volume: 11
  start-page: 1890
  year: 2018
  ident: ref_88
  article-title: Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00521D
– volume: 16
  start-page: 1906133
  year: 2020
  ident: ref_25
  article-title: Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction
  publication-title: Small
  doi: 10.1002/smll.201906133
– volume: 11
  start-page: 22003
  year: 2021
  ident: ref_104
  article-title: Ni-Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-01383-3
– volume: 3
  start-page: 14942
  year: 2015
  ident: ref_85
  article-title: Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02974K
– volume: 12
  start-page: 4148
  year: 2018
  ident: ref_83
  article-title: Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08724
– volume: 29
  start-page: 1805298
  year: 2019
  ident: ref_39
  article-title: Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805298
– volume: 3
  start-page: 1373
  year: 2018
  ident: ref_48
  article-title: Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00515
– volume: 6
  start-page: 1682
  year: 2018
  ident: ref_106
  article-title: Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10218F
– volume: 8
  start-page: 15131
  year: 2017
  ident: ref_75
  article-title: Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15131
– volume: 9
  start-page: 2007
  year: 2019
  ident: ref_5
  article-title: Alternative oxidation reactions for solar-driven fuel production
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04565
– volume: 11
  start-page: 988
  year: 2018
  ident: ref_98
  article-title: Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1711-3
– volume: 53
  start-page: 458
  year: 2018
  ident: ref_81
  article-title: Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.003
– volume: 615
  start-page: 163
  year: 2022
  ident: ref_90
  article-title: Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.01.197
– volume: 12
  start-page: 38061
  year: 2020
  ident: ref_41
  article-title: Novel Bifunctional V2O3 Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.0c09319
– volume: 3
  start-page: 9498
  year: 2020
  ident: ref_73
  article-title: One-Step Synthesis of Nickel Sulfides and Their Electrocatalytic Activities for Hydrogen Evolution Reaction: A Case Study of Crystalline h-NiS and o-Ni9S8 Nanoparticles
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01405
– volume: 259
  start-page: 118020
  year: 2019
  ident: ref_30
  article-title: Rapid Room-Temperature Fabrication of Ultrathin Ni(OH)2 Nanoflakes with Abundant Edge Sites for Efficient Urea Oxidation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118020
– volume: 46
  start-page: 37792
  year: 2021
  ident: ref_100
  article-title: Electrodeposition NiMoSe ternary nanoshperes on nickel foam as bifunctional electrocatalyst for urea electrolysis and hydrogen evolution reaction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.050
– volume: 56
  start-page: 2763
  year: 2020
  ident: ref_107
  article-title: Facile synthesis of amorphous MoSx-Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC08771K
– volume: 5
  start-page: 9331
  year: 2012
  ident: ref_84
  article-title: Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22554a
– volume: 9
  start-page: 2100017
  year: 2021
  ident: ref_18
  article-title: Advances in Catalytic Electrooxidation of Urea: A Review
  publication-title: Energy Technol.
  doi: 10.1002/ente.202100017
– volume: 55
  start-page: 12465
  year: 2016
  ident: ref_58
  article-title: Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606313
– volume: 97
  start-page: 32
  year: 2017
  ident: ref_51
  article-title: Enhanced Onset Potential NiMn-Decorated Activated Carbon as Effective and Applicable Anode in Urea Fuel Cells
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2017.03.027
– volume: 7
  start-page: 7196
  year: 2017
  ident: ref_65
  article-title: Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01800
– volume: 66
  start-page: 483
  year: 2022
  ident: ref_95
  article-title: High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.08.042
– volume: 32
  start-page: 4859
  year: 2009
  ident: ref_12
  article-title: Urea electrolysis: Direct hydrogen production from urine
  publication-title: Chem. Commun.
  doi: 10.1039/b905974a
– volume: 297
  start-page: 833
  year: 2019
  ident: ref_62
  article-title: Nickel Diselenide Nanoflakes Give Superior Urea Electrocatalytic Conversion
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.043
– volume: 13
  start-page: 1135
  year: 2011
  ident: ref_27
  article-title: Exfoliated Nickel Hydroxide Nanosheets for Urea Electrolysis
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.07.016
– volume: 11
  start-page: 1058
  year: 2019
  ident: ref_28
  article-title: Atomically Thick Ni(OH)2 Nanomeshes for Urea Electrooxidation
  publication-title: Nanoscale
  doi: 10.1039/C8NR08104B
– volume: 6
  start-page: 5044
  year: 2016
  ident: ref_121
  article-title: Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00487
– volume: 12
  start-page: 4587
  year: 2021
  ident: ref_70
  article-title: Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24828-9
– volume: 3
  start-page: 2006
  year: 2019
  ident: ref_76
  article-title: Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction
  publication-title: Sustain. Energy Fuel.
  doi: 10.1039/C9SE00221A
– volume: 4
  start-page: 1037
  year: 2017
  ident: ref_19
  article-title: Enhanced Urea Activity of Oxidation on Nickel-Deposited Tin Dendrites
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600862
– volume: 7
  start-page: 10035
  year: 2019
  ident: ref_92
  article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01260
– volume: 58
  start-page: 3545
  year: 2022
  ident: ref_99
  article-title: Mn-incorporated nickel selenide: An ultra-active bifunctional electrocatalyst for hydrogen evolution and urea oxidation reactions
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC07242K
– volume: 6
  start-page: 16121
  year: 2018
  ident: ref_52
  article-title: Partially Amorphous Nickel-Iron Layered Double Hydroxide Nanosheet Arrays for Robust Bifunctional Electrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05054F
– volume: 299
  start-page: 120638
  year: 2021
  ident: ref_63
  article-title: Interfacial Engineering of the NiSe2/FeSe2 p-p Heterojunction for Promoting Oxygen Evolution Reaction and Electrocatalytic Urea Oxidation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120638
– volume: 338
  start-page: 135883
  year: 2020
  ident: ref_94
  article-title: Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135883
– volume: 45
  start-page: 14660
  year: 2020
  ident: ref_91
  article-title: NiFe-LDH/MWCNTs/NF nanohybrids as a high-performance bifunctional electrocatalyst for overall urea electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.192
– volume: 6
  start-page: 3244
  year: 2019
  ident: ref_9
  article-title: Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900507
– volume: 10
  start-page: 1567
  year: 2020
  ident: ref_3
  article-title: Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C9CY02618E
– volume: 435
  start-page: 122
  year: 2018
  ident: ref_53
  article-title: Electrocatalytic Behavior of a Nanocomposite of Ni/Pd Supported by Carbonized PVA Nanofibers Towards Formic Acid, Ethanol and Urea Oxidation: A Physicochemical and Electro-Analysis Study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.076
– volume: 81
  start-page: 292
  year: 2012
  ident: ref_13
  article-title: Understanding the Electro-Catalytic Oxidation Mechanism of Urea on Nickel Electrodes in Alkaline Medium
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.007
– volume: 55
  start-page: 6555
  year: 2019
  ident: ref_68
  article-title: Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC02507C
– volume: 6
  start-page: 13867
  year: 2018
  ident: ref_37
  article-title: In Situ Growth of Single-Layered α-Ni(OH)2 Nanosheets on a Carbon Cloth for Highly Efficient Electrocatalytic Oxidation of Urea
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05064C
– volume: 461
  start-page: 65
  year: 1999
  ident: ref_10
  article-title: Urea adsorption on Pt (111) electrodes
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(98)00062-X
– volume: 11
  start-page: 21414
  year: 2021
  ident: ref_108
  article-title: Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00776-8
– volume: 5
  start-page: 7825
  year: 2017
  ident: ref_40
  article-title: MnO2/MnCo2O4/Ni Heterostructure with Quadruple Hierarchy: A Bifunctional Electrode Architecture for Overall Urea Oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00980A
– volume: 150
  start-page: 111470
  year: 2021
  ident: ref_26
  article-title: Synthesis and Performance Evaluation of Various Metal Chalcogenides as Active Anodes for Direct Urea Fuel Cells
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111470
– volume: 4
  start-page: 17363
  year: 2016
  ident: ref_67
  article-title: Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07883D
– volume: 7
  start-page: 2357
  year: 2017
  ident: ref_38
  article-title: MoS2–Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03192
– volume: 421
  start-page: 140511
  year: 2022
  ident: ref_117
  article-title: Green Synthesis of Ni3S2 Nanoparticles from a Nontoxic Sulfur Source for Urea Electrolysis with High Catalytic Activity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2022.140511
– volume: 210
  start-page: 474
  year: 2016
  ident: ref_20
  article-title: Electrochemical Impedance Analysis of Urea Electro-Oxidation Mechanism on Nickel Catalyst in Alkaline Medium
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.05.149
– volume: 8
  start-page: 7463
  year: 2020
  ident: ref_102
  article-title: In situ grown Ni phosphate@ Ni12P5 nanorod arrays as a unique core–shell architecture: Competitive bifunctional electrocatalysts for urea electrolysis at large current densities
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01814
– volume: 9
  start-page: 4159
  year: 2021
  ident: ref_113
  article-title: 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09473K
– volume: 1
  start-page: 2000015
  year: 2020
  ident: ref_7
  article-title: Direct urea fuel cells: Recent progress and critical challenges of urea oxidation electrocatalysis
  publication-title: Adv. Energy Sustain. Res.
  doi: 10.1002/aesr.202000015
– volume: 541
  start-page: 279
  year: 2019
  ident: ref_105
  article-title: Facile In-Situ Growth of Ni2P/Fe2P Nanohybrids on Ni Foam for Highly Efficient Urea Electrolysis
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.01.096
– volume: 8
  start-page: 7414
  year: 2020
  ident: ref_114
  article-title: Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01450
– volume: 40
  start-page: 8673
  year: 2016
  ident: ref_29
  article-title: Facile Preparation of Three-Dimensional Ni(OH)2/Ni Foam Anode with Low Cost and Its Application in a Direct Urea Fuel Cell
  publication-title: New J. Chem.
  doi: 10.1039/C6NJ01648K
– volume: 13
  start-page: 1680
  year: 2021
  ident: ref_93
  article-title: Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis
  publication-title: Nanoscale
  doi: 10.1039/D0NR08395J
– volume: 475
  start-page: 532
  year: 2019
  ident: ref_56
  article-title: Chemical Design of Novel Electrospun CoNi/Cr Nanoparticles Encapsulated in C-Nanofibers as Highly Efficient Material for Urea Oxidation in Alkaline Media
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.01.003
– volume: 135
  start-page: 9267
  year: 2013
  ident: ref_72
  article-title: Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403440e
– volume: 12
  start-page: 2225
  year: 2019
  ident: ref_97
  article-title: Low-cost Ni2P/Ni0.96S heterostructured bifunctional electrocatalyst toward highly efficient overall urea-water electrolysis
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.9b14350
– volume: 391
  start-page: 138931
  year: 2021
  ident: ref_89
  article-title: Ni, N-codoped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogen production in urea-water electrolysis
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138931
– volume: 3
  start-page: 16435
  year: 2015
  ident: ref_78
  article-title: MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04001A
– volume: 7
  start-page: 9078
  year: 2019
  ident: ref_103
  article-title: The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00481E
– ident: ref_60
  doi: 10.3390/catal10111280
– ident: ref_23
  doi: 10.3390/catal12030337
– volume: 114
  start-page: 11513
  year: 2010
  ident: ref_14
  article-title: Dissociation Rates of Urea in the Presence of NiOOH Catalyst A DFT Analysis
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp105159t
– volume: 575
  start-page: 151708
  year: 2022
  ident: ref_61
  article-title: Synthesis of Hierarchical Nickel Sulfide Nanotubes for Highly Efficient Electrocatalytic Urea Oxidation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151708
– volume: 49
  start-page: 5646
  year: 2020
  ident: ref_110
  article-title: Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT00605J
– volume: 13
  start-page: 26948
  year: 2021
  ident: ref_43
  article-title: Heterostructured Ni3S2-Ni3P/NF as a Bifunctional Catalyst for Overall Urea-Water Electrolysis for Hydrogen Generation
  publication-title: ACS Appl. Mater. Interface
  doi: 10.1021/acsami.1c04325
– volume: 10
  start-page: 5599
  year: 2019
  ident: ref_69
  article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13415-8
– volume: 28
  start-page: 6313
  year: 2016
  ident: ref_77
  article-title: Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal-Organic Framework for Electrocatalytic Hydrogen Evolution Reaction
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02586
– volume: 6
  start-page: 904
  year: 2021
  ident: ref_17
  article-title: Nickel Ferrocyanide as a High-Performance Urea Oxidation Electrocatalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
SSID ssj0000913853
Score 2.3517053
SecondaryResourceType review_article
Snippet Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2970
SubjectTerms Alkalies
alkaline medium
Chemical engineering
Chemical engineering research
Chemical properties
Chemical reactions
Decomposition
Design of experiments
Electrocatalysts
Electrolysis
Electrolytes
Electrolytic cells
Energy
Energy conservation
Energy conversion
Fuel cells
Fuel production
Hydrogen
Hydrogen evolution reactions
Hydrogen fuels
Hydrogen-based energy
Hydroxides
Metal catalysts
Nickel
Oxidation
Phosphides
Review
Urea
urea electrolysis
Wastewater
Wastewater pollution
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEA7iqR5EW8W1WlKoeJDF3WSy2RyfRZFCPSl4MmSzCYqPfdL3PPTfdya777FPKb30mmRhMklmvtlMvmHsm6qLJhincg9Fm4MyIXcNVLk30EKonSsSffHPm-r6Dn7cq_tRqS_KCevpgXvFnUuhA8iKaFpaADBNqKIRzheyLSKoxPOJPm8UTCUbbEqJjqjPdJcY1593rpuVVI3JUF3ikQ9KVP3vDfLbJMmR17naYdsDXOSTXsxdthG6j2xrRCL4iT0g8sOP-Sj9h88ixyV-DtP8Ar1Uyy_7YjfpX83v-WLOEaryO8SLy55ETMKfOj6ZPjtCnnz5v2yP3V5d3n6_zoeqCahuA4tc1CGKUGEoEDH6VAQAnDDemChK8KXTUioQ2lU1KrNtla8BXXj0XpRN40u5zza7WRcOGI81BkuICJxAjChii8EZNIVEK-CriO0ZO1uq0fqBUZwKW0wtRhakdDtWesZOVqNfeiaNv4y7oBVZjSH-69SAu8IOu8L-a1dk7JTW09IpRZG8Gx4b4MSI78pONGDkSFfIGTtaLrkdju_cCl2WUmlUXca-rrrx4NFtiuvC7DWNQX3URqDEem2rrIm-3tM9PSYKbwP0Blgf_o-5fmYfBL3JKNDk6SO2ufj1Go4RKS2aL-lQ_AGstxCb
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution
URI https://www.proquest.com/docview/2711357222
https://www.proquest.com/docview/2712848920
https://pubmed.ncbi.nlm.nih.gov/PMC9457967
https://doaj.org/article/327e4360228d4449be6f92ac03d0f453
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x7gUe0MYPETYqI4F4QNES20nsJ9SilgmJCaFN2hOR49hjWpWMtXvYf7-71CnpELzGjuLc2Xffne3vAN5lKqmcNllsZVLHMtMuNpXMY6tlLZ0yJunoi7-d5Mdn8ut5dh4SbstwrLK3iZ2hrltLOfIjXqSpyAp0Z5-uf8dUNYp2V0MJjR3YRROs1Ah2p7OT7z82WRZivUSHtD7xLjC-P2pM06ZUlUlTfeKBL-oo-_82zA8PSw68z3wPngbYyCZrPe_DI9c8gycDMsHn8BMRIL7MBseAWOsZqvrKLeIpequazdZFb7qczd1ytWQIWdkZ4sa-pSMoYZcNmyyuDCFQ1ufNXsDpfHb6-TgO1RNQ7FquYq6c5y7HkMBjFJoREDBcW609T6VNTSFEJnlhciV1VdeZVRJdubeWp1VlU_ESRk3buFfAvMKgCZGB4YgVua8xSJNVItAa2Nzj8wg-9mIsbWAWpwIXixIjDBJ6ORR6BO83va_XjBr_6DcljWz6EA9296C9uSjDsioFL5wUOZH41FLij7jca25sIurEy0xE8IH0WdJqxSFZEy4d4I8R71U5KSRGkLSVHMFhr_IyLONl-WfSRfB204wLkHZVTOPa264PykNpjiMutqbK1tC3W5rLXx2Vt5Z0F7h4_f-PH8BjTrcuEjRqxSGMVje37g1ioVU1hh01_zIO037cZRTuAVYhDFg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdIKWAkKg4oamI7Dx8Q2kKXLX2ctlJPWI5jQ9VV0na3Qv1R_Edm8liyILj1Gju7zng8843t-QbgTZJHhVMmCa2MylAmyoWmkGlolSyly42JGvriw6N0ciy_nCQna_Czz4Wha5W9TWwMdVlb2iPf5lkciyRDd_bh_CKkqlF0utqX0GjVYt9d_8CQbf5-7xPO7xbn493px0nYVRXA4Si5CHnuPHcpQmWP0VlCDtJwZZXyPJY2NpkQieSZSXOpirJMbC7RxXlreVwUNhb4s7fgthToyCkxffx5uaVDFJvo_drr9dgebVemqmMqAaWoGPLA8TX1Af72An_ezBy4uvEDuN9hVDZqleohrLnqEdwbMBc-hq8IN_FlNrhzxGrPUK_O3CzcQddYst22wk6zQXQ9X8wZ4mN2jCC1b2nYUNhpxUazM0Nwl_WbdE9gehNCfQrrVV25Z8B8jhEawhDDEZhyX2JEKItIoOmxqcfnAbzrxahtR2NO1TRmGsMZEroeCj2ArWXv85a-4x_9dmhGln2IdLt5UF9-090a1oJnToqUGINKKfFDXOoVNzYSZeRlIgJ4S_OpyTTgkKzpMhzww4hkS48yieEqnVsHsNlPue5sxlz_1vAAXi-bcbXTEY6pXH3V9EF55IrjiLMVVVkZ-mpLdfq94Q1XkhKPs43___kruDOZHh7og72j_edwl1O6R4TWNNuE9cXllXuBIGxRvGxUn4G-4aX2C7rUQ9s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUGQOMxMQDiprYzocfEGpZq41BNaFN2hOW49gwrUq2tRPan8Z_x12alBYEb3uNndY5n-9-Z59_B_A6yaPCKZOEVkZlKBPlQlPINLRKltLlxkQNffHnSbp3LD-eJCcb8LO7C0NplZ1NbAx1WVvaI-_zLI5FkqE76_s2LeJwd_z-_CKkClJ00tqV01ioyIG7_oHh2-zd_i7O9Q7n49HRh72wrTCAQ1NyHvLcee5ShM0eI7WEnKXhyirleSxtbDIhEskzk-ZSFWWZ2Fyiu_PW8rgobCzwZ2_BZkZBUQ82h6PJ4ZflBg8RbqIvXCTbC6GifmWqOqaCUIpKI6-4waZawN8-4c88zRXHN74P91rEygYLFXsAG656CHdXeAwfwVcEn_gyW8lAYrVnqGVnbhoO0VGWbLSot9NsF13P5jOGaJkdI2TtWhpuFHZascH0zBD4Zd2W3WM4ugmxPoFeVVfuKTCfY7yGoMRwhKnclxgfyiISaIhs6vF5AG87MWrbkppTbY2pxuCGhK5XhR7AzrL3-YLM4x_9hjQjyz5Ewd08qC-_6XZFa8EzJ0VK_EGllPghLvWKGxuJMvIyEQG8ofnUZChwSNa09x3ww4hySw8yicErnWIHsN1NuW4tyEz_1vcAXi2bce3TgY6pXH3V9EF55IrjiLM1VVkb-npLdfq9YRFXkq4hZ1v___OXcBuXmf60Pzl4Bnc43f2I0LRm29CbX16554jI5sWLVvcZ6Btebb8ALehJbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Development+of+Nickel-Based+Electrocatalysts+for+Urea+Electrolysis+in+Alkaline+Solution&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Anuratha%2C+Krishnan+Shanmugam&rft.au=Rinawati%2C+Mia&rft.au=Wu%2C+Tzu-Ho&rft.au=Yeh%2C+Min-Hsin&rft.date=2022-08-27&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=12&rft.issue=17&rft_id=info:doi/10.3390%2Fnano12172970&rft_id=info%3Apmid%2F36080007&rft.externalDocID=PMC9457967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon