Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution
Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 12; no. 17; p. 2970 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the “hydrogen energy economy” involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated. |
---|---|
AbstractList | Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the “hydrogen energy economy” involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated. Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated.Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower theoretical and thermodynamic electrolytic cell potential (0.37 V) compared to water electrolysis (1.23 V) and rectification of urea-rich wastewater pollution. The new era of the "hydrogen energy economy" involving urea electrolysis can efficiently promote the development of a low-carbon future. In recent decades, numerous inexpensive and fruitful nickel-based materials (metallic Ni, Ni-alloys, oxides/hydroxides, chalcogenides, nitrides and phosphides) have been explored as potential energy saving monofunctional and bifunctional electrocatalysts for urea electrolysis in alkaline solution. In this review, we start with a discussion about the basics and fundamentals of urea electrolysis, including the urea oxidation reaction (UOR) and the hydrogen evolution reaction (HER), and then discuss the strategies for designing electrocatalysts for the UOR, HER and both reactions (bifunctional). Next, the catalytic performance, mechanisms and factors including morphology, composition and electrode/electrolyte kinetics for the ameliorated and diminished activity of the various aforementioned nickel-based electrocatalysts for urea electrolysis, including monofunctional (UOR or HER) and bifunctional (UOR and HER) types, are summarized. Lastly, the features of persisting challenges, future prospects and expectations of unravelling the bifunctional electrocatalysts for urea-based energy conversion technologies, including urea electrolysis, urea fuel cells and photoelectrochemical urea splitting, are illuminated. |
Audience | Academic |
Author | Yeh, Min-Hsin Rinawati, Mia Wu, Tzu-Ho Lin, Jeng-Yu Anuratha, Krishnan |
AuthorAffiliation | 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan 3 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan 1 Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan |
AuthorAffiliation_xml | – name: 1 Department of Chemical and Materials Engineering, Tunghai University, Taichung City 40704, Taiwan – name: 2 Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – name: 3 Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan |
Author_xml | – sequence: 1 givenname: Krishnan surname: Anuratha fullname: Anuratha, Krishnan – sequence: 2 givenname: Mia orcidid: 0000-0003-1419-6190 surname: Rinawati fullname: Rinawati, Mia – sequence: 3 givenname: Tzu-Ho orcidid: 0000-0002-5192-8912 surname: Wu fullname: Wu, Tzu-Ho – sequence: 4 givenname: Min-Hsin orcidid: 0000-0002-6150-4750 surname: Yeh fullname: Yeh, Min-Hsin – sequence: 5 givenname: Jeng-Yu orcidid: 0000-0002-7859-246X surname: Lin fullname: Lin, Jeng-Yu |
BookMark | eNptUlFvFCEQ3pgaW2vf_AGb-OKDW2Fgl-XF5KytNmk00foq4djh5MrCFfaa9N-X9dqkbYQHhpnv-8h8zOtqL8SAVfWWkmPGJPkYdIgUqAApyIvqAIiQDZeS7j2K96ujnNekLElZ37JX1T7rSF_u4qD68xMNhqn-gjfo42ac42jr785coW8-64xDferRTCkaPWl_m6dc25jq3wn1Q6VkXa5dqBf-SnsXsP4V_XZyMbypXlrtMx7dn4fV5dnp5cm35uLH1_OTxUVjuORTAz1awI6RzrKetT0AaJBGSguUG6oFYy0Hobuey-UwtKbnLVBrDNDl0lB2WJ3vZIeo12qT3KjTrYraqX-JmFZKp8kZj4qBQF76B-gHzoscdlaCNoQNxPKWFa1PO63NdjniMLuTtH8i-rQS3F-1ijdK8lbIThSB9_cCKV5vMU9qdNmg9zpg3GYFgkLPewmkQN89g67jNoXi1IyirBXFiYI63qFWujTggo3lXVP2gKMzZSCsK_mF4B2VklBeCLAjmBRzTmiVcZOe_6MQnVeUqHl61OPpKaQPz0gPLf8Xfgc-4cXC |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_158831 crossref_primary_10_3390_nano13020309 crossref_primary_10_1002_anie_202219188 crossref_primary_10_1007_s00339_023_07077_z crossref_primary_10_1016_j_electacta_2023_143427 crossref_primary_10_1016_j_ijhydene_2023_02_069 crossref_primary_10_1016_j_ijhydene_2024_02_006 crossref_primary_10_1021_acs_energyfuels_4c02989 crossref_primary_10_1002_cphc_202300924 crossref_primary_10_1021_acsami_4c11951 crossref_primary_10_1002_aic_18113 crossref_primary_10_1002_smll_202304782 crossref_primary_10_3390_catal13091287 crossref_primary_10_1007_s11431_024_2687_0 crossref_primary_10_1002_cplu_202300739 crossref_primary_10_1002_ange_202219188 crossref_primary_10_1016_j_ijhydene_2023_03_295 crossref_primary_10_32434_0321_4095_2024_154_3_145_154 crossref_primary_10_1007_s40843_024_3207_1 crossref_primary_10_1002_aenm_202406047 crossref_primary_10_1016_j_jscs_2024_101913 crossref_primary_10_1007_s10934_023_01479_3 crossref_primary_10_1016_j_coelec_2024_101591 crossref_primary_10_1016_j_ijhydene_2024_08_245 crossref_primary_10_1016_j_colsurfa_2024_134415 crossref_primary_10_1016_j_jcis_2024_11_025 crossref_primary_10_1002_aic_18547 crossref_primary_10_1016_j_jcis_2023_09_153 |
Cites_doi | 10.1039/C4EE02940B 10.1016/j.apcatb.2020.119436 10.1016/j.ijhydene.2021.05.158 10.1039/C7TA10584C 10.1557/s43581-022-00032-0 10.1002/ange.201909832 10.1007/s41061-018-0219-y 10.1039/C6NJ04060H 10.1016/j.cattod.2019.05.032 10.1016/j.ijhydene.2019.05.016 10.1016/j.electacta.2013.06.137 10.1039/D0NR02058C 10.1021/acssuschemeng.8b04953 10.1021/cr100246c 10.1016/j.ijhydene.2019.11.007 10.1021/ja030145g 10.1002/aenm.202002260 10.1016/j.cej.2021.134274 10.1016/j.jpowsour.2014.09.009 10.1016/j.electacta.2011.11.044 10.1039/D0TA04944A 10.1039/D0TA05160H 10.1021/acsami.0c19117 10.1039/C8CC01404C 10.3390/nano9111583 10.1039/C9NR05204F 10.1021/acsami.7b18650 10.1039/D1CY00435B 10.1002/adfm.201903747 10.1038/ncomms15341 10.1149/2.0031409eel 10.1002/celc.202000404 10.1016/j.cattod.2018.02.049 10.1039/c2ee21310a 10.1016/j.electacta.2022.140022 10.1016/j.jpowsour.2009.03.039 10.1002/cctc.201700451 10.1021/acsami.1c01188 10.1038/srep05863 10.1021/acssuschemeng.0c07614 10.1016/j.nanoen.2020.105605 10.1021/acssuschemeng.8b04027 10.1038/nchem.2194 10.1016/j.electacta.2017.06.159 10.1038/nchem.1412 10.1016/j.jcis.2021.02.038 10.1039/C8EE00521D 10.1002/smll.201906133 10.1038/s41598-021-01383-3 10.1039/C5TA02974K 10.1021/acsnano.7b08724 10.1002/adfm.201805298 10.1021/acsenergylett.8b00515 10.1039/C7TA10218F 10.1038/ncomms15131 10.1021/acscatal.8b04565 10.1007/s12274-017-1711-3 10.1016/j.nanoen.2018.09.003 10.1016/j.jcis.2022.01.197 10.1021/acsami.0c09319 10.1021/acsaem.0c01405 10.1016/j.apcatb.2019.118020 10.1016/j.ijhydene.2021.09.050 10.1039/C9CC08771K 10.1039/c2ee22554a 10.1002/ente.202100017 10.1002/anie.201606313 10.1016/j.catcom.2017.03.027 10.1021/acscatal.7b01800 10.1016/j.jechem.2021.08.042 10.1039/b905974a 10.1016/j.electacta.2018.12.043 10.1016/j.elecom.2011.07.016 10.1039/C8NR08104B 10.1021/acscatal.6b00487 10.1038/s41467-021-24828-9 10.1039/C9SE00221A 10.1002/celc.201600862 10.1021/acssuschemeng.9b01260 10.1039/D1CC07242K 10.1039/C8TA05054F 10.1016/j.apcatb.2021.120638 10.1016/j.electacta.2020.135883 10.1016/j.ijhydene.2020.03.192 10.1002/celc.201900507 10.1039/C9CY02618E 10.1016/j.apsusc.2017.11.076 10.1016/j.electacta.2012.07.007 10.1039/C9CC02507C 10.1039/C8TA05064C 10.1016/S0022-0728(98)00062-X 10.1038/s41598-021-00776-8 10.1039/C7TA00980A 10.1016/j.rser.2021.111470 10.1039/C6TA07883D 10.1021/acscatal.6b03192 10.1016/j.electacta.2022.140511 10.1016/j.electacta.2016.05.149 10.1021/acssuschemeng.0c01814 10.1039/D0TA09473K 10.1002/aesr.202000015 10.1016/j.jcis.2019.01.096 10.1021/acssuschemeng.0c01450 10.1039/C6NJ01648K 10.1039/D0NR08395J 10.1016/j.apsusc.2019.01.003 10.1021/ja403440e 10.1021/acsami.9b14350 10.1016/j.electacta.2021.138931 10.1039/C5TA04001A 10.1039/C9TA00481E 10.3390/catal10111280 10.3390/catal12030337 10.1021/jp105159t 10.1016/j.apsusc.2021.151708 10.1039/D0DT00605J 10.1021/acsami.1c04325 10.1038/s41467-019-13415-8 10.1021/acs.chemmater.6b02586 10.1038/s41560-021-00899-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/nano12172970 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database (Proquest) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_327e4360228d4449be6f92ac03d0f453 PMC9457967 A746199014 10_3390_nano12172970 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c494t-28ef2e6306f38358222a29c99f214c1a7335427a6849bdd5c84521fcc21bbc13 |
IEDL.DBID | BENPR |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:31:52 EDT 2025 Thu Aug 21 18:03:54 EDT 2025 Fri Jul 11 15:42:30 EDT 2025 Fri Jul 25 11:59:07 EDT 2025 Tue Jun 10 20:55:55 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 00:51:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c494t-28ef2e6306f38358222a29c99f214c1a7335427a6849bdd5c84521fcc21bbc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1419-6190 0000-0002-5192-8912 0000-0002-6150-4750 0000-0002-7859-246X |
OpenAccessLink | https://www.proquest.com/docview/2711357222?pq-origsite=%requestingapplication% |
PMID | 36080007 |
PQID | 2711357222 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_327e4360228d4449be6f92ac03d0f453 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9457967 proquest_miscellaneous_2712848920 proquest_journals_2711357222 gale_infotracacademiconefile_A746199014 crossref_citationtrail_10_3390_nano12172970 crossref_primary_10_3390_nano12172970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220827 |
PublicationDateYYYYMMDD | 2022-08-27 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220827 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Suryanto (ref_69) 2019; 10 Yang (ref_120) 2019; 44 Ye (ref_24) 2018; 376 Liu (ref_43) 2021; 13 Ding (ref_28) 2019; 11 Forslund (ref_121) 2016; 6 Tang (ref_8) 2017; 248 Xu (ref_55) 2017; 41 Xiong (ref_62) 2019; 297 Zhu (ref_59) 2018; 6 Wen (ref_91) 2020; 45 Xie (ref_52) 2018; 6 Babar (ref_92) 2019; 7 Jin (ref_9) 2019; 6 Yang (ref_71) 2020; 10 Wang (ref_100) 2021; 46 ref_23 Li (ref_113) 2021; 9 Liu (ref_96) 2020; 355 Wang (ref_98) 2018; 11 Sun (ref_3) 2020; 10 Vedharathinam (ref_15) 2013; 108 Li (ref_44) 2018; 54 Wang (ref_27) 2011; 13 Lai (ref_82) 2021; 46 Vedharathinam (ref_13) 2012; 81 Zhong (ref_61) 2022; 575 Sha (ref_103) 2019; 7 Lhermitte (ref_5) 2019; 9 Peng (ref_34) 2022; 410 Guo (ref_20) 2016; 210 Xiao (ref_40) 2017; 5 Ni (ref_63) 2021; 299 Zeng (ref_85) 2015; 3 Xu (ref_102) 2020; 8 Merz (ref_11) 2003; 125 An (ref_39) 2019; 29 Popczun (ref_72) 2013; 135 Hao (ref_94) 2020; 338 Yan (ref_106) 2018; 6 Sha (ref_42) 2020; 8 Chen (ref_101) 2021; 81 Zhu (ref_25) 2020; 16 Wang (ref_89) 2021; 391 Farithkhan (ref_7) 2020; 1 Cao (ref_31) 2018; 6 Xia (ref_76) 2019; 3 Fang (ref_117) 2022; 421 Singh (ref_19) 2017; 4 Singh (ref_50) 2017; 9 Maleki (ref_99) 2022; 58 Park (ref_84) 2012; 5 Wu (ref_68) 2019; 55 Barakat (ref_51) 2017; 97 Ye (ref_29) 2016; 40 Jiang (ref_86) 2020; 12 Nairan (ref_66) 2019; 29 Cao (ref_75) 2017; 8 Liu (ref_119) 2019; 11 Singh (ref_18) 2021; 9 Li (ref_22) 2022; 1 He (ref_48) 2018; 3 Duan (ref_79) 2017; 8 Xu (ref_54) 2014; 4 Yan (ref_49) 2012; 61 Yu (ref_88) 2018; 11 Wang (ref_16) 2014; 3 Zhang (ref_64) 2021; 280 Qian (ref_41) 2020; 12 Kim (ref_33) 2009; 192 Campbell (ref_80) 2012; 4 Wang (ref_109) 2018; 10 Zeng (ref_46) 2019; 7 Lu (ref_32) 2021; 9 Xu (ref_90) 2022; 615 Hu (ref_114) 2020; 8 Climent (ref_10) 1999; 461 ref_60 Kim (ref_1) 2012; 5 Yun (ref_104) 2021; 11 Yan (ref_105) 2019; 541 Zhang (ref_115) 2021; 13 Cha (ref_6) 2015; 7 Wang (ref_78) 2015; 3 Xu (ref_110) 2020; 49 Vij (ref_65) 2017; 7 Zhai (ref_70) 2021; 12 Lin (ref_37) 2018; 6 Gao (ref_67) 2016; 4 Lv (ref_87) 2021; 592 Song (ref_93) 2021; 13 Cook (ref_2) 2010; 110 ref_118 Zhan (ref_36) 2019; 327 Daramola (ref_14) 2010; 114 Wu (ref_35) 2014; 272 Mohamed (ref_53) 2018; 435 Zhao (ref_112) 2020; 45 ref_111 Yang (ref_38) 2017; 7 Yang (ref_30) 2019; 259 Boggs (ref_12) 2009; 32 Laursen (ref_74) 2015; 8 Wang (ref_95) 2022; 66 He (ref_97) 2019; 12 Wu (ref_47) 2021; 11 Wang (ref_108) 2021; 11 Xu (ref_45) 2021; 13 Sayed (ref_26) 2021; 150 Wang (ref_81) 2018; 53 Zhang (ref_4) 2019; 131 Geng (ref_17) 2021; 6 Mohamed (ref_56) 2019; 475 Leite (ref_73) 2020; 3 Zhou (ref_83) 2018; 12 Ji (ref_57) 2020; 8 Xu (ref_77) 2016; 28 Zhang (ref_107) 2020; 56 Zhu (ref_58) 2016; 55 Li (ref_116) 2022; 432 Hu (ref_21) 2020; 7 |
References_xml | – volume: 8 start-page: 1027 year: 2015 ident: ref_74 article-title: Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02940B – volume: 280 start-page: 119436 year: 2021 ident: ref_64 article-title: Nitrogen Dopants in Nickel Nanoparticles Embedded Carbon Nanotubes Promote Overall Urea Oxidation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119436 – volume: 46 start-page: 26861 year: 2021 ident: ref_82 article-title: In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.05.158 – volume: 6 start-page: 4346 year: 2018 ident: ref_59 article-title: Wet-Chemistry Topotactic Synthesis of Bimetallic Iron-Nickel Sulfide Nanoarrays: An Advanced and Versatile Catalyst for Energy Efficient Overall Water and Urea Electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10584C – ident: ref_118 doi: 10.1557/s43581-022-00032-0 – volume: 131 start-page: 16976 year: 2019 ident: ref_4 article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation publication-title: Angew. Chem. doi: 10.1002/ange.201909832 – volume: 376 start-page: 42 year: 2018 ident: ref_24 article-title: Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis publication-title: Top. Curr. Chem. doi: 10.1007/s41061-018-0219-y – volume: 41 start-page: 4190 year: 2017 ident: ref_55 article-title: Highly active Ni–Fe double hydroxides as anode catalysts for electrooxidation of urea publication-title: New J. Chem. doi: 10.1039/C6NJ04060H – volume: 355 start-page: 596 year: 2020 ident: ref_96 article-title: Ni3S2 nanowires supported on Ni foam as efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production publication-title: Catal. Today doi: 10.1016/j.cattod.2019.05.032 – volume: 44 start-page: 16305 year: 2019 ident: ref_120 article-title: Nickel Phosphate Materials Regulated by Doping Cobalt for Urea and Methanol Electro-Oxidation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.016 – volume: 108 start-page: 660 year: 2013 ident: ref_15 article-title: Direct Evidence of the Mechanism for the Electro-Oxidation of Urea on Ni(OH)2 Catalyst in Alkaline Medium publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.06.137 – volume: 12 start-page: 11573 year: 2020 ident: ref_86 article-title: Ti-Mesh supported porous CoS2 nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production via urea electrolysis publication-title: Nanoscale doi: 10.1039/D0NR02058C – volume: 7 start-page: 4777 year: 2019 ident: ref_46 article-title: Interlayer Effect in NiCo Layered Double Hydroxide for Promoted Electrocatalytic Urea Oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04953 – volume: 110 start-page: 6474 year: 2010 ident: ref_2 article-title: Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 45 start-page: 14199 year: 2020 ident: ref_112 article-title: Porous flower-like nickel nitride as highly efficient bifunctional electrocatalysts for less energy-intensive hydrogen evolution and urea oxidation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.007 – volume: 125 start-page: 15324 year: 2003 ident: ref_11 article-title: Ureases: Quantum chemical calculations on cluster models publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030145g – volume: 10 start-page: 2002260 year: 2020 ident: ref_71 article-title: Ni-Activated Transition Metal Carbides for Efficient Hydrogen Evolution in Acidic and Alkaline Solutions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002260 – volume: 432 start-page: 134274 year: 2022 ident: ref_116 article-title: W-Doping Induced Abundant Active Sites in a 3D NiS2/MoO2 Heterostructure as an Efficient Electrocatalyst for Urea Oxidation and Hydrogen Evolution Reaction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134274 – volume: 1 start-page: 100030 year: 2022 ident: ref_22 article-title: A Review of Ni Based Powder Catalyst for Urea Oxidation in Assisting Water Splitting Reaction publication-title: Adv. Powder Technol. – volume: 272 start-page: 711 year: 2014 ident: ref_35 article-title: Hydrothermal Growth of Vertically-Aligned Ordered Mesoporous Nickel Oxide Nanosheets on Three-Dimensional Nickel Framework for Electrocatalytic Oxidation of Urea in Alkaline Medium publication-title: J. Power Source doi: 10.1016/j.jpowsour.2014.09.009 – volume: 61 start-page: 25 year: 2012 ident: ref_49 article-title: Nickel and Cobalt Bimetallic Hydroxide Catalysts for Urea Electro-Oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.11.044 – volume: 8 start-page: 18055 year: 2020 ident: ref_42 article-title: A Heterogeneous Interface on NiS@Ni3S2/NiMoO4 Heterostructures for Efficient Urea Electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04944A – volume: 8 start-page: 14680 year: 2020 ident: ref_57 article-title: Accurate Synergy Effect of Ni–Sn Dual Active Sites Enhances Electrocatalytic Oxidation of Urea for Hydrogen Evolution in Alkaline Medium publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05160H – volume: 13 start-page: 3937 year: 2021 ident: ref_115 article-title: Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H2 Production via Urea Electrolysis publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.0c19117 – volume: 54 start-page: 5181 year: 2018 ident: ref_44 article-title: Heteroporous MoS2/Ni3S2 Towards Superior Electrocatalytic Overall Urea Splitting publication-title: Chem. Commun. doi: 10.1039/C8CC01404C – ident: ref_111 doi: 10.3390/nano9111583 – volume: 11 start-page: 16017 year: 2019 ident: ref_119 article-title: Bonding State Synergy of the NiF2/Ni2P Hybrid with the Co-Existence of Covalent and Ionic Bonds and the Application of This Hybrid as a Robust Catalyst for the Energy-Relevant Electrooxidation of Water and Urea publication-title: Nanoscale doi: 10.1039/C9NR05204F – volume: 10 start-page: 4750 year: 2018 ident: ref_109 article-title: Multivariate MOF-templated pomegranate-like Ni/C as efficient bifunctional electrocatalyst for hydrogen evolution and urea oxidation publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.7b18650 – volume: 11 start-page: 4294 year: 2021 ident: ref_47 article-title: Superior Catalytic Activity of α-Ni(OH)2 for Urea Electrolysis publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY00435B – volume: 29 start-page: 1903747 year: 2019 ident: ref_66 article-title: NiMo Solid Solution Nanowire Array Electrodes for Highly Efficient Hydrogen Evolution Reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903747 – volume: 8 start-page: 15341 year: 2017 ident: ref_79 article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 3 start-page: H29 year: 2014 ident: ref_16 article-title: In Situ X-Ray diffraction study of urea electrolysis on nickel catalysts publication-title: ECS Electrochem. Lett. doi: 10.1149/2.0031409eel – volume: 7 start-page: 3211 year: 2020 ident: ref_21 article-title: Urea Electrooxidation: Current Development and Understanding of Ni-Based Catalysts publication-title: ChemElectroChem doi: 10.1002/celc.202000404 – volume: 327 start-page: 398 year: 2019 ident: ref_36 article-title: 3D NiO Nanowalls Grown on Ni Foam for Highly Efficient Electro-Oxidation of Urea publication-title: Catal. Today doi: 10.1016/j.cattod.2018.02.049 – volume: 5 start-page: 7647 year: 2012 ident: ref_1 article-title: Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21310a – volume: 410 start-page: 140022 year: 2022 ident: ref_34 article-title: Flower-Like Manganese Oxide with Intercalated Nickel Ions (Ni3+) as a Catalytic Electrode Material for Urea Oxidation publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140022 – volume: 192 start-page: 674 year: 2009 ident: ref_33 article-title: Relationship between carbon corrosion and positive electrode potential in a proton-exchange membrane fuel cell during start/stop operation publication-title: J. Power Source doi: 10.1016/j.jpowsour.2009.03.039 – volume: 9 start-page: 3374 year: 2017 ident: ref_50 article-title: Electroactivity of NiCr Catalysts for Urea Oxidation in Alkaline Electrolyte publication-title: ChemCatChem doi: 10.1002/cctc.201700451 – volume: 13 start-page: 16355 year: 2021 ident: ref_45 article-title: Coupling Interface Constructions of FeNi3-MoO2 Heterostructures for Efficient Urea Oxidation and Hydrogen Evolution Reaction publication-title: ACS. Appl. Mater. Interface doi: 10.1021/acsami.1c01188 – volume: 4 start-page: 5863 year: 2014 ident: ref_54 article-title: Nickel-Cobalt Bimetallic Anode Catalysts for Direct Urea Fuel Cell publication-title: Sci. Rep. doi: 10.1038/srep05863 – volume: 9 start-page: 1703 year: 2021 ident: ref_32 article-title: Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07614 – volume: 81 start-page: 105605 year: 2021 ident: ref_101 article-title: Amorphous Nickel Sulfoselenide for Efficient Electrochemical Urea-Assisted Hydrogen Production in Alkaline Media publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105605 – volume: 6 start-page: 15570 year: 2018 ident: ref_31 article-title: Hierarchical Ni(OH)2/Polypyrrole/Graphene Oxide Nanosheets as Excellent Electrocatalysts for the Oxidation of Urea publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04027 – volume: 7 start-page: 328 year: 2015 ident: ref_6 article-title: Combined biomass valorization and hydrogen production in a photoelectrochemical cell publication-title: Nat. Chem. doi: 10.1038/nchem.2194 – volume: 248 start-page: 243 year: 2017 ident: ref_8 article-title: Se-Ni(OH)2-shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.159 – volume: 4 start-page: 597 year: 2012 ident: ref_80 article-title: Electronic perturbations publication-title: Nat. Chem. doi: 10.1038/nchem.1412 – volume: 592 start-page: 13 year: 2021 ident: ref_87 article-title: Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.02.038 – volume: 11 start-page: 1890 year: 2018 ident: ref_88 article-title: Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00521D – volume: 16 start-page: 1906133 year: 2020 ident: ref_25 article-title: Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction publication-title: Small doi: 10.1002/smll.201906133 – volume: 11 start-page: 22003 year: 2021 ident: ref_104 article-title: Ni-Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis publication-title: Sci. Rep. doi: 10.1038/s41598-021-01383-3 – volume: 3 start-page: 14942 year: 2015 ident: ref_85 article-title: Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02974K – volume: 12 start-page: 4148 year: 2018 ident: ref_83 article-title: Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions publication-title: ACS Nano doi: 10.1021/acsnano.7b08724 – volume: 29 start-page: 1805298 year: 2019 ident: ref_39 article-title: Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805298 – volume: 3 start-page: 1373 year: 2018 ident: ref_48 article-title: Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00515 – volume: 6 start-page: 1682 year: 2018 ident: ref_106 article-title: Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10218F – volume: 8 start-page: 15131 year: 2017 ident: ref_75 article-title: Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms15131 – volume: 9 start-page: 2007 year: 2019 ident: ref_5 article-title: Alternative oxidation reactions for solar-driven fuel production publication-title: ACS Catal. doi: 10.1021/acscatal.8b04565 – volume: 11 start-page: 988 year: 2018 ident: ref_98 article-title: Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis publication-title: Nano Res. doi: 10.1007/s12274-017-1711-3 – volume: 53 start-page: 458 year: 2018 ident: ref_81 article-title: Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.003 – volume: 615 start-page: 163 year: 2022 ident: ref_90 article-title: Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.01.197 – volume: 12 start-page: 38061 year: 2020 ident: ref_41 article-title: Novel Bifunctional V2O3 Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.0c09319 – volume: 3 start-page: 9498 year: 2020 ident: ref_73 article-title: One-Step Synthesis of Nickel Sulfides and Their Electrocatalytic Activities for Hydrogen Evolution Reaction: A Case Study of Crystalline h-NiS and o-Ni9S8 Nanoparticles publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01405 – volume: 259 start-page: 118020 year: 2019 ident: ref_30 article-title: Rapid Room-Temperature Fabrication of Ultrathin Ni(OH)2 Nanoflakes with Abundant Edge Sites for Efficient Urea Oxidation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118020 – volume: 46 start-page: 37792 year: 2021 ident: ref_100 article-title: Electrodeposition NiMoSe ternary nanoshperes on nickel foam as bifunctional electrocatalyst for urea electrolysis and hydrogen evolution reaction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.050 – volume: 56 start-page: 2763 year: 2020 ident: ref_107 article-title: Facile synthesis of amorphous MoSx-Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution publication-title: Chem. Commun. doi: 10.1039/C9CC08771K – volume: 5 start-page: 9331 year: 2012 ident: ref_84 article-title: Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22554a – volume: 9 start-page: 2100017 year: 2021 ident: ref_18 article-title: Advances in Catalytic Electrooxidation of Urea: A Review publication-title: Energy Technol. doi: 10.1002/ente.202100017 – volume: 55 start-page: 12465 year: 2016 ident: ref_58 article-title: Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606313 – volume: 97 start-page: 32 year: 2017 ident: ref_51 article-title: Enhanced Onset Potential NiMn-Decorated Activated Carbon as Effective and Applicable Anode in Urea Fuel Cells publication-title: Catal. Commun. doi: 10.1016/j.catcom.2017.03.027 – volume: 7 start-page: 7196 year: 2017 ident: ref_65 article-title: Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions publication-title: ACS Catal. doi: 10.1021/acscatal.7b01800 – volume: 66 start-page: 483 year: 2022 ident: ref_95 article-title: High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.08.042 – volume: 32 start-page: 4859 year: 2009 ident: ref_12 article-title: Urea electrolysis: Direct hydrogen production from urine publication-title: Chem. Commun. doi: 10.1039/b905974a – volume: 297 start-page: 833 year: 2019 ident: ref_62 article-title: Nickel Diselenide Nanoflakes Give Superior Urea Electrocatalytic Conversion publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.043 – volume: 13 start-page: 1135 year: 2011 ident: ref_27 article-title: Exfoliated Nickel Hydroxide Nanosheets for Urea Electrolysis publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.07.016 – volume: 11 start-page: 1058 year: 2019 ident: ref_28 article-title: Atomically Thick Ni(OH)2 Nanomeshes for Urea Electrooxidation publication-title: Nanoscale doi: 10.1039/C8NR08104B – volume: 6 start-page: 5044 year: 2016 ident: ref_121 article-title: Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.6b00487 – volume: 12 start-page: 4587 year: 2021 ident: ref_70 article-title: Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-021-24828-9 – volume: 3 start-page: 2006 year: 2019 ident: ref_76 article-title: Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction publication-title: Sustain. Energy Fuel. doi: 10.1039/C9SE00221A – volume: 4 start-page: 1037 year: 2017 ident: ref_19 article-title: Enhanced Urea Activity of Oxidation on Nickel-Deposited Tin Dendrites publication-title: ChemElectroChem doi: 10.1002/celc.201600862 – volume: 7 start-page: 10035 year: 2019 ident: ref_92 article-title: Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01260 – volume: 58 start-page: 3545 year: 2022 ident: ref_99 article-title: Mn-incorporated nickel selenide: An ultra-active bifunctional electrocatalyst for hydrogen evolution and urea oxidation reactions publication-title: Chem. Commun. doi: 10.1039/D1CC07242K – volume: 6 start-page: 16121 year: 2018 ident: ref_52 article-title: Partially Amorphous Nickel-Iron Layered Double Hydroxide Nanosheet Arrays for Robust Bifunctional Electrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05054F – volume: 299 start-page: 120638 year: 2021 ident: ref_63 article-title: Interfacial Engineering of the NiSe2/FeSe2 p-p Heterojunction for Promoting Oxygen Evolution Reaction and Electrocatalytic Urea Oxidation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120638 – volume: 338 start-page: 135883 year: 2020 ident: ref_94 article-title: Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135883 – volume: 45 start-page: 14660 year: 2020 ident: ref_91 article-title: NiFe-LDH/MWCNTs/NF nanohybrids as a high-performance bifunctional electrocatalyst for overall urea electrolysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.192 – volume: 6 start-page: 3244 year: 2019 ident: ref_9 article-title: Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions publication-title: ChemElectroChem doi: 10.1002/celc.201900507 – volume: 10 start-page: 1567 year: 2020 ident: ref_3 article-title: Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production publication-title: Catal. Sci. Technol. doi: 10.1039/C9CY02618E – volume: 435 start-page: 122 year: 2018 ident: ref_53 article-title: Electrocatalytic Behavior of a Nanocomposite of Ni/Pd Supported by Carbonized PVA Nanofibers Towards Formic Acid, Ethanol and Urea Oxidation: A Physicochemical and Electro-Analysis Study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.076 – volume: 81 start-page: 292 year: 2012 ident: ref_13 article-title: Understanding the Electro-Catalytic Oxidation Mechanism of Urea on Nickel Electrodes in Alkaline Medium publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.007 – volume: 55 start-page: 6555 year: 2019 ident: ref_68 article-title: Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting publication-title: Chem. Commun. doi: 10.1039/C9CC02507C – volume: 6 start-page: 13867 year: 2018 ident: ref_37 article-title: In Situ Growth of Single-Layered α-Ni(OH)2 Nanosheets on a Carbon Cloth for Highly Efficient Electrocatalytic Oxidation of Urea publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05064C – volume: 461 start-page: 65 year: 1999 ident: ref_10 article-title: Urea adsorption on Pt (111) electrodes publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(98)00062-X – volume: 11 start-page: 21414 year: 2021 ident: ref_108 article-title: Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis publication-title: Sci. Rep. doi: 10.1038/s41598-021-00776-8 – volume: 5 start-page: 7825 year: 2017 ident: ref_40 article-title: MnO2/MnCo2O4/Ni Heterostructure with Quadruple Hierarchy: A Bifunctional Electrode Architecture for Overall Urea Oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00980A – volume: 150 start-page: 111470 year: 2021 ident: ref_26 article-title: Synthesis and Performance Evaluation of Various Metal Chalcogenides as Active Anodes for Direct Urea Fuel Cells publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111470 – volume: 4 start-page: 17363 year: 2016 ident: ref_67 article-title: Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07883D – volume: 7 start-page: 2357 year: 2017 ident: ref_38 article-title: MoS2–Ni3S2 Heteronanorods as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting publication-title: ACS Catal. doi: 10.1021/acscatal.6b03192 – volume: 421 start-page: 140511 year: 2022 ident: ref_117 article-title: Green Synthesis of Ni3S2 Nanoparticles from a Nontoxic Sulfur Source for Urea Electrolysis with High Catalytic Activity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140511 – volume: 210 start-page: 474 year: 2016 ident: ref_20 article-title: Electrochemical Impedance Analysis of Urea Electro-Oxidation Mechanism on Nickel Catalyst in Alkaline Medium publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.05.149 – volume: 8 start-page: 7463 year: 2020 ident: ref_102 article-title: In situ grown Ni phosphate@ Ni12P5 nanorod arrays as a unique core–shell architecture: Competitive bifunctional electrocatalysts for urea electrolysis at large current densities publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01814 – volume: 9 start-page: 4159 year: 2021 ident: ref_113 article-title: 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09473K – volume: 1 start-page: 2000015 year: 2020 ident: ref_7 article-title: Direct urea fuel cells: Recent progress and critical challenges of urea oxidation electrocatalysis publication-title: Adv. Energy Sustain. Res. doi: 10.1002/aesr.202000015 – volume: 541 start-page: 279 year: 2019 ident: ref_105 article-title: Facile In-Situ Growth of Ni2P/Fe2P Nanohybrids on Ni Foam for Highly Efficient Urea Electrolysis publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.01.096 – volume: 8 start-page: 7414 year: 2020 ident: ref_114 article-title: Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01450 – volume: 40 start-page: 8673 year: 2016 ident: ref_29 article-title: Facile Preparation of Three-Dimensional Ni(OH)2/Ni Foam Anode with Low Cost and Its Application in a Direct Urea Fuel Cell publication-title: New J. Chem. doi: 10.1039/C6NJ01648K – volume: 13 start-page: 1680 year: 2021 ident: ref_93 article-title: Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis publication-title: Nanoscale doi: 10.1039/D0NR08395J – volume: 475 start-page: 532 year: 2019 ident: ref_56 article-title: Chemical Design of Novel Electrospun CoNi/Cr Nanoparticles Encapsulated in C-Nanofibers as Highly Efficient Material for Urea Oxidation in Alkaline Media publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.003 – volume: 135 start-page: 9267 year: 2013 ident: ref_72 article-title: Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403440e – volume: 12 start-page: 2225 year: 2019 ident: ref_97 article-title: Low-cost Ni2P/Ni0.96S heterostructured bifunctional electrocatalyst toward highly efficient overall urea-water electrolysis publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.9b14350 – volume: 391 start-page: 138931 year: 2021 ident: ref_89 article-title: Ni, N-codoped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogen production in urea-water electrolysis publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138931 – volume: 3 start-page: 16435 year: 2015 ident: ref_78 article-title: MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04001A – volume: 7 start-page: 9078 year: 2019 ident: ref_103 article-title: The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00481E – ident: ref_60 doi: 10.3390/catal10111280 – ident: ref_23 doi: 10.3390/catal12030337 – volume: 114 start-page: 11513 year: 2010 ident: ref_14 article-title: Dissociation Rates of Urea in the Presence of NiOOH Catalyst A DFT Analysis publication-title: J. Phys. Chem. doi: 10.1021/jp105159t – volume: 575 start-page: 151708 year: 2022 ident: ref_61 article-title: Synthesis of Hierarchical Nickel Sulfide Nanotubes for Highly Efficient Electrocatalytic Urea Oxidation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151708 – volume: 49 start-page: 5646 year: 2020 ident: ref_110 article-title: Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis publication-title: Dalton Trans. doi: 10.1039/D0DT00605J – volume: 13 start-page: 26948 year: 2021 ident: ref_43 article-title: Heterostructured Ni3S2-Ni3P/NF as a Bifunctional Catalyst for Overall Urea-Water Electrolysis for Hydrogen Generation publication-title: ACS Appl. Mater. Interface doi: 10.1021/acsami.1c04325 – volume: 10 start-page: 5599 year: 2019 ident: ref_69 article-title: Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide publication-title: Nat. Commun. doi: 10.1038/s41467-019-13415-8 – volume: 28 start-page: 6313 year: 2016 ident: ref_77 article-title: Ni-Decorated Molybdenum Carbide Hollow Structure Derived from Carbon-Coated Metal-Organic Framework for Electrocatalytic Hydrogen Evolution Reaction publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02586 – volume: 6 start-page: 904 year: 2021 ident: ref_17 article-title: Nickel Ferrocyanide as a High-Performance Urea Oxidation Electrocatalyst publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 |
SSID | ssj0000913853 |
Score | 2.3517053 |
SecondaryResourceType | review_article |
Snippet | Recently, urea electrolysis has been regarded as an up-and-coming pathway for the sustainability of hydrogen fuel production according to its far lower... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2970 |
SubjectTerms | Alkalies alkaline medium Chemical engineering Chemical engineering research Chemical properties Chemical reactions Decomposition Design of experiments Electrocatalysts Electrolysis Electrolytes Electrolytic cells Energy Energy conservation Energy conversion Fuel cells Fuel production Hydrogen Hydrogen evolution reactions Hydrogen fuels Hydrogen-based energy Hydroxides Metal catalysts Nickel Oxidation Phosphides Review Urea urea electrolysis Wastewater Wastewater pollution |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSx0xEA7iqR5EW8W1WlKoeJDF3WSy2RyfRZFCPSl4MmSzCYqPfdL3PPTfdya777FPKb30mmRhMklmvtlMvmHsm6qLJhincg9Fm4MyIXcNVLk30EKonSsSffHPm-r6Dn7cq_tRqS_KCevpgXvFnUuhA8iKaFpaADBNqKIRzheyLSKoxPOJPm8UTCUbbEqJjqjPdJcY1593rpuVVI3JUF3ikQ9KVP3vDfLbJMmR17naYdsDXOSTXsxdthG6j2xrRCL4iT0g8sOP-Sj9h88ixyV-DtP8Ar1Uyy_7YjfpX83v-WLOEaryO8SLy55ETMKfOj6ZPjtCnnz5v2yP3V5d3n6_zoeqCahuA4tc1CGKUGEoEDH6VAQAnDDemChK8KXTUioQ2lU1KrNtla8BXXj0XpRN40u5zza7WRcOGI81BkuICJxAjChii8EZNIVEK-CriO0ZO1uq0fqBUZwKW0wtRhakdDtWesZOVqNfeiaNv4y7oBVZjSH-69SAu8IOu8L-a1dk7JTW09IpRZG8Gx4b4MSI78pONGDkSFfIGTtaLrkdju_cCl2WUmlUXca-rrrx4NFtiuvC7DWNQX3URqDEem2rrIm-3tM9PSYKbwP0Blgf_o-5fmYfBL3JKNDk6SO2ufj1Go4RKS2aL-lQ_AGstxCb priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution |
URI | https://www.proquest.com/docview/2711357222 https://www.proquest.com/docview/2712848920 https://pubmed.ncbi.nlm.nih.gov/PMC9457967 https://doaj.org/article/327e4360228d4449be6f92ac03d0f453 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6x7gUe0MYPETYqI4F4QNES20nsJ9SilgmJCaFN2hOR49hjWpWMtXvYf7-71CnpELzGjuLc2Xffne3vAN5lKqmcNllsZVLHMtMuNpXMY6tlLZ0yJunoi7-d5Mdn8ut5dh4SbstwrLK3iZ2hrltLOfIjXqSpyAp0Z5-uf8dUNYp2V0MJjR3YRROs1Ah2p7OT7z82WRZivUSHtD7xLjC-P2pM06ZUlUlTfeKBL-oo-_82zA8PSw68z3wPngbYyCZrPe_DI9c8gycDMsHn8BMRIL7MBseAWOsZqvrKLeIpequazdZFb7qczd1ytWQIWdkZ4sa-pSMoYZcNmyyuDCFQ1ufNXsDpfHb6-TgO1RNQ7FquYq6c5y7HkMBjFJoREDBcW609T6VNTSFEJnlhciV1VdeZVRJdubeWp1VlU_ESRk3buFfAvMKgCZGB4YgVua8xSJNVItAa2Nzj8wg-9mIsbWAWpwIXixIjDBJ6ORR6BO83va_XjBr_6DcljWz6EA9296C9uSjDsioFL5wUOZH41FLij7jca25sIurEy0xE8IH0WdJqxSFZEy4d4I8R71U5KSRGkLSVHMFhr_IyLONl-WfSRfB204wLkHZVTOPa264PykNpjiMutqbK1tC3W5rLXx2Vt5Z0F7h4_f-PH8BjTrcuEjRqxSGMVje37g1ioVU1hh01_zIO037cZRTuAVYhDFg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdIKWAkKg4oamI7Dx8Q2kKXLX2ctlJPWI5jQ9VV0na3Qv1R_Edm8liyILj1Gju7zng8843t-QbgTZJHhVMmCa2MylAmyoWmkGlolSyly42JGvriw6N0ciy_nCQna_Czz4Wha5W9TWwMdVlb2iPf5lkciyRDd_bh_CKkqlF0utqX0GjVYt9d_8CQbf5-7xPO7xbn493px0nYVRXA4Si5CHnuPHcpQmWP0VlCDtJwZZXyPJY2NpkQieSZSXOpirJMbC7RxXlreVwUNhb4s7fgthToyCkxffx5uaVDFJvo_drr9dgebVemqmMqAaWoGPLA8TX1Af72An_ezBy4uvEDuN9hVDZqleohrLnqEdwbMBc-hq8IN_FlNrhzxGrPUK_O3CzcQddYst22wk6zQXQ9X8wZ4mN2jCC1b2nYUNhpxUazM0Nwl_WbdE9gehNCfQrrVV25Z8B8jhEawhDDEZhyX2JEKItIoOmxqcfnAbzrxahtR2NO1TRmGsMZEroeCj2ArWXv85a-4x_9dmhGln2IdLt5UF9-090a1oJnToqUGINKKfFDXOoVNzYSZeRlIgJ4S_OpyTTgkKzpMhzww4hkS48yieEqnVsHsNlPue5sxlz_1vAAXi-bcbXTEY6pXH3V9EF55IrjiLMVVVkZ-mpLdfq94Q1XkhKPs43___kruDOZHh7og72j_edwl1O6R4TWNNuE9cXllXuBIGxRvGxUn4G-4aX2C7rUQ9s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUGQOMxMQDiprYzocfEGpZq41BNaFN2hOW49gwrUq2tRPan8Z_x12alBYEb3uNndY5n-9-Z59_B_A6yaPCKZOEVkZlKBPlQlPINLRKltLlxkQNffHnSbp3LD-eJCcb8LO7C0NplZ1NbAx1WVvaI-_zLI5FkqE76_s2LeJwd_z-_CKkClJ00tqV01ioyIG7_oHh2-zd_i7O9Q7n49HRh72wrTCAQ1NyHvLcee5ShM0eI7WEnKXhyirleSxtbDIhEskzk-ZSFWWZ2Fyiu_PW8rgobCzwZ2_BZkZBUQ82h6PJ4ZflBg8RbqIvXCTbC6GifmWqOqaCUIpKI6-4waZawN8-4c88zRXHN74P91rEygYLFXsAG656CHdXeAwfwVcEn_gyW8lAYrVnqGVnbhoO0VGWbLSot9NsF13P5jOGaJkdI2TtWhpuFHZascH0zBD4Zd2W3WM4ugmxPoFeVVfuKTCfY7yGoMRwhKnclxgfyiISaIhs6vF5AG87MWrbkppTbY2pxuCGhK5XhR7AzrL3-YLM4x_9hjQjyz5Ewd08qC-_6XZFa8EzJ0VK_EGllPghLvWKGxuJMvIyEQG8ofnUZChwSNa09x3ww4hySw8yicErnWIHsN1NuW4tyEz_1vcAXi2bce3TgY6pXH3V9EF55IrjiLM1VVkb-npLdfq9YRFXkq4hZ1v___OXcBuXmf60Pzl4Bnc43f2I0LRm29CbX16554jI5sWLVvcZ6Btebb8ALehJbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Development+of+Nickel-Based+Electrocatalysts+for+Urea+Electrolysis+in+Alkaline+Solution&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Anuratha%2C+Krishnan+Shanmugam&rft.au=Rinawati%2C+Mia&rft.au=Wu%2C+Tzu-Ho&rft.au=Yeh%2C+Min-Hsin&rft.date=2022-08-27&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=12&rft.issue=17&rft_id=info:doi/10.3390%2Fnano12172970&rft_id=info%3Apmid%2F36080007&rft.externalDocID=PMC9457967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |