Estimating gait parameters from sEMG signals using machine learning techniques under different power capacity of muscle

The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface e...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 12575 - 15
Main Authors Liu, Shing-Hong, Sharma, Alok Kumar, Wu, Bo-Yan, Zhu, Xin, Chang, Chun-Ju, Wang, Jia-Jung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.04.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog ® 5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
AbstractList The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog ® 5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
Abstract The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog®5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog 5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog®5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog®5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular diseases. Its main recording techniques include video cameras and wearable sensors. However, the present methods involve measuring surface electromyograms (sEMGs) to analyze muscle activities. The primary goal of this study is to estimate gait parameters under different power capacity of muscle by sEMGs measured from lower limbs. A self-made wireless device recorded sEMGs from two muscles of each foot, and GaitUp Physilog®5 sensors captured gait parameters from 18 participants under running as references. Four features including median frequency (MDF), waveform length (WL), standard deviation (SD), and sample entropy (SampEn), were extracted from the sEMG data. The analysis utilized three machine learning models (Random Forest, CatBoost, XGBoost), evaluated through various evaluation metrics. Additionally, 5-fold cross-validation was conducted to assess the influence of muscle fatigue on the estimation of gait parameters. The results show that all models successfully estimated 20 gait parameters, all showing a Pearson correlation coefficient (PCC) above 0.800. However, the performance of models significantly depends on the condition of muscle fatigue. This study represents a significant advancement in gait analysis, providing a comprehensive method for estimating gait parameters from sEMG signals, with important implications for mobile health applications.
ArticleNumber 12575
Author Wu, Bo-Yan
Sharma, Alok Kumar
Wang, Jia-Jung
Chang, Chun-Ju
Liu, Shing-Hong
Zhu, Xin
Author_xml – sequence: 1
  givenname: Shing-Hong
  surname: Liu
  fullname: Liu, Shing-Hong
  organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology
– sequence: 2
  givenname: Alok Kumar
  surname: Sharma
  fullname: Sharma, Alok Kumar
  email: rbaloksharma@gmail.com
  organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology
– sequence: 3
  givenname: Bo-Yan
  surname: Wu
  fullname: Wu, Bo-Yan
  organization: Department of Computer Science and Information Engineering, Chaoyang University of Technology
– sequence: 4
  givenname: Xin
  surname: Zhu
  fullname: Zhu, Xin
  organization: Department of AI Technology Development, M&D Data Science Center, Institute of Integrated Research, Institute of Science Tokyo
– sequence: 5
  givenname: Chun-Ju
  surname: Chang
  fullname: Chang, Chun-Ju
  organization: Department of Golden-Ager Industry Management, Chaoyang University of Technology
– sequence: 6
  givenname: Jia-Jung
  surname: Wang
  fullname: Wang, Jia-Jung
  email: wangjj@isu.edu.tw
  organization: Department of Biomedical Engineering, I-Shou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40221487$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnEp8QqpZSqYgLnK2JPcl6ldiLnVD13-PsltJywBfb42dez9fL4sQHj0XxmpL3lPD2QxJUqrYiTFZKqoZX5FlxxoiQFeOMnTw6nxYXKe1IXpIpQdWL4lQQxqhom7PidpNmN8Hs_FAO4OZyDxEmnDGmso9hKtPm61WZ3OBhTOWSVm4Cs3UeyxEh-tUwo9l693PBTHiLsbSu7zGiz3LhNt8N7MG4-a4MfTktyYz4qnjeZ0W8uN_Pix-fN98vv1Q3366uLz_dVEYoMVe0rw2XpqGm5ZywmgCnprOS17RB2XWsJQB1K6FTdWewa7jorLINU7zjiD0_L66PujbATu9jzjXe6QBOHwwhDhri7HJE2iiCaEFhrqtoDSjgltuuwYZYypTMWh-PWvulm9CanF-E8Yno0xfvtnoIvzSlSvFa0Kzw7l4hhrVcs55cMjiO4DEsSXPaKlFzRURG3_6D7sIS1y4cKFbXuQSZevM4pIdY_jQ4A-wImBhSitg_IJTodZD0cZB0HiR9GCRNshM_OqUM-wHj37__4_UbedLM4g
Cites_doi 10.1109/JBHI.2013.2286408
10.3390/s19143108
10.1021/acsami.2c21354
10.1109/TNSRE.2024.3364976
10.1016/j.bspc.2023.105447
10.3390/electronics8080894
10.1016/j.arth.2016.01.050
10.1016/j.petrol.2021.109520
10.1109/TBME.2019.2907322
10.1016/j.jelekin.2012.06.005
10.1007/s00779-023-01718-z
10.1017/S0263574723001509
10.1142/S0218957708002036
10.1109/ACCESS.2023.3309741
10.1002/0471678384
10.1016/j.jbi.2015.06.003
10.3390/s140203362
10.1109/JBHI.2020.2993697
10.1016/j.eswa.2023.121055
10.1016/j.bspc.2007.07.009
10.1055/s-2007-993372
10.1109/TNSRE.2019.2950096
10.1016/j.neucom.2011.05.033
10.3390/s24030734
10.1145/2939672.2939785
10.3390/s24175828
10.5435/00124635-200205000-00009
10.3390/s24237768
10.1109/TNSRE.2019.2958679
10.1109/TNSRE.2015.2502663
10.3390/bioengineering10020212
10.1109/TNSRE.2021.3076366
10.1002/mus.24658
10.1016/j.eswa.2013.02.023
10.1016/j.gaitpost.2021.09.203
10.1016/S1050-6411(01)00010-4
10.1016/S0966-6362(01)00100-X
10.1109/TNSRE.2021.3134189
10.1016/j.gaitpost.2005.06.015
10.1109/TBME.2006.873680
10.1109/TITB.2012.2226905
10.1371/journal.pone.0175951
10.1504/IJBET.2023.131708
10.1023/A:1010933404324
10.1007/s10462-020-09896-5
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-95973-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_c90eeda9e59848ca9a3d3db7e70d1295
PMC11993641
40221487
10_1038_s41598_025_95973_0
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC 111-2221-E-324 -003 -MY3
  funderid: http://dx.doi.org/10.13039/100020595
– fundername: National Science and Technology Council
  grantid: NSTC 111-2221-E-324 -003 -MY3
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c494t-1f6c35c71c8330260a31cbd53617e5bb280aa685ab96bceb734bd9d7293b3eef3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:07 EDT 2025
Thu Aug 21 18:33:42 EDT 2025
Fri Jul 11 19:03:41 EDT 2025
Wed Aug 13 07:31:19 EDT 2025
Fri Apr 18 01:24:54 EDT 2025
Tue Aug 05 11:58:43 EDT 2025
Sun Apr 13 01:13:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Surface electromyogram
Random forest
Gait parameters
XGBoost
CatBoost
Machine learning
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c494t-1f6c35c71c8330260a31cbd53617e5bb280aa685ab96bceb734bd9d7293b3eef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3189266617?pq-origsite=%requestingapplication%
PMID 40221487
PQID 3189266617
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c90eeda9e59848ca9a3d3db7e70d1295
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11993641
proquest_miscellaneous_3189463904
proquest_journals_3189266617
pubmed_primary_40221487
crossref_primary_10_1038_s41598_025_95973_0
springer_journals_10_1038_s41598_025_95973_0
PublicationCentury 2000
PublicationDate 2025-04-12
PublicationDateYYYYMMDD 2025-04-12
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DH Sutherland (95973_CR10) 2001; 14
R Mobarak (95973_CR36) 2024; 32
M Hao (95973_CR39) 2019; 66
J Liu (95973_CR15) 2023; 11
AL Hof (95973_CR8) 1997; 11
95973_CR50
G Biau (95973_CR51) 2012; 13
95973_CR52
H Zhang (95973_CR38) 2020; 28
S Pan (95973_CR53) 2022; 208
KG Rabe (95973_CR14) 2021; 29
GI Papagiannis (95973_CR11) 2016; 31
A Muro-de-la-Herran (95973_CR2) 2014; 14
A Mengarelli (95973_CR28) 2024; 24
NAS Putro (95973_CR46) 2024; 87
S Haufe (95973_CR21) 2023; 10
X Zou (95973_CR18) 2023; 15
Y Ye (95973_CR30) 2024; 42
F Zhang (95973_CR22) 2012; 78
Y Wang (95973_CR19) 2023; 234
C Morbidoni (95973_CR26) 2019; 8
LF Crozara (95973_CR41) 2015; 52
L Victoria (95973_CR3) 2005; 39
A Cechetto (95973_CR9) 2001; 11
A Vijayvargiya (95973_CR20) 2023; 42
Z Tang (95973_CR17) 2016; 24
M Asghari Oskoei (95973_CR43) 2007; 2
G Liu (95973_CR16) 2023; 27
C Morbidoni (95973_CR24) 2021; 29
A Kumar (95973_CR12) 2021; 25
N Zahradka (95973_CR6) 2020; 20
95973_CR7
95973_CR31
MN Alam (95973_CR1) 2017; 12
R Luo (95973_CR23) 2020; 28
BMC Silva (95973_CR33) 2015; 56
95973_CR34
SH Liu (95973_CR42) 2014; 18
K Carroll (95973_CR5) 2022; 91
HL Lim (95973_CR29) 2018; 10
X Juan Cheng (95973_CR25) 2013; 17
SH Liu (95973_CR37) 2024; 24
A Phinyomark (95973_CR44) 2013; 40
X Zhang (95973_CR47) 2012; 22
ME Hahn (95973_CR13) 2008; 11
SH Liu (95973_CR35) 2019; 19
HJA van Hedel (95973_CR40) 2006; 24
A Tigrini (95973_CR27) 2024; 24
F Molinari (95973_CR32) 2006; 53
HG Chambers (95973_CR4) 2002; 10
95973_CR45
95973_CR48
95973_CR49
References_xml – volume: 18
  start-page: 1647
  year: 2014
  ident: 95973_CR42
  publication-title: IEEE J. Biomed. Heal Inf.
  doi: 10.1109/JBHI.2013.2286408
– volume: 19
  start-page: 3108
  year: 2019
  ident: 95973_CR35
  publication-title: Sensors
  doi: 10.3390/s19143108
– volume: 10
  start-page: 61
  year: 2018
  ident: 95973_CR29
  publication-title: J. Telecommun Electron. Comput. Eng.
– volume: 15
  start-page: 19374
  year: 2023
  ident: 95973_CR18
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c21354
– volume: 32
  start-page: 812
  year: 2024
  ident: 95973_CR36
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2024.3364976
– ident: 95973_CR48
– volume: 87
  start-page: 105447
  year: 2024
  ident: 95973_CR46
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2023.105447
– volume: 8
  start-page: 894
  year: 2019
  ident: 95973_CR26
  publication-title: Electronics
  doi: 10.3390/electronics8080894
– volume: 31
  start-page: 1814
  year: 2016
  ident: 95973_CR11
  publication-title: J. Arthroplasty
  doi: 10.1016/j.arth.2016.01.050
– volume: 208
  start-page: 109520
  year: 2022
  ident: 95973_CR53
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109520
– volume: 20
  start-page: 1
  year: 2020
  ident: 95973_CR6
  publication-title: Sens. (Switzerland)
– ident: 95973_CR34
– volume: 66
  start-page: 3534
  year: 2019
  ident: 95973_CR39
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2907322
– volume: 22
  start-page: 901
  year: 2012
  ident: 95973_CR47
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2012.06.005
– volume: 27
  start-page: 2103
  year: 2023
  ident: 95973_CR16
  publication-title: Pers. Ubiquitous Comput.
  doi: 10.1007/s00779-023-01718-z
– volume: 42
  start-page: 389
  year: 2024
  ident: 95973_CR30
  publication-title: Robotica
  doi: 10.1017/S0263574723001509
– volume: 11
  start-page: 117
  year: 2008
  ident: 95973_CR13
  publication-title: J. Musculoskelet. Res.
  doi: 10.1142/S0218957708002036
– volume: 11
  start-page: 95079
  year: 2023
  ident: 95973_CR15
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2023.3309741
– ident: 95973_CR7
  doi: 10.1002/0471678384
– volume: 13
  start-page: 1063
  year: 2012
  ident: 95973_CR51
  publication-title: J. Mach. Learn. Res.
– volume: 56
  start-page: 265
  year: 2015
  ident: 95973_CR33
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2015.06.003
– volume: 14
  start-page: 3362
  year: 2014
  ident: 95973_CR2
  publication-title: Sensors
  doi: 10.3390/s140203362
– volume: 25
  start-page: 701
  year: 2021
  ident: 95973_CR12
  publication-title: IEEE J. Biomed. Heal Inf.
  doi: 10.1109/JBHI.2020.2993697
– volume: 234
  start-page: 121055
  year: 2023
  ident: 95973_CR19
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121055
– volume: 2
  start-page: 275
  year: 2007
  ident: 95973_CR43
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2007.07.009
– volume: 11
  start-page: 79
  year: 1997
  ident: 95973_CR8
  publication-title: Sport · Sport
  doi: 10.1055/s-2007-993372
– volume: 28
  start-page: 267
  year: 2020
  ident: 95973_CR23
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2019.2950096
– volume: 78
  start-page: 139
  year: 2012
  ident: 95973_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.05.033
– volume: 24
  start-page: 734
  year: 2024
  ident: 95973_CR37
  publication-title: Sensors
  doi: 10.3390/s24030734
– ident: 95973_CR52
  doi: 10.1145/2939672.2939785
– volume: 24
  start-page: 5828
  year: 2024
  ident: 95973_CR27
  publication-title: Sensors
  doi: 10.3390/s24175828
– volume: 10
  start-page: 222
  year: 2002
  ident: 95973_CR4
  publication-title: J. Am. Acad. Orthop. Surg.
  doi: 10.5435/00124635-200205000-00009
– volume: 24
  start-page: 7768
  year: 2024
  ident: 95973_CR28
  publication-title: Sensors
  doi: 10.3390/s24237768
– volume: 28
  start-page: 191
  year: 2020
  ident: 95973_CR38
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2019.2958679
– volume: 24
  start-page: 1342
  year: 2016
  ident: 95973_CR17
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2015.2502663
– volume: 10
  start-page: 212
  year: 2023
  ident: 95973_CR21
  publication-title: Bioengineering
  doi: 10.3390/bioengineering10020212
– volume: 29
  start-page: 819
  year: 2021
  ident: 95973_CR24
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2021.3076366
– volume: 52
  start-page: 1030
  year: 2015
  ident: 95973_CR41
  publication-title: Muscle Nerve
  doi: 10.1002/mus.24658
– volume: 40
  start-page: 4832
  year: 2013
  ident: 95973_CR44
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.023
– volume: 91
  start-page: 19
  year: 2022
  ident: 95973_CR5
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2021.09.203
– volume: 11
  start-page: 347
  year: 2001
  ident: 95973_CR9
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(01)00010-4
– volume: 14
  start-page: 61
  year: 2001
  ident: 95973_CR10
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(01)00100-X
– volume: 29
  start-page: 2635
  year: 2021
  ident: 95973_CR14
  publication-title: IEEE Trans. Neural Syst. Rehabil Eng.
  doi: 10.1109/TNSRE.2021.3134189
– volume: 24
  start-page: 35
  year: 2006
  ident: 95973_CR40
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2005.06.015
– volume: 39
  start-page: 64
  year: 2005
  ident: 95973_CR3
  publication-title: Biomed. Instrum. Technol.
– ident: 95973_CR45
– ident: 95973_CR31
– volume: 53
  start-page: 1309
  year: 2006
  ident: 95973_CR32
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.873680
– volume: 17
  start-page: 38
  year: 2013
  ident: 95973_CR25
  publication-title: IEEE J. Biomed. Heal Inf.
  doi: 10.1109/TITB.2012.2226905
– volume: 12
  start-page: e0175951
  year: 2017
  ident: 95973_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0175951
– volume: 42
  start-page: 150
  year: 2023
  ident: 95973_CR20
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2023.131708
– ident: 95973_CR50
  doi: 10.1023/A:1010933404324
– ident: 95973_CR49
  doi: 10.1007/s10462-020-09896-5
SSID ssj0000529419
Score 2.450574
Snippet The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for neuromuscular...
Abstract The gait analysis has been applied in many fields, such as the assessment of falling, force evaluation in sports, and gait disorder detection for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 12575
SubjectTerms 639/166/985
692/700/139
Adult
CatBoost
Correlation coefficient
Electromyography
Electromyography - methods
Fatigue
Female
Gait
Gait - physiology
Gait Analysis - methods
Gait parameters
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Male
multidisciplinary
Muscle fatigue
Muscle Fatigue - physiology
Muscle, Skeletal - physiology
Muscles
Neuromuscular diseases
Random forest
Science
Science (multidisciplinary)
Sensors
Surface electromyogram
XGBoost
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEG8CpTISN7Dq-BX7CNWWCqmcqNSbZTvepYfNIrIrxL9nxs4uXQriwjV2osnM2PONPP6GkNeds4hzDZsbl5gyomcWsmamde6N7XXg5QT_4pM5v1Qfr_TVjVZfWBNW6YGr4k6S47CNB5e1s8qm4ILsCydwx3uIVYW9FGLejWSqsnoLp1o33ZLh0p6MEKnwNpnQzAGIlozvRaJC2P8nlHm7WPK3E9MSiM7uk3sTgqTvquQPyJ08PCSHtafkj0fk-wwWLcLQYUEX4XpNkdx7iUUvI8W7JHScXXygWLYBjkex7H1Bl6WiMtOphcSC7phdYQbefqHbPirwOWyrRhPE2AQAnq7mdLkZQZDH5PJs9vn0nE3dFVhSTq1ZOzdJ6tS1yUqJzGJBtin2WgKmyTpGYXkIxuoQnYkpx06q2LsewLiMMue5fEIOhtWQnxEquyy6kBwkP0F1QQTLk7DaJNGmrJNqyJutpv3XSqLhy-G3tL7axYNdfLGL5w15j8bYzUQC7PIA3MJPbuH_5RYNOdqa0k-rcvSwfzkAJPCDDXm1G4b1hIckYcirTZ2jALZxkPpptfxOEsi1BaSP8Lbd84k9UfdHhusvhbO7xUJJo9qGvN26zy-5_q6L5_9DFy_IXYF-Xxgqj8jB-tsmvwQotY7HZdX8BO5tHG4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG8CBRmJG1gkfsU-LmhLtVK5QKXeLNvxhh42i5pdIf49M84DLZQD18ReTTLjzDc7M98Q8qa2BnGuZmttI5OaN8xA1MyUSo02jfJlzuBffNbnl3J1pa6OCJ96YXLRfqa0zJ_pqTrsfQ-OBpvBuGIWMLBgEKafIFU72PbJYrH6spr_WcHclazs2CFTCnPL5gMvlMn6b0OYfxdK_pEtzU7o7D65N6JHuhjkfUCOUveQ3BnmSf58RH4s4cAiBO1a2vrrHUVi7w0WvPQU-0hov7z4RLFkA4yOYsl7Sze5mjLRcXxES2dWV1iBnS90mqECP4cj1WgE_xoBvNPtmm72PQjymFyeLb9-PGfjZAUWpZU7Vq11FCrWVTRCIKuYF1UMjRKAZ5IKgZvSe22UD1aHmEItZGhsA0BcBJHSWjwhx922S88IFXXitY8WAh8va8-9KSM3SkdexaSiLMjb6U277wOBhsuJb2HcoBcHenFZL64syAdUxrwSya_zhe1N60ZjcNGW4Nm9TbBZmuitF02mia7LBuCLKsjppEo3nsjewbfLAhiBByzI6_k2nCVMkPgubffDGgmQrQSpnw6anyWBOJtD6Ai7zYFNHIh6eKe7_pb5uissktSyKsi7yXx-y_Xvd_H8_5a_IHc5WnjmoTwlx7ubfXoJgGkXXo0n5BeTEBI9
  priority: 102
  providerName: Springer Nature
Title Estimating gait parameters from sEMG signals using machine learning techniques under different power capacity of muscle
URI https://link.springer.com/article/10.1038/s41598-025-95973-0
https://www.ncbi.nlm.nih.gov/pubmed/40221487
https://www.proquest.com/docview/3189266617
https://www.proquest.com/docview/3189463904
https://pubmed.ncbi.nlm.nih.gov/PMC11993641
https://doaj.org/article/c90eeda9e59848ca9a3d3db7e70d1295
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8CozISb2AtiT9iP6Gu6pgqbULApL5ZjuOGPTQZSyvEf8-dk3QqX0-VEqe6-O5yP_vOvyPkbWE04lzFVsp4JlReMQ2rZiZlqJSupEtjBv_8Qp1disVSLocNt24oqxy_ifFDXbUe98iPwfYMBBMIuB-uvzPsGoXZ1aGFxl1yiNRlaNXFstjtsWAWS2RmOCuTcn3cQbzCM2W5ZDC84Czdi0eRtv9vWPPPksnf8qYxHJ0-JA8GHEmnveIfkTuheUzu9Z0lfz4hP-bgughGm5rW7mpDkeJ7jaUvHcUTJbSbn3-kWLwB5kex-L2m61hXGejQSKKmO35XGIFnYOjYTQX-DpurUQ-R1gOMp-2KrrcdCPKUXJ7Ov87O2NBjgXlhxIZlK-W59EXmNefIL-Z45stKcpjoIMsy16lzSktXGlX6UBZclJWpAJLzkoew4s_IQdM24QWhvAh54byBJZAThcudTn2upfJ55oP0IiHvxpm21z2Vho0pcK5trxcLerFRLzZNyAkqYzcSabDjhfamtoNXWW9SiPHOBHhYaO-M41UkjC7SCoCMTMjRqEo7-GZnby0pIW92t8GrMFXimtBu-zECwFsKUj_vNb-TBFbcOSwi4Wm9ZxN7ou7faa6-RebuDMsllcgS8n40n1u5_j0XL___Gq_I_RwtOjJQHpGDzc02vAaotCkn0R8m5HA6XXxZwO_J_OLTZ7g6U7NJ3H74BczmGAI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCaImfiT2ASEeW7a021Mr7c04jjf0sEnb7Krqn-I3MuMkWy2vW6-JY008Y883nhchr3OtEOdm8SzTLhYZK2MFVnMspS8zVUqbBA_-5DAbH4tvUzndID-HXBgMqxzOxHBQl43DO_IdkD0NygQU7ofTsxi7RqF3dWih0YnFvr-8AJOtfb_3Bfj7hrHd0dHncdx3FYid0GIRp7PMceny1Cmw5QHOW566opQcpvayKJhKrM2UtIXOCueLnIui1CWAUF5w72cc5r1BboLiTdDYy6f56k4HvWYi1X1uTsLVTgv6EXPYmIw1QHceJ2v6L7QJ-Bu2_TNE8zc_bVB_u_fI3R630o-doN0nG75-QG51nSwvH5KLERwVCH7rilb2ZEGxpPgcQ21aihkstB1NvlIMFgFxpxhsX9F5iOP0tG9cUdFVPVkYgTk3dOjeAtNhMzfqQLM7MBtoM6PzZQuEPCLH17L6j8lm3dT-KaE89yy3ToPJZUVumVWJY0pmjqXOSyci8nZYaXPale4wweXOlen4YoAvJvDFJBH5hMxYjcSy2-FBc16ZfhcbpxPAFFZ7-FgoZ7XlZShQnSclACcZke2BlaY_C1pzJbkRebV6DbsYXTO29s2yGyMALCZA9ZOO8ytKwMJnYLTC12pNJtZIXX9Tn_wIlcJTDM_MRBqRd4P4XNH177XY-v9vvCS3x0eTA3Owd7j_jNxhKN2h-uU22VycL_1zgGmL4kXYG5R8v-7N-AvXqVBV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bi78PePSBEaUJLaVQhKvW2rNfr0EOcUieq-tf4dcyu7VThdes1XjvjnZmdbzwvgJe5kh7nZnGVKRvzjJaxRK85FsKVmSyFSUIE_2CS7R7xT8fieAN-9rUwPq2yPxPDQV3Orf9GPkTZU2hM0OAOqy4t4nBn_O70R-wnSPlIaz9OoxWRfXdxju5b83ZvB3n9itLx6OuH3bibMBBbrvgiTqvMMmHz1Er06xHaG5baohQM_8aJoqAyMSaTwhQqK6wrcsaLUpUISFnBnKsYPvcabObeKxrA5vZocvhl9YXHx9B4qrpKnYTJYYPW0le0URErBPIsTtasYRga8Dek-2fC5m9R22AMx7fhVodiyftW7O7AhqvvwvV2ruXFPTgf4cHhoXA9JVNzsiC-wfjMJ940xNezkGZ08JH41BEUfuJT76dkFrI6HenGWEzJqrssrvAVOKSf5YKP86PdiEU7b9GJIPOKzJYNEnIfjq5k_x_AoJ7X7hEQljuaG6vQATM8N9TIxFIpMktT64TlEbzud1qfto08dAjAM6lbvmjkiw580UkE254Zq5W-CXf4YX421Z1Oa6sSRBhGObyZS2uUYWVoV50nJcIoEcFWz0rdnQyNvpTjCF6sLqNO-0CNqd182a7hCB0TpPphy_kVJejvU3Rh8W65JhNrpK5fqU--h77hqU_WzHgawZtefC7p-vdePP7_azyHG6iI-vPeZP8J3KReuEMrzC0YLM6W7ilitkXxrFMOAt-uWh9_ASS4VfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+gait+parameters+from+sEMG+signals+using+machine+learning+techniques+under+different+power+capacity+of+muscle&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Shing-Hong&rft.au=Sharma%2C+Alok+Kumar&rft.au=Wu%2C+Bo-Yan&rft.au=Zhu%2C+Xin&rft.date=2025-04-12&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=12575&rft_id=info:doi/10.1038%2Fs41598-025-95973-0&rft_id=info%3Apmid%2F40221487&rft.externalDocID=40221487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon