Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system
ABSTRACT Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, wh...
Saved in:
Published in | Biotechnology and bioengineering Vol. 111; no. 4; pp. 692 - 699 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 1097-0290 |
DOI | 10.1002/bit.25128 |
Cover
Loading…
Abstract | ABSTRACT
Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR‐1. Because flavin‐mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure‐culture BESs with S. oneidensis MR‐1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch‐fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin‐secretion deficient mutant of S. oneidensis. Biotechnol. Biotechnol. Bioeng. 2014;111: 692–699. © 2013 Wiley Periodicals, Inc.
The authors investigated the importance of flavins—endogenous electron mediators—in electron transfer between Shewanella oneidensis MR‐1 and anode electrodes under anaerobic and micro‐aerobic conditions. Micro‐aerobic conditions promoted mediated electron transfer via flavins under continuously fed conditions, but had little effect on the electron transfer mechanism under batch‐fed conditions. This indicates that oxygen allowed S. oneidensis to overcome flavin washout in the continuously fed condition, either by increasing cell mass or by increasing per cell flavin production. This result may have broader implications for both mixed‐ and pure‐culture bioelectrochemical systems harboring aerotolerant organisms. |
---|---|
AbstractList | ABSTRACT
Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR‐1. Because flavin‐mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure‐culture BESs with S. oneidensis MR‐1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch‐fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin‐secretion deficient mutant of S. oneidensis. Biotechnol. Biotechnol. Bioeng. 2014;111: 692–699. © 2013 Wiley Periodicals, Inc.
The authors investigated the importance of flavins—endogenous electron mediators—in electron transfer between Shewanella oneidensis MR‐1 and anode electrodes under anaerobic and micro‐aerobic conditions. Micro‐aerobic conditions promoted mediated electron transfer via flavins under continuously fed conditions, but had little effect on the electron transfer mechanism under batch‐fed conditions. This indicates that oxygen allowed S. oneidensis to overcome flavin washout in the continuously fed condition, either by increasing cell mass or by increasing per cell flavin production. This result may have broader implications for both mixed‐ and pure‐culture bioelectrochemical systems harboring aerotolerant organisms. Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances--particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. [PUBLICATIONABSTRACT] Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances--particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. [PUBLICATION ABSTRACT] Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis.Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. |
Author | Kotloski, Nicholas J. TerAvest, Michaela A. Rosenbaum, Miriam A. Gralnick, Jeffrey A. Angenent, Largus T. |
Author_xml | – sequence: 1 givenname: Michaela A. surname: TerAvest fullname: TerAvest, Michaela A. organization: Department of Biological and Environmental Engineering, Cornell University, New York, 14853, Ithaca – sequence: 2 givenname: Miriam A. surname: Rosenbaum fullname: Rosenbaum, Miriam A. organization: Department of Biological and Environmental Engineering, Cornell University, 14853, Ithaca, New York – sequence: 3 givenname: Nicholas J. surname: Kotloski fullname: Kotloski, Nicholas J. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, Minnesota, St. Paul – sequence: 4 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, Minnesota, St. Paul – sequence: 5 givenname: Largus T. surname: Angenent fullname: Angenent, Largus T. email: la249@cornell.edu organization: Department of Biological and Environmental Engineering, Cornell University, New York, 14853, Ithaca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24122485$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFA18AWeICh7T-E9vJEVawVCpUQBHcLMeZsC5JXGyHbb49LrvLoQL1YsvS7z3Pm5kjdDD6ERB6SskJJYSdNi6dMEFZ9QAtKKlVQVhNDtCCECILLmp2iI5ivMpPVUn5CB2ykjJWVmKBpoub-TuM2PS930T8eQ0bM0LfG5y_cC2M0UX8_lNBcfLY_4Jg_QB4gNaZ5APemLj2U8IuO2Drx-TGyU-xn3EHLW6chx5sCt6uYXDW9DjOMcHwGD3sTB_hye4-Rl_evrlcvivOL1Zny1fnhS3rsipYy6AzRgorSWMEY4ZLKElnaV2D4dxyKijpOiloY3hT06ajOT9poeusohU_Ri-2vtfB_5wgJj24aG_jjZDL1FSq7ECrWt6PCka4ZDKf96NUloQKxTL6_A565acw5syZIpVQRKk6U8921NTk1urr4AYTZr0fUwZOt4ANPsYAnbYumeRyw4NxvaZE3y6Czoug_yxCVry8o9ib_ovduW9cD_P_Qf367HKvKLYKl6d581dhwg8tFVdCf_2w0t-WqyX5KIVm_DeJ69CR |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1002_bit_26046 crossref_primary_10_1002_jctb_6099 crossref_primary_10_3389_fbioe_2019_00060 crossref_primary_10_3389_fmicb_2016_01082 crossref_primary_10_1016_j_biortech_2019_03_130 crossref_primary_10_1016_j_enconman_2018_09_090 crossref_primary_10_1002_celc_201402036 crossref_primary_10_1002_celc_201600175 crossref_primary_10_1007_s00253_013_5396_6 crossref_primary_10_1186_s13068_014_0118_6 crossref_primary_10_1002_celc_201402239 crossref_primary_10_1007_s11270_024_07572_w crossref_primary_10_3389_fenrg_2019_00087 crossref_primary_10_1016_j_ijhydene_2020_09_264 crossref_primary_10_3389_fenrg_2019_00100 crossref_primary_10_1038_s42003_021_02040_1 crossref_primary_10_1016_j_biortech_2018_07_025 crossref_primary_10_1111_mmi_14067 crossref_primary_10_3389_fmicb_2016_01438 crossref_primary_10_1021_acssynbio_1c00335 crossref_primary_10_1039_D1RA08487A crossref_primary_10_1016_j_isci_2019_01_022 crossref_primary_10_1134_S0003683817020028 crossref_primary_10_1016_j_rser_2021_112051 crossref_primary_10_1016_j_bioelechem_2017_10_001 crossref_primary_10_1021_ez500244n crossref_primary_10_1016_j_electacta_2019_03_085 crossref_primary_10_3389_fmicb_2021_660474 crossref_primary_10_1021_acscentsci_1c00931 crossref_primary_10_1016_j_bios_2014_07_003 crossref_primary_10_1002_celc_201402128 crossref_primary_10_3389_fbioe_2021_821734 crossref_primary_10_1016_j_cej_2023_146064 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_3389_fenrg_2019_00095 crossref_primary_10_1016_j_bioelechem_2017_10_008 crossref_primary_10_1016_j_bioflm_2021_100052 |
Cites_doi | 10.1021/es800482e 10.1128/AEM.72.2.1558-1568.2006 10.1016/j.jpowsour.2006.10.026 10.1021/es0605016 10.1039/c0cc05037g 10.1016/S0005-2728(00)00098-0 10.1021/es0499344 10.1128/aem.61.4.1551-1554.1995 10.1016/j.bios.2011.12.013 10.1016/j.elecom.2009.07.008 10.1016/j.bioelechem.2011.02.006 10.1128/JB.00925-09 10.1021/es801553z 10.1002/bit.22621 10.1002/bit.22266 10.1128/AEM.70.4.2525-2528.2004 10.1002/bit.260261114 10.1038/nrmicro1442 10.1016/j.cej.2012.09.009 10.1128/mBio.00553-12 10.1128/JB.187.14.5049-5053.2005 10.1186/1471-2180-10-98 10.1128/AEM.01387-07 10.1021/es204302w 10.1073/pnas.0710525105 10.1039/b703627m 10.1371/journal.pone.0030827 10.1016/j.jpowsour.2007.06.220 10.1016/j.bios.2013.03.010 10.1021/es0502876 10.1080/00032719608002781 10.1038/ismej.2007.4 10.1073/pnas.1017200108 |
ContentType | Journal Article |
Copyright | 2013 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Apr 2014 |
Copyright_xml | – notice: 2013 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Apr 2014 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QH 7UA F1W H97 L.G 7SU |
DOI | 10.1002/bit.25128 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Engineering Abstracts |
DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 699 |
ExternalDocumentID | 3250378831 24122485 10_1002_bit_25128 BIT25128 ark_67375_WNG_XCGC0Q65_2 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GrantInformation_xml | – fundername: National Science Foundation through CAREER funderid: 0939882 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7QH 7UA F1W H97 L.G 7SU |
ID | FETCH-LOGICAL-c4948-2d2efaa65c60ba522a36e40fc199ea33c31510ff651ba3b91bf11090deffc7183 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 18:38:40 EDT 2025 Fri Jul 11 10:12:43 EDT 2025 Fri Jul 11 06:05:45 EDT 2025 Sat Aug 16 22:42:25 EDT 2025 Thu Apr 03 07:06:30 EDT 2025 Tue Jul 01 01:08:51 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Wed Jan 22 17:10:39 EST 2025 Wed Oct 30 09:56:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4948-2d2efaa65c60ba522a36e40fc199ea33c31510ff651ba3b91bf11090deffc7183 |
Notes | istex:DB56FB14A44E60074F12C9383BCF7158B1BD84FE National Science Foundation through CAREER - No. 0939882 ark:/67375/WNG-XCGC0Q65-2 ArticleID:BIT25128 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24122485 |
PQID | 1508570779 |
PQPubID | 48814 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1671511896 proquest_miscellaneous_1520362620 proquest_miscellaneous_1516401572 proquest_journals_1508570779 pubmed_primary_24122485 crossref_citationtrail_10_1002_bit_25128 crossref_primary_10_1002_bit_25128 wiley_primary_10_1002_bit_25128_BIT25128 istex_primary_ark_67375_WNG_XCGC0Q65_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Read S, Dutta P, Bond P, Keller J, Rabaey K. 2010. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):98. Bencharit S, Ward MJ. 2005. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. J Bacteriol 187(14):5049-5053. Lovley DR. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497-508. Quan X-c, Quan Y-p, Tao K. 2012. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell. Chem Eng J 210 150-156. Nealson KH, Moser DP, Saffarini DA. 1995. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61(4):1551-1554. He Z, Minteer SD, Angenent LT. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262-5267. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. 2007. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME J 1(1):9-18. Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. 2012. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS ONE 7(2):e30827. Logan BE, Hamelers B, Rozendal RA, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. 2006. Microbial fuel cells: Methodology and technology. Environ Sci Technol 40(17):5181-5192. Appaix F, Minatchy M-N, Riva-Lavieille C, Olivares J, Antonsson B, Saks VA. 2000. Rapid spectrophotometric method for quantitation of cytochrome c release from isolated mitochondria or permeabilized cells revisited. Biochim Biophys Acta Bioenerg 1457(3):175-181. Golitsch F, Bücking C, Gescher J. 2013. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47 285-291. Li R, Tiedje JM, Chiu C, Worden RM. 2012. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors. Environ Sci Technol 46(5):2813-2820. Sun WL, Kong JL, Deng JQ. 1996. Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction. Anal Lett 29(14):2425-2439. Rosenbaum M, Cotta MA, Angenent LT. 2010. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol Bioeng 105(5):880-888. Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schröder U. 2011. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81(2):74-80. Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72(2):1558-1568. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968-3973. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630-8640. Rozendal RA, Leone E, Keller J, Rabaey K. 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752-1755. von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615-623. Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4(1):e00553-e00612. Ringeisen BR, Ray R, Little B. 2007. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165(2):591-597. Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR. 2009. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103(3):524-531. Fan Y, Hu H, Liu H. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348-354. Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467-474. Liu H, Logan BE. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040-4046. Freguia S, Rabaey K, Yuan Z, Keller J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937-7943. Schröder U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619-2629. Lin WC, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70(4):2525-2528. Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ. and others. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci 108(23):9384-9389. Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT. 2012. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32(1):309-313. Miyawaki O, Wingard LB. 1984. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon. Biotechnol Bioeng 26(11):1364-1371. Li ZJ, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT. 2011. Bacteria-based AND logic gate: A decision-making and self-powered biosensor. Chem Commun 47(11):3060-3062. 2010; 10 2013; 47 2013; 4 2006; 72 1984; 26 2010; 105 2007; 165 2011; 81 2000; 1457 2008; 105 2006; 4 2008; 74 2012; 32 2009; 11 1995; 61 1996; 29 2011; 108 2012; 210 2004; 70 2006; 40 2005; 187 2004; 38 2007; 171 2007; 9 2010; 192 2008; 42 2011; 47 2012; 46 2007; 1 2012; 7 2005; 39 2009; 103 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Nealson KH (e_1_2_6_24_1) 1995; 61 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. 2012. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS ONE 7(2):e30827. – reference: Miyawaki O, Wingard LB. 1984. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon. Biotechnol Bioeng 26(11):1364-1371. – reference: Rosenbaum M, Cotta MA, Angenent LT. 2010. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol Bioeng 105(5):880-888. – reference: Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ. and others. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci 108(23):9384-9389. – reference: Nealson KH, Moser DP, Saffarini DA. 1995. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61(4):1551-1554. – reference: Sun WL, Kong JL, Deng JQ. 1996. Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction. Anal Lett 29(14):2425-2439. – reference: Freguia S, Rabaey K, Yuan Z, Keller J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937-7943. – reference: Rozendal RA, Leone E, Keller J, Rabaey K. 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752-1755. – reference: Appaix F, Minatchy M-N, Riva-Lavieille C, Olivares J, Antonsson B, Saks VA. 2000. Rapid spectrophotometric method for quantitation of cytochrome c release from isolated mitochondria or permeabilized cells revisited. Biochim Biophys Acta Bioenerg 1457(3):175-181. – reference: Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. 2007. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME J 1(1):9-18. – reference: Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467-474. – reference: Logan BE, Hamelers B, Rozendal RA, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. 2006. Microbial fuel cells: Methodology and technology. Environ Sci Technol 40(17):5181-5192. – reference: Lovley DR. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497-508. – reference: Ringeisen BR, Ray R, Little B. 2007. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165(2):591-597. – reference: Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR. 2009. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103(3):524-531. – reference: Lin WC, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70(4):2525-2528. – reference: Liu H, Logan BE. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040-4046. – reference: He Z, Minteer SD, Angenent LT. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262-5267. – reference: Li ZJ, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT. 2011. Bacteria-based AND logic gate: A decision-making and self-powered biosensor. Chem Commun 47(11):3060-3062. – reference: Golitsch F, Bücking C, Gescher J. 2013. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47 285-291. – reference: Read S, Dutta P, Bond P, Keller J, Rabaey K. 2010. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):98. – reference: Schröder U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619-2629. – reference: Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schröder U. 2011. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81(2):74-80. – reference: Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72(2):1558-1568. – reference: von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615-623. – reference: Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4(1):e00553-e00612. – reference: Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630-8640. – reference: Li R, Tiedje JM, Chiu C, Worden RM. 2012. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors. Environ Sci Technol 46(5):2813-2820. – reference: Quan X-c, Quan Y-p, Tao K. 2012. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell. Chem Eng J 210 150-156. – reference: Bencharit S, Ward MJ. 2005. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. J Bacteriol 187(14):5049-5053. – reference: Fan Y, Hu H, Liu H. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348-354. – reference: Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT. 2012. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32(1):309-313. – reference: Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968-3973. – volume: 81 start-page: 74 issue: 2 year: 2011 end-page: 80 article-title: Cyclic voltammetric analysis of the electron transfer of MR‐1 and nanofilament and cytochrome knock‐out mutants publication-title: Bioelectrochemistry – volume: 4 start-page: e00553 issue: 1 year: 2013 end-page: e00612 article-title: Flavin electron shuttles dominate extracellular electron transfer by publication-title: mBio – volume: 7 start-page: e30827 issue: 2 year: 2012 article-title: Transcriptional analysis of MR‐1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor publication-title: PLoS ONE – volume: 187 start-page: 5049 issue: 14 year: 2005 end-page: 5053 article-title: Chemotactic responses to metals and anaerobic electron acceptors in MR‐1 publication-title: J Bacteriol – volume: 39 start-page: 5262 issue: 14 year: 2005 end-page: 5267 article-title: Electricity generation from artificial wastewater using an upflow microbial fuel cell publication-title: Environ Sci Technol – volume: 32 start-page: 309 issue: 1 year: 2012 end-page: 313 article-title: A cost‐effective and field‐ready potentiostat that poises subsurface electrodes to monitor bacterial respiration publication-title: Biosens Bioelectron – volume: 1457 start-page: 175 issue: 3 year: 2000 end-page: 181 article-title: Rapid spectrophotometric method for quantitation of cytochrome release from isolated mitochondria or permeabilized cells revisited publication-title: Biochim Biophys Acta Bioenerg – volume: 108 start-page: 9384 issue: 23 year: 2011 end-page: 9389 article-title: Structure of a bacterial cell surface decaheme electron conduit publication-title: Proc Natl Acad Sci – volume: 61 start-page: 1551 issue: 4 year: 1995 end-page: 1554 article-title: Anaerobic electron acceptor chemotaxis in publication-title: Appl Environ Microbiol – volume: 40 start-page: 5181 issue: 17 year: 2006 end-page: 5192 article-title: Microbial fuel cells: Methodology and technology publication-title: Environ Sci Technol – volume: 105 start-page: 3968 issue: 10 year: 2008 end-page: 3973 article-title: secretes flavins that mediate extracellular electron transfer publication-title: Proc Natl Acad Sci – volume: 29 start-page: 2425 issue: 14 year: 1996 end-page: 2439 article-title: Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction publication-title: Anal Lett – volume: 42 start-page: 8630 issue: 23 year: 2008 end-page: 8640 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ Sci Technol – volume: 42 start-page: 7937 issue: 21 year: 2008 end-page: 7943 article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes publication-title: Environ Sci Technol – volume: 47 start-page: 3060 issue: 11 year: 2011 end-page: 3062 article-title: Bacteria‐based AND logic gate: A decision‐making and self‐powered biosensor publication-title: Chem Commun – volume: 26 start-page: 1364 issue: 11 year: 1984 end-page: 1371 article-title: Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon publication-title: Biotechnol Bioeng – volume: 4 start-page: 497 issue: 7 year: 2006 end-page: 508 article-title: Bug juice: Harvesting electricity with microorganisms publication-title: Nat Rev Microbiol – volume: 38 start-page: 4040 issue: 14 year: 2004 end-page: 4046 article-title: Electricity generation using an air‐cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane publication-title: Environ Sci Technol – volume: 70 start-page: 2525 issue: 4 year: 2004 end-page: 2528 article-title: can grow with oxygen as a terminal electron acceptor publication-title: Appl Environ Microbiol – volume: 105 start-page: 880 issue: 5 year: 2010 end-page: 888 article-title: Aerated in continuously fed bioelectrochemical systems for power and hydrogen production publication-title: Biotechnol Bioeng – volume: 11 start-page: 1752 issue: 9 year: 2009 end-page: 1755 article-title: Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system publication-title: Electrochem Commun – volume: 74 start-page: 615 issue: 3 year: 2008 end-page: 623 article-title: Secretion of flavins by species and their role in extracellular electron transfer publication-title: Appl Environ Microbiol – volume: 103 start-page: 524 issue: 3 year: 2009 end-page: 531 article-title: Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with publication-title: Biotechnol Bioeng – volume: 1 start-page: 9 issue: 1 year: 2007 end-page: 18 article-title: Microbial ecology meets electrochemistry: Electricity‐driven and driving communities publication-title: ISME J – volume: 165 start-page: 591 issue: 2 year: 2007 end-page: 597 article-title: A miniature microbial fuel cell operating with an aerobic anode chamber publication-title: J Power Sources – volume: 47 start-page: 285 year: 2013 end-page: 291 article-title: Proof of principle for an engineered microbial biosensor based on outer membrane protein complexes publication-title: Biosens Bioelectron – volume: 46 start-page: 2813 issue: 5 year: 2012 end-page: 2820 article-title: Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors publication-title: Environ Sci Technol – volume: 72 start-page: 1558 issue: 2 year: 2006 end-page: 1568 article-title: Characterization of metabolism in the Fe(III)‐reducing organism by constraint‐based modeling publication-title: Appl Environ Microbiol – volume: 171 start-page: 348 issue: 2 year: 2007 end-page: 354 article-title: Enhanced coulombic efficiency and power density of air‐cathode microbial fuel cells with an improved cell configuration publication-title: J Power Sources – volume: 10 start-page: 98 issue: 1 year: 2010 article-title: Initial development and structure of biofilms on microbial fuel cell anodes publication-title: BMC Microbiol – volume: 9 start-page: 2619 issue: 21 year: 2007 end-page: 2629 article-title: Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency publication-title: Phys Chem Chem Phys – volume: 192 start-page: 467 issue: 2 year: 2010 end-page: 474 article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in publication-title: J Bacteriol – volume: 210 start-page: 150 year: 2012 end-page: 156 article-title: Effect of anode aeration on the performance and microbial community of an air–cathode microbial fuel cell publication-title: Chem Eng J – ident: e_1_2_6_9_1 doi: 10.1021/es800482e – ident: e_1_2_6_21_1 doi: 10.1128/AEM.72.2.1558-1568.2006 – ident: e_1_2_6_28_1 doi: 10.1016/j.jpowsour.2006.10.026 – ident: e_1_2_6_18_1 doi: 10.1021/es0605016 – ident: e_1_2_6_14_1 doi: 10.1039/c0cc05037g – ident: e_1_2_6_2_1 doi: 10.1016/S0005-2728(00)00098-0 – ident: e_1_2_6_17_1 doi: 10.1021/es0499344 – volume: 61 start-page: 1551 issue: 4 year: 1995 ident: e_1_2_6_24_1 article-title: Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens publication-title: Appl Environ Microbiol doi: 10.1128/aem.61.4.1551-1554.1995 – ident: e_1_2_6_10_1 doi: 10.1016/j.bios.2011.12.013 – ident: e_1_2_6_31_1 doi: 10.1016/j.elecom.2009.07.008 – ident: e_1_2_6_5_1 doi: 10.1016/j.bioelechem.2011.02.006 – ident: e_1_2_6_7_1 doi: 10.1128/JB.00925-09 – ident: e_1_2_6_19_1 doi: 10.1021/es801553z – ident: e_1_2_6_29_1 doi: 10.1002/bit.22621 – ident: e_1_2_6_4_1 doi: 10.1002/bit.22266 – ident: e_1_2_6_16_1 doi: 10.1128/AEM.70.4.2525-2528.2004 – ident: e_1_2_6_23_1 doi: 10.1002/bit.260261114 – ident: e_1_2_6_20_1 doi: 10.1038/nrmicro1442 – ident: e_1_2_6_25_1 doi: 10.1016/j.cej.2012.09.009 – ident: e_1_2_6_13_1 doi: 10.1128/mBio.00553-12 – ident: e_1_2_6_3_1 doi: 10.1128/JB.187.14.5049-5053.2005 – ident: e_1_2_6_27_1 doi: 10.1186/1471-2180-10-98 – ident: e_1_2_6_34_1 doi: 10.1128/AEM.01387-07 – ident: e_1_2_6_15_1 doi: 10.1021/es204302w – ident: e_1_2_6_22_1 doi: 10.1073/pnas.0710525105 – ident: e_1_2_6_32_1 doi: 10.1039/b703627m – ident: e_1_2_6_30_1 doi: 10.1371/journal.pone.0030827 – ident: e_1_2_6_8_1 doi: 10.1016/j.jpowsour.2007.06.220 – ident: e_1_2_6_11_1 doi: 10.1016/j.bios.2013.03.010 – ident: e_1_2_6_12_1 doi: 10.1021/es0502876 – ident: e_1_2_6_33_1 doi: 10.1080/00032719608002781 – ident: e_1_2_6_26_1 doi: 10.1038/ismej.2007.4 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.1017200108 |
SSID | ssj0007866 |
Score | 2.3075726 |
Snippet | ABSTRACT
Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often... Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 692 |
SubjectTerms | Anodes Bacteria Bioelectric Energy Sources - microbiology bioelectrochemical system Bioengineering Biofilms Bioreactors - microbiology Biotechnology Cathodes Cytochromes c Electric power Electric power generation electro-active bacteria Electrochemical Techniques - methods Electrodes electron shuttle flavin Flavins Harnesses Microorganisms Oxygen Oxygen - metabolism Reduction Shewanella - metabolism Shewanella oneidensis Wastewater treatment |
Title | Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system |
URI | https://api.istex.fr/ark:/67375/WNG-XCGC0Q65-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25128 https://www.ncbi.nlm.nih.gov/pubmed/24122485 https://www.proquest.com/docview/1508570779 https://www.proquest.com/docview/1516401572 https://www.proquest.com/docview/1520362620 https://www.proquest.com/docview/1671511896 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMetqggBBx5bHoGCDEIVl7SJncdGnNoVbUGiiNKKPVSKbMdWo5YEbRJtlxMfgc_IJ2HGeZSiUiFukXaycuyx_Z948htCXo4znkgVcDdUEKIEzJNuwmFAkjjMYIKYRCtL-9yLdg-Dd9NwukRe99_CtHyI4YUbzgy7XuMEF7LaOIeGyhwLXMPyCusv5mqhINo_R0fF4_acEiNmHiaspwp5bGO488JedA279ewyoXlRt9qNZ_sOOeqb3OabnKw3tVxX3_6gOf7nM90ltztBSjdbD7pHlnQxIiubBQTjXxZ0jdoUUfvufUSub_VXNyZ9obgRufUb03CFzD-cLcApKR7ozyv66VjPBabSCFoWyNQqqryi7_d_fv_h07qkmEEKrdTUfsJSlzM6F9Vx2dQ0h_-gmEmfF03ZVKcLanRGZV52lXtUhzqgLYz6PjncfnMw2XW76g6uQiSNyzKmjRBRqCJPCpCBgkc68Izyk0QLzhUHMeIZE4W-FFwmvjRIR_UybYyCHZU_IMsFtPwRobjFBibmemxUEIpIaqwSAHGDnwmmfM8hr_pxTlWHPscKHKdpC21mKXR8ajveIS8G068t7-MyozXrLIOFmJ1gglwcpp_3dtLpZGfifYzClDlktfemtFsbqhQJ_GHsxXHikOfDzzBmeFQDIwJdCjYQxoJSi9lVNszChJh3hU0U-xhDJpFDHrbePDQatBtDoB30jvXJvz9vuvX2wF48_nfTJ-QmaMsuyWmVLNezRj8F_VbLZ3ai_gLt_kDC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhwoLDlsdCCQajism3ivDYSl3ZFu4V2EWUr9oIs27HVVUuCNlltlxM_gd_IL2HsPEpRqRA3S5lEzszY_sYefwPwspt4sZC-1wkkhig-dUQn9tAgcRQkOEB0rKRl-xyE_WP_7SgYLcDr-i5MyQ_RbLiZkWHnazPAzYb01gVrqBibCtc4v96AJVPR2wZURxfkUVG3PKk0MbMXxLTmFXLoVvPqpdVoySj2_CqoeRm52qVndwU-150uM05ON6eF2JTf_uBz_N-_ugt3KkxKtksnugcLKm3B6naK8fiXOdkgNkvUbr-34OZO3Vru1bXiWnD7N1rDVZi9P5-jXxJzpj_LyccTNeMmm4aTLDW0Wmk-zsnh0c_vP1xSZMQkkWI3FbG3WIpsQmY8P8mmBRnjN4hJph-n02yan82JVgkR46wq3iMrtgNS8lHfh-PdN8Nev1MVeOhIw0rToQlVmvMwkKEjOCJB7oXKd7R041hxz5Me4hFHazSu4J6IXaENQaqTKK0lLqreA1hMseePgJhV1teRp7pa-gEPhTKFAjB0cBNOpeu04VVtaCYr9nNThOOMlbzNlKHimVV8G140ol9Lyo-rhDastzQSfHJqcuSigH0a7LFRb6_nfAgDRtuwVrsTq6aHnBkS_iByoihuw_PmMdrMnNagRVClKIORLIK1iF4nQy2fEHWukQkj14SRcdiGh6U7N51G-EYNpx1qxzrl3_-X7ewPbePxv4s-g-X-8PCAHewP3j2BWwg1q5ynNVgsJlO1jnCuEE_tqP0F0M1E3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEICt0orXocCWx0IBg1DFZVvHzmMjTu2WbctjgdKKPSBZtmOrq5ak2mS1XU78hP5Gfglj51GKSoW4RcokcsZje8aefIPQi27CYql81gkUhCg-JbITM-iQOAoSGCAm1srRPgfh9r7_ZhgM59Cr-l-Ykg_RbLjZkeHmazvAjxOzdgYNlSNb4Bqm1ytowQ9J15r05u4ZOyrqlgeVNmRmQUxrrBCha82j5xajBavXk4s8zfOOq1t5-rfQ17rNZcLJ4eqkkKvq-x84x__8qNtosfJI8XppQnfQnE5baGk9hWj82wyvYJcj6jbfW-jqRn11vVdXimuhm79BDZfQ9MPJDKwS2xP9aY4_H-ipsLk0AmephWql-SjH73d__jj1cJFhm0IKrdTY_cNSZGM8FflBNinwCN6BbSr9KJ1kk_xoho1OsBxlVekeVbEOcEmjvov2-6_3etudqrxDR1kmTYcmVBshwkCFRArwAwULtU-M8uJYC8YUA2-EGBMGnhRMxp40Fo9KEm2MgiWV3UPzKbT8AcJ2jfVNxHTXKD8QodS2TAAEDl4iqPJIG72s-5mrin1uS3Ac8ZLaTDkonjvFt9HzRvS4BH5cJLTijKWREONDmyEXBfzLYIsPe1s98ikMOG2j5dqaeDU55Nwi-IOIRFHcRs-a29Bn9qwGegRUCjIQx4KrFtHLZKijCVFyiUwYeTaIjMM2ul9ac9NocN6oJdqBdpxN_v17-cbOnrt4-O-iT9G1j5t9_m5n8PYRugF-ZpXwtIzmi_FEPwZfrpBP3Jj9Be_JQ5U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+allows+Shewanella+oneidensis+MR%E2%80%901+to+overcome+mediator+washout+in+a+continuously+fed+bioelectrochemical+system&rft.jtitle=Biotechnology+and+bioengineering&rft.au=TerAvest%2C+Michaela+A.&rft.au=Rosenbaum%2C+Miriam+A.&rft.au=Kotloski%2C+Nicholas+J.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2014-04-01&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=111&rft.issue=4&rft.spage=692&rft.epage=699&rft_id=info:doi/10.1002%2Fbit.25128&rft.externalDBID=10.1002%252Fbit.25128&rft.externalDocID=BIT25128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |