Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system

ABSTRACT Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, wh...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 111; no. 4; pp. 692 - 699
Main Authors TerAvest, Michaela A., Rosenbaum, Miriam A., Kotloski, Nicholas J., Gralnick, Jeffrey A., Angenent, Largus T.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.25128

Cover

Loading…
Abstract ABSTRACT Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR‐1. Because flavin‐mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure‐culture BESs with S. oneidensis MR‐1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch‐fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin‐secretion deficient mutant of S. oneidensis. Biotechnol. Biotechnol. Bioeng. 2014;111: 692–699. © 2013 Wiley Periodicals, Inc. The authors investigated the importance of flavins—endogenous electron mediators—in electron transfer between Shewanella oneidensis MR‐1 and anode electrodes under anaerobic and micro‐aerobic conditions. Micro‐aerobic conditions promoted mediated electron transfer via flavins under continuously fed conditions, but had little effect on the electron transfer mechanism under batch‐fed conditions. This indicates that oxygen allowed S. oneidensis to overcome flavin washout in the continuously fed condition, either by increasing cell mass or by increasing per cell flavin production. This result may have broader implications for both mixed‐ and pure‐culture bioelectrochemical systems harboring aerotolerant organisms.
AbstractList ABSTRACT Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR‐1. Because flavin‐mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure‐culture BESs with S. oneidensis MR‐1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch‐fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin‐secretion deficient mutant of S. oneidensis. Biotechnol. Biotechnol. Bioeng. 2014;111: 692–699. © 2013 Wiley Periodicals, Inc. The authors investigated the importance of flavins—endogenous electron mediators—in electron transfer between Shewanella oneidensis MR‐1 and anode electrodes under anaerobic and micro‐aerobic conditions. Micro‐aerobic conditions promoted mediated electron transfer via flavins under continuously fed conditions, but had little effect on the electron transfer mechanism under batch‐fed conditions. This indicates that oxygen allowed S. oneidensis to overcome flavin washout in the continuously fed condition, either by increasing cell mass or by increasing per cell flavin production. This result may have broader implications for both mixed‐ and pure‐culture bioelectrochemical systems harboring aerotolerant organisms.
Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances--particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. [PUBLICATIONABSTRACT]
Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis.
Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances--particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions. We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis. [PUBLICATION ABSTRACT]
Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis.Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to perform useful functions such as wastewater treatment, fuel production, and biosensing. A microbial fuel cell (MFC) is one type of BES, which generates electric power through microbial respiration with an anode as the electron acceptor, and typically with oxygen reduction at the cathode to provide the terminal electron acceptor. Oxygen intrusion into MFCs is typically viewed as detrimental because it competes with anodes for electrons and lowers the coulombic efficiency. However, recent evidence suggests that it does not necessarily lead to lower performances—particularly for the model organism Shewanella oneidensis MR-1. Because flavin-mediated electron transfer is important for Shewanella species, which can produce this electron shuttle endogenuously, we investigated the role of flavins in the performance of pure-culture BESs with S. oneidensis MR-1 with and without oxygen. We found that oxygen increases current production more than twofold under continuously fed conditions, but only modestly increases current production under batch-fed conditions.We hypothesized that oxygen is more beneficial under continuously fed conditions because it allows S. oneidensis to grow and produce flavins at a faster rate, and thus lowers flavin washout. Our conclusions were supported by experiments with a flavin-secretion deficient mutant of S. oneidensis.
Author Kotloski, Nicholas J.
TerAvest, Michaela A.
Rosenbaum, Miriam A.
Gralnick, Jeffrey A.
Angenent, Largus T.
Author_xml – sequence: 1
  givenname: Michaela A.
  surname: TerAvest
  fullname: TerAvest, Michaela A.
  organization: Department of Biological and Environmental Engineering, Cornell University, New York, 14853, Ithaca
– sequence: 2
  givenname: Miriam A.
  surname: Rosenbaum
  fullname: Rosenbaum, Miriam A.
  organization: Department of Biological and Environmental Engineering, Cornell University, 14853, Ithaca, New York
– sequence: 3
  givenname: Nicholas J.
  surname: Kotloski
  fullname: Kotloski, Nicholas J.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, Minnesota, St. Paul
– sequence: 4
  givenname: Jeffrey A.
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, Minnesota, St. Paul
– sequence: 5
  givenname: Largus T.
  surname: Angenent
  fullname: Angenent, Largus T.
  email: la249@cornell.edu
  organization: Department of Biological and Environmental Engineering, Cornell University, New York, 14853, Ithaca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24122485$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFA18AWeICh7T-E9vJEVawVCpUQBHcLMeZsC5JXGyHbb49LrvLoQL1YsvS7z3Pm5kjdDD6ERB6SskJJYSdNi6dMEFZ9QAtKKlVQVhNDtCCECILLmp2iI5ivMpPVUn5CB2ykjJWVmKBpoub-TuM2PS930T8eQ0bM0LfG5y_cC2M0UX8_lNBcfLY_4Jg_QB4gNaZ5APemLj2U8IuO2Drx-TGyU-xn3EHLW6chx5sCt6uYXDW9DjOMcHwGD3sTB_hye4-Rl_evrlcvivOL1Zny1fnhS3rsipYy6AzRgorSWMEY4ZLKElnaV2D4dxyKijpOiloY3hT06ajOT9poeusohU_Ri-2vtfB_5wgJj24aG_jjZDL1FSq7ECrWt6PCka4ZDKf96NUloQKxTL6_A565acw5syZIpVQRKk6U8921NTk1urr4AYTZr0fUwZOt4ANPsYAnbYumeRyw4NxvaZE3y6Czoug_yxCVry8o9ib_ovduW9cD_P_Qf367HKvKLYKl6d581dhwg8tFVdCf_2w0t-WqyX5KIVm_DeJ69CR
CODEN BIBIAU
CitedBy_id crossref_primary_10_1002_bit_26046
crossref_primary_10_1002_jctb_6099
crossref_primary_10_3389_fbioe_2019_00060
crossref_primary_10_3389_fmicb_2016_01082
crossref_primary_10_1016_j_biortech_2019_03_130
crossref_primary_10_1016_j_enconman_2018_09_090
crossref_primary_10_1002_celc_201402036
crossref_primary_10_1002_celc_201600175
crossref_primary_10_1007_s00253_013_5396_6
crossref_primary_10_1186_s13068_014_0118_6
crossref_primary_10_1002_celc_201402239
crossref_primary_10_1007_s11270_024_07572_w
crossref_primary_10_3389_fenrg_2019_00087
crossref_primary_10_1016_j_ijhydene_2020_09_264
crossref_primary_10_3389_fenrg_2019_00100
crossref_primary_10_1038_s42003_021_02040_1
crossref_primary_10_1016_j_biortech_2018_07_025
crossref_primary_10_1111_mmi_14067
crossref_primary_10_3389_fmicb_2016_01438
crossref_primary_10_1021_acssynbio_1c00335
crossref_primary_10_1039_D1RA08487A
crossref_primary_10_1016_j_isci_2019_01_022
crossref_primary_10_1134_S0003683817020028
crossref_primary_10_1016_j_rser_2021_112051
crossref_primary_10_1016_j_bioelechem_2017_10_001
crossref_primary_10_1021_ez500244n
crossref_primary_10_1016_j_electacta_2019_03_085
crossref_primary_10_3389_fmicb_2021_660474
crossref_primary_10_1021_acscentsci_1c00931
crossref_primary_10_1016_j_bios_2014_07_003
crossref_primary_10_1002_celc_201402128
crossref_primary_10_3389_fbioe_2021_821734
crossref_primary_10_1016_j_cej_2023_146064
crossref_primary_10_1007_s00253_014_6005_z
crossref_primary_10_3389_fenrg_2019_00095
crossref_primary_10_1016_j_bioelechem_2017_10_008
crossref_primary_10_1016_j_bioflm_2021_100052
Cites_doi 10.1021/es800482e
10.1128/AEM.72.2.1558-1568.2006
10.1016/j.jpowsour.2006.10.026
10.1021/es0605016
10.1039/c0cc05037g
10.1016/S0005-2728(00)00098-0
10.1021/es0499344
10.1128/aem.61.4.1551-1554.1995
10.1016/j.bios.2011.12.013
10.1016/j.elecom.2009.07.008
10.1016/j.bioelechem.2011.02.006
10.1128/JB.00925-09
10.1021/es801553z
10.1002/bit.22621
10.1002/bit.22266
10.1128/AEM.70.4.2525-2528.2004
10.1002/bit.260261114
10.1038/nrmicro1442
10.1016/j.cej.2012.09.009
10.1128/mBio.00553-12
10.1128/JB.187.14.5049-5053.2005
10.1186/1471-2180-10-98
10.1128/AEM.01387-07
10.1021/es204302w
10.1073/pnas.0710525105
10.1039/b703627m
10.1371/journal.pone.0030827
10.1016/j.jpowsour.2007.06.220
10.1016/j.bios.2013.03.010
10.1021/es0502876
10.1080/00032719608002781
10.1038/ismej.2007.4
10.1073/pnas.1017200108
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Apr 2014
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Apr 2014
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QH
7UA
F1W
H97
L.G
7SU
DOI 10.1002/bit.25128
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Engineering Abstracts
DatabaseTitleList
Technology Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 699
ExternalDocumentID 3250378831
24122485
10_1002_bit_25128
BIT25128
ark_67375_WNG_XCGC0Q65_2
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: National Science Foundation through CAREER
  funderid: 0939882
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7QH
7UA
F1W
H97
L.G
7SU
ID FETCH-LOGICAL-c4948-2d2efaa65c60ba522a36e40fc199ea33c31510ff651ba3b91bf11090deffc7183
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 18:38:40 EDT 2025
Fri Jul 11 10:12:43 EDT 2025
Fri Jul 11 06:05:45 EDT 2025
Sat Aug 16 22:42:25 EDT 2025
Thu Apr 03 07:06:30 EDT 2025
Tue Jul 01 01:08:51 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Wed Jan 22 17:10:39 EST 2025
Wed Oct 30 09:56:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4948-2d2efaa65c60ba522a36e40fc199ea33c31510ff651ba3b91bf11090deffc7183
Notes istex:DB56FB14A44E60074F12C9383BCF7158B1BD84FE
National Science Foundation through CAREER - No. 0939882
ark:/67375/WNG-XCGC0Q65-2
ArticleID:BIT25128
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24122485
PQID 1508570779
PQPubID 48814
PageCount 8
ParticipantIDs proquest_miscellaneous_1671511896
proquest_miscellaneous_1520362620
proquest_miscellaneous_1516401572
proquest_journals_1508570779
pubmed_primary_24122485
crossref_citationtrail_10_1002_bit_25128
crossref_primary_10_1002_bit_25128
wiley_primary_10_1002_bit_25128_BIT25128
istex_primary_ark_67375_WNG_XCGC0Q65_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Read S, Dutta P, Bond P, Keller J, Rabaey K. 2010. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):98.
Bencharit S, Ward MJ. 2005. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. J Bacteriol 187(14):5049-5053.
Lovley DR. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497-508.
Quan X-c, Quan Y-p, Tao K. 2012. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell. Chem Eng J 210 150-156.
Nealson KH, Moser DP, Saffarini DA. 1995. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61(4):1551-1554.
He Z, Minteer SD, Angenent LT. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262-5267.
Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. 2007. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME J 1(1):9-18.
Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. 2012. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS ONE 7(2):e30827.
Logan BE, Hamelers B, Rozendal RA, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. 2006. Microbial fuel cells: Methodology and technology. Environ Sci Technol 40(17):5181-5192.
Appaix F, Minatchy M-N, Riva-Lavieille C, Olivares J, Antonsson B, Saks VA. 2000. Rapid spectrophotometric method for quantitation of cytochrome c release from isolated mitochondria or permeabilized cells revisited. Biochim Biophys Acta Bioenerg 1457(3):175-181.
Golitsch F, Bücking C, Gescher J. 2013. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47 285-291.
Li R, Tiedje JM, Chiu C, Worden RM. 2012. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors. Environ Sci Technol 46(5):2813-2820.
Sun WL, Kong JL, Deng JQ. 1996. Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction. Anal Lett 29(14):2425-2439.
Rosenbaum M, Cotta MA, Angenent LT. 2010. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol Bioeng 105(5):880-888.
Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schröder U. 2011. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81(2):74-80.
Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72(2):1558-1568.
Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968-3973.
Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630-8640.
Rozendal RA, Leone E, Keller J, Rabaey K. 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752-1755.
von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615-623.
Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4(1):e00553-e00612.
Ringeisen BR, Ray R, Little B. 2007. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165(2):591-597.
Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR. 2009. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103(3):524-531.
Fan Y, Hu H, Liu H. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348-354.
Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467-474.
Liu H, Logan BE. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040-4046.
Freguia S, Rabaey K, Yuan Z, Keller J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937-7943.
Schröder U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619-2629.
Lin WC, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70(4):2525-2528.
Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ. and others. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci 108(23):9384-9389.
Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT. 2012. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32(1):309-313.
Miyawaki O, Wingard LB. 1984. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon. Biotechnol Bioeng 26(11):1364-1371.
Li ZJ, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT. 2011. Bacteria-based AND logic gate: A decision-making and self-powered biosensor. Chem Commun 47(11):3060-3062.
2010; 10
2013; 47
2013; 4
2006; 72
1984; 26
2010; 105
2007; 165
2011; 81
2000; 1457
2008; 105
2006; 4
2008; 74
2012; 32
2009; 11
1995; 61
1996; 29
2011; 108
2012; 210
2004; 70
2006; 40
2005; 187
2004; 38
2007; 171
2007; 9
2010; 192
2008; 42
2011; 47
2012; 46
2007; 1
2012; 7
2005; 39
2009; 103
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Nealson KH (e_1_2_6_24_1) 1995; 61
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. 2012. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS ONE 7(2):e30827.
– reference: Miyawaki O, Wingard LB. 1984. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon. Biotechnol Bioeng 26(11):1364-1371.
– reference: Rosenbaum M, Cotta MA, Angenent LT. 2010. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol Bioeng 105(5):880-888.
– reference: Clarke TA, Edwards MJ, Gates AJ, Hall A, White GF, Bradley J, Reardon CL, Shi L, Beliaev AS, Marshall MJ. and others. 2011. Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci 108(23):9384-9389.
– reference: Nealson KH, Moser DP, Saffarini DA. 1995. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61(4):1551-1554.
– reference: Sun WL, Kong JL, Deng JQ. 1996. Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction. Anal Lett 29(14):2425-2439.
– reference: Freguia S, Rabaey K, Yuan Z, Keller J. 2008. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937-7943.
– reference: Rozendal RA, Leone E, Keller J, Rabaey K. 2009. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752-1755.
– reference: Appaix F, Minatchy M-N, Riva-Lavieille C, Olivares J, Antonsson B, Saks VA. 2000. Rapid spectrophotometric method for quantitation of cytochrome c release from isolated mitochondria or permeabilized cells revisited. Biochim Biophys Acta Bioenerg 1457(3):175-181.
– reference: Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. 2007. Microbial ecology meets electrochemistry: Electricity-driven and driving communities. ISME J 1(1):9-18.
– reference: Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192(2):467-474.
– reference: Logan BE, Hamelers B, Rozendal RA, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. 2006. Microbial fuel cells: Methodology and technology. Environ Sci Technol 40(17):5181-5192.
– reference: Lovley DR. 2006. Bug juice: Harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497-508.
– reference: Ringeisen BR, Ray R, Little B. 2007. A miniature microbial fuel cell operating with an aerobic anode chamber. J Power Sources 165(2):591-597.
– reference: Biffinger JC, Ray R, Little BJ, Fitzgerald LA, Ribbens M, Finkel SE, Ringeisen BR. 2009. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol Bioeng 103(3):524-531.
– reference: Lin WC, Coppi MV, Lovley DR. 2004. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl Environ Microbiol 70(4):2525-2528.
– reference: Liu H, Logan BE. 2004. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040-4046.
– reference: He Z, Minteer SD, Angenent LT. 2005. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39(14):5262-5267.
– reference: Li ZJ, Rosenbaum MA, Venkataraman A, Tam TK, Katz E, Angenent LT. 2011. Bacteria-based AND logic gate: A decision-making and self-powered biosensor. Chem Commun 47(11):3060-3062.
– reference: Golitsch F, Bücking C, Gescher J. 2013. Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47 285-291.
– reference: Read S, Dutta P, Bond P, Keller J, Rabaey K. 2010. Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10(1):98.
– reference: Schröder U. 2007. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9(21):2619-2629.
– reference: Carmona-Martinez AA, Harnisch F, Fitzgerald LA, Biffinger JC, Ringeisen BR, Schröder U. 2011. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry 81(2):74-80.
– reference: Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72(2):1558-1568.
– reference: von Canstein H, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74(3):615-623.
– reference: Kotloski NJ, Gralnick JA. 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4(1):e00553-e00612.
– reference: Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. 2008. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630-8640.
– reference: Li R, Tiedje JM, Chiu C, Worden RM. 2012. Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors. Environ Sci Technol 46(5):2813-2820.
– reference: Quan X-c, Quan Y-p, Tao K. 2012. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell. Chem Eng J 210 150-156.
– reference: Bencharit S, Ward MJ. 2005. Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. J Bacteriol 187(14):5049-5053.
– reference: Fan Y, Hu H, Liu H. 2007. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171(2):348-354.
– reference: Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT. 2012. A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32(1):309-313.
– reference: Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968-3973.
– volume: 81
  start-page: 74
  issue: 2
  year: 2011
  end-page: 80
  article-title: Cyclic voltammetric analysis of the electron transfer of MR‐1 and nanofilament and cytochrome knock‐out mutants
  publication-title: Bioelectrochemistry
– volume: 4
  start-page: e00553
  issue: 1
  year: 2013
  end-page: e00612
  article-title: Flavin electron shuttles dominate extracellular electron transfer by
  publication-title: mBio
– volume: 7
  start-page: e30827
  issue: 2
  year: 2012
  article-title: Transcriptional analysis of MR‐1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor
  publication-title: PLoS ONE
– volume: 187
  start-page: 5049
  issue: 14
  year: 2005
  end-page: 5053
  article-title: Chemotactic responses to metals and anaerobic electron acceptors in MR‐1
  publication-title: J Bacteriol
– volume: 39
  start-page: 5262
  issue: 14
  year: 2005
  end-page: 5267
  article-title: Electricity generation from artificial wastewater using an upflow microbial fuel cell
  publication-title: Environ Sci Technol
– volume: 32
  start-page: 309
  issue: 1
  year: 2012
  end-page: 313
  article-title: A cost‐effective and field‐ready potentiostat that poises subsurface electrodes to monitor bacterial respiration
  publication-title: Biosens Bioelectron
– volume: 1457
  start-page: 175
  issue: 3
  year: 2000
  end-page: 181
  article-title: Rapid spectrophotometric method for quantitation of cytochrome release from isolated mitochondria or permeabilized cells revisited
  publication-title: Biochim Biophys Acta Bioenerg
– volume: 108
  start-page: 9384
  issue: 23
  year: 2011
  end-page: 9389
  article-title: Structure of a bacterial cell surface decaheme electron conduit
  publication-title: Proc Natl Acad Sci
– volume: 61
  start-page: 1551
  issue: 4
  year: 1995
  end-page: 1554
  article-title: Anaerobic electron acceptor chemotaxis in
  publication-title: Appl Environ Microbiol
– volume: 40
  start-page: 5181
  issue: 17
  year: 2006
  end-page: 5192
  article-title: Microbial fuel cells: Methodology and technology
  publication-title: Environ Sci Technol
– volume: 105
  start-page: 3968
  issue: 10
  year: 2008
  end-page: 3973
  article-title: secretes flavins that mediate extracellular electron transfer
  publication-title: Proc Natl Acad Sci
– volume: 29
  start-page: 2425
  issue: 14
  year: 1996
  end-page: 2439
  article-title: Electrocatalytic activity of riboflavin chemically modified electrode toward dioxygen reduction
  publication-title: Anal Lett
– volume: 42
  start-page: 8630
  issue: 23
  year: 2008
  end-page: 8640
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ Sci Technol
– volume: 42
  start-page: 7937
  issue: 21
  year: 2008
  end-page: 7943
  article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes
  publication-title: Environ Sci Technol
– volume: 47
  start-page: 3060
  issue: 11
  year: 2011
  end-page: 3062
  article-title: Bacteria‐based AND logic gate: A decision‐making and self‐powered biosensor
  publication-title: Chem Commun
– volume: 26
  start-page: 1364
  issue: 11
  year: 1984
  end-page: 1371
  article-title: Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon
  publication-title: Biotechnol Bioeng
– volume: 4
  start-page: 497
  issue: 7
  year: 2006
  end-page: 508
  article-title: Bug juice: Harvesting electricity with microorganisms
  publication-title: Nat Rev Microbiol
– volume: 38
  start-page: 4040
  issue: 14
  year: 2004
  end-page: 4046
  article-title: Electricity generation using an air‐cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane
  publication-title: Environ Sci Technol
– volume: 70
  start-page: 2525
  issue: 4
  year: 2004
  end-page: 2528
  article-title: can grow with oxygen as a terminal electron acceptor
  publication-title: Appl Environ Microbiol
– volume: 105
  start-page: 880
  issue: 5
  year: 2010
  end-page: 888
  article-title: Aerated in continuously fed bioelectrochemical systems for power and hydrogen production
  publication-title: Biotechnol Bioeng
– volume: 11
  start-page: 1752
  issue: 9
  year: 2009
  end-page: 1755
  article-title: Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
  publication-title: Electrochem Commun
– volume: 74
  start-page: 615
  issue: 3
  year: 2008
  end-page: 623
  article-title: Secretion of flavins by species and their role in extracellular electron transfer
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 524
  issue: 3
  year: 2009
  end-page: 531
  article-title: Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with
  publication-title: Biotechnol Bioeng
– volume: 1
  start-page: 9
  issue: 1
  year: 2007
  end-page: 18
  article-title: Microbial ecology meets electrochemistry: Electricity‐driven and driving communities
  publication-title: ISME J
– volume: 165
  start-page: 591
  issue: 2
  year: 2007
  end-page: 597
  article-title: A miniature microbial fuel cell operating with an aerobic anode chamber
  publication-title: J Power Sources
– volume: 47
  start-page: 285
  year: 2013
  end-page: 291
  article-title: Proof of principle for an engineered microbial biosensor based on outer membrane protein complexes
  publication-title: Biosens Bioelectron
– volume: 46
  start-page: 2813
  issue: 5
  year: 2012
  end-page: 2820
  article-title: Soluble electron shuttles can mediate energy taxis toward insoluble electron acceptors
  publication-title: Environ Sci Technol
– volume: 72
  start-page: 1558
  issue: 2
  year: 2006
  end-page: 1568
  article-title: Characterization of metabolism in the Fe(III)‐reducing organism by constraint‐based modeling
  publication-title: Appl Environ Microbiol
– volume: 171
  start-page: 348
  issue: 2
  year: 2007
  end-page: 354
  article-title: Enhanced coulombic efficiency and power density of air‐cathode microbial fuel cells with an improved cell configuration
  publication-title: J Power Sources
– volume: 10
  start-page: 98
  issue: 1
  year: 2010
  article-title: Initial development and structure of biofilms on microbial fuel cell anodes
  publication-title: BMC Microbiol
– volume: 9
  start-page: 2619
  issue: 21
  year: 2007
  end-page: 2629
  article-title: Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
  publication-title: Phys Chem Chem Phys
– volume: 192
  start-page: 467
  issue: 2
  year: 2010
  end-page: 474
  article-title: The Mtr respiratory pathway is essential for reducing flavins and electrodes in
  publication-title: J Bacteriol
– volume: 210
  start-page: 150
  year: 2012
  end-page: 156
  article-title: Effect of anode aeration on the performance and microbial community of an air–cathode microbial fuel cell
  publication-title: Chem Eng J
– ident: e_1_2_6_9_1
  doi: 10.1021/es800482e
– ident: e_1_2_6_21_1
  doi: 10.1128/AEM.72.2.1558-1568.2006
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jpowsour.2006.10.026
– ident: e_1_2_6_18_1
  doi: 10.1021/es0605016
– ident: e_1_2_6_14_1
  doi: 10.1039/c0cc05037g
– ident: e_1_2_6_2_1
  doi: 10.1016/S0005-2728(00)00098-0
– ident: e_1_2_6_17_1
  doi: 10.1021/es0499344
– volume: 61
  start-page: 1551
  issue: 4
  year: 1995
  ident: e_1_2_6_24_1
  article-title: Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.61.4.1551-1554.1995
– ident: e_1_2_6_10_1
  doi: 10.1016/j.bios.2011.12.013
– ident: e_1_2_6_31_1
  doi: 10.1016/j.elecom.2009.07.008
– ident: e_1_2_6_5_1
  doi: 10.1016/j.bioelechem.2011.02.006
– ident: e_1_2_6_7_1
  doi: 10.1128/JB.00925-09
– ident: e_1_2_6_19_1
  doi: 10.1021/es801553z
– ident: e_1_2_6_29_1
  doi: 10.1002/bit.22621
– ident: e_1_2_6_4_1
  doi: 10.1002/bit.22266
– ident: e_1_2_6_16_1
  doi: 10.1128/AEM.70.4.2525-2528.2004
– ident: e_1_2_6_23_1
  doi: 10.1002/bit.260261114
– ident: e_1_2_6_20_1
  doi: 10.1038/nrmicro1442
– ident: e_1_2_6_25_1
  doi: 10.1016/j.cej.2012.09.009
– ident: e_1_2_6_13_1
  doi: 10.1128/mBio.00553-12
– ident: e_1_2_6_3_1
  doi: 10.1128/JB.187.14.5049-5053.2005
– ident: e_1_2_6_27_1
  doi: 10.1186/1471-2180-10-98
– ident: e_1_2_6_34_1
  doi: 10.1128/AEM.01387-07
– ident: e_1_2_6_15_1
  doi: 10.1021/es204302w
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.0710525105
– ident: e_1_2_6_32_1
  doi: 10.1039/b703627m
– ident: e_1_2_6_30_1
  doi: 10.1371/journal.pone.0030827
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jpowsour.2007.06.220
– ident: e_1_2_6_11_1
  doi: 10.1016/j.bios.2013.03.010
– ident: e_1_2_6_12_1
  doi: 10.1021/es0502876
– ident: e_1_2_6_33_1
  doi: 10.1080/00032719608002781
– ident: e_1_2_6_26_1
  doi: 10.1038/ismej.2007.4
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.1017200108
SSID ssj0007866
Score 2.3075726
Snippet ABSTRACT Many bioelectrochemical systems (BESs) harness the ability of electrode‐active microbes to catalyze reactions between electrodes and chemicals, often...
Many bioelectrochemical systems (BESs) harness the ability of electrode-active microbes to catalyze reactions between electrodes and chemicals, often to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 692
SubjectTerms Anodes
Bacteria
Bioelectric Energy Sources - microbiology
bioelectrochemical system
Bioengineering
Biofilms
Bioreactors - microbiology
Biotechnology
Cathodes
Cytochromes c
Electric power
Electric power generation
electro-active bacteria
Electrochemical Techniques - methods
Electrodes
electron shuttle
flavin
Flavins
Harnesses
Microorganisms
Oxygen
Oxygen - metabolism
Reduction
Shewanella - metabolism
Shewanella oneidensis
Wastewater treatment
Title Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system
URI https://api.istex.fr/ark:/67375/WNG-XCGC0Q65-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.25128
https://www.ncbi.nlm.nih.gov/pubmed/24122485
https://www.proquest.com/docview/1508570779
https://www.proquest.com/docview/1516401572
https://www.proquest.com/docview/1520362620
https://www.proquest.com/docview/1671511896
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMetqggBBx5bHoGCDEIVl7SJncdGnNoVbUGiiNKKPVSKbMdWo5YEbRJtlxMfgc_IJ2HGeZSiUiFukXaycuyx_Z948htCXo4znkgVcDdUEKIEzJNuwmFAkjjMYIKYRCtL-9yLdg-Dd9NwukRe99_CtHyI4YUbzgy7XuMEF7LaOIeGyhwLXMPyCusv5mqhINo_R0fF4_acEiNmHiaspwp5bGO488JedA279ewyoXlRt9qNZ_sOOeqb3OabnKw3tVxX3_6gOf7nM90ltztBSjdbD7pHlnQxIiubBQTjXxZ0jdoUUfvufUSub_VXNyZ9obgRufUb03CFzD-cLcApKR7ozyv66VjPBabSCFoWyNQqqryi7_d_fv_h07qkmEEKrdTUfsJSlzM6F9Vx2dQ0h_-gmEmfF03ZVKcLanRGZV52lXtUhzqgLYz6PjncfnMw2XW76g6uQiSNyzKmjRBRqCJPCpCBgkc68Izyk0QLzhUHMeIZE4W-FFwmvjRIR_UybYyCHZU_IMsFtPwRobjFBibmemxUEIpIaqwSAHGDnwmmfM8hr_pxTlWHPscKHKdpC21mKXR8ajveIS8G068t7-MyozXrLIOFmJ1gglwcpp_3dtLpZGfifYzClDlktfemtFsbqhQJ_GHsxXHikOfDzzBmeFQDIwJdCjYQxoJSi9lVNszChJh3hU0U-xhDJpFDHrbePDQatBtDoB30jvXJvz9vuvX2wF48_nfTJ-QmaMsuyWmVLNezRj8F_VbLZ3ai_gLt_kDC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqhwoLDlsdCCQajism3ivDYSl3ZFu4V2EWUr9oIs27HVVUuCNlltlxM_gd_IL2HsPEpRqRA3S5lEzszY_sYefwPwspt4sZC-1wkkhig-dUQn9tAgcRQkOEB0rKRl-xyE_WP_7SgYLcDr-i5MyQ_RbLiZkWHnazPAzYb01gVrqBibCtc4v96AJVPR2wZURxfkUVG3PKk0MbMXxLTmFXLoVvPqpdVoySj2_CqoeRm52qVndwU-150uM05ON6eF2JTf_uBz_N-_ugt3KkxKtksnugcLKm3B6naK8fiXOdkgNkvUbr-34OZO3Vru1bXiWnD7N1rDVZi9P5-jXxJzpj_LyccTNeMmm4aTLDW0Wmk-zsnh0c_vP1xSZMQkkWI3FbG3WIpsQmY8P8mmBRnjN4hJph-n02yan82JVgkR46wq3iMrtgNS8lHfh-PdN8Nev1MVeOhIw0rToQlVmvMwkKEjOCJB7oXKd7R041hxz5Me4hFHazSu4J6IXaENQaqTKK0lLqreA1hMseePgJhV1teRp7pa-gEPhTKFAjB0cBNOpeu04VVtaCYr9nNThOOMlbzNlKHimVV8G140ol9Lyo-rhDastzQSfHJqcuSigH0a7LFRb6_nfAgDRtuwVrsTq6aHnBkS_iByoihuw_PmMdrMnNagRVClKIORLIK1iF4nQy2fEHWukQkj14SRcdiGh6U7N51G-EYNpx1qxzrl3_-X7ewPbePxv4s-g-X-8PCAHewP3j2BWwg1q5ynNVgsJlO1jnCuEE_tqP0F0M1E3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEICt0orXocCWx0IBg1DFZVvHzmMjTu2WbctjgdKKPSBZtmOrq5ak2mS1XU78hP5Gfglj51GKSoW4RcokcsZje8aefIPQi27CYql81gkUhCg-JbITM-iQOAoSGCAm1srRPgfh9r7_ZhgM59Cr-l-Ykg_RbLjZkeHmazvAjxOzdgYNlSNb4Bqm1ytowQ9J15r05u4ZOyrqlgeVNmRmQUxrrBCha82j5xajBavXk4s8zfOOq1t5-rfQ17rNZcLJ4eqkkKvq-x84x__8qNtosfJI8XppQnfQnE5baGk9hWj82wyvYJcj6jbfW-jqRn11vVdXimuhm79BDZfQ9MPJDKwS2xP9aY4_H-ipsLk0AmephWql-SjH73d__jj1cJFhm0IKrdTY_cNSZGM8FflBNinwCN6BbSr9KJ1kk_xoho1OsBxlVekeVbEOcEmjvov2-6_3etudqrxDR1kmTYcmVBshwkCFRArwAwULtU-M8uJYC8YUA2-EGBMGnhRMxp40Fo9KEm2MgiWV3UPzKbT8AcJ2jfVNxHTXKD8QodS2TAAEDl4iqPJIG72s-5mrin1uS3Ac8ZLaTDkonjvFt9HzRvS4BH5cJLTijKWREONDmyEXBfzLYIsPe1s98ikMOG2j5dqaeDU55Nwi-IOIRFHcRs-a29Bn9qwGegRUCjIQx4KrFtHLZKijCVFyiUwYeTaIjMM2ul9ac9NocN6oJdqBdpxN_v17-cbOnrt4-O-iT9G1j5t9_m5n8PYRugF-ZpXwtIzmi_FEPwZfrpBP3Jj9Be_JQ5U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen+allows+Shewanella+oneidensis+MR%E2%80%901+to+overcome+mediator+washout+in+a+continuously+fed+bioelectrochemical+system&rft.jtitle=Biotechnology+and+bioengineering&rft.au=TerAvest%2C+Michaela+A.&rft.au=Rosenbaum%2C+Miriam+A.&rft.au=Kotloski%2C+Nicholas+J.&rft.au=Gralnick%2C+Jeffrey+A.&rft.date=2014-04-01&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=111&rft.issue=4&rft.spage=692&rft.epage=699&rft_id=info:doi/10.1002%2Fbit.25128&rft.externalDBID=10.1002%252Fbit.25128&rft.externalDocID=BIT25128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon